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ABSTRACT: Compositions of integers are used as theoretical models for many applications.
The degree of distinctness of a composition is a natural and important parameter. In this
article, we use as measure of distinctness the number of distinct parts (or components). We
investigate, from a probabilistic point of view, the first empty part, the maximum part size and
the distribution of the number of distinct part sizes. We obtain asymptotically, for the classical
composition of an integer, the moments and an expression for a continuous distribution F ,
the (discrete) distribution of the number of distinct part sizes being computable from F . We
next analyze another composition: the Carlitz one, where two successive parts are different.
We use tools such as analytical depoissonization, Mellin transforms, Markov chain potential
theory, limiting hitting times, singularity analysis and perturbation analysis. © 2001 John Wiley
& Sons, Inc. Random Struct. Alg., 19, 407–437, 2001

1. INTRODUCTION

Compositions of integers are used as theoretical models for many applications. The
degree of distinctness of a composition is a natural and important parameter. Many
references and applications can be found in Hwang and Yeh, [21] which attracted
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our interest into this fascinating topic. We consider the composition of an integer
N into k parts, �γ1� � � � � γk� i.e. N = ∑k

i γi� γi: integer > 0. We define the indicator
variable Ii �= [value i appears among these k values]. Considering all compositions
as equiprobable, we are interested in stochastic properties of the distinctness mea-
sured by �N �= ∑

i Ii. In this article we consider the asymptotic properties of the
distribution function of the number of distinct part sizes in a randomly chosen com-
position of an integer N . Investigation of random compositions or partitions from
the probabilistic perspective originated over six decades ago with an article by Erdös
and Lehner [9] who studied the limiting distribution of the total number of parts in
a random partition. Since then several other quantities have been studied. One of
them is the number of distinct part sizes. For partitions, Wilf [20] found an asymp-
totic formula for the expected number of distinct part sizes. Subsequently, Goh and
Schmutz [18] established the central limit theorem for the number of distinct part
sizes in a randomly chosen partition.

For compositions, the question has not been settled. As far as the expected value
of the number of distinct part sizes in a random composition, Knopfmacher and
Mays [29] obtained the generating function, which could presumably be analyzed
to yield the asymptotic behavior. Hwang and Yeh [21] used generating function
approach and, among other things, derived explicit formulas for the asymptotics
of this expectation. The same result was independently, but later obtained in [20]
using entirely different probabilistic approach that was developed in [19]. Hwang
and Yeh raised the question about the asymptotics for the distribution function of
the number of distinct part sizes. In this article we couple the probabilistic approach
of [19] with generating function method and poissonization techniques of [10, 23, 24]
to address that question. We obtain asymptotically, for the classical composition of
an integer, the moments and an expression for a continuous distribution F , the
(discrete) distribution of �N being computable from F . We also investigate two
related quantities, namely, the first empty part, �N , and the maximum part size �N .

Furthermore, we analyze another composition: the Carlitz one, where two suc-
cessive parts are different. Some aspects of this composition have already been con-
sidered in [17, 30, 37]. In addition to poissonization/depoissonization, Markov chain
potential theory, and limiting hitting times, we use such analytical tools as Mellin
transform, singularity analysis, saddle point method and perturbation analysis.

The article is organized as follows: in Section 2, we consider the classical compo-
sition. In Section 3 we give some asymptotic distributions for �N��N��N . Section 4
is devoted to the Carlitz composition. Section 5 concludes the article. An Appendix
provides some technical tools from potential theory and Drazin inverse, which are
necessary in Section 4.

2. CLASSICAL COMPOSITIONS

In this section, we first present a formalization of a relationship between random
compositions of integers and sequences of i.i.d. geometric random variables (r.v.s,
for short) with parameter 1/2. We then study the number of distinct part sizes, the
maximum part size, and the first empty part in a random composition.
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2.1. Representation of Random Compositions

The following representation of a composition that can be found in [4] is of crucial
importance: there is a one-to-one correspondence between compositions of N and
strings of black and white dots of length N with the following provisions:

(i) the last dot is always black
(ii) each of the remaining N − 1 dots is black or white; part sizes in a composition

are “waiting times” for the first, second, � � � � and kth appearances of a black
dot.

Thus, for example, the string

•︸︷︷︸
1

◦ ◦ •︸ ︷︷ ︸
3

◦ •︸︷︷︸
2

•︸︷︷︸
1

•︸︷︷︸
1

◦ •︸︷︷︸
2

◦ •︸︷︷︸
2

represents the composition of 12 into parts �1� 3� 2� 1� 1� 2� 2�. Considering random
composition corresponds to having black and white dots on each of the first N − 1
positions distributed like i.i.d. Bernoulli r.v.s. Waiting times have known distribution
and after making correction for the last part we find that a random composition of
N is equidistributed with (

�1� �2� � � � � �τ−1�N −
τ−1∑
j=1

�j

)
�

where �1� �2� � � � � are i.i.d. geometric r.v.s with parameter 1/2, GEOM�1/2�. That is

Pr��1 = j� = 1
2j
� j = 1� 2� � � � �

and τ is defined by

τ = inf�k ≥ 1 � �1 + �2 + · · · + �k ≥ N��

Since τ, being a 1+ Bin�N − 1� 1/2� r.v., is tightly concentrated around its expected
value, it follows that the distribution of a random composition is close to that of

��1� �2� � � � � ��N+1�/2���

where x� is the integer part of x. We refer the reader to [19] or [20] for more details
and precise statements. For the purpose of this article it will be enough to record
the following fact. Let n = �N + 1�/2� and for a composition κ = �γ1� � � � � γk� let

�N�κ� = 1 +
κ∑
i=2

I�γi �=γj� j=1� ���� i−1�

denote the number of distinct part sizes in a composition κ and let

Dn = 1 +
n∑
i=2

I��i �=�j� j=1� ���� i−1�
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be the number of distinct values in a sample of n i.i.d. GEOM�1/2� r.v.s. Then by
repeating the argument of [19, Section 4] we infer that

�Pr��N ≤ t� − Pr�Dn ≤ t�� = �

(√
logN
N

)
�

Therefore, it suffices to approximate the distribution function (DF) of the number
of distinct values in the sequence of n i.i.d. geometric r.v.s. For this reason, from
now on we set n = �N + 1�/2� and we consider n i.i.d. GEOM(1/2) r.v.s. We also
note that τ represents the number of parts and thus the asymptotic distribution of
that number is � �N2 � N

4 �, where � denotes the Gaussian (normal) r.v. In general,
just as we have done with the number of distinct part sizes, we will denote quanti-
ties of interest for compositions by script letters and the corresponding quantities
for geometric variables will be denoted by the same letters from the roman alpha-
bet (ocassionally we will drop the subscripts N and n, respectively). As for other
notational conventions, log will denote log2, L = ln 2 and β’s (with or without sub-
scripts) will be used to denote periodic functions of log n, with mean 0, period 1
and with small (of order no more than 10−6) amplitude. Actually, these functions
depend on the fractional part of log n: �log n�.

