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Abstract

The problem of establishing correspondences between apaimages taken from
different viewpoints, i.e. the “wide-baseline stereo” lplem, is studied in the paper.
The choice of image elements that are put into correspordienthe wide-baseline
matching problem is discussed. The concept distinguished regions introduced
and formally defined and it is argued distinguished regiarsvary good candidates
for matching.

Two new types of distinguished regions, tBeparated Elementary Cycles of the
Edge Graph (SECsand theMaximally Stable Extremal Regions (MSERa)e in-
troduced. For both types, an efficient (near linear complexand practically fast
detection algorithm is presented. Experimentally theibtalof the proposed DRs is
shown on disparate views of real-world scenes with sigmfichange of scale, camera
rotation and 3D translation of the viewpoint.

A new robust similarity measure for establishing tentatiwgrespondences is pro-
posed. The robustness ensures that invariants from nailtiglasurement regions,
some that are significantly larger (and hence discrimieatitan the distinguished
region, may be used to establish tentative correspondences

In experiments on indoor and outdoor image pairs, good estisnof epipolar
geometry are obtained on challenging wide-baseline pnobleith the robustified
matching algorithm operating on the output produced by ttopgsed detectors of
distinguished regions. Locally fully affine distortionsdasignificant occlusion were
present in the tests.



1 Introduction

Finding reliable correspondences in two images of a scéw@a tiom arbitrary view-
points with possibly different cameras in different illumation conditions is a difficult
and critical step towards fully automatic reconstructiédr8BD scenes [7]. A crucial
issue isthe choice of elements whose correspondence is solrgtite wide-baseline
set-up, local image deformation cannot be realisticallfyrapimated by translation or
translation with rotation and a full affine model is requir€brrespondence cannot be
therefore established by comparing regions of a fixed (Haal) shape like rectangles
or circles since their shape is not preserved under affimsfisemation.

In most images there are regions that can be detected withrépgeatability since
they posses some distinguishing, invariant and stablegptppWe argue that such
regions of in general data-dependent shape, cdisthguished regionfDRSs) in the
paper, may serve as the elements to be put into correspandgher in stereo match-
ing or object recognition.

The main contribution of the paper is the proposal of two ngpes$ of distin-
guished regions together with efficient algorithms for tiogtection. Conceptually,
these algorithms could be seen as processes that take thfeatletubsets of the im-
age pixels of all such shapes as input and select a subseissogsthe distinguishing
property. The art is in finding distinguishing propertieattban be detected without
the obviously prohibitive exhaustive enumeration of absets. For both new types of
distinguished regions introduced, t8eparated Elementary Cycles of the Edge Graph
(SECs)and theMaximally Stable Extremal Regions (MSERS) efficient (near linear
complexity) and practically fast (from fraction of a secdndeconds) detection algo-
rithm has been found. Low computational complexity and iiarece to photometric
and geometric transformation are desirable theoreticglgaties of the process of dis-
tinguished region detection. Stability, robustness aeddency of detection and hence
usefulness of a particular type of DR depends on the imageatad must be tested
experimentally. Successful wide-baseline experimenisdmor and outdoor datasets
presented in Section 6 support the claim that the proposetypds are very useful at
least in man-made environments.

Reliable extraction of a manageable number of potentiallyesponding image
elements may be a necessary but certainly is not a sufficiergquisite for successful
wide-baseline matching. With two sets of distinguishedaes, the matching prob-
lem can be posed as a search in the correspondence spac®ifBling a complete
bipartite graph on the two sets of DRs and searching for aafjjpbonsistent subset
of correspondences is clearly out of question for computali reasons. Recently, a
whole class of stereo matching and object recognition @lgos with common struc-
ture has emerged [12, 19, 1, 20, 3, 17, 10, 9]. These methgusitetocal invariant
descriptorsto limit the number of tentative correspondences. The keyes are 1.
the choice of measurement regions, e.g. the parts of theermmagvhich invariants
are computed, and 2. the choice of invariants and 3. the rdethselecting tentative
correspondences given the invariant description. We dgssthe structure of the class
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of wide-baseline and recognition algorithms in Section igtjg with the review of
the state-of-the-art. Such approach seems natural siffeeedices in the published
methods can be interpreted as a particular choice in oneeostiges of a general
framework.

