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Abstract

The problem of establishing correspondences between a pairof images taken from
different viewpoints, i.e. the “wide-baseline stereo” problem, is studied in the paper.
The choice of image elements that are put into correspondence in the wide-baseline
matching problem is discussed. The concept of adistinguished regionis introduced
and formally defined and it is argued distinguished regions are very good candidates
for matching.

Two new types of distinguished regions, theSeparated Elementary Cycles of the
Edge Graph (SECs)and theMaximally Stable Extremal Regions (MSERs), are in-
troduced. For both types, an efficient (near linear complexity) and practically fast
detection algorithm is presented. Experimentally the stability of the proposed DRs is
shown on disparate views of real-world scenes with significant change of scale, camera
rotation and 3D translation of the viewpoint.

A new robust similarity measure for establishing tentativecorrespondences is pro-
posed. The robustness ensures that invariants from multiple measurement regions,
some that are significantly larger (and hence discriminative) than the distinguished
region, may be used to establish tentative correspondences.

In experiments on indoor and outdoor image pairs, good estimates of epipolar
geometry are obtained on challenging wide-baseline problems with the robustified
matching algorithm operating on the output produced by the proposed detectors of
distinguished regions. Locally fully affine distortions and significant occlusion were
present in the tests.



1 Introduction

Finding reliable correspondences in two images of a scene taken from arbitrary view-
points with possibly different cameras in different illumination conditions is a difficult
and critical step towards fully automatic reconstruction of 3D scenes [7]. A crucial
issue isthe choice of elements whose correspondence is sought. In the wide-baseline
set-up, local image deformation cannot be realistically approximated by translation or
translation with rotation and a full affine model is required. Correspondence cannot be
therefore established by comparing regions of a fixed (Euclidean) shape like rectangles
or circles since their shape is not preserved under affine transformation.

In most images there are regions that can be detected with high repeatability since
they posses some distinguishing, invariant and stable property. We argue that such
regions of in general data-dependent shape, calleddistinguished regions(DRs) in the
paper, may serve as the elements to be put into correspondence either in stereo match-
ing or object recognition.

The main contribution of the paper is the proposal of two new types of distin-
guished regions together with efficient algorithms for their detection. Conceptually,
these algorithms could be seen as processes that take the setof all subsets of the im-
age pixels of all such shapes as input and select a subset possessing the distinguishing
property. The art is in finding distinguishing properties that can be detected without
the obviously prohibitive exhaustive enumeration of all subsets. For both new types of
distinguished regions introduced, theSeparated Elementary Cycles of the Edge Graph
(SECs)and theMaximally Stable Extremal Regions (MSERs), an efficient (near linear
complexity) and practically fast (from fraction of a secondto seconds) detection algo-
rithm has been found. Low computational complexity and invariance to photometric
and geometric transformation are desirable theoretical properties of the process of dis-
tinguished region detection. Stability, robustness and frequency of detection and hence
usefulness of a particular type of DR depends on the image data and must be tested
experimentally. Successful wide-baseline experiments onindoor and outdoor datasets
presented in Section 6 support the claim that the proposed DRtypes are very useful at
least in man-made environments.

Reliable extraction of a manageable number of potentially corresponding image
elements may be a necessary but certainly is not a sufficient prerequisite for successful
wide-baseline matching. With two sets of distinguished regions, the matching prob-
lem can be posed as a search in the correspondence space [6]. Forming a complete
bipartite graph on the two sets of DRs and searching for a globally consistent subset
of correspondences is clearly out of question for computational reasons. Recently, a
whole class of stereo matching and object recognition algorithms with common struc-
ture has emerged [12, 19, 1, 20, 3, 17, 10, 9]. These methods exploit local invariant
descriptorsto limit the number of tentative correspondences. The key issues are 1.
the choice of measurement regions, e.g. the parts of the image on which invariants
are computed, and 2. the choice of invariants and 3. the method of selecting tentative
correspondences given the invariant description. We discuss the structure of the class
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of wide-baseline and recognition algorithms in Section 2 jointly with the review of
the state-of-the-art. Such approach seems natural since differences in the published
methods can be interpreted as a particular choice in one of the stages of a general
framework.

Sections 3 and 4 give formal definitions of the two new types ofdistinguished re-
gions, the Separated Elementary Cycles of the Edgel Graph and the Maximally Stable
Extremal Regions. Both sections start with the definition ofthe underlying concepts.
Next we present a detection algorithm, analyse its computational complexity and study
invariance properties of the DR, concluding with remarks onrobustness and relation-
ship to other image processing methods. Examples of detected regions are shown later
in the experimental Section 6. The SEC extraction algorithmoperates on a novel repre-
sentation of edge detector output called the Edgel Graph. Application of a commonly-
used edge detector outputs typically a set of edgel strings.Without loss of efficiency,
the modified linking stage produces a more structured and stable representation. As it
is not in the main line of the paper, presentation of this minor contribution, perhaps of
interest in its own right, was postponed till appendix A.

