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Abstract

To provide biologic insights into mechanisms underlying myelodysplastic syndromes (MDS) we 

evaluated the CD34+ marrow cells transcriptome using high-throughput RNA sequencing (RNA-

Seq). We demonstrated significant differential gene expression profiles (GEPs) between MDS and 

normal and identified 41 disease classifier genes. Additionally, two main clusters of GEPs 

distinguished patients based on their major clinical features, particularly between those whose 

disease remained stable vs patients who transformed into acute myeloid leukemia within 12 

months. The genes whose expression was associated with disease outcome were involved in 

functional pathways and biologic processes highly relevant for MDS. Combined with exomic 

analysis we identified differential isoform usage of genes in MDS mutational subgroups, with 

consequent dysregulation of distinct biological functions. This combination of clinical, 
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transcriptomic and exomic findings provides valuable understanding of mechanisms underlying 

MDS and its progression to a more aggressive stage and also facilitates prognostic characterization 

of MDS patients.

Introduction

The myelodysplastic syndromes (MDS) are a spectrum of clonal myeloid hemopathies with 

inherent hematopoietic precursor cell (HPC) anomalies, abnormal hematopoietic regulation 

and clinical heterogeneity.[1–3]. Use of these features has provided methods (e.g., the 

International Prognostic Scoring System [IPSS] and Revised IPSS [IPSS-R] and WPSS) to 

help define patients’ prognoses, including their relative risk of developing acute myeloid 

leukemia (AML) and shortened survival.[3–5] However, despite their clinical utility 

additional relevant biologic and molecular data are needed to enhance the precision of these 

approaches for more accurately predicting patients’ clinical courses and aid disease 

management.

Disease-specific gene expression profiles (GEPs) and cellular pathways have been identified 

using microarray platforms and have provided insights into the molecular biology of AML 

and its subtypes.[6–8] However, in contrast to the relatively homogeneous marrow 

population of blasts present in AML, the MDS marrow contains heterogeneous populations 

of cells with various degrees of cellular differentiation. Thus, for representative analysis of 

HPCs prior studies using microarray platforms from our lab and others have used CD34+ 

cells to assess GEP alterations in MDS marrow[9–13], in conjunction with clinical 

outcomes.[14,15] Given the increased sensitivity and accuracy of high-throughput RNA 

sequencing (RNA-Seq)[16–18] for detecting and quantifying mRNA transcripts, we applied 

this methodology for evaluation of differential gene expression between MDS and normal 

CD34+ marrow cells.

Studies using RNA-Seq have shown that >90% of human protein-coding genes produce 

multiple mRNA isoforms with subsequent analysis demonstrating that alternative splicing 

switches in tumors reveal novel signatures of cancer[19]. Distinct isoforms have specific 

roles in hematopoietic lineage generation.[20] The mechanisms for RNA isoform selection, 

i.e., alternative splicing and transcriptional start site usage, are often dysfunctional in 

diseases such as MDS and AML where aberrant isoform expression has been reported. 

[21,22] In this study we have additionally evaluated the differential isoforms usage within 

the transcriptomes of our MDS patient cohort.

Pathogenic mutations in genes, including those encoding transcription factors, epigenetic 

modifiers and the components of the spliceosome machinery have described the mutational 

landscape of MDS.[23–26] In our study, we have linked mutational analyses of the exome 

with the transcriptomic data of this patient cohort to describe the contributions of clinical, 

transcriptomic and exomic data that may be potentially valuable for assessing prognosis and 

pathogenetic features in MDS patients.
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Materials/Subjects and Methods

Sample collection and clinical categorization of MDS patients

Marrow samples and clinical information from 44 primary MDS patients and 23 healthy 

control individuals were obtained and processed within one center (Stanford Cancer Center) 

with informed consent in accordance with the Declaration of Helsinki, with the approval of 

the Stanford Investigational Review Board. The healthy controls were either bone marrow 

transplantation donors or paid healthy volunteers. The MDS patients were categorized by 

their FAB, IPSS and NCCN classifications[2,3], thus >30% marrow blasts indicated AML 

transformation.