Sections 3 and 4 give formal definitions of the two new typedistinguished re-
gions, the Separated Elementary Cycles of the Edgel GragptharMaximally Stable
Extremal Regions. Both sections start with the definitiothef underlying concepts.
Next we present a detection algorithm, analyse its comijoumi@tcomplexity and study
invariance properties of the DR, concluding with remarksabpustness and relation-
ship to other image processing methods. Examples of detesggons are shown later
in the experimental Section 6. The SEC extraction algoritperates on a novel repre-
sentation of edge detector output called the Edgel Grappliégiion of a commonly-
used edge detector outputs typically a set of edgel strivigihout loss of efficiency,
the modified linking stage produces a more structured arodestapresentation. As it
is not in the main line of the paper, presentation of this moumtribution, perhaps of
interest in its own right, was postponed till appendix A.

In Section 5 details of a novel matching algorithm (from thmwee-mentioned
class) are given. A nevobustapproach is used for tentative correspondence computa-
tion. A robust similarity measure for comparison of localdariants replaces the com-
mon method based on Mahalanobis distance [14, 20, 15] wlaictbe justified theo-
retically only under conditions that are almost certainbg met in the wide-baseline
matching problem [5]. The robustness of proposed simylani¢asure allows us to use
invariants from a collection of measurement regions, ewenesthat are much larger
than the associated distinguished region. Measurememntslérge regions are either
very discriminative (it is very unlikely that two large parmf the image are identical)
or completely wrong (e.g. if orientation or depth discontip becomes part of the
region). The former helps establishing reliable tentativeal) correspondences, the
influence of the latter is limited due to the robustness oferoach.

Experimental results on outdoor and indoor images takeh it uncalibrated
camera are presented in Section 6. On two simpler scengsl@pgeometry is estab-
lished using only a single type of distinguished regionse pbtential for combination
of multiple types of distinguished regions is demonstrategerhaps the most diffi-
cult pair from thevALBONNE set. The last experiment can be viewed as a benchmark;
results on the/ALBONNE set has been presented in a number of papers on the topic
[14, 12]. Presented experiments are summarised and thelegitns of the paper are
reviewed in Section 7.

2 Correspondence from Distinguished Regions
In the introduction, the concept of a distinguished regidR) was described rather
vaguely. In this section, we first present a formal definitbthe DR concept, discuss

some its properties and give examples of DR.
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Definition 1 Distinguished region Let imagel be a mapping : D C Z? — S. Let
P C 2D, i.e. P is a subset of the power set (set of all subset@).ofet A C P x P

be an adjacency relation oR and letf : P — T be any function defined i with

a totally ordered rangdg. A regionQ € P is distinguished with respect to functign
iff £(Q) > f(Q).V(Q,Q) € A.

In order to be invariant to geometric transformations frograup GG, the setP
must be closed under action frothand the extremal property must be preserved.
As an example, let us view the Harris interest point dete@oroperator commonly
used in stereo matching, as a particular type of a distilhguaisegion detector. The
system of subset®B of the image domai® considered is the set of all circles with a
fixed radius. The ‘quality’ functiorf assigns a positive real number to any elem@nt
of P, so7 = R™Y. The quality can be expressed as a function of the eigerwvalue
the second moment matrix computed @n The adjacency relation is defined the by
maximum distance on centres of the circular regions thasabgect to non-maxima
suppression. Under translation and rotation, the set afi@les of a given radius is
closed and since eigenvalues of the second moment matriot@teonally and trans-
lationally invariant, the Harris operator detects the salisénguished regions under
rigid transform. Under more complex geometric transforara{similarity, affinity)
this is no more the case. The Maximally Stable Extremal Regydefined in Section 4
are an example of a distinguished region type invariant tasemiroader class of ge-
ometric and photometric transforms. The invariant functfds typically constructed
assuming local planarity and a continuous image domain ander. The practical
value of a DR type given by stability w.r.t. viewpoint andiithination change must be
established experimentally.