In Section 5 details of a novel matching algorithm (from the above-mentioned
class) are given. A newrobustapproach is used for tentative correspondence computa-
tion. A robust similarity measure for comparison of local invariants replaces the com-
mon method based on Mahalanobis distance [14, 20, 15] which can be justified theo-
retically only under conditions that are almost certainly not met in the wide-baseline
matching problem [5]. The robustness of proposed similarity measure allows us to use
invariants from a collection of measurement regions, even some that are much larger
than the associated distinguished region. Measurements from large regions are either
very discriminative (it is very unlikely that two large parts of the image are identical)
or completely wrong (e.g. if orientation or depth discontinuity becomes part of the
region). The former helps establishing reliable tentative(local) correspondences, the
influence of the latter is limited due to the robustness of theapproach.

Experimental results on outdoor and indoor images taken with an uncalibrated
camera are presented in Section 6. On two simpler scenes, epipolar geometry is estab-
lished using only a single type of distinguished regions. The potential for combination
of multiple types of distinguished regions is demonstratedon perhaps the most diffi-
cult pair from theVALBONNE set. The last experiment can be viewed as a benchmark;
results on theVALBONNE set has been presented in a number of papers on the topic
[14, 12]. Presented experiments are summarised and the contributions of the paper are
reviewed in Section 7.

2 Correspondence from Distinguished Regions

In the introduction, the concept of a distinguished region (DR) was described rather
vaguely. In this section, we first present a formal definitionof the DR concept, discuss
some its properties and give examples of DR.

3



Definition 1 Distinguished region. Let imageI be a mappingI : D � Z2 ! S. LetP � 2D, i.e. P is a subset of the power set (set of all subsets) ofD. LetA � P � P
be an adjacency relation onP and letf : P ! T be any function defined onP with
a totally ordered rangeT . A regionQ 2 P is distinguished with respect to functionf
iff f(Q) > f(Q0); 8(Q;Q0) 2 A.

In order to be invariant to geometric transformations from agroupG, the setP
must be closed under action fromG and the extremal propertyf must be preserved.
As an example, let us view the Harris interest point detector, an operator commonly
used in stereo matching, as a particular type of a distinguished region detector. The
system of subsetsP of the image domainD considered is the set of all circles with a
fixed radius. The ‘quality’ functionf assigns a positive real number to any elementQ
of P , soT = R+0. The quality can be expressed as a function of the eigenvalues of
the second moment matrix computed onQ. The adjacency relation is defined the by
maximum distance on centres of the circular regions that aresubject to non-maxima
suppression. Under translation and rotation, the set of allcircles of a given radius is
closed and since eigenvalues of the second moment matrix arerotationally and trans-
lationally invariant, the Harris operator detects the samedistinguished regions under
rigid transform. Under more complex geometric transformation (similarity, affinity)
this is no more the case. The Maximally Stable Extremal Regions defined in Section 4
are an example of a distinguished region type invariant to a much broader class of ge-
ometric and photometric transforms. The invariant function f is typically constructed
assuming local planarity and a continuous image domain and range. The practical
value of a DR type given by stability w.r.t. viewpoint and illumination change must be
established experimentally.

Note that we do not require DRs to have any transformation-invariant property
that is unique or rare in the image. In other words, DRs need not be discriminative
(salient). If a local frame of reference is defined on a DR by a transformation-invariant
construction (projective, affine, similarity invariant),a DR may be characterised by
invariant measurements computed on any part of an image specified in the local (DR-
centric) frame of reference. We used the termmeasurement regionfor this part of the
image.

Related work. Since the influential paper by Schmid and Mohr [15] many im-
age matching and wide-baseline stereo algorithms have usedHarris interest points as
distinguished regions. Tell and Carlsson [17] proposed a method where line segments
connecting Harris interest points form measurement regions. The MRs are charac-
terised by scale invariant Fourier coefficients. Harris interest detector is stable over a
range of scales, but defines no scale or affine invariant measurement region. Baum-
berg [1] applied an iterative scheme originally proposed byLindeberg and Garding
to associate affine-invariant measurement regions with Harris interest points. In [10],
Mikolajczyk and Schmid show that a scale-invariant MR can befound around Harris
interest points.
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In [12], Pritchett and Zisserman form groups of line segments and estimate local
homographies using parallelograms as measurement regions. Tuytelaars and Van Gool
introduced two new classes of affine-invariant distinguished regions, one based on lo-
cal intensity extrema [20] the other using point and curve features [19]. In the latter
approach, DRs are characterised by measurements from the inside an ellipse, con-
structed in an affine invariant manner. Lowe [9] describes the ’Scale Invariant Feature
Transform’ approach which produces a scale and orientation-invariant characterisation
of interest points.