Isolation of cells and RNA; RNA amplification and library generation

RNA was extracted using the RNeasy kit (Qiagen, Valencia, CA) from magnetic bead 

affinity-enriched CD34+ cells (>94% by flow cytometry) obtained from marrow aspirates 

(Miltenyi Biotec, Auburn, CA) as previously described.[14] Total RNA was amplified by 

using the SMARTer Ultra Low RNA Kit for Illumina Sequencing (Clontech Laboratories, 

Inc., Mountain View, CA)[16] after testing for the fidelity of the protocol on HeLa cell 

derived RNA (Supplementary Methods, Suppl Figure 1). cDNA library synthesis and 

sequencing was performed as previously described (Supplementary Methods).[27] The 

libraries were sequenced on the Illumina HiSeq 2000 platform at the Stanford Sequencing 

Center. The sequencing data analyzed in this publication are deposited in NCBI’s Gene 

Expression Omnibus (Accession GSE111085).

RNA-Seq data processing and analysis

For gene-level expression analysis, read mapping using default parameters in TopHat 

(v2.0.9) to the Human hg19 reference genome, read quantification and quality filtering were 

determined as previously described (See Supplementary Methods). Read mapping statistics 

are provided in Suppl Table 1. All statistical analyses unless otherwise stated were 

performed in R (v3.1.3) and packages from Bioconductor.[28] The term “significant” 

implies statistically significant at FDR 5%, unless otherwise stated throughout the text.

Raw read counts were obtained using HTseq (v0.5.4p4)[29] and differential expression 

analysis was performed using EdgeR (v3.12.1)[30],[31] and Limma (v3.26.9)[32]. After 

filtering the samples for genes with low counts across samples, 12,323 genes were used for 

subsequent evaluation. Batch correction was performed using the Surrogate Variable 

Analysis (sva) package (v3.24.4)[33]. Supervised hierarchical clustering analysis of the 

differentially expressed genes was performed as a part of the EdgeR package (See 

Supplementary Methods).

Classification

Classification analysis, based on the nearest shrunken centroid characterization to classify 

patients as MDS vs healthy, was performed using the prediction analysis of microarrays 

(PAM) – pamr package (v2.23)[34] adapted for analysis of RNA-Seq data. Based on this 

approach, the subset of genes that best classified each disease class was identified for all 
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MDS individuals and those whose disease transformed to AML within 12 months (tMDS) vs 

normals.

Mutation analysis, Sequencing Methods

Genomic DNA was extracted from frozen cell pellets obtained from CD34- bone marrow 

cells and sheared on a Covaris instrument (Covaris, Inc., Woburn, MA). Libraries were 

created using KAPA Hyper DNA Library preparation kits (Kapa Biosystems, Wilmington, 

MA). Selected exons and flanking sequences of 173 genes (Suppl Table 2) were enriched 

with target specific capture probes (Genoptix, Inc., Carlsbad, CA). Enriched libraries were 

sequenced on the Illumina NextSeq platform (Illumina, San Diego, CA). Genomic 

alterations were determined using target capture based next-generation sequencing (NGS) 

technology, see Supplementary Methods.[35]

Progression to AML within 12 months of marrow sample

For MDS patients univariable and multivariable Cox-regression analysis of time to AML 

within 12 months of bone-marrow sample was performed using the phreg procedure in SAS 

9.4 (SAS Institute, Cary NC) to evaluate associations with clinical features (age, gender, 

IPSS), gene expression cluster, under or over-expression of genes (dichotomized as below or 

above median expression, respectively) identified from PAM analysis as well as the number 

of mutations (0–2 versus >2) for those MDS patients with a mutation analysis. Patients 

without progression to AML were right censored at the earliest of death, end of follow-up or 

12 months. We reported hazard ratios with 95% profile-likelihood confidence intervals along 

with likelihood-ratio test p-values (a p-value of 0.05 was considered statistically significant) 

and used the exact method for ties.