Note that we do not require DRs to have any transformatigariant property
that is unique or rare in the image. In other words, DRs ned¢dedliscriminative
(salient). If alocal frame of reference is defined on a DR lnaagformation-invariant
construction (projective, affine, similarity invariang,DR may be characterised by
invariant measurements computed on any part of an imagdisgea the local (DR-
centric) frame of reference. We used the teneasurement regiorfor this part of the
image.

Related work. Since the influential paper by Schmid and Mohr [15] many im-
age matching and wide-baseline stereo algorithms haveHiaet interest points as
distinguished regions. Tell and Carlsson [17] proposed thotewhere line segments
connecting Harris interest points form measurement regiorhe MRs are charac-
terised by scale invariant Fourier coefficients. Harrigiiest detector is stable over a
range of scales, but defines no scale or affine invariant measunt region. Baum-
berg [1] applied an iterative scheme originally proposed_mdeberg and Garding
to associate affine-invariant measurement regions withislgterest points. In [10],
Mikolajczyk and Schmid show that a scale-invariant MR caridasnd around Harris
interest points.



In [12], Pritchett and Zisserman form groups of line segraemd estimate local
homographies using parallelograms as measurement redioyiglaars and Van Gool
introduced two new classes of affine-invariant distingedtegions, one based on lo-
cal intensity extrema [20] the other using point and cunatuees [19]. In the latter
approach, DRs are characterised by measurements from diake ian ellipse, con-
structed in an affine invariant manner. Lowe [9] describes @tale Invariant Feature
Transform’ approach which produces a scale and orientaicariant characterisation
of interest points.

So far we have focused on the selection of the elements to thatpucorrespon-
dence (the DRs) and on the process of construction of measutaegions. Having
two sets of DRs , how can the problem of epipolar geometrynadion by attacked?
As mentioned in the introduction, in problems of realistiesit is clearly impossi-
ble to perform a brute-force search for the best globallysiant epipolar geometry.
Instead, algorithms described in the literature have aatbptrategies with a similar
structure whose core is summarised in the following foupste

Algorithm 1: Wide-baseline Stereo from Distinguished Begi The Framework

1. Detectdistinguished regions
2. Describe DRs with invariants computed on measuremeritdngeg
3. Establish tentative correspondences of DRs.

4. Estimate epipolar geometry in a hypothesise-verify loop

Tentative Correspondences At this stage, we have a set of DRs for each im-
age and a potentially large number of invariant measuresn&sgociated with each
DR. The most simple situation arises if a local affine framele§ned on the DR.
Photometrically normalised pixel values from a normalipatth characterise the DR
invariantly. More commonly, only a point or a point and a sctdctor are known,
and rotation invariants [15, 14] or affine invariants musuked [20]. Selecting mu-
tually nearest pairs in Mahalanobis distance is the mostmommethod [14, 20, 15].
Note that the objective of this stage is not to keep the mamirpossible number of
good correspondences, but rather to maximise the fracfigoad correspondences.
The fraction determines the speed of epipolar geometrynatitn by theRANSAC
procedure [18].

Epipolar Geometry estimationis carried out by a robust statistical method, most
commonlyRANSAC. In RANSAC, randomly selected subsets of tentative correspon-
dences instantiate an epipolar geometry model. The nunilz@respondences con-
sistent with the model defines its quality. The hypothesisgfy loop is terminated
when the likelihood of finding a better model falls below adefned threshold.
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3 Elementary Separated Cycles of the Edgel Graph

In the literature on wide-baseline stereo, edge detectoms teceived significantly less
attention than interest point operators. However, sulufdétee edge map can provide,
if extracted with good repeatability, richer geometric @hdtometric information than
interest points. One such subset possessing propertiealdesfor discriminative
regions is the set ofeparated elementary cycl¢SECs) of the edgel graph. The
novel concept is defined, together with other graph-themetoncepts needed in the
section, in Table 1. From this point it is assumed that theleeainderstands the
concept of SEC and is familiar with edge detector outputesgntation by the Edgel
Graph. If in doubt, please re-read the definitions of Tab.d lank at the edgel graph
and SEC visualisation shown in Figure 1. Details given in &mtix A describing the
construction of the of the Edgel graph may be helpful too.