2.2. Recurrence

To obtain a recurrence relation we condition on the number of �j ’s that are equal
to 1. Letting D0 ≡ 0, by the law of total probability we find that

Pr�Dn = k� =
n∑

j=0

Pr
(
�Dn = k� ∩

{ n∑
�=1

I��=1 = n− j

})

=
n∑

j=0

Pr
(
Dn = k

∣∣∣ n∑
�=1

I��=1 = n− j

)(
n

n− j

)
1
2n

=
n−1∑
j=0

Pr
(
Dn = k

∣∣∣ n∑
�=1

I��=1 = n− j

)(
n

n− j

)
1
2n

+ 1
2n

Pr
(
Dn = k

∣∣∣ n∑
�=1

I��=1 = 0
)

=
n−1∑
j=0

Pr�Dj = k− 1�
(

n

n− j

)
1
2n

+ Pr�Dn = k�
2n

�

where in the last line we have used

Pr
(
Dn = k

∣∣∣ n∑
�=1

I��=1 = 0
)

= Pr�Dj = k�∀ ��� ≥ 2� = Pr�Dn = k��

which follows from the fact that given the event �∀ � �� ≥ 2�, ��j� are i.i.d. random
variables distributed like 1+�. Therefore, the generating function of the probability
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distribution function of Dn is

Gn�u� = ∑
k≥0

Pr�Dn = k�uk

= ∑
k≥0

(n−1∑
j=0

Pr�Dj = k− 1�
(
n

j

)
1
2n

+ Pr�Dn = k�
2n

)
uk

=
n−1∑
j=1

(
n

j

)
1
2n

∑
k≥0

Pr�Dj = k− 1�uk + 1
2n

∑
k≥0

Pr�Dn = k�uk

=
n−1∑
j=1

(
n

j

)
1
2n
uGj�u� + Gn�u�

2

n

�

Since G0�u� ≡ 1, we obtain the following recurrence for Gn:

Gn�u� =
{
1 if n = 0,
u
∑n−1

j=0

(
n
j

)Gj�u�
2n + Gn�u�

2n if n ≥ 1.

Recurrences like that are very common in the analysis of certain algorithms and we
will follow techniques developed for the purpose of studying them. We first consider
the poissonized version:

G�z� u� =
∞∑
n=0

Gn�u�z
ne−z

n!

= G0�u�e−z +
∞∑
n=1

zne−z

n!

{
u
n−1∑
j=0

(
n

j

)
Gj�u�
2n

+ Gn�u�
2n

}

= e−z +
∞∑
n=1

e−z

n!

(z
2

)n
Gn�u� + u

∞∑
n=1

n−1∑
j=0

zne−zGj�u�
2nj!�n− j�!

= e−z + e−z/2
∞∑
n=1

�z/2�ne−z/2

n!
Gn�u� + u

∞∑
j=0

∞∑
n=j+1

zne−zGj�u�
2nj!�n− j�!

= e−z + e−z/2{G�z/2� u� − e−z/2} + u
∞∑
j=0

Gj�u�
j!

(z
2

)j
e−z

∞∑
n=j+1

�z/2�n−j

�n− j�!

= e−z/2G�z/2� u� + u
∞∑
j=0

Gj�u�
j!

(z
2

)j
e−z

∞∑
m=1

�z/2�m
m!

= e−z/2G�z/2� u� + u
∞∑
j=0

Gj�u�
j!

(z
2

)j
e−z

{
ez/2 − 1

}
= e−z/2G�z/2� u� + uG�z/2� u� − ue−z/2G�z/2� u�
= G�z/2� u�{e−z/2�1 − u� + u

}
�

Hence, the function H�z� u� = G�z� u�/�1 − u� satisfies the same identity

H�z� u� = H�z/2� u�{e−z/2 + u�1 − e−z/2�}� (1)
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which, by iteration, gives

H�z� u� = 1
1 − u

∞∏
j=1

(
e−z/2j + u

(
1 − e−z/2j

))
� (2)

Observe that if z > 0, then H�z� ·� is the generating function of the sequence
Pr�Xz ≤ k�, where Xz = ∑

j≥1 Xz� j and �Xz� j� are independent random variables
satisfying

Pr�Xz� j = 0� = e−z/2j and Pr�Xz� j = 1� = 1 − e−z/2j � (3)

We will now depoissonize that result by appealing to Jacquet and Szpankowski [23]
(see also [24]). Let

Hk�z� = ∑
n

Pr�Dn ≤ k�z
ne−z

n!
�

so that

H�z� u� =
∞∑
k=0

Hk�z�uk�

Comparison of coefficients of the powers of u on both sides of (1) and (2) yields,
respectively,

Hk�z� = e−z/2Hk�z/2� + �1 − ez/2�Hk−1�z/2�� k ≥ 0� �H−1�z� = 0� (4)

and

Hk�z� =
k∑

m=0

∑
J⊂N
�J�=m

∏
j∈J

�1 − e−z/2j � ∏
j �∈J

e−z/2j � (5)

We will check that the functions Hk�z� satisfy the conditions �I� and �O� of [23,
Corollary 1]: ∃ 0 < θ < π/2, such that for a linear cone �θ = �z � � arg�z�� < θ�
there exist A�B�R > 0, β and α < 1 for which the following two conditions hold
uniformly in k ≥ 0:

(I) For z ∈ �θ, �z� > R �⇒ �Hk�z�� ≤ B�z�β�
(O) For z /∈ �θ, �z� > R �⇒ �Hk�z�ez� ≤ Aeα�z��

To verify �O� note that

�ezHk�z�� ≤
∞∑
n=0

�z�n
n!

= e�z��

so that (4) implies that

�ezHk�z�� ≤ �ez/2Hk�z/2�� + �ez/2�1 − e−z/2���ez/2Hk−1�z/2��
≤ e�z�/2

(
1 + e��z�/2 + 1

)
≤ 3eα�z��

for some 1/2 < α < 1 and large �z�.
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We now show that �I� holds with β = 0. Let z = x + iy be in �θ. Then by
elementary manipulations

�1 − e−z/2j � ≤ 1 − e−x/2j + 1 − cos�y/2j�
exp�x/2j� − 1

≤ 1 − e−x/2j + y2/22j

2�exp�x/2j� − 1�

≤ 1 − e−x/2j + tan2 θ

2
x2/22j

exp�x/2j� − 1
�

and it follows from (5) that

�Hk�z�� ≤
k∑

m=0

∑
J⊂N
�J�=m

∏
j∈J

�1 − e−z/2j � ∏
j �∈J

�e−z/2j �

≤
∞∑

m=0

∑
J⊂N
�J�=m

∏
j∈J

(
1 − e−x/2j + tan2 θ

2
x2/22j

exp�x/2j� − 1

) ∏
j �∈J

e−x/2j

=
∞∏
j=1

(
1 + tan2 θ

2
x2/22j

exp�x/2j� − 1

)

≤ exp
{
tan2 θ

2

∞∑
j=1

�x/2j�2
exp�x/2j� − 1

}
�

which is bounded independently of x and k since, with f �t� = x2/22t

exp�x/2t�−1 , we have

∞∑
j=1

�x/2j�2
exp�x/2j� − 1

=
∞∑
j=1

f �j� ≤ sup
j

f �j� +
∫ ∞

0
f �t�dt

≤ 1 + 1
ln 2

∫ x

0

u

eu − 1
du ≤ 1 + π2

6 ln 2
�

It follows from Corollary 1 of [23] that

Pr�Dn ≤ k� = Hk�n� + �

(
1
n

)
� (6)

uniformly in k ≥ 0. Hence, (5) implies that the asymptotics of the distribution of
Dn (and thus also of �N) is the same as that of

