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Abstract
To strike a balance between robust parameter estimation and de-
tailed modeling, most automatic speech recognition systems are
built using tied-state continuous density hidden Markov mod-
els (CDHMM). Consequently, states that are tied together in a
tied-state are not distinguishable, introducing quantization er-
rors inevitably. It has been shown that it is possible to model
(almost) all distinct triphones effectively by using a basis ap-
proach; previously two methods were proposed: eigentriphone
modeling and reference model weighting (RMW) in CDHMM
using Gaussian-mixture states. In this paper, we investigate dis-
tinct triphone modeling under the state-of-the-art deep neural
network (DNN) framework. Due to the large number of DNN
model parameters, regularization is necessary. Multi-task learn-
ing (MTL) is first used to train distinct triphone states together
with carefully chosen related tasks which serve as a regular-
izer. The RMW approach is then applied to linearly combine
the neural network weight vectors of member triphones of each
tied-state before the output softmax activation for each distinct
triphone state. The method successfully improves phoneme
recognition in TIMIT and word recognition in the Wall Street
Journal task.

Index Terms: distinct triphone acoustic modeling, multi-task
learning, deep neural networks

1. Introduction
Context-dependent (CD) acoustic units are used in almost all
the current automatic speech recognition (ASR) systems. Their
distribution, however, is very uneven. It was shown in [1] that
the 80–20 Pareto rule seems also true for the distribution of
triphones in the 84-hour Wall Street Journal training corpora:
about 80% of all triphone occurrences in the corpus come from
only 20% of the most common distinct triphones. Direct esti-
mation of the acoustic model parameters for the infrequent tri-
phones will yield poor models and hurt the overall recognition
performance. The problem is more severe for low-resource lan-
guages with small amounts of training data 1.

Different methods have been proposed for the robust pa-
rameter estimation of context-dependent acoustic models. For
example, triphone-by-decomposition [2, 3], parameter tying [4]
and the basis approach [5, 6] were explored and proved to
be effective for acoustic models using hidden Markov models
(HMM) with Gaussian-mixture (GMM) states. Among these

1Collecting more data does not completely avoid the problem be-
cause there will be more seen triphones in the larger data set and the
Pareto rule still applies. However, it will partly solve the problem be-
cause a larger data set will probably give a better coverage of the more
commonly used triphones in the test set.

methods, state tying [7] is most popular in modern ASR sys-
tems due to its simplicity and effectiveness in solving the un-
seen triphones problem. Nevertheless, when states are tied, the
member states in a tied-state (or senone) are indistinguishable,
and quantization errors are inevitably introduced.

Lately we investigate the following problem: Is it possi-
ble to model each distinct triphone (that has ever appeared) ro-
bustly? For GMM-HMM acoustic models, we had proposed
two methods: eigentriphone modeling (ETM) [8] and reference
model weighting (RMW) [9] for distinct triphone modeling.
The idea is to treat the distinct triphone modeling problem as
an adaptation problem, and both methods derive a set of basis
vectors so that the (distinct or untied) member states of a senone
can be projected onto the low-dimensional space spanned by
them. Eigentriphone modeling is analogous to eigenvoice and
reference modeling weighting is analogous to reference speaker
weighting in speaker adaptation. Moreover, eigentriphone mod-
eling derives an orthogonal basis using weighted principal com-
ponent analysis (PCA) whereas the basis derived by reference
model weighting is generally non-orthogonal as it is composed
simply from the supervectors of the member states. Both meth-
ods were found effective and improved recognition performance
for both low-resource speech recognition and large-vocabulary
speech recognition tasks.

