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Abstract: Construction machinery is necessary in postdisaster emergency rescue missions involving
the destruction of ruins. However, their mechanical vibrations can interfere with the detection
of human survivors using ultrawideband (UWB) radar. Traditional methods detect and identify
humans by determining maximum energy and checking respiratory frequency. However, they lose
effectiveness because mechanical vibration is associated with a frequency band which is similar
to the human respiration band, but it has higher energy. This study proposes a novel method to
distinguish human vibrations from mechanical vibrations. After preprocessing, wavelet entropy
decomposition was implemented on the radar data. An improved, censored mean-level detector,
constant false-alarm rate algorithm was utilized to automatically identify the position of human and
mechanical vibrations. A novel feature is then extracted by calculating the half-height width of the
target’s wavelet entropy. Finally, the results of two independent sample t-tests prove that there is a
significant statistical difference between the feature values of humans and the mechanical vibrations
(p < 1.9 × 10−6), thus proving the effectiveness of the method. We envisage that the proposed method
can be used in postdisaster rescue missions to improve the accuracy and speed of identifying human
targets. Therefore, more survivors may be rescued.

Keywords: human detection; mechanical vibration; postdisaster emergency rescue; ultrawideband
radar; wavelet entropy decomposition

1. Introduction

In recent years, the application of ultrawideband (UWB) radar for remote sensing has
emerged as a promising technique for the detection of human targets [1–3]. Unlike thermal
imaging, X-rays, magnetic induction, and other technologies, UWB radar probes use
nonionizing electromagnetic pulse waves, which are proven to be stable and immune to the
influence of temperature, nonmetallic wall materials, and target clothes. The signals of the
radiated pulse waves occupy an extremely broad bandwidth relative to the center frequency.
Thus, UWB radars are beneficial for penetrating obstacles such as walls and separating
multiple human targets in complex environment detection settings [4]. Moreover, UWB
radars can locate human targets with higher accuracy compared with continuous-wave
(CW) radar systems. Accordingly, the UWB radar has gradually become one of the most
reliable technical means for detection and localization purposes during human postdisaster
rescue missions, such as earthquakes and collapses [5,6].

Radar signals reflected from human targets carry biometric information related to
periodic fluctuations of the body during respiration [7]. For example, the periodic fre-
quency of respiration of a healthy adult is in the range of 0.2–0.4 Hz. However, human
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target detection through ruins using UWB radars has several challenges, including the low
reflectivity of human beings, strong interference from stationary objects, and high atten-
uation of electromagnetic waves, which could lead to an extremely low signal-to-clutter
ratio (SCR) [8,9]. In particular, several construction machineries are used to aid rescue
efforts in modern postdisaster emergency rescues. Obviously, the vibration amplitude
of mechanical operations is considerably larger than that of periodic motions caused by
human respiration. Therefore, the signal-to-interference ratio (SIR) of the echo data would
decrease considerably, and strong vibration interference would be sufficiently large to
trigger false alarms.

In recent years, several human detection techniques have been developed in the pres-
ence of interference, including time- and frequency-domain methods. Regarding the time-
domain methods, Zhang et al. [10] proposed an adaptive filtering algorithm to suppress the
vibration interference caused by a machinery operator’s respiration using dual-frequency
radar at 5.75 GHz/35 GHz for human detection. Accordingly, ground experiments showed
that the proposed method can identify two types of respiratory signals with a frequency
difference > 0.04 Hz. In the frequency domain, Schires et al. [11] used a phase detection
technology based on frequency differences to eliminate the inertial vibration interference
of a driver’s body caused by vehicle-induced vibration during driving. Therefore, it can
accurately detect human breathing and heartbeat signals. Moreover, Castro et al. [12] used
acceleration sensors to acquire vehicular seat vibration signals, which were assumed to be
in the same direction as the human body vibration. For cases of known direction of motion
and acceleration, a method was proposed to separate human body vibration signals and
physiological signals based on independent component analysis (ICA). Seong et al. [13]
segmented signals that contained vital signals and various human motions into subsignals
and then constructed the desired vital signal using the correlation method.