The motivation for investigating SECs is the following:

e We have observed that the number of elementary separatedgdegs is limited
in most images. Even in textured ares the number of sepacgtzes is low
(unlike the number of interest points), since typically re@parated cycles are
formed.

e Geometric constraints stronger than single point cormedeonces can be ob-
tained from the edgel strings associated with a separatdd,®.g. local scale
(area of the cycle) or even a full local affine reference frgeng centre of grav-
ity with bitangents or other invariant points on the cyclénore constraints are
generated per DR, the number of correspondences definiggelgithe epipo-
lar geometry is reduced. Consequently, estimation of épipgeometry (e.g.
by RANSAC) is either faster or feasible with a lower number of correcttative
correspondences.

e Invariants computed from the shape of the edgel string opars¢ed cycle can
be exploited to reduce the number of tentative corresparegen

e The proposed approximate algorithm for SEC detection 2aguaes that edgel
strings of each cycle form a Jordan curve. Thus each cyctéipas the image
plane into an 'inside’ and 'outside’. The partitioning iseperved under prac-
tical perspective transforms. Measurements from thedeistan be therefore
exploited in establishing tentative correspondences. SEmee is true for any
measurement computed in a reference frame defined in ananvananner on
the edgel strings.

Problem 1: Invariance. Unlike the extremal regions described in 4, the employed De
riche edge detector [2] is not even scale invariant. In opeeence (e.g. on the images
presented in Section 6), a significant percentage of edgelstectable over a range
of scales. Only a few SEC are required to compute the epigelametry (depending

6



Figure 1: SEC detection ovaLBONNE-003. The edgel grapé (top); each vertex of

G is represented by a white point, each edge with the assdaaligel strings (shown
in black). The region in the black circlefith two separatesiveentary cycles is mag-
nified at bottom right. SECs detected in the lower left pathefimage are depicted at
bottom left.



Graph
G is a triplet(V, E, ¢), whereV is the set of vertices of, E the set of edge

of G,ande : £ — (Z) is the graph adjacency function. A graph according to

this definition is undirected and may have self-loops andipialedges betweg
vertices (such graphs are also called multigraphs).

Elementary Cycle
in graphg is a sequencey, ey, ..., v,, ¢,, Of verticesy; € V and edges; € F

without repetition such that each consecutive two vertaresadjacent and the

last and the first vertices are adjacent,d(e;) = {v;,v;41},1 < @ < n and
e(en) = {vn, v1}.

Separated Elementary Cycle (SEC)
is an elementary cycle not sharing any edge with anotherezitary cycle.

Edgel String S
is a connected set of edgels each having 2 neighbsursZ2.

Start Edgel

is an edgel that has a number of neighbouring edgels différem 2, i.e. 0,1,3

or4,

Edgel Graph

is an attributed (multi) grapf = (V, E, ¢, A,, A¢) representing the output of an

n

edge detector. Each vertexc V represents a Start Edgel. The vertex attribute
function A,: V — 7?2 associates position of the edgel with the node. Each

e € F represents an Edgel String. The edge attribute functiom — L C Z?
associates an Edgel String with each edge.

Table 1:Definitions used in Section 3




on what geometric constraints are associated with eacksmondence of cycles). In
the context of our application, it is not necessary to 'iptet’ the edges. Edges aris-
ing from scratches on a surface, albedo change or surfasatation discontinuity are
equally useful, as long as they are repeatedly detectedn &vadows are helpful if
they are present in both images. This is in contrast to soaggiwnal use of the edge
detector (interpretation of edges as surface disconigsjiassociation of edges with
primitives of line drawings) where such edges would be abersid spurious.

Problem 2: Computational complexity. The problem okenumeration of all elemen-
tary cycles of a grapimas been studied in combinatorial mathematics. The bound on
its time complexity is given in [13] a®(Nm + n +m), wheren is the number of ver-
tices,m is the number of edges is the size of the output, i.e. the number of cycles. In
our application, theVm term is prohibitive. In a complex image likaLBONNE-003
(Fig. 1) the numbem of edgel strings (not edgels!) is above 3000.

