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DISTINGUISHED CLASSES OF IDEAL SPACES AND THEIR TOPOLOGICAL
PROPERTIES

CARMELO A. FINOCCHIARO, AMARTYA GOSWAMI, AND DARIO SPIRITO

Abstract. We consider the set of all the ideals of a ring, endowed with the coarse lower topology.

The aim of this paper is to study topological properties of distinguished subspaces of this space and

detect the spectrality of some of them.

0. Introduction

Let (X,6) be a partially ordered set. The coarse lower topology on X is the topology whose

subbasic closed sets are the sets of the type

{x}↑ := {y ∈ X | x 6 y},

for x varying in X . On the other hand, any T0 topology T on a space S determines a partial

order �T , called the specialization order induced by T , defined by setting, for every, s, t ∈ S,

s �T t : ⇐⇒ t ∈ {s}.

Thus the coarse lower topology on a partially ordered set (X,6) is the coarsest topology on

X whose specialization order is 6. Topologies on posets have intensively been studied, see

[1, 2, 13, 15, 16, 10, 12, 14] for a deeper insight on this circle of ideas. A natural setting where

to apply this general framework is that of the set Idl(R) of all the ideal of a ring R, partially

ordered by inclusion. It is well known that Idl(R), endowed with the coarse lower topology,

is a spectral space, that is, it is homeomorphic to the prime spectrum of a ring; note that the

subspace topology on Spec(R) induced by the coarse lower topology is the classical Zariski

topology of the prime spectrum of a ring. In some recent investigation some other examples

of spectral subspaces of Idl(R) have been detected (see [5, 6]), by observing that they are

closed sets in the constructible topology of Idl(R); the aim of this paper is to find other spectral

subspaces of Idl(R) without using the constructible topology. This leads to check explicitly the

topological properties of Hochster’s criterion for spectrality on distinguished classes of ideals.
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Among the other things, a classification of all Noetherian rings for which the space of primary

ideals is spectral is provided.

1. Topological preliminaries

Let X be a topological space, and let Y ⊆ X be a nonempty subset. Then, Y is irreducible

if, whenever Y ⊆ V1 ∪V2 for some closed subsets of X , we have Y ⊆ V1 or Y ⊆ V2. A generic

point of Y is an element y ∈ X such that Y is equal to the closure {y} of the point y. If every

irreducible closed subset of X has a generic point, X is said to be sober.

A spectral space is a topological space that is homeomorphic to the prime spectrum of some

commutative ring, endowed with the Zariski topology. As it is proved in [9], spectral spaces

can be characterized purely in topological terms. Precisely, a topological space X is spectral

if and only if it is quasi-compact, sober and it has a basis of quasi-compact open sets that is

closed under finite intersections.

Given a spectral space on a set X , it is possible to define from the starting topology two

new topologies, the inverse and the constructible topology; in the former, the specialization

order is the opposite of the one of the starting topology, while the latter is Hausdorff (and

thus its specialization order is trivial). A subset that is closed with respect to the inverse or

the constructible topology is spectral also when seen in the starting topology; in particular,

subsets that are closed in the constructible topology (called proconstructible subsets) provide

many examples of spectral spaces. See [9] and [3, Chapter 1] for the precise definition and for

properties of these two topologies.

We end this section with a useful lemma.

Lemma 1.1. Let X be a quasi-compact T0 space. Then every chain in X has an upper bound.

Proof. Let C ⊆ X be a chain and let G :=
{
{c} | c ∈C

}
. Then G is clearly a chain of nonempty

closed sets of X and thus it has the finite intersection property. Since X is quasi-compact, there

is a point z ∈ ∩G and, by definition, c 6 z, for every c ∈C. The conclusion follows. �

2. The coarse lower topology

All rings considered in this paper are assumed to be commutative and to possess an identity

element. We denote the radical of an ideal a by
√
a. An ideal a is called proper if a is not equal

to R.