Principal component analyses and multidimensional scaling analyses

To evaluate the relationship between the mutational subgroups i.e., with or without 

spliceosome mutations, principal component analysis was performed using the prcomp 

function and multidimensional scaling analysis was performed using the plotMDS function 

within the limma package.[32] (See Supplementary Methods)

Differential isoform usage analysis

For isoform-level analysis on the patients with mutational information, RNA-seq reads were 

mapped to the hg19 Human Reference Genomes using the STAR-aligner with exon-exon 

junction spanning settings (v2.4.0g1).[37] Differential Isoform Usage (DIU) per gene was 

evaluated between mutational subgroups using the Isoform Usage Two-step Analysis – 

IUTA (v1.0) package.[38,39] Differential isoform expression datasets between mutational 

subgroups were also generated with the Tuxedo suite (v3.1.0).[38]

Functional analysis

Biological functions, canonical pathways and known disease associations were annotated 

based on a) differentially expressed genes, b) differentially expressed isoforms and c) genes 

with DIU using the Qiagen Ingenuity Pathway Analysis (IPA) software which performs 

causal network analysis based on the Ingenuity Knowledge base and proprietary algorithms. 
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The statistical significance of the enriched pathways is calculated based on the Fisher exact 

test (QIAGEN Redwood City,www.qiagen.com/ingenuity)[40].

Comparative quantification of gene expression

The multiplexed probe-based method (nCounter® technology, NanoString Technologies, 

Seattle, WA) was used for gene expression validation.[41] For quantification, 1–5ng RNA 

isolated from snap frozen CD34+ MDS and normal marrow cells were used. Probe sets for 

each gene were designed and synthesized by nCounter®. Manufacturer’s protocol was 

followed for sample preparation and hybridization.[42]

Results

Patient characterization

Clinical and gene expression cluster characteristics of the 44 MDS patients are indicated in 

Table 1 and Suppl Table 3. In addition to FAB, NCCN, IPSS and IPSS cytogenetic 

classifications, patients were specifically categorized for progression to AML within 12 

months after sample collection (tMDS) (>30% marrow blasts) or whether they remained 

stable (sMDS). Details of the patients’ clinical and molecular characteristics are shown in 

Suppl Table 3. Marrow samples were generally obtained within 6 months of diagnosis. 

Approximately half of the patients in the sMDS and tMDS groups received hypomethylating 

agents after the marrow sample was obtained. These features are also indicated in Figure 1. 

All tMDS patients who died, did so due to leukemia. As expected, an increased proportion 

of IPSS higher risk patients resided within the tMDS group (p=0.0003, Table 1).

Gene expression profiling using RNA-Seq

Differential expression analysis was performed on the RNA-seq data obtained from CD34+ 

marrow cells derived from either MDS or normal individuals. As shown in Figure 1 and 

Suppl Figure 2, 4148 differentially expressed genes (DEGs) were identified at 5% FDR, i.e., 

2048 with elevated expression and 2100 with lower expression in MDS. Two major gene 

clusters were generated by supervised hierarchical clustering of the DEGs between the 

normal and MDS patients, with the top cluster (Cluster 1, 2048 genes) demonstrating 

elevated expression predominantly in the tMDS patients and lower expression in the normal 

and sMDS individuals (p=0.0079, Table 1, Figure 1). The opposite pattern was observed in 

the bottom cluster (Cluster 2, 2100 genes). sMDS individuals clustered closer to the healthy 

controls compared to those with tMDS. A higher proportion of tMDS patients also exhibited 

Cluster 1 DEG pattern (p=0.05, Table 1). More distinct cluster patterns were demonstrated 

when analyzing differential GEPs from tMDS patients vs normal (Suppl Figure 3). No clear 

segregation was noted between other clinical features, including hypomethylating-agent 

treatment.