However, there is a relatively large frequency difference between the induced vibration
interference and human respiration in the aforementioned methods. There is no guarantee
that they are effective when the vibration interference and human respiration are in a
similar frequency band. In our pre-experiments, it was found that parts of the mechanical
vibration signals of wheel loaders were approximately quasiperiodic in the time domain,
and their frequencies were in the range of human respiratory signal frequencies (0.2–0.4
Hz) with apparently larger amplitudes. A wheel loader is one of the most commonly
used construction machineries for promoting rescue efforts during postdisaster emergency
rescue missions. Specifically, the digging motion of the shovel of wheel loaders was found
to be regular, and its major spectral components were at 0.2–0.4 Hz, which overlapped with
that of human respiratory frequency. Thus, traditional detection methods cannot guarantee
the effectiveness of human target detection in the presence of interference from strong
vibrations.

In this study, a novel feature was proposed from the perspective of wavelet entropy
rather than energy or frequency. It can reveal the system’s differences of order/disorder
microstates. Thus, the defects of traditional methods can be avoided. After signal prepro-
cessing, wavelet entropy decomposition was implemented to quantitatively measure the
functional dynamics of order/disorder signals. Then, an improved, censored mean-level
detector, constant false-alarm rate (ICMLD-CFAR) algorithm was employed to detect the
location of the human targets and the source of the mechanical vibration of digging. This
algorithm could increase the difference between the human and mechanical vibration of
digging. Thus, it would be easier and more accurate for locating a targets’ positions. Next,
the novel feature of the half-height width (HHW) of the target’s wavelet entropy was
extracted to distinguish humans from strong vibration interference. Finally, experiments
and statistical analyses proved the effectiveness of the proposed method. It is shown that
there is a large statistical difference between the HHW values of a human target and the
mechanical vibration of digging. The calculation of HHW values is independent of the
system’s vibration amplitude and frequency. It significantly satisfies the distinction envi-
ronment in postdisaster rescues, where the frequency of human and mechanical vibrations



Appl. Sci. 2022, 12, 10046 3 of 15

are within similar frequency bands and strong interference exists. This study can help
enhance the actual application of UWB radar in postdisaster emergency rescues.

2. UWB Radar System

Figure 1 shows the diagram of the utilized UWB radar system. First, the pulse
generator produces narrow pulses with a pulse repetition frequency of 128 kHz. The pulses
are sent to the transmitter and shaped into bipolar pulses to excite the transmitting antenna
(TA). The TA transmits bipolar pulses at the center frequency of 500 MHz with a bandwidth
of 500 MHz Subsequently, owing to the high reflectivity of the body-to-radiofrequency
signals, the transmitted pulses from the TA impinges on the human body, and some of
them are subsequently reflected and received by the receiving antenna (RA). Therefore,
the human target’s position can be determined according to the time-of-flight (ToF) of the
pulses from TA to RA. Simultaneously, parts of the narrow pulses from the pulse generator
are sent to the delay unit to generate a range gate, which triggers the receiver to receive
echoes at selective ranges. The received pulses are then sampled by a sampler at selective
ranges according to the range gate and are accumulated by the integrator. Finally, the
output from the integrator is amplified and filtered by a signal processor, and it is then
sent to a computer for further processing through a high-speed analog-to-digital converter
(ADC).

Figure 1. Diagram depicting the utilized ultrawideband (UWB) radar (TA: transmitting antenna, RA:
receiving antenna, ADC: analog-to-digital converter).