Enumeration of separated elementary cyclesFor a small graph, the problem be-
comes computationally tractable if ongeparatedelementary cycles are required.
Since each edge can only belong to at most one SEC, the sibe olutputV < m
and the bound on the complexity becont@gn?). This is still not practical for our
application. We therefore propose an approximate alguoritmat is fast and simpte
and has linear time complexity(max(n, m)), wheren is the number of nodes and

the number of edges. The structure of the algorithm is shaiowb

Algorithm 2: Approximate enumeration of separated eleagrtycles

Input : undirected graply = (V, E, ¢)

Output: list of elementary separated cycles

1. do 2 times (or until not new self-loops found; see text)

2. Remove vertices of degree 1.

3. Remove degree 2 nodes that are not self-loops, propggatoel strings.

4. Add to output all edges that are self-loops and remove fhemgG.

Before describing in detail steps 1-4, let us first explagrtature of the approximation
of Algorithm 2. We detect only those loops that can be redumesteps 2 and 3 to a
single self-loop edge. In the first step, all vertices of éegl are removed since they
cannot be part of any cycle. This process can be completediilgée sweep through
the list of vertices. The operation has complexity lineahimnumber of vertices, since
each vertex is considered at most twice. The second 'touctiieovertex happens if

10n a thevALBONNE-003 image (see Fig. 1) the time to compute all SECs is apprately 0.2
seconds on a SPARC ultra. Implemented in approximatelyrgslof C code (using a good graph
library).



it is (the single vertex) adjacent to a vertex of degree 1. Vi#héeft are separated
cycles, complex cycles and connections between them. Mpstrated cycles become
sequences of vertices of degree 2. These sequences aredadwstep 2 to single
vertex with a self-loop. All degree 2 nodes without a setidaare deleted from the
graph; before removing an edge, the edgel string assocmtldt is moved to an
adjacent edge. Steps 2 and 3 are implemented as a single swagh the list of
vertices and edges respectively. Steps 2-4 must be in detezeded, since detection
of a cycle and a subsequent removal of a self-loop may tramsfovertex of degree 3
to degree 1. In experiments, this never happened after tomdeateration. However,
we have constructed examples where the number of iteratieged idog m. Facing
diminishing returns, we sét = 2 to maintain the linearity of the algorithm.
Robustness.The concept of an elementary cycle is very brittle. A single-pixel gap
— a common event especially in areas of complex intensitycgire — will break a
cycle. To counter the problem, edges are inserted into thehgbetween two degree
one vertices, if they correspond to edgels satisfying adcst constraint. The distance
threshold and the edge detector filter width are the onlympaters of the method.

4 Maximally Stable Extremal Regions

In this section, we propose a class of distinguished regioaisis based solely on an
extremal property of the intensity function in the regiow @m its outer boundary. The
so calledMaximally Stable Extremal Regions (MSERah be defined on any image
(even high-dimensional) whose pixel values are from altotatlered set. The formal
definition of the MSER concept and the necessary auxiliafinidiens are given in
Table 2.

The concept can be explained informally as follows. Imagith@ossible thresh-
oldings of an input gray-level image say with a common rang® = {0, 1, ..., 255}
. We will refer to the pixels below a threshold as 'black’ andhose above or equal
as 'white’ .If we were shown a movie of thresholded imadgswith framet corre-
sponding to thresholél we would see first a white image. Subsequently black spots
corresponding to local intensity minima will appear andvgrét some point regions
corresponding to two local minima will merge. Finally, tteest image will be black.
The union of all connected components of all frames of theigigvdentical to the set
of all maximal regions; minimal regions could be obtainedriwerting the intensity of
I and running the same process. On many images one observiEsctidinarisation
is stable over a large range of thresholds in certain regi®uash regions are of interest
since they posses the following properties:

e Invariance to monotonic transformation M : S — S of image intensities.

The set of extremal regions is unchanged after transfoomafi, I (p) < I(q) —
M(I(p)) = I'(p) < I'(q) = M(I(q)) sinceM does not affect adjacency (and
thus contiguity) and intensity ordering is preserved.
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Image

I'isamapping : D C Z* — S. Extremal regions are well defined on ima
where:

1. S is totally ordered, i.e. reflexive, antisymmetric and tiiwes binary re-

lation < exists. In this paper only = {0, 1,...,255} is considered, but

extremal regions can be defined on e.g. real-valued im@esk).