With the emergence of the deep neural network (DNN) for
acoustic modeling, we would like to investigate if distinct tri-
phone modeling is also feasible in DNN-HMM. The major chal-
lenge is the large increase of DNN parameters required to train
all the distinct triphones. For example, for the TIMIT task, there
are about 600 output units (or senones) in a typical triphone
DNN-HMM, but the number increases to almost 10,000 if all
the distinct triphone states (DTS) of TIMIT are to be modeled.
The weight vector for each DNN output commonly consists of
1024–2048 weights, whereas ETM or RMW only employs only
a basis of several tens or a hundred of basis vectors to model the
Gaussian means of the DTS’s. In this paper, we propose to train
DTS DNN-HMM together with the training of senone DNN-
HMM in the multi-task learning (MTL) framework, so that the
task of senone training will act as a regularizer for the task of
DTS training. Then the RMW method originally designed for
GMM-HMM is modified to transform the activation of output
units of each DTS to further improve their performance. Exper-
imental evaluations on TIMIT phoneme recognition and WSJ0
word recognition show that the proposed method is effective.

The rest part of the paper is organized as follows. We first
introduce our MTL-DNN training method of distinct triphone
states in Section 2. Then in Section 3, after a quick review
of RMW, the RMW transformation of the output activations of
DTS in DNN is described. This is followed by experimental
evaluations in Section 4. Finally, we give the concluding re-
marks in Section 5.
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Figure 1: The MTL-DNN used for the joint training of mono-
phone states, senones (or tied states) and distinct triphone states
(DTS). The horizon bars represent the softmax activation.

2. Multi-task Learning of Distinct
Triphones Using DNNs

Multitask learning (MTL) [10] is a machine learning approach
that is used to jointly learn multiple tasks together. If the mul-
tiple tasks are related and if they can share some internal repre-
sentation, then through learning them together, they are able to
transfer knowledge to one another to improve their generaliza-
tion performance. From the regularization perspective, related
tasks serve as the regularizers for each other during MTL train-
ing. In [10], Caruana postulates some requirements for related
tasks if their joint learning in the MTL approach is to work well:

(a) related tasks must share input features, and
(b) related tasks must share hidden units to benefit each

other when trained with MTL-backprop.
The hidden layers of a neural network naturally capture learned
knowledge that can be readily transferred or shared across mul-
tiple tasks. In fact, the hidden layers of DNN act as a com-
mon feature extractor for all learning tasks. We will call a DNN
trained by MTL algorithm as an MTL-DNN. MTL-DNN has
been applied successfully in fields of speech, language [11], and
image/vision [12]. In ASR, MTL-DNN has been used to im-
prove TIMIT phoneme recognition [13, 14], cross- and multi-
lingual speech recognition [15, 16], and low-resource speech
recognition [17, 18].

2.1. MTL-DNN for Training Distinct Triphone States

Due to the large number of distinct triphone states (DTS) in
common tasks (when compared with the number of tied states
or senones), standard single-task learning (STL) of DNNs does
not work well, resulting in overfit models with poor recogni-
tion performance on unseen test data. Regularization is re-
quired, and in this paper, we investigate the use of highly related
task(s) as the regularizer(s) under the framework of multi-task
learning of DNN. The resulting networks will be called MTL-
DNNs. Our approach strictly follows Caruana’s two MTL re-
quirements. That is, for each training input, multiple output
units are activated and multiple tasks are learned in parallel.
Furthermore, the tasks share the same acoustic observations and
all hidden layers in a DNN.

[18] suggests a heuristic guideline to select the extra task(s)
for a primary task in MTL: select task(s) that may exploit extra

information from the training data of the primary task. Here,
DTS modeling is taken as the primary task T1), and the follow-
ing two extra tasks are selected for its MTL training: senones
modeling task T2, and monophone states modeling task T3. The
three tasks are obviously related as they all represent acoustic
modeling at different phonetic resolutions. The extra informa-
tion is the implicit membership of the DTS’s in the senones and
monophones.

Fig. 1 shows an MTL-DNN used for training the three tasks
together. Basically, three single-task learning DNNs (STL-
DNNs) which estimate the posterior probabilities of mono-
phone states, senones, and distinct triphone states (DTS) are
merged together so that they their inputs and all hidden layers,
while each of them keeps its own output layer (L1, L2 and L3).
The MTL objective function is to minimize the sum of cross
entropies of the three tasks over the training set D:

E(D,Λ) = −
∑
x∈D

 3∑
j=1

Nj∑
i=1

d
(j)
i logP (s

(j)
i |x;λ0, λj)


(1)

where d(j)i is the target value of the ith state in Tj , λ0 consists
of model parameters that are shared by all tasks (i.e., the hid-
den layers) and λj consists of model parameters specific to only
task Tj (i.e., the output layers). During training, for each input
acoustic vector, 3 output units, one for each task, will be acti-
vated. Thus, the shared hidden layers help the tasks regularize
each other to achieve better generalization.