Let Idl(R) denote the set of all the ideals of R. The coarse lower topology on Idl(R) will be

the topology for which the sets of the type

{a}↑ := {i ∈ Idl(R) | a⊆ i}
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(where a runs among the ideals of R) form a subbasis of closed sets.

We call a subset of Idl(R), endowed with the subspace topology induced by the coarse lower

topology, an ideal space of R. Some examples of ideal spaces defined in an algebraic way

are the following: prime ideals (Spec(R)), maximal ideals (Max(R)), proper ideals (Prp(R)),

radical ideals (Rad(R)), minimal ideals (Min(R)), minimal prime ideals (Spn(R)), primary

ideals (Prm(R)), nil ideals (Nil(R)), nilpotent ideals (Nip(R)), irreducible ideals (Irr(R)),

completely irreducible ideals (Irc(R)) (in the sense of [8]), principal ideals (Prn(R)), regular

ideals (Reg(R)), finitely generated ideals (Fgn(R)), strongly irreducible ideals (Irs(R)). We

reserve the symbol X(R) to denote an arbitrary ideal space of a ring R.

In view of [3, 7.2.12], Idl(R) is spectral, with the coarse lower topology, since it is a complete

algebraic lattice and its inverse topology coincides with the Zariski topology considered in

[6, Section 5]. Notice that the subset Prp(R) of Idl(R) consisting of all proper ideals of R

is proconstructible in Idl(R) (see the paragraph of [6] afther Proposition 5.1) and thus, in

particular, it is spectral as a subspace of Idl(R). For an alternative proof of spectrality of

Prp(R), see [7].

Theorem 2.1. [4, Theorem 3.18] Let X be a subspace of Idl(R). For every ideal a of R, let

X
√
a := ∩

{
b | b ∈ X∩{a}↑

}
.

Then X is a sober space if and only if whenever a is an ideal of R and X∩{a}↑ is irreducible,

then X
√
a ∈ X.

The following fact characterizes quasi-compact ideal spaces.

Proposition 2.2. Let R be a ring, let X ⊆ Idl(R) and let Max(X) denote the set of maximal

elements of X. Then the following conditions are equivalent:

(i) X is quasi-compact;

(ii) for every x ∈ X there is an y ∈ Max(X) such that x⊆ y, and Max(X) is quasi-compact.

Proof. (ii)⇒(i). Let U be an open cover of X. Then, U also covers Max(X), and thus there is

a finite subcover U ′ of Max(X). Take x ∈ X: by hypothesis, there is an y ∈ Max(X) such that

x⊆ y, and a U ∈ U ′ such that y ∈U . Then, x ∈U , and thus U ′ is a finite subcover also for the

whole X. Hence X is compact.

(i)⇒(ii). Let x∈ X, and consider X′ := {x}↑∩X. Then, X′ is a closed subset of X, and thus it

is quasi-compact; by Lemma 1.1, every ascending chain in X′ is bounded, and hence by Zorn’s

Lemma X′ has maximal elements, i.e., x is contained in some n ∈ Max(X).

Let now U be an open cover of Max(X). Then, U is also a cover of X, and thus it

admits a finite subcover, which will be also a finite subcover of Max(X). Thus, Max(X) is

quasi-compact. �
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As a particular case of the previous criterion we get the following known fact.

Corollary 2.3. [4, Theorem 3.11] Let R be a ring and let X ⊆ Idl(R) such that Max(R) ⊆ X.

Then X is quasi-compact.

Corollary 2.4. The ideal spaces Max(R), Spec(R), Irs(R), Prm(R), Irr(R), Irc(R), Rad(R),

Prp(R) are quasi-compact.

In case R is a Noetherian ring then the situation regarding quasi-compactness of ideal spaces

is much simpler.

Proposition 2.5. For a ring R, the following conditions are equivalent.

(i) R is a Noetherian ring.

(ii) Idl(R) is a Noetherian space.