Xn =
∞∑
j=1

Xn� j� (7)

where �Xn� j� are independent random variables given by (3). Thus, we will turn our
attention to the sequence �Xn�.
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2.3. Properties of the Distribution

We begin by noting that the representation (7) gives, by Mellin transform (see
below), the asymptotic value of the expected number of Dn

EDn ∼
∞∑
i=1

Pr�Xn� i = 1� =
∞∑
i=1

{
1 − e−n/2i

}
∼ log n− 1

2
+ γ

L
+ β1�log n� + ��1/n��

As n = �N + 1�/2�, to find E�N we must replace log n by logN − 1. Of course the
mean conforms to the Hwang and Yeh result [21]. Similarly, for the variance we
obtain

var�Dn� ∼ var�Xn� =
∞∑
j=1

var�Xn� j� =
∞∑
j=1

�1 − e−n/2j �e−n/2j

=
jn∑
j=1

�1 − e−n/2j �e−n/2j + ∑
j>jn

�1 − e−n/2j �e−n/2j

=
jn∑
j=1

�e−n/2j − e−n/2j−1� + �

(∑
j>jn

n

2j

)

= �e−n/2jn − e−n� + �

(
n

2jn

)
→ 1�

provided jn is chosen so that n/2jn → 0 as n → ∞. Thus, while there is a periodic
component in the limiting distribution, the variance has no periodicity. The same
phenomena appear in the mean of adaptive sampling [35].

We now turn to the question of the weak convergence of the sequence Dn −
log n�. As we will see, due to contribution of the fractional part of log n, this
sequence does not have a weak limit. It does, however, converge in distribution
along subsequences nm for which the fractional part of log nm is about constant.
More specifically, for a fixed n0 ≥ 1, let x = �log n0� so that n0 = 2log n0�+x and
consider a subsequence �nm� defined by nm = 2log n0�+m+x. Note that the array
�Xn� j� has the following property

X2n� j
d= Xn� j−1 for j ≥ 2�

where d= means equality in distribution. Thus,

Xnm
= X2m+x = X2m+x� 1 +

∞∑
j=2

X2m+x� j

d= X2m+x� 1 +
∞∑
j=1

X2m−1+x� j

= X2m+x� 1 +Xnm−1
�

where

Pr�X2m+x� 1 = 0� = e−2m−1+x

and Pr�X2m+x� 1 = 1� = 1 − e−2m−1+x

�
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Now let Ym = Xnm
−m. Then

Ym = Xnm
−m = X2m+x� 1 − 1 +Xnm−1

− �m− 1�

= X2m+x� 1 − 1 + Ym−1 = · · · =
m∑
j=1

�X2j+x� 1 − 1� + Y0

In particular, Ym+1 ≤ Ym so that �Ym� converges in distribution to Y , where

Y = Y �x� =
∞∑
j=1

�X2j+x� 1 − 1� + Y0 =
∞∑
j=1

�X2j+x� 1 − 1 +X0� j��

The higher centered moments of Dn can be obtained by analyzing

S1�s� �= exp�ln G̃n�es� − sEXn��

where G̃n�z� = �1 − z�H̃n�z� is the generating function of the p.d.f. of Xn. Since

S2�s� �= ln G̃n�es� =
∞∑
j=1

ln
(
1 + �es − 1�

(
1 − en/2

j
))

= ∑
i

�−1�i+1

i
�es − 1�i

{ ∞∑
j=1

(
1 − e−n/2j

)i}
�

letting Vi �= ∑∞
j=1�1 − e−n/2j �i we see that

Vi =
∞∑
j=1

{ i∑
k=0

�−1�k
(
i

k

)
e−kn/2j

}

=
∞∑
j=1

{ i∑
k=0

�−1�k
(
i

k

)
e−kn/2j −

i∑
k=0

�−1�k
(
i

k

)}

=
∞∑
j=1

{ i∑
k=0

�−1�k+1
(
i

k

)(
1 − e−kn/2j

)}
�

These are dyadic sums, which can be asymptotically evaluated with Mellin transform
(see [14, Proposition 2]). One obtains

Vi ∼ log n− 1
2

+ γ

L
+

i∑
k=2

�−1�k+1
(
i

k

)
logk+ βi�log n�� (8)

For instance,

β1�log n� = 1
L

∑
k∈Z\�0�

�

(
2ikπ
L

)
e−2ikπ log n�
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Hence,

S2�s� = s

[
log n− 1

2
+ γ

L

]
+

∞∑
i=2

�−1�i+1�es − 1�i
i

Bi +
∞∑
i=1

�−1�i+1�z − 1�i
i

βi�

where Bi = ∑i
k=2�−1�k+1

(
i
k

)
logk. For instance,

B1 = 0�

B2 = −1�

B3 = −3 + log 3�

B4 = −6 + 4 log 3 − log 4�

B5 = −10 + 10 log 3 − 5 log 4 + log 5�

To derive the constant term in the Fourier expansions (in log n), we consider

S3�es� = exp
[ ∞∑
i=2

�−1�i+1�es − 1�i
i

Bi

]
� (9)

From this equation, we obtain

σ̃2 �= var�Dn� ∼ 1 (as expected), with no periodic contribution�

µ̃3 �= µ3�Dn� ∼ −3 + 2 log 3 = 0�1699250014 � � � �

µ̃4 �= µ4�Dn� ∼ −2�−5 + 6 log 3 − 3 log 4� = 2�980449991 � � � �

µ̃5 �= µ5�Dn� ∼ −45 log 2 + 70 log 3 − 60 log 4 + 24 log 5 = 1�673649353 � � � �

The neglected terms are made of periodic functions with small amplitude and of
��1/n� contributions.

For n = 20000, we have done a simulation (of m = 4000 sets). We obtain the
results of Table 1. Notice that the asymptotic values of σ2, µ̃3, µ̃4 are near those
of a Gaussian r.v. Based on our simulation, Figure 1 gives the α− Transform of
Dn-centered distribution (observed = circle, asymptotic, S2�−α�, = line). Due to
the sensitivity of G̃n to the mean, we have chosen to normalize by the observed
mean.

TABLE 1 Moments

Theoretical
asymptotic value Observed value

Mean 14.62045856� � � 14.6052� � �
Variance 1 1.0264� � �
µ3 0.1699250014� � � 0.1683� � �
µ4 2.980449991� � � 3.1100� � �
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1.4

1.5
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0 0.2 0.4 0.6 0.8 1
al

Fig. 1. α- Transform of Dn centered distribution.

3. SOME ASYMPTOTIC DISTRIBUTIONS

In this section, we derive asymptotic distributions for �N , �N , �N .

3.1. The Largest Part

For the maximum part size Mn we have (k will only be used in the neighborhood
of log n/L+ ��1�)

Pr�Mn ≤ k� =
(
1 − 1

2k

)n

∼ e−n/2k
(
1 −

( n

2k

)2 1
2n

)
�

Now, we proceed as in [36]. Set η = j − log n/L. Then, with integer j and η = ��1�,
the distribution is asymptotically given by the extreme-value DF ϕ1�x� �= e−e−x

:

Pr Mn − log n ≤ η! ∼ e−e−Lη

� (10)

The mean of this distribution is given by �γ/L� and the variance by �π2/6L2�. From
this and (10) we deduce, as in [36], that EMn ∼ log n + �1/2� + �γ/L� + β�log n�
and, as n = �N + 1�/2�,

E�N ∼ logN − 1
2

+ γ

L
+ β�logN��

A simulation for n = 20000 of m = 4000 sets leads to Figure 2 (observed = circle,
asymptotic = line).