In practice, starting from a conventional GMM-HMM, we
go through the following steps to construct and train the pro-
posed MTL-DNN.

STEP 1 : A conventional senones (tied-states) GMM-HMM
system is first built.

STEP 2 : The senone GMM-HMM system is used to forced-
align the training and development data to get the frame la-
bels for DNN training. Each frame is assigned 3 labels:
<DTS, DTS index>, <senone, senone index>,
and <monophone, monophone state index>.

STEP 3 : Pre-train a DBN by contrast divergence [19].

STEP 4 : Add an output softmax layer of senones, and train the
senones posteriors by standard DNN back-propagation.

STEP 5 : Add an output softmax layer of monophone states and
initialize it with random weights.

STEP 6 : Treat each senone as a state cluster and untie it to get
all its member DTS’s. Add an output softmax layer con-
sisting of all those DTS’s that have at least 10 training sam-
ples2. The output weight vector of a DTS is initialized by
the well-trained weight vector of its corresponding senone.

STEP 7 : Train the resulting MTL-DNN by standard back-
propagation like an STL-DNN except that the learning rate
of the hidden layers is set to 1/3 of that for STL-DNN, since
3 error signals are now propagated back to the hidden lay-
ers. The learning rate of the output layers remains the same.

STEP 8 : During decoding, posteriors for the three kinds of out-
put units are generated separately and fed into their corre-
sponding HMM decoders.

2For unseen triphone states and those DTS’s with fewer than 10 sam-
ples, they will be still represented by the appropriate senones.
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Figure 2: Transforming the activation of each DTS using the
RMW technique.

3. Transformation of DTS Activations by
RMW

When reference model weighting (RMW) is applied to distinct
triphone modeling using GMM-HMMs, each triphone state is
represented as a supervector created by stacking up the mean
vectors of its Gaussian mixtures. Then for each state cluster
(which is equivalent to a tied state in practice), all or a subset
of its member DTS supervectors are collected to form a basis
and all DTS’s of the cluster can then be expressed as a linear
combination of the basis vectors. Since the number of such ba-
sis vectors is much smaller than the dimension of the state su-
pervectors, the combination weights may be estimated robustly
even with very small amount of training samples.

3.1. RMW of the DTS Weight Vectors

In the DTS DNN, each output node represents a DTS. Let’s
assume that there are Nk DTS’s {s(k)i : i = 1, 2, . . . , Nk}
in the state cluster represented by the kth senone; there are H
hidden units in the last hidden layer, and their outputs (including
the bias) are represented by y = [1, y1, y2, ..., yH ]′. Let’s also
denote the DNN weight vector connecting the last hidden layer
to s(k)i as w(k)

i ∈R
H+1. Thus, its activation is given by

a
(k)
i = w

(k)
i

′
y . (2)

When applying RMW for robust training of DTS DNNs, the set
of weight vectors of the kth state cluster, {w(k)

0 }∪{w
(k)
i : i =

1, 2, . . . , Nk}, where w(k)
0 is the DNN weight vector of the kth

senone, is treated as a basis. Then the DNN weight vector of
each member DTS is re-modeled as a linear combination of the
basis vectors as follows:

ŵ
(k)
i = W(k)u

(k)
i , (3)

with the new activation â
(k)
i =

(
W(k)u

(k)
i

)′
y, where

W(k) = [w
(k)
0 w

(k)
1 . . .]∈R(H+1)×(Nk+1) and u

(k)
i ∈R

(Nk+1)

is the combination weights for the DTS unit s(k)i . Hence, if we
represent the activations to all {s(k)i } by a(k) ∈RNk , and all
their combination weight vectors by U(k)∈R(Nk+1)×Nk , then
the new activation vector after RMW is given by