Proof. (i)⇒(ii). It is enough to show that every subset X of Idl(R) is quasi-compact. Take

a collection G := {X ∩{ai}↑ | i ∈ I} of subbasic closed sets of X with the finite intersection

property. By assumption, the ideal b := ∑i∈I ai is finitely generated, say b = (α1, . . . ,αn). For

every 16 j 6 n, there exists a finite subset H j of I such that α j ∈∑i∈H j
ai. Thus, if H :=

⋃n
j=1 H j,

it immediately follows that b= ∑i∈H ai. Hence we have

∩G = X ∩{b}↑ = X ∩
{

∑
i∈H

ai

}↑

=
⋂

i∈H

X ∩{ai}↑ , /0,

since H is finite and G has the finite intersection property. Then the conclusion follows by the

Alexander’s subbasis Theorem.

(ii)⇒(i). Assume that Idl(R) is Noetherian and that there exists an ideal a of R that is not

finitely generated. Then the subspace X := {b ∈ Fgn(R) | b ⊂ a} is not quasi-compact. As a

matter of fact, the collection of closed sets G := {X ∩{aR}↑ | a ∈ a} of X clearly has the finite

intersection property, but has empty intersection. �

The following corollary is now immediate.

Corollary 2.6. Let R be a Noetherian ring and let X ⊆ Idl(R). Then X is spectral if and only

if it is sober.

Proposition 2.7. Let X be a spectral space, and let Z ⊆ Y ⊆ X be subsets such that Z is lower

directed (in the order induced by the topology). If Y is sober, then infZ ∈ Y .

Proof. Since X is a spectral space, Z has an infimum z in X [3, Proposition 4.2.1]. Consider

Y ′ := {z}↑∩Y : then, Y ′ is a closed subset of Y . Suppose that Y ′ is not irreducible: then, there
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are closed subsets V1,V2 of X such that V1 ∩V2 ∩Y = Y ′ and such that Y ′ is not contained in

either V1 or V2. If Z ⊆V1, then z = infZ ∈V1 and Y ′ ⊆V1, a contradiction (and analogously for

V2); thus, there are v1 ∈ (V1 ∩Z)\V2 and v2 ∈ (V2 ∩Z)\V1. Since Z is lower directed, there is

a y ∈ Z such that y 6 v1 and y 6 v2; by construction, y belongs to one of the Vi, say V1. Since V1

is closed, y 6 v2 implies that v2 ∈V1, a contradiction.

Therefore, Y ′ is irreducible. Since Y is sober, Y ′ has a generic point z′; moreover, z′ 6 z′′ for

every z′′ ∈ Z, and thus z′ 6 z. Since y > z for every y ∈Y ′, we also have z′ > z. Hence z′ = z ∈ Z,

as claimed. �

Remark 2.8. Proposition 2.7 applies, in particular, when Z is a chain.

3. Some classes of ideal spaces

We now discuss some relevant topological properties of some classes of ideal spaces.

3.1. Strongly irreducible ideals and their subclasses. It follows from Corollary 2.3 that the

space of strongly irreducible ideals Irs(R) is quasi-compact and so are Max(R) and Spec(R).

Since Spec(R) is spectral, it is also sober. It has been proved in [4, Proposition 3.19] that Irs(R)

is sober.

3.2. Finitely generated ideals. Given a ring R, let Fgn(R) be the space of proper finitely

generated ideals of R, endowed with the subspace topology induced by the coarse lower

topology of the space Idl(R) of all the ideals of R.

Proposition 3.1. For a ring R the following conditions are equivalent.

(i) Fgn(R) is quasi-compact.

(ii) Max(R)⊆ Fgn(R).

Proof. It is clear that (ii) implies (i), in view of Corollary 2.3. Conversely, assume that there

exists a maximal idealm of R that is not finitely generated, and consider the collection of closed

subspaces

G :=
{
{aR}↑∩Fgn(R) | a ∈m

}
.