2. An adjacency (neighbourhood) relatign ¢ D x D is defined. In this
paper 4-neighbourhoods are used, ijeq € D are adjacentyAq) iff
Yo lp— @l <1

Region

Q is a contiguous subset @, i.e. for eachp,q € Q there is a sequen
P, a1, az, - .., a,,q andpAay, a;Aa;yq, a,Aq.

(Outer) Region Boundary

09 ={qeD\Q:3pe Q:qAp},ie.the boundargQ of regionQ is the set

of pixels being adjacent to at least one pixeldbut not belonging t@.

Extremal Region
Q C D is aregion such that for all € Q,q € 99 : I(p) > I(q) (maximum
intensity region) ot (p) < I(q) (minimum intensity region).

Maximally Stable Extremal Region (MSER)

Let Q,...,Q9;_1,9;,... be a sequence of nested extremal regions,@geC
Q;+1. Extremal regionQ;- is maximally stable iffy(i) = |Q;_a \ Qiral/|Q:]
has a local minimum at* (].| denotes cardinality).A is a parameter of th
method.

Table 2:Definitions used in Section 4

jes

e
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e Invariance to adjacency preserving(continuous) transformatidfi : D — D
on the image domain.

e Stability, since only extremal regions whose support is virtuallynamged over
a range of thresholds is selected.

e Multi-scale detection. Since no smoothing is involved, both very fine and very
large structure is detected.

e The set of all extremal regions can &@eumerated inO(n loglogn), i.e. almost
in linear time for 8 bit images.

Due to lack of space, the algorithm for extremal region deiaaccan be only briefly
outlined.

Algorithm 3: Enumeration of Extremal Regions. (outline)

Input: Imager’

Output: list of nested extremal regions

1. For all pixels sorted by intensity
Place pixel in the image.

Update the connected component structure.

2
3
4. Update the area for the effected connected component.
5. For all connected components

6

Local minima of the rate of change of its area define stdisesholds.

The computational complexity of step.1d¥n) if the image range is small, e.g. the
typical {0, ..., 255}, and sorting can be implementedesiSORT [16]. As pixels or-
dered by intensity are placed in the image (either in deorgas increasing order), the
list of connected components and their areas is maintaised) the efficient union-
find algorithm [16]. The complexity of the algorithm @(n loglogn). The process
produces a data structure holding the area of each connemtegonent as a function
of a threshold. A merge of two components is viewed as the érdistence of the
smaller component and the insertion of all pixels of the #nalomponent into the
larger one. Finally, intensity levels that are local miniafahe rate of change of the
area function are selected as thresholds. In the output, M&ER is represented by a
local intensity minimum (or maximum) and a threshold.

12



Notes The structure of algorithm 3 and an efficiematershed algorithm[21] is
essentially identical. However, the structureanftputof the two algorithms is dif-
ferent. The watershed is a partitioning Df i.e. a set of region®R; : |JR; =
D,R; N Ry = 0. In watershed computation, focus is on thresholds wereonsgi
merge (and watershed basins touch). Such threshold argl@firiterest to us, since
they are highly unstable — after merge, the region area jutipMSER detection,
we seek a range of thresholds that leaves the watersheddfBesitively unchanged.
Detection of MSER is also related thresholding. Every extremal region is a con-
nected component of a thresholded image. However, no gtobaptimal’ threshold
is sought, all thresholds are tested and the stability oftimmected components evalu-
ated. Finally, the output is not a binarized image. For soantssf the image, multiple
stable thresholds exist and a system of nested subsetpist authis case.

5 Matching

The most common method for establishing tentative cormedgiace is based on Ma-
halanobis distance (MD) [14, 20, 15]. However, the methadlma criticised on both
theoretical and practical grounds. In the stereo matchiaglpm, no training samples
are available and the use of Mahalanobis distance is eguit/&d whitening theotal
covariance matrix and computing the Euclidean distanceatimpt is made to esti-
mate the within-class covariance matrix (the covariand@@grrors in corresponding
measurements in the two images) nor the between-classi@aovarmatrix. This is
equivalent to the assumption that two covariances are ¢ghalhich in most prob-
lems is far from true. Concerns about the inherent Gausssumaption may be voiced
too. From the practical point of view, MD is not robust — a $anfgvild’ measurement
can make it arbitrarily large. Our experiments have shovan dften at leassomeof
the affine invariants used are unstable.