The echo signals after ADC are stored in the form of a two-dimensional matrix
R(M, N), where M indicates the sampling point during the propagation time period,
namely, “fast time.” Each fast-time instance corresponds to a specific detection range.
Herein, M = 2048 range points, and the corresponding detection range is 0–9 m. N
denotes the number of recorded sampling points in the measurement time, or “slow
time”; the sequence number of the data sampled in conjunction with the slow time
t = nTi (n = 1, 2, . . . , N) at a specific distance. Ti = 0.0156 s is the time interval between
each successively received echo signal. Thus, the sampling frequency at the slow time
was Fs = 1/Ti = 64 Hz, which satisfies the Nyquist sampling rate for measuring human
respiration (0.2–0.4 Hz). The key parameters of the UWB radar used in this study are
summarized in Table 1.

Table 1. Key parameters of the utilized ultrawideband (UWB) radar.

Key Parameter Value

Center frequency 500 MHz
Bandwidth 500 MHz

Detection range 0–9 m
Pulse repetition frequency 128 kHz

Range points 2048
Sampling frequency along slow time 64 Hz
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3. Methods
3.1. Signal Preprocessing

Prior to the application of the algorithm to distinguish humans from mechanical
vibrations, five signal preprocessing steps were implemented to reduce the computational
complexity and filter clutter. These included range accumulation, normalization along
the slow time dimension, direct current (DC) removal, low-pass (LP) filtering at a cutoff
frequency of 2 Hz, and least-mean square (LMS)-based adaptive filtering. A flow chart of
the signal preprocessing steps is presented in Figure 2.

Figure 2. Flow chart of the signal preprocessing steps (DC, direct current; LP, low-pass).

Range accumulation was implemented to considerably reduce the computational
complexity by compressing the number of range points. It is illustrated by

RRA(x, n) =
1

10

10x

∑
m=10(x−1)+1

R(m, n). (1)

After range accumulation, the range points were compressed from 2048 to 200, namely,
x = 1, 2, 3, . . . , X, and X = 200. Normalization along the slow-time dimension was then
designed to make the energies of the signals from humans and mechanical vibrations
comparable, as described by

RN(x, n) = 2
RRA(x, n)−min

n
RRA(x, n)

max
n

RRA(x, n)−min
n

RRA(x, n)
− 1. (2)

Subsequently, the DC components and baseline drift were eliminated by DC removal,
as implemented by

RDC(x, n) = RN(x, n)− 1
100

n+99

∑
n

RN(x, n). (3)

The high-frequency clutters were then removed using LP filtering with a cut-off
frequency of 2 Hz, according to

RLP(x, n) = RDC(x, n) ∗ h(t), (4)

where h(t) denotes the impulse function of the finite impulse response filter [14], and “∗”
denotes the convolution operation.

Finally, the human-respiration-like clutter was suppressed by adaptive filtering based
on the least-mean square algorithm. This process was described in detail in [15,16]. All the
subsequent methods were based on the preprocessed radar data, which are denoted by
RAF (x, n). The matrix size is 200× N, and N depends on the length of the slow time.
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3.2. Wavelet Entropy Decompositions

Wavelet transform can provide the time–frequency interpretation of radar data, and
entropy is a parameter that quantitatively describes the order/disorder microstates. Wavelet
entropy combines the advantages of the wavelet transform and entropy simultaneously [17–19].
As the regularity of the signal increases, the value of the wavelet entropy decreases. Thus,
after wavelet entropy decomposition of the preprocessed radar data, the corresponding
values at the range points of humans and mechanical vibrations are apparently lower
because of their periodicity.

To calculate the wavelet entropy, a discrete wavelet transform was performed first to
generate a set of elementary functions ψa,b (t) by translations and dilations of the mother
wavelet ψ(t) [20].

ψa,b(t) = |a|−0.5ψ

(
t− b

a

)
, s.t. a, b ∈ R, a 6= 0, (5)

where a denotes the scale for the description of the degree of compression, and b denotes
the translation for determining the time location. As the value of a increases, the wavelet
becomes narrower. By choosing a = 2−k, b = 2−kn and k = −{1, 2, . . . , log2N}, the
preprocessed radar data RAF(t) can be reconstructed as follows:

RAF(x, t) = ∑
k

∑
n

Ck(n)ψk,n(t), (6)

where n = 64t denotes the slow time points, and Ck(n) denotes the local residual errors
between the two adjacent scales of k− 1 and k.