Clearly G has the finite intersection property, but ∩G = /0: indeed, if there exists an ideal

b ∈ ∩G , then b is finitely generated and contains m. Since m is not finitely generated, b ) m

and thus b= R, against the fact that Fgn(R) consists of proper ideals. �

Example 3.2. We now observe that Fgn(R) can fail to be sober. Let p be any prime number and

let R := Z(p)+TQ[T ](T ), where T is an indeterminate over Q. Then R is a two-dimensional
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valuation domain and

Spec(R) = {(0),p := TQ[T ](T ),m := pR}.

It is well known that p is not a finitely generated ideal of R. Now consider the nonempty closed

subset C := {p}↑∩Fgn(R) and notice that C is irreducible. Indeed if

U := Fgn(R)\{a}↑,U ′ = Fgn(R)\{b}↑

are subbasic open sets of Fgn(R) (a,b are ideals of R) and U ∩C,U ′∩C , /0, then U ∩U ′∩C , /0,

because since all ideals of R are comparable thenU,U ′ are comparable. Since every nonzero non

maximal prime ideal of a valuation domain is divisorial, it follows that Fgn(R)
√
p= p < Fgn(R).

It follows that Fgn(R) is not sober.

3.3. Nilpotent ideals. Recall that an ideal a of a ring R is nilpotent if ak = 0, for some positive

integer k. The following example will show that the space Nip(R) of nilpotent ideals of R can

easily fail to be quasi-compact.

Example 3.3. Let us consider the ring R := ∏i>2Z/2iZ and set

f1 := (2,0,0,0, . . .), f2 := (2,2,0,0, . . .), f3 := (2,2,2,0, . . .),

and so on. For every positive integer i, consider the nilpotent ideal ai := fiR (notice that ai+1
i = 0

and that aii , 0). Thus we get the ascending chain a1 ⊂ a2 ⊂ a3 ⊂ ·· · in the space Nip(R) and

such a chain has no upper bounds: indeed, if b is any nilpotent ideal and k is the minimum

positive integer n such that bn = 0 then ak * b, since f k
k , 0. Then the conclusion immediately

follows from Lemma 1.1.

3.4. Regular ideals. Let Reg(R) denote the subspace of Idl(R) consisting of all regular ideals.

First notice that Reg(R) is closed under specialization in the spectral space Prp(R).

Proposition 3.4. Let R be a ring satisfying at least one of the following conditions.

(i) R is Noetherian.

(ii) R is local.

(iii) Every maximal ideal of R is regular.

Then Reg(R) is quasi-compact.

Proof. Cases (i) and (iii) immediately follows from Proposition 2.5 and Corollary 2.3, respec-

tively. Now suppose R is local with maximal ideal m. If m is regular, the conclusion follows

again by Proposition 2.3. In case m consists of zero-divisors, then every regular element is

invertible, and thus Reg(R) = /0 is quasi-compact. �
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We now give two example showing that Reg(R) can fail to be quasi-compact.

Example 3.5. Let D be a one-dimensional domain such that Spec(D) is non Noetherian, and

let m∞ be a maximal ideal of D that is not the radical of any finitely generated ideal of D. Let

K := D/m∞, consider the D-module X := K(N) and let R := D×X endowed with the following

multiplication:

(a,k)(b, l) := (ab,al+bk+ kl),

for every (a,k), (b, l) ∈ R. Then m̃∞ := m∞ ×X is a maximal ideal of R consisting of zero-

divisors, by [11, Theorem 8.3(f)]. Now consider elements (a1,ϕ1), . . .(an,ϕn) ∈ m̃∞. By

assumption, there exist a maximal ideal n , m such that a1, . . . ,an ∈ n. In particular, the

elements (a1,ϕ1), . . .(an,ϕn) belong to the maximal ideal ñ of R and the fact thatm , n implies

that ñ is regular, again by [11, Theorem 8.3(f)]. It immediately follows that the space Reg(R)

of regular proper ideals of R is not quasi-compact. Indeed, the collection of closed sets

G := {Reg(R)∩{ f R}↑ | f ∈ m̃∞}
has the finite intersection property and empty intersection.