On the other hand, the robustness of proposed similaritysureallows us to use
invariants from a collection of measurement regions, ewenesthat are much larger
than the associated distinguished region. Measuremens lfirge regions are ei-
ther very discriminative or completely wrong. The formetgseestablishing reliable
tentative correspondences, the influence of the lattem#dd by robustness of the
approach. We first define the similarity measure and thefijpdemment on its prop-
erties.

Each DR is described by a measurement vecter (xq, s, . . ., z,,). In the match-
ing problem there are two sefsandR of DR measurement vectors originating from
the ‘left’ and ‘right” image respectively. The task is to firghtative matches given the
local description. The set of initial correspondencesiigd as follows. Two regions
with descriptionx € £ andy € R are taken as a candidates for a matckif the
most similar measurement yoandvice-versai.e.

vx'e L\ x:d(x,y) <dX,y) and Vy' e R\y :d(y,x) <d(y', x),

13



whered is the asymmetric similarity measures defined below. In traputation of
d(x,y) each component of the measurement vector is treated indeptyn The sim-
ilarity between thé-th component ok andy is measured by the number of vectgfs
whosei-th measurement is closer. In other words the similarithaitth component
is the rank of the measurement frgnamong all measuremengsfrom R:

ranlé(,y =card{x' € L: |z, — y;| < |z; — yi|}). (1)
The overall similarity measure is then defined as follows

d(x,y) =card{i € {1,...,n} : rankg y < t}), )

wheren is dimension of the measurements vector aagredefined ranking threshold.
The computation ofi(y, x) is analogous with the roles af and R interchanged.
The most important property af is that the influence of any single measurement is
limited to 1. Only the main idea of the probabilistic error deb behind the design
may be mentioned due to limited space. Under a very broacerahgrror models,
corresponding measurements are more likely to be belowattigrrg threshold than a
mismatch. One of the interesting properties of the simitarieasure is its invariance
to any monotonic transformation applied to elements of tkasurement vectot, so
measurement of different orders of magnitude are easilgledn

6 EXxperiments

In all experiments, the following parameters of the matghafgorithm were used.
Each measurement region was described by 21 general colmment invariants of
Midru et. al. [11] computed from four measurement region®gYl The MRs defined
in terms of affine-invariant constructions on the DR bouretawere the following:
the DR itself and its convex hull scaled by factors of 1.5, @ @nThe rank threshold,
a parameter of the robust similarity measure, was set to ntafiee correspondences
comprised only those pairs whose colour invariants werelallytnearest in the robust
similarity measure. Note that the similarity was compute84-dimensional space (21
invariants, 4 MRs). Epipolar geometry was estimated by tpeint algorithm [7]. In
all experiments, only a linear algorithm is used [7] to estienepipolar geometry; no
effort was made to improve the precision by known methodé siscbundle adjust-
ment, correlation, or homography growing.

Experiment |.: Epipolar geometry from SEC correspondences The potential
of the Separated Elementary Cycles for wide-baselinesteas evaluated on images
of an office scene. ThBOOKSHELF datasetcontains approximately ten images taken
from significantly different viewpoints. The density, pigon and repeatability of
the SEC output is shown on the pair images depicted in Figyneiddle row); more
successful wide-baseline matching experiments are regbort[8].

9The data will be made publicly available.
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left | right | TC | EG | miss]

[SECs[[178] 162 [ 52| 29| 1 |

Figure 2: BDOKSHELF. SECs detected in a pair of images (top row), estimated epipo
lar geometry (middle row) and a close-up of selected areakedavith black rectan-
gles in the originals (bottom row).
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left | right | TCTEG\ mlss\

MSERs - || 558 | 437 | 143
MSERs +| 404 | 467 | 120 37 O
total 962| 904 | 263| 78 | O