The mean of Mn is a special case of a more general result, given by the following
Lemma, which relates the moments of a discrete r.v. X to those of the correspond-
ing continuous one. In the sequel, we will consider a discrete r.v. X and a continuous
DF F�x� such that F�x� is either an extreme-value DF or a convergent series of
such. More general applications conditions are certainly possible, but we will not
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Fig. 2. Maximum part size.

pursue this matter here. We assume that Pr�X − log n ≤ x� ∼ F�x� in the following
sense. Setting x = j − log n, then with integer j and x = ��1�, Pr�X ≤ j� ∼ F�x�,
n → ∞. Moreover, we assume that the rate of convergence is such that the error
is uniformly bounded by a ��1/nδ� term, with 0 < δ < 1.

Lemma 3.1. Let a (discrete) r.v. X be such that Pr�X − log n ≤ x� ∼ F�x�, where
F�x� is the DF of a continuous r.v. Z with mean m, second moment m2, vari-
ance σ2 and centered moments �µi�. Assume that F�x� is either an extreme-value
DF or a convergent series of such. Let ϕ�α� = EeαZ = eαmψ�α� say, with ψ�α� =
1+ �α2/2�σ2 +∑∞

3 �αi/i!�µi. Then the corresponding discrete moments of X are given
by

E�X − log n� ∼
∫ +∞

−∞
x F�x� − F�x− 1�!dx+ β2

= m̃+ β2 with m̃ = m+ 1/2�

var�X� ∼ E�X − �log n+ m̃+ β2��2

∼
∫ +∞

−∞
x2 F�x� − F�x− 1�!dx− m̃2 + β3

= m2 +m+ 1/3 − m̃2 + β3 = σ̃2 + β3 with σ̃2 = σ2 + 1/12�

More generally, the centered moments of X are asymptotically given by µ̃i + βi, where

θ�α� �= 1 +
∞∑
2

αi

i!
µ̃i = 2

α
sh�α/2�ψ�α��

Proof.
E�X − log n� ∼ ∑

i

 F�i − log n� − F�i − log n− 1�! i − log n!� (11)

Set y = 2−x and G�y� = F�x�. Equation (11) becomes∑
i

 G�n/2i� −G�n/2i+1�! − log�n/2i�!�
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This is a harmonic sum and, by Mellin, this leads to (see, for instance, Flajolet [11]
for a detailed analysis)∫ ∞

0
 G�y� −G�y/2�!�− log y� dy

Ly
+ β2

=
∫ +∞

−∞
 F�x� − F�x− 1�!xdx+ β2

=
∫ 0

−∞
F�x�xdx−

∫ ∞

0
�1 − F�x��xdx

−
∫ 0

−∞
F�x− 1�xdx+

∫ ∞

0
�1 − F�x− 1��xdx+ β2�

Set x− 1 = y. We obtain
∫ 0
−1�y + 1�dy − ∫ 0

−∞ F�y�dy + ∫ ∞
0 �1−F�y��dy = m+ 1/2.

Similarly,

var�X�∼∑
i

 G�n/2i�−G�n/2i+1! −log�n/2i�−m̃−β2!2

=∑
i

 G�n/2i�−G�n/2i+1!
{
 −log�n/2i�−m̃!2−2 −log�n/2i�−m̃!β2+β2

2

}
�

The first bracket leads to∫ +∞

−∞
 F�x� − F�x− 1�!�x− m̃�2 dx+ β3

Now m2 = −2
∫ 0
−∞ F�x�xdx+ 2

∫ ∞
0 �1 − F�x��xdx and

∫ +∞

−∞
 F�x� − F�x− 1�!x2 dx

=
∫ 0

−∞
F�x�x2 dx−

∫ ∞

0
�1 − F�x��x2 dx

−
∫ 0

−∞
F�x− 1�x2 dx+

∫ ∞

0
�1 − F�x− 1��x2dx

=
∫ 0

−1
�y + 1�2 dy −

∫ 0

−∞
F�y�2y dy +

∫ ∞

0
�1 − F�y��2ydy

−
∫ 0

−∞
F�y�dy +

∫ ∞

0
�1 − F�y��dy

= 1/3 +m2 +m�

More generally, let us define φ�α� �= ∫
eαx F�x� − F�x− 1�!dx, we obtain

φ�α� = φ�α�e
α − 1
α

= eαm
eα − 1
α

ψ�α��

Now φ�α� = eαm̃6�α�, which proves the lemma.
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Numerous applications of this lemma can be found in algorithm analysis: let us
mention approximate counting [11, 15], Tries [33], adaptative sampling [35], Digi-
tal search trees [34], leader election [10], Lempel–Ziv algorithm [38], polyonomis
analysis [36], data structures maxima [28], etc. For instance, we derive

µ̃3 = µ3�

µ̃4 = µ4 + σ2/2 + 1/80�

µ̃5 = µ5 + 5/6µ3�

Also
var�Mn� ∼ π2

6L2 + 1
12

+ β�log n��

3.2. First Empty Part Value

Another variable of interest, �n, is the first k such that Ik = 0, i.e. we are interested
in the probability

Pr��n = k� = Pr�Ii = 1� i = 1� � � � � k− 1� Ik = 0��
This probability is asymptotically given by

Pr�En = k� =
k−1∏
i=1

�1 − e−n/2i�e−n/2k �

We set k = log n+ η. This equation leads asymptotically to

ϕ�η� = e−e−Lη
∞∏
1

 1 − e−e−L�η−i� !� (12)

Our simulation leads to Figure 3 (observed = circle, asymptotic = line). It is in-
teresting to compare (12) with the corresponding function related to the maximum
part size, given from (10) by e−e−Lη − e−e−L�η−1�

. This is shown in Figure 4, where we
see that En must have a very concentrated distribution.
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Fig. 3. First empty part.
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Fig. 4. First empty part and maximum part size (circle).

3.3. More on the Asymptotic Distribution of Dn

If we want to obtain a DF F�x� such that Pr Dn ≤ log n + x! ∼ F�x�, we can use
Lemma 3.1, which gives m̃ = C = m+ 1/2, hence m = γ/L− 1, and

ψ�α� = α

2sh�α/2�S2�α��

For instance

σ2 = 11/12�

µ3 = µ̃3�

µ4 = µ̃4 − 113/240�

µ5 = µ̃5 − 5/6µ̃3�

A numerical estimation of f �x� �= F�x� −F�x− 1� could be obtained by computing
the Laplace transform and inverting it numerically, but this is not efficient. It is
easier to proceed as follows. We have Pr�Dn = j� ∼ f �j − log n�. Hence, neglecting
again the βj functions, EDn ∼ ∑

j f �j − log n�j or C ∼ ∑
f �j − log n��j − log n�.

This can be rewritten as

C ∼ ∑
f �j − log n� − �log n���j − log n� − �log n���

or, setting i �= j − log n�� θ �= �log n�,

C ∼ ∑
f �i − θ��i − θ�� i.e.