So far we have focused on the selection of the elements to be put into correspon-
dence (the DRs) and on the process of construction of measurement regions. Having
two sets of DRs , how can the problem of epipolar geometry estimation by attacked?
As mentioned in the introduction, in problems of realistic size it is clearly impossi-
ble to perform a brute-force search for the best globally consistent epipolar geometry.
Instead, algorithms described in the literature have adopted strategies with a similar
structure whose core is summarised in the following four steps:

Algorithm 1: Wide-baseline Stereo from Distinguished Regions - The Framework

1. Detectdistinguished regions.

2. Describe DRs with invariants computed on measurement regions.

3. Establish tentative correspondences of DRs.

4. Estimate epipolar geometry in a hypothesise-verify loop.

Tentative Correspondences. At this stage, we have a set of DRs for each im-
age and a potentially large number of invariant measurements associated with each
DR. The most simple situation arises if a local affine frame isdefined on the DR.
Photometrically normalised pixel values from a normalisedpatch characterise the DR
invariantly. More commonly, only a point or a point and a scale factor are known,
and rotation invariants [15, 14] or affine invariants must beused [20]. Selecting mu-
tually nearest pairs in Mahalanobis distance is the most common method [14, 20, 15].
Note that the objective of this stage is not to keep the maximum possible number of
good correspondences, but rather to maximise the fraction of good correspondences.
The fraction determines the speed of epipolar geometry estimation by theRANSAC

procedure [18].
Epipolar Geometry estimation is carried out by a robust statistical method, most

commonlyRANSAC. In RANSAC, randomly selected subsets of tentative correspon-
dences instantiate an epipolar geometry model. The number of correspondences con-
sistent with the model defines its quality. The hypothesise–verify loop is terminated
when the likelihood of finding a better model falls below a predefined threshold.
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3 Elementary Separated Cycles of the Edgel Graph

In the literature on wide-baseline stereo, edge detectors have received significantly less
attention than interest point operators. However, subsetsof the edge map can provide,
if extracted with good repeatability, richer geometric andphotometric information than
interest points. One such subset possessing properties desirable for discriminative
regions is the set ofseparated elementary cycles(SECs) of the edgel graph. The
novel concept is defined, together with other graph-theoretical concepts needed in the
section, in Table 1. From this point it is assumed that the reader understands the
concept of SEC and is familiar with edge detector output representation by the Edgel
Graph. If in doubt, please re-read the definitions of Tab. 1 and look at the edgel graph
and SEC visualisation shown in Figure 1. Details given in Appendix A describing the
construction of the of the Edgel graph may be helpful too.

The motivation for investigating SECs is the following:� We have observed that the number of elementary separated edge cycles is limited
in most images. Even in textured ares the number of separatedcycles is low
(unlike the number of interest points), since typically non-separated cycles are
formed.� Geometric constraints stronger than single point correspondences can be ob-
tained from the edgel strings associated with a separated cycle, e.g. local scale
(area of the cycle) or even a full local affine reference frame(e.g centre of grav-
ity with bitangents or other invariant points on the cycle).If more constraints are
generated per DR, the number of correspondences defining uniquely the epipo-
lar geometry is reduced. Consequently, estimation of epipolar geometry (e.g.
by RANSAC) is either faster or feasible with a lower number of correct tentative
correspondences.� Invariants computed from the shape of the edgel string of a separated cycle can
be exploited to reduce the number of tentative correspondences.� The proposed approximate algorithm for SEC detection 2 guarantees that edgel
strings of each cycle form a Jordan curve. Thus each cycle partitions the image
plane into an ’inside’ and ’outside’. The partitioning is preserved under prac-
tical perspective transforms. Measurements from the ’inside’ can be therefore
exploited in establishing tentative correspondences. Thesame is true for any
measurement computed in a reference frame defined in an invariant manner on
the edgel strings.

Problem 1: Invariance. Unlike the extremal regions described in 4, the employed De-
riche edge detector [2] is not even scale invariant. In our experience (e.g. on the images
presented in Section 6), a significant percentage of edgels is detectable over a range
of scales. Only a few SEC are required to compute the epipolargeometry (depending
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Figure 1: SEC detection onVALBONNE-003. The edgel graphG (top); each vertex ofG is represented by a white point, each edge with the associated edgel strings (shown
in black). The region in the black circle with two separated elementary cycles is mag-
nified at bottom right. SECs detected in the lower left part ofthe image are depicted at
bottom left.
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GraphG is a triplet(V;E; "), whereV is the set of vertices ofG, E the set of edges
of G, and" : E ! �V2� is the graph adjacency function. A graph according to
this definition is undirected and may have self-loops and multiple edges between
vertices (such graphs are also called multigraphs).

Elementary Cycle
in graphG is a sequencev1; e1; :::; vn; en, of verticesvi 2 V and edgesei 2 E
without repetition such that each consecutive two verticesare adjacent and the
last and the first vertices are adjacent, i.e"(ei) = fvi; vi+1g; 1 � i < n and"(en) = fvn; v1g.