The radar data were then divided into nonoverlapping temporal windows with lengths
J = 128. Accordingly, the wavelet energy at each scale degree k of temporal window
i = 1, 2, . . . , I = N/J can be calculated using

Ek(i) =
1
J

i×J

∑
n=(i−1)×J+1

|Ck(n)|2. (7)

Subsequently, the relative wavelet entropy Ěk at scale k of each temporal window i is
given by

Ěk(i) =
Ek(i)

∑k Ek(i)
. (8)

Finally, the wavelet entropy at range point x is determined by

WE(x) =
1
I ∑

i
Ěk(i)· ln

[
Ěk(i)

]
. (9)

The wavelet entropy of the target is much lower than that of the noise signal, whereas
the subsequent CFAR algorithm can only detect targets whose values are much higher than
noise. Thus, the wavelet entropy curve is flipped up and down by

WE1(x) =
max

m
WE(x)−min

m
WE(x)

2
−WE(x) (10)

ŴE(x) = WE1(x)−min
m

WE1(x), (11)

where WE1(x) is an intermediate variable, and ŴE(x) is the flipped value of WE(x).

3.3. ICMLD-CFAR

The CFAR algorithm is designed to automatically detect targets and simultaneously
control the false alarm rate [21–23]. CMLD is a CFAR algorithm and is especially suitable
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for multitarget detection environments [24,25]. Unlike the mean-level detector, CMLD-
CFAR censors several of the largest samples of the maximum likelihood estimate of the
background noise level [26]. If the value of the range point subjected to testing is higher
than the estimated background level, the range point is preliminarily determined as the
target position. Otherwise, it is considered to be a nontarget signal, namely, noise. Herein,
a novel feature is added to enlarge the difference in values between the range points at
the target positions and noise positions. Therefore, the targets can be distinguished in an
easier and more accurate manner. Figure 3 illustrates the block diagram of the improved
CMLD-CFAR algorithm.

Figure 3. Illustration of the censored mean-level detector, constant false-alarm rate.

First, to test whether a range point of ŴE is a target, a sliding window of length R
is determined. It is symmetrically distributed on both sides of the range point ŴE(x).
Because of the thickness of the human chest, the trailing effect [27] can lead to signal range
points adjacent to ŴE(x) within a certain window, which are similar to the target signal.
Therefore, a protective window of length Pro is designed to avoid the use of these range
points to estimate the noise level, and thus decrease the misjudgment rate. The remaining
R − Pro range points are then sorted, and larger r points are censored. The remaining
R− Pro− r range points are then averaged as the estimate of the background noise level
as follows:

Be(x) =
1

R− Pro− r

R−Pro−r

∑
x=1

ŴE(x), (12)

where Be(x) represents the estimate of background noise level. Subsequently, the threshold
factor Ts of ICMLD-CFAR is calculated using the R, r, and Pro, and the false alarm rate Pf a
can be estimated as follows:

Pf a =
R−Pro−r

∑
u=1

v1(u)
Ts + v2(u)

, (13)

where v1(u) and v2(u) are two intermediate variables defined by

v1(u) = (−1)u−1
(

R− Pro
r

)(
R− Pro− r

u− 1

)(
R− Pro− r− u + 1

r

)R−Pro−r−1
. (14)

v2(u) =
R− Pro− u + 1

R− Pro− r− u + 1
. (15)
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The value of Pf a was set as a fixed constant value. Thus, Ts can be calculated iteratively
using Equations (13)–(15). Herein, we set Pf a = 10−5, R = 48, r = 3