Disease Classification

To identify genes that best distinguished MDS from normal we performed PAM on our DEG 

data and demonstrated that 41 significant genes were capable of distinguishing between the 

two groups (Suppl Figure 4A, Suppl Table 4A). PAM of tMDS vs normal identified a 
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minimum number of 46 genes significant for classification (Suppl Figure 4B, Suppl Table 

4B).

Mutation analysis

DNA from CD34- marrow samples from 29 patients and 6 control subjects from our original 

cohort were evaluated for myeloid mutations. In 25 of the 29 patient samples, pathogenic 

(and presumed) somatic mutations were found across 23 pathogenic genes, the vast majority 

of which were previously reported to be frequently mutated in MDS patients (Figure 2, 

Suppl Table 3). Suppl Figure 5A shows the number of patients with specific pathogenic 

mutations and the potential of these patients to remain stable or transform to AML. Suppl 

Figure 5B and Suppl Table 3 demonstrates the positive association of mutational burden (ie, 

≥2 vs < 2 mutations) with tMDS (p=0.0013, Fisher’s exact test).

For these 29 patients, the heatmap clustering of DEGs vs normal was similar to that of the 

entire MDS (n=44) cohort, showed similar patient grouping between the two gene 

expression clusters (Suppl Figure 6), indicating that this subset was representative of the 

entire cohort. Among patients assigned to gene expression Cluster 1, 47% (9/19) had >2 

mutations compared with 20% (2/10) of patients assigned to Cluster 2 (Fisher’s exact test, 

p=0.23). Also, no clear association was seen between specific mutations and DEG Cluster 

(Suppl Table 3).

Association of clinical and biologic variables with progression to AML within 12 months of 
marrow sample

MDS patient subgroups within our cohort were analyzed to determine the impact of clinical 

and biologic features on progression to AML. PAM analyses showed that CD38 under-

expression (values below median) was associated with an increased risk of progression to 

AML within 12 months (Hazard Ratio [HR]=2.63, 95% CI: 0.97, 8.27; p=0.057) among 

MDS (n=44) patients. High or intermediate-2 IPSS category (vs low or intermediate-1) was 

significantly associated with an increased risk of progression to AML (HR=8.49, 95% CI: 

2.96, 30.5; p<0.001) while GEP cluster 1 (vs 2) showed a trend toward this association 

(HR=3.36, 95% CI: 0.95, 21.3; p=0.062) (Table 2). A multivariable Cox model with only 

IPSS (HR=8.69, 95% CI: 3.00, 31.4; p<0.001) and GEP cluster (HR=3.43, 95% CI: 0.96, 

21.8; p=0.059) provided similar results to the univariable models. Among MDS patients 

with mutation analysis (n=29) (Table 2), GEP Cluster 1 (vs 2) was significantly associated 

with increased risk of progression to AML (HR=5.33, 95% CI: 1.02, 97.8; p=0.047), 

whereas having >2 mutations (vs 0–2) had a trend of association (HR=3.05, 95% CI: 0.92, 

11.7; p=0.069).

Differential isoform usage in mutational subgroups

We identified two major DGE clusters between normal and MDS albeit closer examination 

showed subtle differences within each cluster. As these differences may have arisen due to 

differences at the transcript level we assessed aberrant isoform expression. In the group of 

individuals with mutation information (n=29), 25 had at least one pathogenic mutation in 

genes that regulate isoform expression (Figure 2), i.e. in the spliceosome, epigenetic factors 

or transcription factors.
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Principal component and multidimensional scaling analysis showed distinct segregation of 

the patient subgroups with spliceosome mutations (SM) or with non-spliceosome mutations 

(NSM) even at the gene level (Suppl Fig 7A&B). The range of mutant allele frequency was 

between 37.5–100% for the individuals that expressed the mutant allele in the spliceosome 

(Supplementary Materials), suggesting the presence of dysfunctional components within the 

spliceosome machinery of our patient cohort. Transcript-level expression analyses identified 

numerous differentially expressed isoforms between normal individuals and MDS and its 

mutational subgroups (Suppl Tables 5&6).