Separated Elementary Cycle (SEC)
is an elementary cycle not sharing any edge with another elementary cycle.

Edgel String S
is a connected set of edgels each having 2 neighbours.S � Z2.

Start Edgel
is an edgel that has a number of neighbouring edgels different from 2, i.e. 0,1,3
or 4.

Edgel Graph
is an attributed (multi) graphG = (V;E; "; Av; Ae) representing the output of an
edge detector. Each vertexv 2 V represents a Start Edgel. The vertex attribute
function Av:V ! Z2 associates position of the edgel with the node. Eache 2 E represents an Edgel String. The edge attribute functionAe: e ! L � Z2
associates an Edgel String with each edge.

Table 1:Definitions used in Section 3
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on what geometric constraints are associated with each correspondence of cycles). In
the context of our application, it is not necessary to ’interpret’ the edges. Edges aris-
ing from scratches on a surface, albedo change or surface orientation discontinuity are
equally useful, as long as they are repeatedly detected. Even shadows are helpful if
they are present in both images. This is in contrast to some traditional use of the edge
detector (interpretation of edges as surface discontinuities, association of edges with
primitives of line drawings) where such edges would be considered spurious.
Problem 2: Computational complexity. The problem ofenumeration of all elemen-
tary cycles of a graphhas been studied in combinatorial mathematics. The bound on
its time complexity is given in [13] asO(Nm+n+m), wheren is the number of ver-
tices,m is the number of edgesN is the size of the output, i.e. the number of cycles. In
our application, theNm term is prohibitive. In a complex image likeVALBONNE-003
(Fig. 1) the numberm of edgel strings (not edgels!) is above 3000.
Enumeration of separated elementary cycles.For a small graph, the problem be-
comes computationally tractable if onlyseparatedelementary cycles are required.
Since each edge can only belong to at most one SEC, the size of the outputN< m
and the bound on the complexity becomesO(m2). This is still not practical for our
application. We therefore propose an approximate algorithm that is fast and simple1

and has linear time complexityO(max(n;m)), wheren is the number of nodes andm
the number of edges. The structure of the algorithm is shown below.

Algorithm 2: Approximate enumeration of separated elementary cycles

Input : undirected graphG = (V;E; ")
Output : list of elementary separated cycles

1. do 2 times (or until not new self-loops found; see text)

2. Remove vertices of degree 1.

3. Remove degree 2 nodes that are not self-loops, propagating edgel strings.

4. Add to output all edges that are self-loops and remove themfrom G.

Before describing in detail steps 1-4, let us first explain the nature of the approximation
of Algorithm 2. We detect only those loops that can be reducedby steps 2 and 3 to a
single self-loop edge. In the first step, all vertices of degree 1 are removed since they
cannot be part of any cycle. This process can be completed in asingle sweep through
the list of vertices. The operation has complexity linear inthe number of vertices, since
each vertex is considered at most twice. The second ’touch’ of the vertex happens if

1On a theVALBONNE-003 image (see Fig. 1) the time to compute all SECs is approximately 0.2
seconds on a SPARC ultra. Implemented in approximately 60 lines of C code (using a good graph
library).
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it is (the single vertex) adjacent to a vertex of degree 1. What is left are separated
cycles, complex cycles and connections between them. Most separated cycles become
sequences of vertices of degree 2. These sequences are reduced in step 2 to single
vertex with a self-loop. All degree 2 nodes without a self-loop are deleted from the
graph; before removing an edge, the edgel string associatedwith it is moved to an
adjacent edge. Steps 2 and 3 are implemented as a single sweeptrough the list of
vertices and edges respectively. Steps 2-4 must be in general iterated, since detection
of a cycle and a subsequent removal of a self-loop may transform a vertex of degree 3
to degree 1. In experiments, this never happened after the second iteration. However,
we have constructed examples where the number of iterationsneeded islogm. Facing
diminishing returns, we setk = 2 to maintain the linearity of the algorithm.
Robustness.The concept of an elementary cycle is very brittle. A single one-pixel gap
— a common event especially in areas of complex intensity structure — will break a
cycle. To counter the problem, edges are inserted into the graph between two degree
one vertices, if they correspond to edgels satisfying a distance constraint. The distance
threshold and the edge detector filter width are the only parameters of the method.

4 Maximally Stable Extremal Regions

In this section, we propose a class of distinguished regionsthat is based solely on an
extremal property of the intensity function in the region and on its outer boundary. The
so calledMaximally Stable Extremal Regions (MSERs)can be defined on any image
(even high-dimensional) whose pixel values are from a totally ordered set. The formal
definition of the MSER concept and the necessary auxiliary definitions are given in
Table 2.