5 R, and Pro =
8. To further improve the detection performance of the ICMLD-CFAR, the energy ratio
in the reference frequency band (Er) was designed to enlarge the difference between
the target signals and noise. First, ensemble empirical mode decomposition (EEMD)
was implemented on the preprocessed radar signal RAF(x, n). A set of intrinsic mode
functions (IMFs) can be decomposed from the preprocessed signal at different characteristic
scales [28–30]. By eliminating the unwanted noise IMFs and reconstructing them, the radar
signal can become much clearer. This was accomplished according to the following steps:

While (p ≤ 50) {

1. Add a series of random white noise signals Nw(j) to RAF(x, n) using

R̃AF(x, n) = RAF(x, n) + Nw(p), (16)

where p = 1, 2, . . . , P represents the number of the added white noise signals.
2. Decompose the R̃AF(x, n) into a set of IMFs as

R̃AF(x, n) =
Qp

∑
q=1

IMF(q, p) + Nw(p), (17)

where Qp denotes the decomposed order numbers of IMFs at trail p. }
3. Regard the Qmin = min

p
Qp as the final order number of IMFs and then calculate the

EEMD results by averaging the IMPs of all P trails as

IMF(q) =
1
P

P

∑
p=1

IMF(q, p), (18)

where q = 1, 2, . . . , Qmin.
4. Eliminate the noise IMFs based on the discrimination criteria listed below

β(q) =

 0, q = 1
∑

q−1
f=1 τ( f )

(q−1)τ(q) − 1, q = 2, 3, . . . , Qmin
, (19)

τ(q) =
∑

gr
gl Das(q, g)2

∑g Das(q, g)2 , (20)

where β(q) denotes the energy concentration of the q-order IMF, Das(q, g) denotes the
discrete autocorrelation sequence of the q-order IMF, g = 1, 2, . . . , gl, gr, . . . , G denotes
the time sequence, and [gl, gr] denotes the two middle points, namely, gl = G/2.
Moreover, τ(q) represents the energy ratio of Das(q, g) in the interval [gl, gr]. If
β(q) ≤ 2, the IMF(q) is used to denote unwanted noise IMFs.

5. Reconstruct the radar signal using

R̂AF(x, n) =
Qmin

∑
q

IMF(q), s.t. β(q) > 2, (21)

where “s.t.” means subject to.
6. Calculate the energy ratio on the reference frequency band of human respiration and

digging motion of the shovel of the wheel loader using

Er(x) =
Er f e(x)
Etotal(x)

, (22)
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where Etotal(x) represents the total energy of R̂AF(x) and is calculated by Etotal(x) =
∑n R̂AF(x, n)2, and Er f e(x) represents the energy in the reference frequency band.
Herein, the reference frequency band is set to 0.2–0.4 Hz. The Er(x) value for human
targets is usually higher than 40%, whereas that of the noise is less than 12% [31]. Our
experimental results show that the Er(x) value for mechanical vibrations is mostly
larger than 40%. Thus, the value of (1.4− Er(x)) of the human targets and mechanical
vibrations are smaller than one, and that of noise is larger than one. Therefore, the
difference between targets and noise can be enlarged by the multiplication operation.
As shown in Figure 3, whether a range point is a target can be determined by

C(x) = (1.4− Er(x))× Ts × Be(x), (23)
i f (0.6 + Er(x))× ŴE′′ (x) ≥ C,

it is determined as target preliminarly.
i f (0.6 + Er(x))× ŴE′′ (x) < C,

it is determined as noise preliminarly.

(24)

where C(x) denotes a threshold as the criterion for detecting targets preliminarily.

As it was mentioned, the trailing effect can cause the value of range points adjacent to
the real target position to be similar. Thus, some adjacent range points, which are actually
from the same target, are usually determined preliminarily as targets at the same time. To
prevent interferences in this situation, only the range point of the maximum value of ŴE
within the adjacent range points is regarded as the target position. Simultaneously, the
interval between two adjacent real targets should not be smaller than two range points
(approximately equal to the anterior–posterior dimension of an average human adult body).

3.4. Feature Extraction

To accurately distinguish human targets from mechanical vibrations, a novel feature,
HHW, is proposed, as illustrated in Figure 4.