0 ∼ ∑
f �i − θ��i − θ − C��

Similarly

var�Dn� ∼ ∑
f �i − θ��i − θ − C�2�
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Also, 1 ∼ ∑
f �i − θ�. So, we can estimate, for some even d,  f �−d/2 −

θ�� � � � � f �d/2 − θ�!. We construct a matrix A 1� � � � � d + 1� 1� � � � � d + 1! such that

A�i� j� �= �−d/2 − θ − C + �j − 1���i−1��

a column vector b such that b�1� = 1� b�2� = 0� b�i� = µ̃i−1� i = 3� � � � � d + 1, and
a column vector x such that x�i� = f �−d/2 − θ + �i − 1�� after the computation.
We solve the systems Ax = b for a set of θ values. For instance, with d = 16� θ =
 0�−1/10� � � � �−9/10!, we have obtained a precision of 10−4 for f . Figure 5 shows
the observed (discrete) probability distribution of Dn together with the numerical
estimation of f . The adjustment is quite good. Now we turn to the explicit form of
f . The analysis is rather similar to the one we used in [34]. We take the advantage
of the fact that all sizes occur before the first empty size. That is Dn ≥ En − 1 so
that letting νn = inf�k � Xn�k = 0� we have

Pr�Dn = m� = Pr�Dn = m�En ≤ m+ 1� ∼ Pr�Xn = m� νn ≤ m+ 1�

= ∑
u≥0

Pr
(
νn = m+ 1 − u�

∑
r≥m+2−u

Xn� r = u

)

= ∑
u≥0

Pr�νn = m+ 1 − u� ∏
r≥m+2−u

e−n/2r ∑
r1 �=···�=ru
rj≥m+2−u

1 − e−n/2ri

e−n/2ri

Now set m = log n+ η and rj = log n+ η+wj . We obtain the following result:

Theorem 3.2. With m integer and η = ��1�,

Pr�Dn = m� ∼ f �η� =
∞∑
u=0

ϕ�η− u+ 1�e−e−L�η+1−u� ∑
w1 �=��� �=wu
wj≥2−u

u∏
i=1

1 − e−e−L�η+wi�

e−e−L�η+wi� �

Pr�Dn ≤ m� ∼ F�η�, with F�η� �= ∑∞
0 f �η− i��
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Fig. 5. limiting discrete Dn distribution and numerical estimation of f .



DISTINCTNESS OF COMPOSITIONS OF AN INTEGER 423

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

Fig. 6. limiting discrete Dn distribution and numerical estimation of f (circle).

Figure 6 shows the limiting (discrete) probability distribution of Dn, f �η�, together
with the numerical estimation of f (circle).

4. CARLITZ COMPOSITIONS

The Carlitz compositions [7] are characterized by the property that two successive
parts are different. In this section, we first analyze the hitting probability to a large
part value. This allows us to derive the asymptotics for the expected number of dis-
tinct part sizes of Carlitz composition, a result first proved in [17]. Then we consider
the correlation between two values and obtain the asymptotics of the variance.

4.1. Some Known Results on Carlitz Compositions

In this section, we recall some known asymptotic results on the stochastic description
of Carlitz compositions of a large integer N . In [37], we used singularity analysis,
based on the theorems of Bender, Flajolet, Odlyzko, Soria and Hwang (see [5, 13,
12, 22]. This led to the following results. According to [37, section 2.1], the trivariate
generating function of the number of Carlitz compositions of N into m parts with
the last part having size i (marked by z, w, and θ, respectively) is given (for a fixed
first part size j) by

φ�w� θ� z�j� = A2�w� θ� z�j� +A1�w� θ� z�D2� (13)

where

A1�w� θ� z� =
∞∑
j=1

�−1�j+1 zjθwj

1 − zjθ

D2 �= φ�w� 1� z�j� = A2�w� 1� z�j�/h�w� z�
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A2�w� θ� z�j� = θjwzj/�1 +wzj�

h�w� z� �= 1 +
∞∑
1

�−1�jzjwj

1 − zj
�

Singularity analysis leads to the following results. The number of parts �N is asymp-
totically Gaussian ([37, Theorem 2.1]):

�N −Nµ1√
Nσ1

d∼ � �0� 1�� N → ∞� (14)

where

µ1 �= −r1/z
∗�

σ2
1 �= µ2

1 − r2/z
∗�

r1 �= −hw/hz�

r2 �= −�r21hzz + 2r1hzw + hw + hww�/hz�

and we denote by z∗ the root of h�1� z�, i.e z∗ = 0�57134979315808764311 � � � and
set w = 1� z = z∗ in r1� r2. z∗ also satisfies

∑ z∗i

1 + z∗i = 1� (15)

The part sizes are asymptotically given by a Markov Chain (MC):

>�i� j� = z∗j�1 + z∗i�
�1 + z∗j� � j �= i (16)

Following in detail Bender’s analysis, we can check that this asymptotic is valid
for i� j = ��logN�. Due to its geometrically decreasing tail, the chain is strongly
ergodic. It is also reversible. The stationary distribution of (16) is given by

π�i� = − z∗i

�1 + z∗i�2hw�1� z∗� �

Set C2 �= −1/hw�1� z∗� = 1�3016594836 � � �.

4.2. Hitting Probability

In this section, we obtain a precise asymptotic equivalent for the hitting time proba-
bility to a large part value. This will be needed in the mean and variance asymptotics.
Our results are based on a detailed study of the MC and on some perturbation anal-
ysis. Let us analyze the hitting time to some fixed k, k $ 1. This amounts to making
k an absorbing state for (16). To study the resulting transient MC �̃, we assume
that we can apply the standard perturbation analysis. We show in Appendix A.4
that we can indeed use all parameters in the form given hereafter.
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Set ε �= Z∗k. First, we derive π�k� = C2ε− 2C2ε
2 +��ε3��>�l� k� = �1+ z∗l�ε+

��ε2�. The dominant eigenvalue of �̃ is given by 1 − γ1ε− γ2ε
2 + ��ε3�. The cor-

responding right-eigenvector is given by R̃�l� = 1 − α�l�ε + ��ε2� and the left-
eigenvector is given by π̃�l� = π�l� − δ�l�ε + ��ε2�. We shall also compute α�k�,
notwithstanding the fact that it has no direct probabilistic interpretation. We use
the normalization πR̃ = 1 (including the k-term). We have, with

∑−
l �= ∑

l �=k,∑
m

>�l�m�− 1 − α�m�ε+ ��ε2�! =  1 − γ1ε− γ2ε
2 + ��ε3�! 1 − α�l�ε+ ��ε2�!

(17)
or

1 − ε�1 + z∗l� l �= k! − ε����l + ��ε2� = 1 + ε −γ1 − α�l�! + ��ε2��

The ε term leads to

− �1 + z∗l� l �= k! − ����l = −γ1 − α�l� (18)

or

 �I − ���!l = �1 + z∗l� l �= k! − γ1� (19)

To derive γ1, we premultiply (19) by π, this gives
∑−

l π�l��1 + z∗l� − γ1. Hence
γ1 = C2, by (15).

Set z∗ �= �z∗l�, (column vector). To obtain α, we start from (19), which leads to

� = M−�1 + z∗� + C3�1 (20)

where C3 = π� = 0�M �= ∑
n≥0�πn − 1×π�. M is the Drazin inverse of I−�. We

refer to Campbell and Meyer [6] for a detailed definition and analysis of the Drazin
inverse. We have M = Z− 1×π, where Z �=  I−�+ 1×π!−1 = ∑

n≥0 �− 1×π!n
is the potential used in Kemeny, Snell and Knapp [27]. Let us now turn to γ2.
Premultiplying (17) by π leads to

− C2ε− 2C2ε
2 + ��ε3�! 1 − α�k�ε+ ��ε2�!