The concept can be explained informally as follows. Imagineall possible thresh-
oldings of an input gray-level imageI, say with a common rangeS = f0; 1; : : : ; 255g
. We will refer to the pixels below a threshold as ’black’ and to those above or equal
as ’white’ .If we were shown a movie of thresholded imagesIt, with framet corre-
sponding to thresholdt, we would see first a white image. Subsequently black spots
corresponding to local intensity minima will appear and grow. At some point regions
corresponding to two local minima will merge. Finally, the last image will be black.
The union of all connected components of all frames of the movie is identical to the set
of all maximal regions; minimal regions could be obtained byinverting the intensity ofI and running the same process. On many images one observes that local binarisation
is stable over a large range of thresholds in certain regions. Such regions are of interest
since they posses the following properties:� Invariance to monotonic transformation M : S ! S of image intensities.

The set of extremal regions is unchanged after transformationM , I(p) < I(q)!M(I(p)) = I 0(p) < I 0(q) = M(I(q)) sinceM does not affect adjacency (and
thus contiguity) and intensity ordering is preserved.
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ImageI is a mappingI : D � Z2 ! S. Extremal regions are well defined on images
where:

1. S is totally ordered, i.e. reflexive, antisymmetric and transitive binary re-
lation� exists. In this paper onlyS = f0; 1; : : : ; 255g is considered, but
extremal regions can be defined on e.g. real-valued images (S = R).

2. An adjacency (neighbourhood) relationA � D � D is defined. In this
paper 4-neighbourhoods are used, i.e.p; q 2 D are adjacent (pAq) iffPni=1 jpi � qij � 1.

RegionQ is a contiguous subset ofD, i.e. for eachp; q 2 Q there is a sequencep; a1; a2; : : : ; an; q andpAa1; aiAai+1; anAq.
(Outer) Region Boundary�Q = fq 2 D nQ : 9p 2 Q : qApg, i.e. the boundary�Q of regionQ is the set

of pixels being adjacent to at least one pixel ofQ but not belonging toQ.

Extremal RegionQ � D is a region such that for allp 2 Q; q 2 �Q : I(p) > I(q) (maximum
intensity region) orI(p) < I(q) (minimum intensity region).

Maximally Stable Extremal Region (MSER)

Let Q1; : : : ;Qi�1;Qi; : : : be a sequence of nested extremal regions, i.e.Qi �Qi+1. Extremal regionQi� is maximally stable iffq(i) = jQi�� n Qi+�j=jQij
has a local minimum ati� (j:j denotes cardinality).� is a parameter of the
method.

Table 2:Definitions used in Section 4
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� Invariance to adjacency preserving(continuous) transformationT : D ! D
on the image domain.� Stability , since only extremal regions whose support is virtually unchanged over
a range of thresholds is selected.� Multi-scale detection. Since no smoothing is involved, both very fine and very
large structure is detected.� The set of all extremal regions can beenumerated inO(n log logn), i.e. almost
in linear time for 8 bit images.

Due to lack of space, the algorithm for extremal region detection can be only briefly
outlined.

Algorithm 3: Enumeration of Extremal Regions. (outline)

Input : ImageI
Output : list of nested extremal regions

1. For all pixels sorted by intensity

2. Place pixel in the image.

3. Update the connected component structure.

4. Update the area for the effected connected component.

5. For all connected components

6. Local minima of the rate of change of its area define stable thresholds.

The computational complexity of step.1 isO(n) if the image rangeS is small, e.g. the
typical f0; : : : ; 255g, and sorting can be implemented asBINSORT [16]. As pixels or-
dered by intensity are placed in the image (either in decreasing or increasing order), the
list of connected components and their areas is maintained using the efficient union-
find algorithm [16]. The complexity of the algorithm isO(n log logn). The process
produces a data structure holding the area of each connectedcomponent as a function
of a threshold. A merge of two components is viewed as the end of existence of the
smaller component and the insertion of all pixels of the smaller component into the
larger one. Finally, intensity levels that are local minimaof the rate of change of the
area function are selected as thresholds. In the output, each MSER is represented by a
local intensity minimum (or maximum) and a threshold.
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Notes. The structure of algorithm 3 and an efficientwatershed algorithm [21] is
essentially identical. However, the structure ofoutputof the two algorithms is dif-
ferent. The watershed is a partitioning ofD, i.e. a set of regionsRi : SRi =D;Rj \ Rk = ;. In watershed computation, focus is on thresholds were regions
merge (and watershed basins touch). Such threshold are of little interest to us, since
they are highly unstable – after merge, the region area jumps. In MSER detection,
we seek a range of thresholds that leaves the watershed basineffectively unchanged.
Detection of MSER is also related tothresholding. Every extremal region is a con-
nected component of a thresholded image. However, no globalor ’optimal’ threshold
is sought, all thresholds are tested and the stability of theconnected components evalu-
ated. Finally, the output is not a binarized image. For some parts of the image, multiple
stable thresholds exist and a system of nested subsets is output in this case.