Figure 4. Illustration of the proposed feature of half-height width (HHW) of the target’s wavelet
entropy.

After the calculation of ŴE and ICMLD-CFAR, the positions of the human targets and
mechanical vibrations were determined. Usually, they are located at the local maximum
range points. In other words, there are curve crests on ŴE near the range points of human
targets and mechanical vibrations. It was found that the width of the crests of human targets
is usually much wider than that of mechanical vibrations. Thus, the HHW is designed to
reflect this type of difference based on the following expression,

HHW = Rp− Lp, s.t. ŴE(Rp) = ŴE(Lp) =
ŴE

(
xtargets

)
2

, Rp > Lp (25)
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where xtargets denotes the range points determined preliminarily as targets by the ICMLD-
CFAR, and Rp and Lp denote the range points, where the ŴE value is half of the value of
the corresponding target position.

4. Experimental Scenarios

As illustrated, construction machineries are necessary to destroy or remove ruins
during postdisaster emergency rescues. Herein, a LiuGong-856 wheel loader, one of the
most commonly utilized construction machineries in China, was deployed. The experi-
mental scenarios are illustrated in Figure 5. The wheel loader was located approximately
4–8 m from the UWB radar location. Simultaneously, a male adult stood stationary at
approximately 2.5 m from the UWB radar to emulate the rescue scenarios, whereby human
and construction machineries coexist within a very close distance range. Two male targets
aged 43 and 28 years old, respectively, participated in the experiment. Both targets were
measured 5 times, and the data acquisition time was 40 s per time. Thus, there were ten
groups of radar data in total. Informed consent was sought from all human subjects, and
the experiment was approved by the Ethics Committee of Air Force Medical University.

Figure 5. Experimental scenarios.

5. Results
5.1. Energy Spectral Density Comparisons of Construction Machinery in Idling, Digging, and
Moving Modes

Typically, there are three single working modes: (1) idling mode, wherein only the
engine of the machinery runs without any load, (2) digging mode, wherein the shovel
swings owing to loading and unloading while the fuselage remains stationary, and (3)
moving mode, wherein the fuselage moves forward and backward. In the pre-experiments,
to test whether the frequency band of the construction machinery overlaps that of human
respiration (0.2–0.4 Hz), the frequency spectra of the construction machinery at different
working modes were analyzed. The energy spectral density (ESD) can illustrate how the
energy of the radar signal is circulated with frequency [31]. It is defined by

ESD =
∫ ∞

−∞
RAF( f )2d f , (26)

where RAF( f ) represents the fast Fourier transform of the preprocessed radar signal. The
typical ESD of construction machinery in idling, digging, and moving modes is shown
in Figure 6. For the idling and moving modes, most of the energy is concentrated in
the frequency ranges of 0–0.2 Hz and 0.4–0.6 Hz, respectively. However, the energy of
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the digging mode is mostly distributed in the range of 0.2–0.4 Hz, which overlaps with
the frequency band of human respiration. The energy ratios in the frequency range of
0.2–0.4 Hz of the idling, digging, and moving modes in Figure 6 were 6.42%, 71.50%, and
9.49%, respectively. Thus, the digging modes of the construction machinery can induce
cofrequency interference when searching for humans during a postdisaster rescue. Herein,
it was chosen as the classification target.

Figure 6. Typical energy spectral density comparisons of construction machinery in the idling,
digging, and moving modes of operation. Periodic frequency of healthy adult respiration (0.2–0.4 Hz)
was marked between the two red dotted lines.

5.2. Results of Signal Preprocessing, Wavelet Entropy Decomposition, and ICMLD-CFAR

The two-dimensional pseudocolor image of the raw and preprocessed radar data for
the experimental scenario in Figure 5 is shown in Figure 7.

Figure 7. Raw and preprocessed radar data when a human stands stationary at approximately 2.5 m
from the UWB radar and when the digging wheel loader is approximately at 6 m. (a) Raw data, and
(b) preprocessed data.