=  −γ1ε−m2ε
2 + ��ε3�! 1 − επ� + ��ε2�!� (21)

The ε term leads of course to γ1 = C2. The ε2 term leads to

2C2 + C2α�k� = −γ2�

Hence

γ2 = −2C2 − C2α�k� = −2C2 − C2�M−�1 + z∗��k� by (20)�

However, from (A.17), �M−�1 + z∗��k = C4 + ��ε�� with C4 = −1�2774603654 � � �
so γ2 = −C2�2 + C4�. With (A.12), we also derive

α�k� = C4 + ��ε��
α�l� = C4 + 1 + ��z∗l�� l $ 1� l �= k� (22)
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� could be similarly computed, but we will not need its explicit form. However, we
will use the normalization π̃−R̃ = 1, which gives

− C2 − �1 = 0� (23)

By Keilson [26], Aldous [1], Aldous and Brown, [2, 3], we know that the hitting time
to a distant state is asymptotically exponential. However, here, we need a precise
equivalent. For further use, set C9 �= −γ2 − γ2

1/2. Let us first fix n. We analyze,
with k = 6�log n� and starting with the stationary distribution,

Pr�Tk > n� = Pr�n�π �Ik = 0� = π−��−�n−1
∼ π− 1 − ε� + ��ε2�! π − �ε!−1 1 − γ1ε− γ2ε

2 + ��ε3�!n

∼ π− 1 − ε� + ��ε2�! 1 + ε�−C2 − �1�!e−nγ1ε 1 + nε2C9 + ��nε3�!
∼ π− 1 + ε�−C21 − �δ1�1 − �� + ��ε2�!e−nγ1ε 1 + nε2C9 + ��nε3�!
∼  1 − εC2 + ��ε2�!e−nγ1ε 1 + nε2C9 + ��nε3�!� by �23��

Now, we set ñ = nC2, which leads to the following result

Lemma 4.1.

Pr�n�π �Ik = 0� ∼
[
1 − �ñε�

ñ
C2 + �ñε�2

ñ
C10 + ��ε2� + ��ñε3�

]
e−ñε (24)

with C10 �= C9/C2.

We finally obtain &V1 ∼ ln ñ/L̃ + C̃, with C̃ = −1/2 + γ/L̃ and L̃ = − ln�z∗�. How-
ever actually, n is an r.v. representing the number of parts. So, according to (14),
we derive

E��N� ∼
∫
e−�n−Nµ1�2/�Nσ2

1 �&V1�n�dn

so, asymptotically, we must replace ln�n� by ln�N� + ln�hw/�hzz∗��, hence we re-
place ln�ñ� by ln�N� − ln�−hz� − ln�z∗� and finally,

E��N� ∼ ln�N�/L̃− ln�−hz�/L̃+ 1/2 + γ/L̃+ β�logN� + ��1/N��

So we recover, by another method, a result first proved in [17]. Similarly, in (8), we
use lnk/L̃ instead of log2 k. For instance,

B2 = − ln 2/L̃�

B3 = −3 ln 2/L̃+ ln 3/L̃�

B4 = −6 ln 2/L̃+ 4 ln 3/L̃− ln 4/L̃�

B5 = −10 ln 2/L̃+ 10 ln 3/L̃− 5 ln 4/L̃+ ln 5/L̃�
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4.3. Correlations and Variance

In this section, we first consider the correlation between Ik and Ij , and we finally
obtain the asymptotics of var��N�. Fix k < j, k $ 1. Set τ = z∗�j−k�. �, �, γ1, γ2
depend now on k and j and

∑−
l �= ∑

l �=k�j . Eq. (19) becomes

 �I − ���!l = �1 + z∗l� l �= k� j!�1 + τ� − γ1�

Hence, γ1 = C2�1 + τ� and � = �1 + τ�M−�1 + z∗� + C11, with C11 = π� = 0.
Instead of (23), we have

−C2�1 + τ� − �1 = 0�

Equation (21) becomes

− C2ε�1 + τ� − 2C2ε
2 − 2C2ε

2τ2 − C2ε
2α�k� − C2ε

2τα�j� + ��ε3�!
=  −γ1ε− γ2ε

2 + ��ε3�! 1 − επ� + ��ε2�!�

The ε term leads to γ1 = C2�1 + τ�, as it should. The ε2 term leads to

2C2�1 + τ2� + C2α�k� + C2τα�j� = −γ2�

Hence

γ2 = −2C2�1 + τ2� − C2�1 + τ� �M−�1 + z∗��k + τ�M−�1 + z∗��j!
∼ −2C2�1 + τ2� − C2�1 + τ� �1 + τ�C4 −M�k� j� − τM�j� k�!�

After some algebra, we obtain

Pr�n�π �Ik = 0 ∩ Ij = 0�

∼
{
1 − �z∗k + z∗j�C2

ñ

ñ
− ñ2

ñ

1
C2

[
− 2C2�z∗2k + z∗2j� − C2�z∗k + z∗j�2C4

+C2�z∗k + z∗j� z∗kM�k� j� + z∗jM�j� k�!
+C2

2/2�z∗k + z∗j�2
]}
e−ñ�z∗k+z∗j��

Now we analyze Pr Ii = 1 ∩ Ij = 1!. Consider the cases i = 6�log n� and j =
6�log n� (other cases are unimportant by the “sum splitting technique” as described
in Knuth [31, p. 131]).

E�IiIj� = Pr Ii = 1 ∩ Ij = 1! = 1 − [
Pr Ii = 0! + Pr Ij = 0! − Pr Ii = 0 ∩ Ij = 0!]

∼ �1 − e−ñz∗i��1 − e−ñz∗j �

+ 1
ñ

{
−e−ñz∗i[−�ñz∗i�C2 + �ñz∗i�2C10 + ��ñz∗i2� + ��ñ2z∗i3�]
− e−ñz∗j [−�ñz∗j�C2 + �ñz∗j�2C10 + ��ñz∗j2� + ��ñ2z∗j3�]
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+ e−ñ�z∗k+z∗j�
[
−�z∗k + z∗j�C2ñ− ñ2

C2

[−2C2�z∗2k + z∗2j�

−C2�z∗k + z∗j�2C4 + C2�z∗k + z∗j� z∗kM�k� j�

+ z∗jM�j� k�! + C2
2/2�z∗k + z∗j�2]]}�

We would like to conclude that all moments of Dn can be based on this lemma
and that for instance, var�Dn� ∼ &V 2

1 − &V2 + &V1 − &V 2
1 + β̃ = ln�2�/L̃ + β̃, for some

periodic function β̃�log n�. However we must carefully check the effect of β’s and
1
n
contributions. Actually, we have the following theorem

Theorem 4.2. var��N� ∼ ln�2�/L̃ + β�logN� + ��1/N� for some periodic function
β�logN�.