Example 3.6. Let D be a one-dimensional domain such that Spec(D) is non Noetherian, and

let m∞ be a maximal ideal of D that is not the radical of any finitely generated ideal of D. Let

R := D[X]/(Xm∞), and let π : D[X]→ R be the quotient map.

Consider the collection

G :=
{

Reg(R)∩{π( f )R}↑ | f ∈ m̃∞

}
∪
{

Reg(R)∩{π(X)R}↑
}

of closed subsets of Reg(R). The intersection of all elements of G is empty: indeed, if a

contains all π( f ) and π(X), then it must be b := π(X,m∞), which is a maximal ideal containing

only zero-divisors. On the other hand, if G ′ is a finite subset of G , say

G
′ :=

{
Reg(R)∩{π( fi)R}↑ | i = 1, . . . ,n

}
∪
{

Reg(R)∩{π(X)R}↑
}
,

then there is an ideal n of D containing f1, . . . , fn, and thus ∩G ′ contains the ideal π(n[X]),

which is regular (every g ∈ n\m∞ becomes regular in R). Hence, Reg(R) is not quasi-compact.

Example 3.7. We now prove that Reg(R) can fail to be sober. Clearly if R =Z then Reg(R) =

Prp(R)\{(0)}. If n,m are nonzero integers and p is a prime number that does not divide nor n

and m, then

pZ ∈ Reg(R)\ ({nZ}↑∪{mZ}↑).
This proves that Reg(R) is an irreducible space. Since clearly

Reg(R)
√
(0) = (0) < Reg(R),

from Theorem 2.1 we immediately infer that Reg(R) is not a sober space.
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3.5. Primary ideals.

Lemma 3.8. Let R be a zero-dimensional ring that is not local. Then Prm(R) is not irreducible.

Proof. Since R is zero-dimensional and not local, there are rings R1,R2 such that R is isomorphic

to the direct product R1 ×R2. In the latter, every primary ideal contains either (1,0) or (0,1),

and thus

Prm(R1 ×R2) = ({(1,0)}↑∩Prm(R1 ×R2))∪ ({(0,1)}↑∩Prm(R1 ×R2)).

Hence Prm(R) is not irreducible. �

Proposition 3.9. Let R be a ring that is either:

• a zero-dimensional ring;

• a one-dimensional integral domain.

Then Prm(R) is sober.

Proof. Let a be a non-primary ideal of R. Then, R′ := R/a is zero-dimensional under both

hypothesis (if R is a one-dimensional domain, (0) is primary), and the quotient map R →
R′ induces a homeomorphism {a}↑ ∩ Prm(R) → Prm(R′); by Lemma 3.8, the latter is not

irreducible, and thus neither {a}↑ ∩ Prm(R) is irreducible. Therefore, if {a}↑ ∩ Prm(R) is

irreducible then a is primary; thus, Prm(R)
√
a = a ∈ Prm(R). By Theorem 2.1, Prm(R) is

sober. �

Lemma 3.10. Let R be a ring such that Prm(R) is sober. Then Prm(Rm) is sober, for every

maximal ideal m of R.

Proof. Given a maximal ideal m of R, it is immediate that the localization mapping R → Rm
induces a homeomorphism of Prm(Rm) and X := {a ∈ Prm(R) | a⊆m}. Take and ideal i of R

such that X ∩{i}↑ is irreducible. Then the closure Γ of X ∩{i}↑ in Prm(R) is irreducible too

and thus, by assumption, there exists a primary ideal a0 of R such that Γ = {a0}↑∩Prm(R).

The inclusion X ∩{i}↑ ⊆ Γ immediately implies that m ⊇ X
√
i ⊇ a0 (in particular, a0 ∈ X).