At 2.3 m and 6.8 m, the values of many range points of the flipped wavelet entropy
are larger than those of the corresponding values of ICMLD-CFAR. Thus, the points with
the maximum wavelet entropy values were considered as the target positions.

After preprocessing, the size of the radar data is compressed from [2048, 40 × 64] to
[200, 40 × 64]. The wavelet entropy decomposition and ICMLD-CFAR are then converted
to the preprocessed radar data, as illustrated in Figure 8.
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Figure 8. Results of wavelet entropy decomposition and the ICMLD-CFAR.

5.3. Results of Distinction

After determining the target position, a novel feature of HHW was extracted to iden-
tify the human target from the construction machinery. A total of 10 groups of radar data
were collected from the same construction machinery and human target. The measurement
interval of each data acquisition was more than 5 min, and the positions of the human
changed slightly within the range of 2–4 m each time. Moreover, the continuous digging
action of construction machinery can change to some degree each data acquisition. There-
fore, the states of the targets and the environmental interference were not identical for each
data acquisition. Thus, the 10 groups of radar data can be regarded to arise from different
datasets. The HHW values of the 10 groups of radar data for humans and the digging
construction machinery positions are listed in Table 2.

Table 2. Half-height width values of 10 groups of human radar data and the digging construction
machinery positions.

HHW Values

Human 11 13 11 10 9 4 5 8 14 13
Digging construction

machinery 27 19 19 23 18 34 38 26 32 27

Apparently, the HHW values of the digging construction machinery are much larger
than those of the human target. To describe more accurately this type of difference, a line
diagram was used to compare the HHW values, as illustrated in Figure 9. The HHW values
of humans are less than those of the digging construction machinery. There are large value
differences between them with no intersections. Statistical parameters including mean,
standard deviation, skewness, and kurtosis [32] are employed to quantitatively describe
these kinds of differences, as shown in Table 3.

Table 3. Statistical parameters for quantitatively describing differences between HHW values of
human and digging construction machinery.

HHW Values Mean Standard Skewness Kurtosis

Human 9.8 3.1875 2.1297 −0.5217
Digging construction

machinery 26.3 6.4506 1.9533 0.3198
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Figure 9. Comparison of HHW values of the 10 groups of radar data for human and digging
construction machinery positions.

There is significant difference in the mean and standard values, more than double. The
skewness of HHW values of human and digging construction machinery are similar, both
reflecting a positive skew distribution. The kurtosis of human HHW values is less than zero,
denoting that the distribution of human HHW values is high and sharp compared with
the normal distribution, whereas the kurtosis of the HHW values of digging construction
machinery is larger than zero, denoting a short and fat data distribution. Then, Levene’s
Test was implemented to check for variance equality, and the corresponding p-value was
0.0667 > 0.05. Thus, the HHW values of human and digging construction machinery satisfy
variance equality. Subsequently, a two-independent sample t-test was applied to the above
two groups of HHW values, and the calculated p-value of the t-test was 1.9× 10−6 <<
0.05. Thus, there is a statistical difference between the HHW values of human and digging
construction machinery. The above experimental results show that the proposed method
can effectively distinguish human targets from working construction machineries.

Traditional methods used for the detection of targets are usually based on finding the
range point with maximum energy [31], as shown in Figure 10.

Figure 10. Traditional method used to detect targets by identifying the maximum energy position.