The effect of dysfunctional spliceosome was specifically evaluated by estimating differential 

isoform usage (DIU). We identified distinct sets of genes that showed DIU between the two 

mutational subgroups and normal (Figure 3A, Suppl Tables 7 and 8). The NSM group was 

more similar to all MDS, with a greater number of genes showing DIU and higher overlap 

whereas the SM group had fewer genes showing DIU (Figure 3A). Eighteen genes showed 

DIU between the two mutation subgroups (Suppl Tables 7 & 8). The subset of genes that 

demonstrated DIU exclusively between SM and NSM are shown in Figure 3B.

Functional and pathway analysis of significantly differentially expressed genes

We performed functional and pathway enrichment analysis of the significantly DE genes and 

isoforms using the Ingenuity Pathway Analysis (IPA) software. Distinct biological functions 

and canonical pathways were enriched by Cluster 1 vs Cluster 2 DEGs for all MDS (Table 

3A) and for tMDS patients (Table 3B).

Functional analyses of the genes with differential isoform expression and usage between the 

normal vs mutation subgroups demonstrated that each subgroup enriched distinct biological 

processes: the SM group enriched for pyrimidine biosynthesis pathways and replication and 

apoptosis, the NSM group enriched for metabolic and immune response pathways (Suppl 

Figure 9). IPA analysis of the differentially expressed isoforms using the Isoprofiler tool also 

identified specific isoforms that play a role in other cancers and diseases (Suppl Table 9).

Gene expression quantification and validation

Independent quantification of gene expression for a representative panels of genes using the 

probe-based nCounter® technology (NanoString) demonstrated good concordance of 

expression levels and directionality (Pearson correlation coefficient=0.809, p<0.001) with 

RNA-Seq (Suppl Figure 10, Suppl Methods).

Discussion

Our RNA-Seq data demonstrated differential gene expression between CD34+ marrow cells 

from MDS and normal individuals and identified two distinct gene clusters associated with 

disease outcome in MDS patients. GEPs of patients who transformed into AML within 12 

months (tMDS) were predominantly associated with gene Cluster 1 whereas the GEPs of the 

more stable MDS (sMDS) patients and normal individuals were associated with gene Cluster 

2 (Figure 1, Suppl Table 3, Suppl Figure 3). Numerous novel genes were discerned with 

these clusters (Suppl Table 4A,B). However, many genes, including the top 150 DEGs 

within our cohort, have been reported in prior MDS/AML microarray gene expression 
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studies: elevated expression - CLK4, HOXB2, RAB27B, SLC15A2, DPYSL3 or lower 

expression - AKAP12, ARPP21, MME, PMP22, PRG2, RAG2, TLR2, VPREB3 (Suppl 

Table 4).[12,14,43–45]

Functional categorization demonstrated deregulation of a number of relevant and disparate 

functional biologic pathways in MDS vs normal and between sMDS and tMDS. Genes with 

elevated expression in MDS (mainly Cluster 1) were involved in AML signaling, stem cell 

pluripotency, oxidative stress and immunologic activation related pathways, whereas those 

with lower expression in MDS (mainly Cluster 2) were engaged in DNA damage repair, cell 

cycle and checkpoint regulation, proliferative signaling, tumor suppressor and metabolism-

related pathways (Table 3A). Similar pathway enrichment pattern was observed in the tMDS 

vs normal analyses in addition to lower enrichment of apoptosis-signaling pathways (Table 

3B). Although novel altered pathways were discerned, some have previously been reported 

in MDS patients.[13,14,27,46]

Prediction analysis (PAM) identified 41 and 46 genes as disease classifiers between MDS vs 

Normal and tMDS vs Normal, respectively (Suppl Figure 4A&B). Of these, lower 

expression of CD38 was significantly associated with time to AML. In contrast to its 

presence on CD34+ HPCs, CD38 expression is absent on the CD34+ hematopoietic stem 

cells, indicative of a more immature phenotype; findings also demonstrated in MDS.[47,48] 