5 Matching

The most common method for establishing tentative correspondence is based on Ma-
halanobis distance (MD) [14, 20, 15]. However, the method can be criticised on both
theoretical and practical grounds. In the stereo matching problem, no training samples
are available and the use of Mahalanobis distance is equivalent to whitening thetotal
covariance matrix and computing the Euclidean distance. Noattempt is made to esti-
mate the within-class covariance matrix (the covariance ofthe errors in corresponding
measurements in the two images) nor the between-class covariance matrix. This is
equivalent to the assumption that two covariances are equal[5] which in most prob-
lems is far from true. Concerns about the inherent Gaussian assumption may be voiced
too. From the practical point of view, MD is not robust – a single ‘wild’ measurement
can make it arbitrarily large. Our experiments have shown that often at leastsomeof
the affine invariants used are unstable.

On the other hand, the robustness of proposed similarity measure allows us to use
invariants from a collection of measurement regions, even some that are much larger
than the associated distinguished region. Measurements from large regions are ei-
ther very discriminative or completely wrong. The former helps establishing reliable
tentative correspondences, the influence of the latter is limited by robustness of the
approach. We first define the similarity measure and then briefly comment on its prop-
erties.

Each DR is described by a measurement vectorx = hx1; x2; : : : ; xni. In the match-
ing problem there are two setsL andR of DR measurement vectors originating from
the ‘left’ and ‘right” image respectively. The task is to findtentative matches given the
local description. The set of initial correspondences is formed as follows. Two regions
with descriptionsx 2 L andy 2 R are taken as a candidates for a match iffx is the
most similar measurement toy andvice-versa, i.e.8x0 2 L n x : d(x;y) < d(x0;y) and 8y0 2 R n y : d(y;x) < d(y0;x),

13



whered is the asymmetric similarity measures defined below. In the computation ofd(x;y) each component of the measurement vector is treated independently. The sim-
ilarity between thei-th component ofx andy is measured by the number of vectorsy0
whosei-th measurement is closer. In other words the similarity in thei-th component
is the rank of the measurement fromy among all measurementsy0 fromR:

rankix;y = card(fx0 2 L : jx0i � yij � jxi � yijg). (1)

The overall similarity measure is then defined as followsd(x;y) = card(fi 2 f1; : : : ; ng : rankix;y < tg), (2)

wheren is dimension of the measurements vector andt a predefined ranking threshold.
The computation ofd(y;x) is analogous with the roles ofL andR interchanged.
The most important property ofd is that the influence of any single measurement is
limited to 1. Only the main idea of the probabilistic error model behind the design
may be mentioned due to limited space. Under a very broad range of error models,
corresponding measurements are more likely to be below the ranking threshold than a
mismatch. One of the interesting properties of the similarity measure is its invariance
to any monotonic transformation applied to elements of the measurement vectorx, so
measurement of different orders of magnitude are easily handled.

6 Experiments

In all experiments, the following parameters of the matching algorithm were used.
Each measurement region was described by 21 general colour moment invariants of
Midru et. al. [11] computed from four measurement regions (MRs). The MRs defined
in terms of affine-invariant constructions on the DR boundaries were the following:
the DR itself and its convex hull scaled by factors of 1.5, 2 and 3. The rank threshold,
a parameter of the robust similarity measure, was set to 7. Tentative correspondences
comprised only those pairs whose colour invariants were mutually nearest in the robust
similarity measure. Note that the similarity was computed in 84-dimensional space (21
invariants, 4 MRs). Epipolar geometry was estimated by the 7-point algorithm [7]. In
all experiments, only a linear algorithm is used [7] to estimate epipolar geometry; no
effort was made to improve the precision by known methods such as bundle adjust-
ment, correlation, or homography growing.

Experiment I.: Epipolar geometry from SEC correspondences. The potential
of the Separated Elementary Cycles for wide-baseline stereo was evaluated on images
of an office scene. TheBOOKSHELF dataset9 contains approximately ten images taken
from significantly different viewpoints. The density, precision and repeatability of
the SEC output is shown on the pair images depicted in Figure 2(middle row); more
successful wide-baseline matching experiments are reported in [8].