â(k) =
(
W(k)U(k)

)′
y = U(k)′

(
W(k)′y

)
= U(k)′

[
a
(k)
0

a(k)

]
(4)

where a(k)0 is the activation due to the kth senone.
Eq. (4) demonstrates that the application of RMW on the

connection weight vectors between the last hidden layer and
the DTS output layer is equivalent to applying a linear trans-
form U(k) on the activations to the DTS output units. The pro-
posed RMW method can be implemented by adding an addi-
tional RMW layer between the last hidden layer and the DTS
output layer of the DNN as shown in Fig. 2. Our method dif-
fers from the ensemble learning method in [20] where model
integration is performed after the softmax function.

3.2. Estimation of the Combination Weights

To estimate the additional RMW combination weights for each
state cluster, all the network weights of a well-trained DNN
from the input layer to the layer L′ of Fig. 2 are fixed. Each
RMW combination weight vector is initialized as u

(k)
i =

[1, 0, 0, . . .] where the unity value corresponds to the combi-
nation weight to the senone vector w

(k)
0 which will also be

fixed during the estimation. Since there are many parameters in
the additional layer, L2 regularization was tried. In some pre-
liminary TIMIT experiments, we empirically found that simi-
lar results could be achieved by simply re-estimating each DTS
weight vector as a linear combination of its original vector and
its senone weight vector as below:

ŵ
(k)
i = w

(k)
0 + αw

(k)
i (5)

where α is a global combination weight for all DTS’s which
is tuned using a development set. Therefore we employed this
simple method in the following experiments.

4. Experiments
The proposed robust distinct triphone modeling method based
on DNNs as described in Section 2 and 3 was tested on the
TIMIT phone recognition task and the WSJ0 word recogni-
tion task. Their performance is compared with their respective
GMM-HMM and STL-DNN baselines which were prepared as
described in [9].

In all GMM-HMM acoustic models, cross-word triphones
were employed and modeled as 3-state CDHMMs. Feature vec-
tors were standard 39-dimensional MFCC acoustic vectors, and
they were extracted from the training speech data every 10ms
over a window of 25ms. On the other hand, all DNNs in our ex-
periments were pre-trained with a deep belief network consist-
ing of 4 hidden layers with 2048 nodes per layer, and the mini-
batch size was set to 128. Afterward, an output softmax layer
of the required modeling states was added, which correspond to
the states of their respective GMM-HMM baselines. The result-
ing DNNs were fine-tuned using standard back-propagation.

4.1. TIMIT Phone Recognition

4.1.1. Acoustic Modeling

A conventional state-tied GMM-HMM baseline system was
first trained. It has 587 senones and 16 mixtures per state, and



achieves a phone recognition accuracy of 72.04% on the stan-
dard test set.

Table 1: Phone recognition accuracies (%) of different DNN
systems. M, S and D represent systems using monophone states,
senones and distinct triphone states as output units respectively.

Models M output S output D output
STL-DNN (M) 78.12 — —
STL-DNN (S) — 78.89 —
STL-DNN (D) — — 75.30
MTL-DNN (MS) 78.36 79.18 —
MTL-DNN (SD) — 79.60 76.72
MTL-DNN (MSD) 78.42 80.01 77.74
+ RMW activations — — 80.30

Then, single-task learning DNN (STL-DNN) baseline sys-
tems were built using 40-dimensional log filter-bank features
and the energy coefficient as well as their first- and second-order
derivatives. STL-DNNs were trained to classify the central
frame of each 15-frame acoustic context window. STL-DNNs
for monophone states and senones were first trained. Then tri-
phone states with at least 10 training samples were untied from
their senones. At the end, a set of 9823 distinct triphone states
(DTS) were obtained which is∼17 times of the optimal number
of senones. The network weights of the DTS STL-DNN were
initialized from the senone STL-DNN and trained as describe
in Section 2. MTL-DNNs were then built by jointly training at
least two of the three kinds of acoustic units (monophone states,
senones, and DTS’s) together. During testing, outputs of differ-
ent acoustic units were computed independently and fed into
corresponding decoders.