As our analyzed cell population is CD34+, this finding supports existing reports that the 

CD34+CD38- cell subset has enhanced susceptibility to leukemic transforming events.[49]

The DGE clusters (Cluster 1 vs 2) and IPSS categories were associated with the patients’ 

freedom from AML transformation within 12 months (Tables 1and 2). Exomic analysis in a 

subset of our patients detected mutations in genes known to be most frequently mutated in 

MDS[23–26,50] and resided in distinct functional categories (Figure 2). As previously 

shown[25], poorer overall outcome with a higher transformation rate occurred in our patients 

with ≥2 mutations. These findings support the hypothesis that the biological impact of 

altered gene expression as well as mutations contributes to the prognosis of MDS patients.

[51]

Our RNA-Seq study extends prior microarray work[51] in which, using a multivariable 

model, mutations, gene expression and clinical diagnostic variables, were all found to 

contain relevant information for predicting clinical outcomes, albeit their analysis was for 

survival, whereas ours assessed time to AML evolution. Using AML evolution rather than 

survival as an endpoint may be more relevant for evaluating clinical outcomes, given the 

multiple non-hematologic causes of mortality in MDS patients. Recently, a multi-

institutional study using RNA-Seq also reported distinct DGE patterns predictive of AML 

transformation[52].

Despite the presence of multiple gene mutations and clinical variables only two major DGE 

clusters were generated. However, closer observation revealed additional DGE sub-clusters 

(Figure 1). These subtle changes in overall gene-expression can potentially occur due to 

differential isoform expression or usage. RNA and protein isoforms play an important role in 

determining gene function in hematopoiesis and may influence disease outcome in MDS and 
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AML.[20,53] Alternative splicing (predominantly) and modulation of transcriptional activity 

regulate spatio-temporal isoform expression.[54–56] The genes that modulate these 

mechanisms are frequently mutated or have altered function in MDS[54]. Aberrant isoform 

expression occurs due to defects in spliceosome gene expression or function.[57] Thus, we 

also evaluated differential isoform expression for these patients, comparing normal 

individuals to subgroups with spliceosome mutations (SM) (i.e. in SRSF2, SF3B1 and 

U2AF1) and those without (NSM). Gene level differential expression showed distinct 

clustering between the two mutational subgroups (p-value <0.01) (Suppl Figure 7). At the 

transcript level we identified a substantial number of differentially expressed isoforms 

between normals and the mutational subgroups (FDR 5%, Suppl Table 5&6). Moreover, 

differential isoform usage (DIU) was observed in distinct sets of genes between the 

mutational subgroups and normals (Figure 3A & B, Suppl Figure 8, Suppl Table 7). Previous 

differential isoform expression studies in MDS have either focused on specific genes[58,59] 

or on the effects of specific spliceosome mutations.[60,61] However, our study demonstrated 

that the commonly mutated spliceosome genes promoted distinct global transcriptomic 

changes in isoform selection/usage in comparison to the non-spliceosome genes. This 

alteration could consequently contribute to unique manifestations of the MDS phenotype 

within this subgroup, with ramifications for clinical outcome and disease treatment. Our 

study confirms and extends a recent report that also demonstrated MDS-linked splice gene 

signatures were associated with converging cancer-related pathways.[61] It should be noted 

that the individuals in the SM group often had mutations in additional determinants of 

isoform expression i.e., in transcription factors and epigenetic modifiers (Figure 2).

In our global gene expression profiling and functional pathway analysis of marrow cells of 

MDS vs normal, these transcriptomic and exomic studies demonstrated that, despite having 

multiple gene mutations and heterogeneous clinical features, only two distinctive marrow 

CD34+ marrow cell GE clusters in MDS occurred and were also associated with patients’ 

clinical outcomes. In addition, we showed mutation group-specific altered proportions of 

isoform expression in MDS and that MDS mutational subgroups (SM vs NSM) were 

associated with differential isoform usage (DIU) patterns with consequent dysregulated 

biological functions.