9The data will be made publicly available.
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left right TC EG miss

SECs 178 162 52 29 1

Figure 2: BOOKSHELF: SECs detected in a pair of images (top row), estimated epipo-
lar geometry (middle row) and a close-up of selected areas marked with black rectan-
gles in the originals (bottom row).
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left right TC EG miss

MSERs - 558 437 143 41 0
MSERs + 404 467 120 37 0
total 962 904 263 78 0

Figure 3: KAMPA (easy): MSERs (both intensity minima and maxima) detected in a
pair of images (top row), estimated epipolar geometry (middle row) and a close-up of
selected areas marked with black rectangles in the originals (bottom row).
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The top row of Figure 2 shows edgel strings that are attributes of edges of sepa-
rated elementary cycles of the Edgel Graph. The number of SECs in the left and right
images was 178 and 162 respectively. In the middle row, the input images with over-
layed epipolar lines are shown. The SECs that formed tentative correspondences and
are consistent with the estimated epipolar geometry are highlighted. The number of
SECs with mutually nearest invariant descriptions, i.e. the number of tentative corre-
spondences, was 52 in this test. TheRANSAC procedure found an epipolar geometry
consistent with 29 tentative correspondences of which 28 are correct. The numbers of
detected SECs in the left and right images, tentative correspondences (TC), epipolar
geometry consistent correspondences (EG) and the number ofmismatches (miss) are
summarised in the caption of Figure 2. Mismatches are correspondences consistent
with the estimated epipolar geometry that are not projections of the same part of the
scene. The ratio TC=EG determines the average number ofRANSAC hypothesis-verify
attempts2 and hence the speed of epipolar geometry estimation.

The bottom row of Figure 2 shows close-ups of two rectangularregions selected
from the left and right images respectively. The subimage inthe bottom left corner is
interesting because the three SECs have identical light blue insides and almost affinely
equivalent shape. The SEC regions formed correct tentativecorrespondence probably
because of the differences in the larger and discriminativemeasurement regions.

Experiment II.: Epipolar geometry from MSER correspondences.Maximally
Stable Extremal Regions were evaluated on images of an urbanscene. Images from
the KAMPA dataset9 are shown in Figures 3 and 4. The stereo problem is much more
difficult for the pair presented in Figure 4, where the viewpoint change induces signif-
icant perspective effects and change of scale. Moreover, contrast is very low on the
right side of the images. Taking into account the changing skies, the part of the scene
visible in both images covers less than 50% of the images. Theextent of local changes
is clearly visible in the close-ups presented in the bottom row of Figure 4. As an exam-
ple, consider the change near the attic window shown in the bottom right image. The
window is viewed from a very different angles; the background changes dramatically.
The repeatability of the MSER around the window is surprisingly good, despite the
acute viewing angle and small resolution. The close-up at bottom left demonstrates
that despite the large change in viewpoint, certain regionsremain remarkably stable.

Compared with the previous example, the simpler stereo problem presented in Fig-
ure 3 does not say much about the limits of MSER-based matching. The image pair
is included mainly to demonstrate the high density of MSERs from which tentative
correspondences were formed. The number of MSERs detected in the left and right
images (top, Figure 3) is above 900. In fact, two types of MSERs were extracted; those
corresponding to local intensity maxima (MSER+) and to local minima respectively
(MSER-). In total, 263 tentative correspondences with mutually nearest invariant de-
scriptions are input intoRANSAC. Since contrast reversal is not expected, only corre-
spondence within the respective classes (either ’+’ or ’-’)are allowed. TheRANSAC

2the average number of trials is approximately(TC=mboxEG)7)
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left right TC EG miss

MSERs - 292 413 72 12 3
MSERs + 277 414 73 11 1
total 569 827 145 23 4

Figure 4: KAMPA (hard): Estimated epipolar geometry (top row) and a close-up of
selected areas marked with black rectangles in the originals (bottom row).

procedure found an epipolar geometry consistent with 78 tentative correspondences
and no mismatches. The number of MSERs detected in the left and right images, the
number of tentative correspondences (TC), epipolar geometry consistent correspon-
dences (EG) and mismatches (miss) are summarised in the caption of Figure 3. In the
top row if Figure 3 we tried to visualise the MSERs. It is not easy, since MSER do
not form a partitioning but rather a tree of nested regions; it is not possible to trace
boundaries of individual MSERs in a binary image. The MSER boundary image at
least clearly shows that the density of MSERs is high almost everywhere, the sky and
the featureless road being the exceptions.

Returning to the more difficult problem of Figure 4, we see that the number of
tentative correspondences is much lower – 145. UsingRANSAC, an epipolar geometry
was found that was consistent with only 23 tentative correspondences of which 4 are
mismatches. Both the small number of epipolar geometry consistent correspondence
and the small ratio of EG consistent to tentative correspondences suggests we are near
the limits of the method.

Experiment III.: Cooperation of multiple DR detectors. This experiment was
conducted on one of the most difficult pairs from theVALBONNE set, see Figure 5.
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This matching problem can be viewed as a benchmark since results on VALBONNE

images have been published in the literature [14, 12]. Several factors contribute to
the complexity of this matching problem. The main problem difficulty is that only a
set of parallel planes with small relative depth is visible in both images. Importantly,
not a single wall with significant relative depth is present in both images (the walls
perpendicular to plane of the portal). For example, only thefrontal side of the bell
tower is visible in both images.