Finally, the DTS activations were further transformed using
the RMW technique as described by Eq. (5). The optimal value
of the global parameter α was determined using the develop-
ment data, and 0.1 was found to give the best results.

4.1.2. Experiment Results and Discussion

Table 1 summarizes the recognition performance of various
DNN systems. We have the following observations:

• As expected, the STL-DNN baselines cuts the error rates
of the senone GMM-HMM baseline by nearly 22%!

• Among three STL-DNNs, senone STL-DNN has the best
performance, as it successfully trades off detailed mod-
eling between monophone states and DTS’s.

• Joint training of different kinds of acoustic units using
MTL-DNNs between both the primary task as well as
the extra task(s). DTS’s were more robustly trained due
to the regularization effect from the senones and mono-
phone states which were well trained and thus might pro-
vide a representation bias towards a better local optimum
for DTS modeling. On the other hand, senones were
also better trained due to the extra contextual informa-
tion provided by the DTS’s.

• Although after MTL training, DTS’s still perform the
worst, the proposed RMW-based transformation of the
DTS activations could successfully re-estimate their pa-
rameter robustly. Compared with the senone DNN base-
line, the final DTS DNN system reduces the phone
recognition errors by 6.7%.

Table 2: WSJ0: Word recognition accuracies (%) of various
DNN-HMM systems using bigram/trigram language models.

Models M output S output D output
STL-DNN (M) 91.93/— — —
STL-DNN (S) — 94.90/96.79 —
STL-DNN (D) — — 94.83/96.54
MTL-DNN (MSD) 92.78/— 95.25/97.20 95.52/97.24
+ RMW activations — — 95.67/97.36

4.2. WSJ0 Reading Speech Recognition

4.2.1. Acoustic Modeling

The training procedure of the GMM-HMM baseline followed
that of TIMIT. The optimal system has 1254 senones and 32
Gaussian mixtures per state. It has a word recognition accuracy
of 93.29% on the Nov92 test set using a bigram language model.

The training procedure for the DNN systems was also the
same as that of the TIMIT task, except that input features now
are the standard 39-dimensional MFCC vectors. There are
22407 DTS’s that have at least 10 training samples. This num-
ber is about 18 times the number of senones. Moreover, during
recognition, the posterior probabilities of the output units were
scaled by the their statistical priors counted from the training
data before they were fed into their corresponding decoders.

4.2.2. Results and Discussion

Experiment results of the various DNN-HMM systems using
bigram and trigram language models are presented in Table 2.

• Different from the experimental results of TIMIT, the
performance of DTS DNNs is comparable to senone
DNNs and is much better than the monophone state
DNN. An analysis of the occurrences of the DTS’s over
the test sets shows that there are fewer infrequent DTS’s
in the WSJ0 test set than in the TIMIT test set.

• MTL training consistently reduces the word error rate
(WER) of all tasks simultaneously.

• RMW transformation of the DTS activations yields the
best performance for DTS DNNs, resulting in a relative
WER reduction of 15.1% (17.8%) over the senone STL-
DNN baseline using a bigram (trigram) language model.

5. Conclusion
In state-tied ASR systems, quantization error is inevitable be-
cause triphone states that are tied together become indistin-
guishable with each other during decoding. This paper propose
a reference model weighting (RMW) technique for robust dis-
tinct triphone modeling in a DNN-HMM under the multi-task
learning (MTL) framework. Distinct triphone states (DTS’s)
are jointly trained with senones (and perhaps monophone states)
using an MTL-DNN. Their joint training has three benefits.
Firstly, the DTS modeling task embeds more contextual in-
formation into the hidden layers of the MTL-DNN. Secondly,
monophone states modeling and senones modeling tasks pro-
vide better inductive bias for the DTS modeling task to reach a
better optimum. Lastly, the shared hidden layers make it easy
to implement an activation transformation based on the RMW
technique by simply adding an additional layer between the last
hidden layer and the DTS output layer for each state cluster.
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