This study combines transcriptomic and exomic data to identify key contributors to AML 

progression. These findings can be used to determine outcome of the disease in different 

MDS clinical (s/tMDS) or mutational (NSM/SM) subgroups. Prediction analyses have 

shown that a subset of DE genes (i.e., 41 between all MDS vs normal and 46 between tMDS 

vs normal) can be used as biomarkers for prognostically classifying MDS patients (i.e., 

AML progression within 12 months). The exomic and isoform analyses show that 

differences in underlying mutations dysregulate distinct biological functions. Together this 

information can help in real-life assessment of MDS patient prognosis and thus possibly 

alter the timing and treatment modalities recommended for the patient mutational subgroups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression profiles of MDS vs Normal CD34+ marrow cells.

Hierarchical cluster dendrogram based on differential expression analysis of RNA-Seq 

generated distinct clusters of genes between Normal (n=23) and MDS (n=44), sMDS (n=23) 

patients being more closely associated with Normal than tMDS (n=21) at 5% FDR. Two 

major gene clusters were noted between the normal and MDS patients, with the top cluster 

(Cluster 1, 2048 genes) demonstrating elevated expression predominantly in the tMDS 

patients and lower expression in the normal and sMDS individuals (p=0.0079, Table 1, 

Figure 1). The opposite pattern was observed in the bottom cluster (Cluster 2, 2100 genes). 

The clinical and cytogenetic characteristics of these patients are indicated as well as whether 

they subsequently developed AML within 12 months (tMDS, pink) or remained stable 

(sMDS, black). Normal individuals are indicated by brown. In the heatmap, red indicates 

elevated expression, green lower expression.
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Figure 2. Pathogenic mutation patterns in MDS patients (n=29) for whom gene expression (GE) 
analysis was also performed.

Mutated genes (n=23) within differing functional groups are shown as well as associated 

clinical features for the specific patients. Isolated as well as co-expressed mutations are 

shown amongst the patients. Blue boxes below the mutation chart, with darker blue 

indicating worse prognosis, demonstrate: Cytogenetic groups [IPSS Good (G), Intermediate 

(I) Poor (P)], IPSS clinical category 1–4 (Low, Int-1, Int-2, High), AML transformation 

status (s/tMDS], Mutation number (0–5), gene expression cluster (1 or 2). TS = tumor 

suppressor.
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Figure 3. Differential Isoform Usage (DIU) in mutational sub-groups.

(A) Overlap of genes with DIU in pairwise comparison of Normal vs All MDS, Normal vs 

SM and Normal vs NSM groups, the total number of showing significant DIU are given in 

parentheses and listed in Suppl Table 7. (B) Pie charts showing the comparative isoform 

usage estimates for a subset of genes (n=5) with significant DIU exclusively between SM 

and NSM groups. SM = spliceosome mutations, NSM = Non-spliceosome mutations.
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Table 1.

Clinical Characteristics of MDS patients

Clinical Features
Total

Patients
Stable MDS

(sMDS)

Transforming

MDS (tMDS)*
sMDS vs tMDS,

p value

Patient Number 44 27 17

Age, years, median
(range)

69 (42–85) 69.5 (50–85) 69 (42–80) 0.50
a

Males, n (%) 25 (57) 15 (56) 10 (59) 1
b

Cytogenetic risk, n(%) 0.65
b

Good 29 (66) 19 (70) 10 (59)

Intermediate/Poor 15 (34) 8 (30) 7 (41)

IPSS status: 0.0003
b

Lower risk: Low/Intermediate1 26 (59) 22 (82) 4 (24)

Higher risk:
Intermediate2/High

18 (41) 5 (18) 13 (76)

Treated, n/N (%)***

Lower risk:
Low/Intermediate1

15/25 (60) 12/21 (57) 3/4 (75) 0.63
b

Higher risk:
Intermediate2/High

10/19 (53) 2/6 (33) 9/13 (69) 0.32
b

Gene Expression Cluster^, n (%): 0.05
b

Cluster 1 31 (71) 16 (59) 15 (88)