However, it is not suitable in this type of postdisaster rescue situation because there
could be many strong interferences or noises whose vibration energies are much larger
than those of humans, such as the walking of rescuers or the mechanical vibrations when
clearing up the ruins for reconstructing roads. Thus, this can lead to the misdetection of
human targets as noise. In addition, the traditional methods used to identify human targets
by calculating their frequencies are also less efficient in this case because human respiration
and digging construction machineries are proven to be within the same frequency band.
Herein, the wavelet entropy decomposition and the proposed novel feature of HHW are
capable of solving the aforementioned difficulties.
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6. Discussion

In this study, the wavelet entropy decomposition and the proposed HHW feature
overcame the disadvantages of the traditional methods associated with the identification
of maximum energy and frequency. It promoted the potential for the use of UWB radar
applications in actual postdisaster emergency rescue missions. Wang et al. [17] proposed a
feature of standard deviation of wavelet entropy (StdWE) to distinguish between humans
and dogs through brick walls and in free space using UWB radar. The frequency band of
human respiration and that of a dog’s respiration intersect, similar to the situation in this
study. Thus, the feature of StdWE is employed to be compared with HHW here. In the
calculation of StdWE, the radar signal is divided into 128 nonoverlapping frames along
slow time at each range point after wavelet entropy decompositions. Then, the average
wavelet entropy (MWE) of 128 frames is illustrated by

MWE(x) =
1

[N/128]

N/128

∑
f ra=1

WE f ra(x), (27)

where WE f ra denotes the WE of the radar signal when the slow time is limited to the
corresponding frame. Next, StdWE is calculated to reflect the fluctuation degree of WE. It is
implemented by

StdWE(x) =

√√√√∑
[N/128]
f ra=1

(
WE f ra(x)−WE(x)

)
[N/128]

. (28)

The comparison of the StdWE of the 10 groups of radar data for human and digging
construction machinery positions is shown in Figure 11. There are two intersections be-
tween the two lines at the 6th and 10th data groups. Additionally, other StdWE values of
humans and digging construction machineries are very close. This reveals that StdWE has
poor distinction effects in this kind of scenario. The comparison of statistical parameters for
StdWE between humans and digging construction machineries is shown in Table 4. The val-
ues of all four kinds of statistical parameters are also very close. Compared with the results
in Figure 9 and Table 3 calculated from the HHW values, the distinction effectiveness of the
HHW feature is verified significantly better than StdWE feature in the distinction between
human and mechanical vibrations within similar frequency bands using UWB radar.

Figure 11. Comparison of StdWE values of the 10 groups of radar data for human and digging
construction machinery positions.

Table 4. Comparison of statistical parameters for StdWE between humans and digging construction
machineries.

StdWE Values Mean Standard Skewness Kurtosis

Human 0.1300 0.0209 3.1943 −0.0.9826
Digging construction

machinery 0.1533 0.0313 2.0903 0.0367
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However, there are still some improvements that need to be achieved before the
method is used in practice. For example, experimental scenarios need to be more realistic.
More investigation of the effect of subject number and species, clutter, and barriers between
the targets and the UWB radar should be implemented. Moreover, the effect of changing
the location of targets to the distinction performance needs to be researched in follow-up
experiments, since survivors may be buried in different depths. In addition, the amount of
radar data needs to be enlarged, and the statistical differences between the human targets
and mechanical vibrations could be analyzed more accurately.

7. Conclusions

This study proposed a novel method to distinguish human targets from the interfer-
ence of digging mechanical vibrations at a similar frequency band during postdisaster
emergency rescues. UWB radar detection technology was used to collect data because
it is one of the most reliable technologies used in postdisaster emergency rescues. Five
preprocessing steps were then implemented to filter noise, compress data size, and reduce
computational complexity. Wavelet entropy decomposition and the ICMLD-CFAR were
also designed to automatically identify the positions of human targets and construction
machinery. After the EEMD algorithm, the feature of Er was added to the ICMLD-CFAR to
increase the difference between the noises and the targets; therefore, it was more accurate
in identifying the target positions. Finally, a novel feature of HHW was extracted to distin-
guish humans from digging construction machineries. A two-independent sample t-test
showed that there was a statistical difference between the HHW values of human targets
and digging construction machineries, and this proved the effectiveness of the proposed
method. We envision that the method can be used for actual postdisaster emergency
rescue missions, and that it can help identify humans accurately and rapidly. Thus, more
postdisaster survivors may be rescued during rescue missions.
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