Proof. It is easy to check that

∞∑
1

e−nz∗i
nz∗i ∼ 1

L̃
+ β4�

∞∑
1

e−nz∗i�nz∗i�2 ∼ 1

L̃
+ β5

and
∞∑
1

e−nz∗i�1 − e−nz∗i�(nz∗i)2 ∼ 3

4L̃
+ β6�

Indeed, these are harmonic sums, which again are computed with Mellin Trans-
forms.
S2 �= E�D2

n� = E��∑ Ii�2� = ∑
i �=j E�IiIj� + ∑

i E�Ii�. Now, after some tedious
algebra,

S1 �= ∑
i �=j

E�IiIj� ∼ �&V1 + β1�2 + C12

nL̃
&V1 + ��1/n� − �&V2 + β2� + β7�

for some β7�log n� and some constant C12. Actually, we have to compute the two
extra terms ∑

k

∑
j

e−ñ�z∗k+z∗j�ñ2z∗2jM�j� k� (25)

and
∑
k

∑
j

e−ñ�z∗k+z∗j�ñ2z∗kz∗jM�j� k�� (26)

which are asymptotically constant by (A.20). Finally,

var�Dn� ∼ S1 +
(

&V1 + β1 + C12

2nL̃

)
−

(
&V1 + β1 + C12

2nL̃

)2

+ β7

= ln�2�/L̃+ β̃+ �

(
1
n

)
�

Again, proceeding as in the previous mean analysis, the transfer to �N is
immediate.
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4.4. Some Perspective

The generating function is given, under the independence assumption, by the same
expression as for Dn (with L and n replaced by L̃ and ñ). The part size maximum
has already been analyzed in [37].

We have also done a series of simulations with the Carlitz MC. The results are
quite similar to the GEOM case.

To derive the independence assumption, we could try a model based on Markov
chains on urns. Indeed, an alternative proof of (6), can be obtained by using an urn
model, as in Sevastyanov and Chistyakov, [39] and Chistyakov, [8], the Poissoniza-
tion method and the standard saddle-point method (see, for instance, Flajolet and
Sedgewick [16]). This will be the object of future work.

5. CONCLUSION

Using various techniques from analysis and probability theory, we have analyzed
the stochastic properties of the distinctness of classical compositions. The mean
and variance have been derived for the Carlitz case. An open problem is to prove
the independence assumption in the latter case, which is corroborated by our sim-
ulations.

APPENDIX A: SOME PROBABILISTIC POTENTIAL RESULTS

The matrix M has a lot of structure in it. This is closely related to the MC Potential
theory (see, for instance, Kemeny, Snell and Knapp [27] and Louchard [32]). In Ap-
pendix A.1–A.3, we provide connections with hitting times and several first-order
approximations of M and of related summations. In A.4, we analyze the pertur-
bation problem. A.5 is devoted to a more analytic view of M, deduced from the
trivariate generating function.

A.1. Hitting Time

Again we assume, in Sections A.1–A.3 that we can apply standard perturbation
analysis. The justification will be given in Section A.4. Let us first analyze h�i� �=
Ei Tk!� k $ 1, where Tk is the hitting time to state k. We have (dropping k to ease
the notation)

h = 1 + �−h = 1 + �h − �+h� (A.1)

Hence

h = −M�+h + C5�k��1 (A.2)

with C5�k� = πh. However from [32] (the results are obtained for finite MC, but
they are easily converted to the denumerable strong ergodic case), we know that

π+h = 1 (This is equivalent to a theorem of Kac)� (A.3)
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�M = M� = M − I + 1 × π� (A.4)

πM = M1 = 0� (A.5)

C6�k� − M+h = 0 on k� for some constant C6�k�� (A.6)

C6�k� − M+h = h on j �= k�

C6�k� = π−h� (A.7)

From (A.3) and (A.7), we see that C6�k� = C5�k� − 1 and from (A.3), with ε �= z∗k,

h�k� = 1
π�k� = 1

εC2
+ 2

C2
+ ��ε�� (A.8)

On the other side, (A.2) leads to

h�k� = C5�k� − C4�k�/C2 + ��ε�
with

C4�k� �=  M−�1 + z∗�!k� (A.9)

By perturbation analysis, we know that, for ε sufficiently small:

h�i� = C7/ε+ ϕ�i� + ��ε��
We should write C7�i�, but we will soon check that C7 is independent of i. Equation
(A.1) leads to

�I − ��C7 = 0

which confirms that C7 is independent of i and C7 = 1/C2 by (A.8). The indepen-
dent term leads to

 �I − ��ϕ!l = 1 − �1 + z∗l� l �= k!C7

i.e.

ϕ�i� = −C7 M−�1 + z∗�!i + C8�k� (A.10)

with

C8�k� = πϕ = −C7/ε+ C6�k� + 1 + ��ε��
For i = k, (A.10) with (A.8) gives

C6�k� = C7/ε+ 2C7 − 1 + C7C4�k� + ��ε�� (A.11)

Then (A.6) leads to

M�k� k� = 1 +M�1��k� k�ε+ ��ε2� (A.12)

and C6�k� = C7/ε+ 2C7 + C7M
�1��k� k� + ��ε�. With (A.11), we obtain

C4�k� = M�1��k� k� + C2 + ��ε�
which we can also derive from (A.4).
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A.2. Analysis of C4�k�
Let us start from (A.4). The dominant term of �M�k� k� is clearly in ε and leads
to ∑

l �=k

z∗l

1 + z∗l M�l� k� = εC4�k� + ��ε2�� (A.13)

With j �= k, we derive ∑
l �=j

>�j� l�M�l� k� = M�j� k� + π�k�

or

�1 + z∗j�
[

ε

1 + ε
�1 + ��ε�� + ∑

l �=k

z∗l

1 + z∗l M�l� k� − z∗j

1 + z∗j M�j� k�
]

= M�j� k� + π�k� (A.14)

which shows that, with j = ��k�, j �= k,

M�j� k� = ε C4�k� − C2 + 1! + ��ε2� ∗  j > k! + ��εz∗j� ∗  j < k!� (A.15)

The dominant term is independent of j. Note that (A.5) gives other relations on M:
we obtain

∑
l �=k

z∗l

�1 + z∗l�2M�l� k� = −ε+ ��ε2� ∑
l �=k

M�k� l� = −1 + ��ε��

The second form of (A.4) gives, for M��l� k� the relation∑
l �=k

M�k� l�>�l� k� = εC4�k� + ��ε2�� as expected�

With j �= k, we obtain

z∗k

1 + z∗k

[∑
l �=j

M�j� l��1 + z∗l� +M�j� j��1 + z∗j� −M�j� k��1 + z∗k�
]

= M�j� k� + π�k� (A.16)

and, with (A.15), C4�j� = C4�k� + ��ε� + ��z∗j�, i.e.

C4�k� = C4 + ��ε� for some constant C4� (A.17)

A numerical investigation gives C4 = −1�2774603654 � � �, and (A.15) becomes

M�j� k� = −1�5791198491 � � � ε+ ��ε2�� j �= k� j = ��k��

Finally, (A.9) can also be rewritten, with (A.12), as C4 = −1 + limk→∞�Mz∗�k.
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Fig. 7. M , After substracting approximations.

A.3. Analysis of Two Summations (26) and (26)

Let us first remark that (A.14) allows a first-order estimation of M�j� k�� k $ 1,
j = ��1�. Indeed, this leads to

�1 + z∗j�
[
ε+ εC4 − z∗j

1 + z∗j M�j� k�
]

= M�j� k� + εC2 + ��ε2��

Hence

M�j� k� = ε

[
− C2

1 + z∗j + 1 + C4

]
+ ��ε2�� (A.18)

The coefficient of ε in the dominant term is independent of k. Also by (15), this is
compatible with (A.13) and −C2 + �1 + z∗j��1 + C4� < 0.
Similarly,(A.16) leads, for j $ 1� k = ��1�, to

z∗k

1 + z∗k  C4 + 1 −M�j� k��1 + z∗k�! = M�j� k� + π�k� + ��z∗j��

Hence

M�j� k� = z∗k

�1 + z∗k�2
[
− C2

1 + z∗k + 1 + C4

]
+ ��z∗kz∗j�� (A.19)

The dominant term is independent of j. Again, by (15), this is compatible with (A.9),
and −C2 + �1 + z∗k��1 + C4� < 0.