Cluster 2 13 (29) 11 (41) 2 (12)

Cluster 1 vs Cluster 2, n1/n2 (%n1):

Lower risk pts 17/9 (65) 13/9 (59) 4/0 (100) 0.26
b

Higher risk pts 14/4 (78) 3/2 (60) 11/2 (85) 0.53
b

*
AML transformation within 12 months,

**
IPSS Risk cytogenetics for MDS3,

***
Treated with hypomethylating agents,

^
See Figure 1

a
T-test

b
Fisher’s exact text
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Table 2:

Association of clinical and biologic variables with Time to AML within 12 months of marrow sample
1

Variable HR (95% CI)
2

LRT p-value
3

All MDS patients (n=44)

Age, years 0.98 (0.94, 1.03) 0.46

Gender, Male 1.19 (0.46, 3.29) 0.72

IPSS Category <.0001

Low/int-1 1 (reference)

High/Int-2 8.49 (2.96, 30.5)

Gene expression cluster 0.062

1 3.36 (0.95, 21.3)

2 1 (reference)

Mutation analysis patients (n=29)

IPSS Category 0.0047

Low/int-1 1 (reference)

High/Int-2 5.87 (1.73, 22.8)

Gene expression cluster 0.047

1 5.33 (1.02, 97.8)

2 1 (reference)

Number of mutations 0.069

0–2 1 (reference)

>2 3.05 (0.92, 11.7)

1.
Cox-regression using the exact method for ties.

2.
Hazard Ratio with 95% profile-likelihood confidence intervals.

3.
LRT= Likelihood ratio test p-value.
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Table 3.

Functional Pathways Associated with Differentially Expressed Gene Clusters in MDS vs Normal

Table 3A. MDS vs Normal

Biological Pathways p-value

ELEVATED EXPRESSION IN MDS (Cluster 1)

Stem cell-related:

Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency 0.01

Embryonic Stem Cell Pluripotency 0.003

Oxidative Stress Response:

NRF-2 0.03

Immunologic:

TNFR signaling 0.04

AML signaling- related:

AML 0.04

Ephrin signaling 0.04

PTEN 0.05

LOWER EXPRESSION IN MDS (Cluster 2)

Cell cycle regulation:

Cyclins 0.0001

Mitosis 4.17E-05

Chromosomal Replication 3.63E-09

Checkpoint Regulation 0.008

DNA Damage:

Mismatch Repair in Eukaryotes 2.04E-08

Role of BRCA1 in DNA Damage Response 2.04E-07

Nucleotide Excision Repair Pathway 0.005

Metabolism-related:

Oxidative Phosphorylation 2.88E-04

Glycolysis 6.31E-05

Gluconeogenesis 3.72E-04

Nucleotide biosynthesis 1.91E-05

Tumor suppressor signaling:

p53 0.0011

ATM 4.01E-04

PI3K/AKT signaling 0.002

Proliferative signaling:

Myc-mediated apoptotic signaling 0.003

Telomerase signaling 0.007

Transcription:

Aryl Hydrocarbon receptor signaling 0.002
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Table 3B. tMDS vs Normal

Biological Pathways p-value

ELEVATED EXPRESSION IN tMDS (Cluster 1)

Stem Cell-related:

Embryonic Stem Cell Pluripotency 0.05

AML signaling-related:

Acute Myeloid Leukemia 0.04

JAK/Stat 0.04

Apoptosis Signaling 0.02

Immunologic:

B Cell Receptor Signaling 0.03

PI3K Signaling in B Lymphocytes 0.04

LOWER EXPRESSION IN tMDS (Cluster 2)

Cell Cycle:

Assembly of RNA Polymerase III Complex 0.005

Assembly of RNA Polymerase I Complex 0.004

Metabolism-related:

TCA Cycle II 0.04

Signaling-related:

Apoptosis pathways 0.02

PI3K/AKT pathway 0.04
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