Conversely take an element α ∈ X
√
i. Then C := {αR}↑∩Prm(R) is a closed set of Prm(R)

containing X ∩{i}↑ and thus C contains Γ. In particular, α ∈ a. This proves that
X
√
i = a and

thus the conclusion follows from Theorem 2.1. �

Proposition 3.11. Let R be a Noetherian local ring. Then Prm(R) is sober if and only if

Prm(R) = Prp(R).
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Proof. Recall that Prp(R) is a sober space, since it is spectral. Conversely, suppose that Prm(R)

is sober and assume, by contradiction, that there exists a proper non primary ideal i of R. Let n

and n be the maximal ideals of the local rings R and R/i, respectively. Since R/i is Noetherian

we get
⋂

n>1n
n = (0), that is,

⋂
n>1(n

n + i) = i. Since each ideal of the type nn + i is n-primary

and Prm(R) is sober, then i = inf{nn + i | n > 1} is primary, by virtue of Proposition 2.7, a

contradiction. �

Corollary 3.12. Let R be a Noetherian ring. If Prm(R) is sober, then dim(R) 6 1.

Proof. Suppose, by contradiction, that there exists a maximal idealm of R such that dim(Rm) >

2. It follows that the local ring Rm has proper ideals that are not primary and thus Prm(Rm) is

not sober, by Proposition 3.11. This is a contradiction, by Lemma 3.10. �

Corollary 3.13. Let R be a one-dimensional Noetherian local ring such that Prm(R) is sober.

Then R is an integral domain.

Proof. If R is not an integral domain, then Prm(R) ( Prp(R). The conclusion follows again by

Proposition 3.11. �

Corollary 3.14. Let R be a one-dimensional Noetherian ring with a unique minimal prime

ideal and such that Prm(R) is sober. Then R is an integral domain.

Proof. Let p be the unique minimal prime ideal of R. Take any maximal ideal m of R. By

Lemma 3.10, Prm(Rm) is sober and thus Rm is an integral domain, by Corollary 3.13. It

follows pRm = 0 and this holds for every maximal ideal m of R. Thus p= 0 and the conclusion

follows. �

Theorem 3.15. Let R be a Noetherian ring. Then, the following conditions are equivalent.

(1) The space Prm(R) is sober.

(2) The space Prm(R) is spectral.

(3) R is a direct product of zero-dimensional rings and of one-dimensional domains.

Proof. The equivalence of conditions (1) and (2) immediately follows by Corollary 2.6.

Suppose that R = R1 × . . .×Rn, where each Ri is either a zero-dimensional ring or a one-

dimensional domain. Then Prm(R) is homeomorphic to the disjoint union of the sober spaces

Prm(Ri), for 1 6 i 6 n (Proposition 3.9). Thus Prm(R) is sober since it is the disjoint union of

finitely many sober spaces.

Conversely, assume that Prm(R) is sober. Then dim(R) 6 1, by Corollary 3.12. In case

dim(R) = 0 there is nothing to prove. Then we can assume that dim(R) = 1. In case R has a



10 CARMELO A. FINOCCHIARO, AMARTYA GOSWAMI, AND DARIO SPIRITO

unique minimal prime ideal, then R is an integral domain, by virtue of Corollary 3.14, and thus

there is nothing to prove. Thus we can assume that R is one-dimensional with r > 2 minimal

prime ideals, say p1, . . . ,pr. We claim that every maximal ideal of R contains exactly one

minimal prime ideals: indeed if m is a maximal ideal of R and pi , p j are contained in m, then

Rm would be a one-dimensional Noetherian local ring, and not an integral domain, such that

Prm(Rm) is sober (Lemma 3.10), contradicting Corollary 3.13. The claim immediately implies

that the union Spec(R) =
⋃r

i=1V (pi) is disjoint. In particular the minimal primes are paiwise

comaximal. Let n be the nilradical of R and let h be a positive integer such that nh = 0. Then

the Chinese Remainder Theorem easily implies that R is isomorphic to ∏r
i=1 R/ph

i , and clearly

each ring R/ph
i is either a one-dimensional domain or a zero-dimensional ring. The conclusion

follows. �
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