We have checked the quality of our approximations by substracting, from M, the
various expressions given by (A.12), (A.15), (A.18), (A.19) and normalizing by the
suitable ε power. This leads to Figure 7.

Now we divide the summation in (26) and (26) into four regions. Set d �=
−α ln�ñ�/ ln�z∗�, for some 0 < α < 1. It is easy to see that the three regions: �j� k� ∈
 1� � � � � d! ×  1� � � � � d!�  1� � � � � d! ×  d + 1� � � � �∞!�  d + 1� � � � �∞! ×  1� � � � � d!
lead to (exponentially) small contribution ��e−n1−α�. Moreover, in the last region,
 d + 1� � � � �∞! ×  d + 1� � � � �∞!, only M�i� i� leads to a ��1� contribution, given by

∞∑
i=d+1

e−ñ2z∗i
ñ2z∗2i + ��z∗d�
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which can be replaced by

∞∑
i=1

e−ñ2z∗i
ñ2z∗2i + ��ñ−α��

The sum is again a harmonic sum, with value

1

4L̃
+ β8� (A.20)

A.4. Perturbation Analysis

First of all let us truncate the MC as follows: we collapse all probability measure
from  κ� � � � �∞! to κ, where κ $ 1 and κ $ k. We denote by �1 this new MC and
by �∗ the original matrix � restricted to κ × κ. This will be a useful tool in the
sequel. Set η �= z∗κ. We see that

��∗ − �1��l� j� = 0� j �= κ� l ≤ κ

��∗ − �1��l� κ� = C12�1 + z∗l�η�1 + ��η�� l < κ�

��∗ − �1��κ� κ� = C13η�1 + ��η���

Now we formulate three remarks:

1. As �1 is finite, the classical perturbation analysis applies: see, for instance
Kato [25], and all useful parameters of �1 are analytic or Laurent in ε = z∗k,
for ε sufficiently small.

2. Pr Tk > n! ∼ Pr1 Tk > n! + ��e−C14nη�, where Pr1 is related to �1.
3. The parameters computed in Section 2, Sections A.1–A.3 have similar forms

for the MC �1. So we will now use all parameters corresponding expressions
computed with �1.

However we must now compare all these expressions with the corresponding ones
related to �, which were used in the previous relations. For instance, let us compare
π and π1. We have

�π�∗�i = π�i� + µ�i�η�1 + ��η��� i ≤ κ�

π1�1 = π1�

where µ �= C15

(
z∗i

1+z∗i

)
, (row vector). Hence

�π − π1�>1 = π − π1 − π��∗ − �1� + µη�1 + ��η���

i.e.

�π − π1��i� = �π − π1�1π1�i� +  π��∗ − �1�M1!i − η�µM1�i�1 + ��η���
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However

π��∗ − �1�i =  i = κ!C16η�1 + ��η��

and M1�·� i� is given by (A.19) (computed with �1). Hence

�π − π1��i� = C17��z∗iη��

Another useful vector is �1, which is given by (see (18) and (22))

−�1 + z∗l� l �= k! − ��∗��l = −�1 + z∗l�C18η�1 + ��η�� − γ1 − α�l��
−�1 + z∗l� l �= k! − ��1�1�l = −γ1 − α1�l� − C19η�1 + ��η��

or

��1 − ���l� −  �1��1 − ��!l
η C18�1 + z∗l��1 + ��η�� + C19�1 + ��η��! +  ��1 − �∗��!l�

i.e.

� − �1 = C18ηM1�1 + z∗��1 + ��η��
+C4 C12M

−
1 �1 + z∗�η�1 + ��η�� + C13M1�·� κ�η�1 + ��η��!

+π1��1 − ���

but π1��1 −�� = π1�1 + �π1 −π��+π�, and after all algebra, the dominant term
of �1 −� is given by C20η�1+ ��η��. Actually, all useful parameters can be similarly
compared and the relative difference is always given by a ��η�. So we can safely
use the expressions computed in Sections 2 and A.1–A.3 (with full matrix �) in all
our relations.

A.5. Analytic Analysis of M

We must compute M �= ∑
n≥0��n − 1 × π�. We see that S �= ∑

n≥1��n − 1 × π�
can be written as

S�j� k� = lim
w→1

[∑
n≥1

wn+1>n�j� k� + w2

1 −w

z∗k

�1 + z∗k�2hw

]
�

However

>�j� k� = 1 + z∗j

z∗j  z∗jz∗k! j �= k! 1
1 + z∗k �

similarly,

>2�j� k� = 1 + z∗j

z∗j

[
z∗j ∑

l �=j� k

z∗lz∗k
]

1
1 + z∗k �
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With (13), we obtain

S�j� k� = lim
w→1

[
1 + z∗j

z∗j  θk! φ�w� θ� z∗�j� − wz∗jθj! 1
1 + z∗k + w2

1 −w

z∗k

�1 + z∗k�2hw

]
or

S�j� k� = lim
w→1

[
1 + z∗j

z∗j  θk!
[
A2�w� θ� z∗�j� −wz∗jθj

w
+ A1�w� θ� z∗�A2�w� 1� z∗�j�

wh�w� z∗�
]

× 1
1 + z∗k + w

1 −w

z∗k

�1 + z∗k�2hw

]
�

This leads to (we set w �= 1 − ε)

S�j� k� = lim
ε→0

[
z∗k

�1 + z∗k�2hwε
− z∗k

�1 + z∗k�2hw
− z∗2j

�1 + z∗j�z∗j  j = k!

+ 1 + z∗j

z∗j

[
−ϕ5�1�

hwε
+ ϕ5� w�1�

hw
− ϕ5�1�hww

2h2
w

]
1

1 + z∗k

]
� (A.21)

where

ϕ5�w� θ� j� �= A1�w� θ� z∗�A2�w� 1� z∗�j�/w

ϕ5�1� �=  θk!ϕ5�w� θ� j�
∣∣∣∣
w=1

= z∗jz∗k

�1 + z∗j��1 + z∗k�

ϕ5� w�1� �=  θk!ϕ5�w�w� θ� j��
∣∣∣∣
w=1

= − z∗2jz∗k

�1 + z∗j�2�1 + z∗k� + z∗jz∗k

�1 + z∗j��1 + z∗k�2

so the singularity in (A.21) is removed. Also from [37], we know that hww = 2C20,
where

C20 = ∑
k≥1

z∗2k

�1 + z∗k�3 = 1�63759377999796 � � � �

Finally,

M�j� k� = S�j� k� +  j = k! − π�k�

= − z∗j

�1 + z∗j��  j = k! − z∗jz∗k

�1 + z∗j��1 + z∗k�2hw
+ z∗k

�1 + z∗k�3hw

+C21
z∗k

�1 + z∗k�2 +  j = k!�

where C21 �= −C20/h
2
w = −�277746036541901 � � � from which we derive a better

precision for C4: C4 = C21 − 1 = −1�27746036541901 � � �. All our first-order approx-
imations of M in Sections A.1–A.3 are now easily checked.
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