We have tacitly used combination of two types of DR detectors, the MSER+ and
MSER- , already in Experiment II. Here we combine SECs with the two types of
MSERs. The number of DRs detected in each of the images is fairly high. The frac-
tion of DRs that gave rise to a tentative correspondence is very low. This is due to
the non-distinctive nature of DRs on the wall; often a DR covered a single stone. Per-
haps surprisingly, some of the DR corresponding to a single stone were successfully
matched, probably because of the fairly large measurement regions combined in the
robust similarity measure. The numbers of DRs detected in the left and right image,
the number of tentative correspondences (TC), epipolar geometry consistent corre-
spondences (EG) and mismatches (miss) are summarised in thecaption of Figure 5.
The table shows that the number of correct matches consistent with the found epipolar
geometry for each type of DRs was between 8 and 10, which is insufficient for reliable
EG estimation since. In total, 26 correct correspondences are found, which is much
less likely to arise randomly.

7 Conclusions

In the paper we first discussed the choice of image elements that are put into corre-
spondence in the wide-baseline matching problem. We introduced and defined for-
mally the concept of a distinguished region and we argued they are eligible candidates
for matching.

The main contribution of the paper is the introduction of twonew types of distin-
guished regions. For both types, theSeparated Elementary Cycles of the Edge Graph
(SECs)and theMaximally Stable Extremal Regions (MSERs), an efficient (near linear
complexity) and practically fast detection algorithm was presented. Experimentally
we showed the stability of the proposed DRs in disparate views of real-world scenes
with significant change of scale, camera rotation, and 3D translation of the viewpoint.

In a second contribution, a robust similarity measure for establishing tentative cor-
respondences was proposed. Due to the robustness, we were able to consider invari-
ants from multiple measurement regions, even some that weresignificantly larger (and
hence probably discriminative) than the associated distinguished region.

Good estimates of epipolar geometry were obtained on challenging wide-baseline
problems with the robustified matching algorithm operatingon the output produced by
the proposed detectors of distinguished regions. Fully affine distortions and significant
occlusion were present in the tests. Test images included both outdoor and indoor
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scenes, some already used in published work.
The use of multiple types of distinguished regions was demonstrated in an exper-

iment conducted on a non-trivial pair from theVALBONNE set, where the estimation
process of epipolar geometry viaRANSAC failed for any single DR type. Finally, we
proposed a modification of the linking part of an edge detector increasing its repeata-
bility.

A Constructing the edgel graphG
First, the Deriche filter is applied [2] and non-maxima suppression is carried out. Un-
like in standard edge detectors, the output of hysteresis thresholding is not a set of
edgel strings but a graph. Anedgelis a pixel, i.e. an element ofZ2, that was assigned
value 1 in the hysteresis thresholding process. Definitionsfor edgel stringandstart
(end) edgelare given in Table 1. The edge detector output3 is transformed in an at-
tributed graphG = (V;E; "). The the set of verticesV and the set of edgesE are
extracted in the following manner. Each start (end) edgel isrepresented by a vertex,
each edgel string is represented by an edge between verticesof the start and end edgels
connected by the edgel string. The edgel string (represented as a list of edgels) is stored
as an attribute of the edge it gave rise to.

Technical details. The algorithm for construction ofG as described above of
would not be able to represent edgel strings that do not have start and end edgels
(closed loops of edgels; not to be confused with cycles ofG!). The situation is easily
detected, an arbitrary edgel is chosen as the start (and end)edgel and a vertex rep-
resenting it is inserted into the graph. The graph may have vertices of degree zero
(representing isolated edgels) as well as self-loops, i.e.edges starting and ending in
the same vertex, representing closed edgel strings. So far the type of neighbourhood
relationship has not been specified. To interpret the edgelsas strings as far as pos-
sible a mixture of 4 and 8 connectivity is used. We start by checking the number of
4-neighbours of an edgel. If two or more neighbours are found, the search for neigh-
bours stop. If less than two are found, a subset of 8-neighbours consistent with the
4-neighbours is checked. The switching between 4 and 8 connectivity is clearly ap-
parent in the scaled-up part of theVALBONNE-003 image shown at the bottom right
of Figure 1. Edgel strings are in black, each white point willgive rise to a vertex inG.
Each connected component of black points is represented as an edge inG. The com-
plexity (linear in the number of pixels) as well as practicalspeed of construction ofG
is effectively identical to a standard edge linking procedure. In common implemen-
tations, edgel strings are either broken or follow a random path at points where there
are more than two neighbours. Together with the hysteresis thresholding process, both
common methods significantly reduce repeatability of the edge detector output, since

3It would be more appropriate to speak about edgel detector inthe context of this section. The term
’edge’ refers here to an entity in the graphG
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pixels above the higher threshold are connected with different subset of edgels each
time.
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Figure 5: VALBONNE: Esti-
mated epipolar geometry.

left right TC EG miss

SECs 529 523 50 11 3
MSERs - 320 127 49 8 0
MSERs + 518 362 89 11 1
total 1367 1012 188 30 4
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