Figure 3: KAMPA (easy): MSERs (both intensity minima and maxima) deteateal i
pair of images (top row), estimated epipolar geometry (eiddw) and a close-up of
selected areas marked with black rectangles in the orggibalttom row).
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The top row of Figure 2 shows edgel strings that are attréoofeedges of sepa-
rated elementary cycles of the Edgel Graph. The number o3 @e left and right
images was 178 and 162 respectively. In the middle row, thetimages with over-
layed epipolar lines are shown. The SECs that formed testatirrespondences and
are consistent with the estimated epipolar geometry ardgigilged. The number of
SECs with mutually nearest invariant descriptions, i.e rthmber of tentative corre-
spondences, was 52 in this test. TH¥eNSAC procedure found an epipolar geometry
consistent with 29 tentative correspondences of which 2&arrect. The numbers of
detected SECs in the left and right images, tentative cooredences (TC), epipolar
geometry consistent correspondences (EG) and the numbaspfatches (miss) are
summarised in the caption of Figure 2. Mismatches are qoorefences consistent
with the estimated epipolar geometry that are not projestiaf the same part of the
scene. The ratio TEG determines the average numberafNsAc hypothesis-verify
attempt$ and hence the speed of epipolar geometry estimation.

The bottom row of Figure 2 shows close-ups of two rectangigions selected
from the left and right images respectively. The subimag®énbottom left corner is
interesting because the three SECs have identical ligktibkides and almost affinely
equivalent shape. The SEC regions formed correct tentedirrespondence probably
because of the differences in the larger and discriminatieasurement regions.

Experiment Il.: Epipolar geometry from MSER correspondences. Maximally
Stable Extremal Regions were evaluated on images of an wdEre. Images from
thekAMPA datasetare shown in Figures 3 and 4. The stereo problem is much more
difficult for the pair presented in Figure 4, where the viewgpchange induces signif-
icant perspective effects and change of scale. Moreovatrast is very low on the
right side of the images. Taking into account the changingsskhe part of the scene
visible in both images covers less than 50% of the images eXtent of local changes
is clearly visible in the close-ups presented in the bottomaf Figure 4. As an exam-
ple, consider the change near the attic window shown in th@ioaright image. The
window is viewed from a very different angles; the backgmuehanges dramatically.
The repeatability of the MSER around the window is surpghirgood, despite the
acute viewing angle and small resolution. The close-up #bboleft demonstrates
that despite the large change in viewpoint, certain regiemsin remarkably stable.

Compared with the previous example, the simpler stered@mopresented in Fig-
ure 3 does not say much about the limits of MSER-based majcHihe image pair
is included mainly to demonstrate the high density of MSERsfwhich tentative
correspondences were formed. The number of MSERs detattbeé ieft and right
images (top, Figure 3) is above 900. In fact, two types of MS&Rre extracted; those
corresponding to local intensity maxima (MSER+) and to leuaima respectively
(MSER-). In total, 263 tentative correspondences with ralljunearest invariant de-
scriptions are input int@ANSAC. Since contrast reversal is not expected, only corre-
spondence within the respective classes (either '+’ ordr§ allowed. Th&RANSAC

2the average number of trials is approximat@i/mbor EG)™)
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| left | right| TC | EG | miss|
MSERS -11292| 413 | 72 | 12 3
MSERs +| 277 | 414 | 73 | 11 1
total 569 | 827 | 145| 23| 4

Figure 4. KampA (hard): Estimated epipolar geometry (top row) and a clgsefu
selected areas marked with black rectangles in the orggibalttom row).

procedure found an epipolar geometry consistent with 7&atiee correspondences
and no mismatches. The number of MSERs detected in the léftigiht images, the
number of tentative correspondences (TC), epipolar gagneensistent correspon-
dences (EG) and mismatches (miss) are summarised in thercapfFigure 3. In the
top row if Figure 3 we tried to visualise the MSERSs. It is nosgasince MSER do
not form a partitioning but rather a tree of nested regiohs not possible to trace
boundaries of individual MSERS in a binary image. The MSERraary image at
least clearly shows that the density of MSERS is high almestyevhere, the sky and
the featureless road being the exceptions.

Returning to the more difficult problem of Figure 4, we see tha number of
tentative correspondences is much lower — 145. UBiKgSAC, an epipolar geometry
was found that was consistent with only 23 tentative cowadpnces of which 4 are
mismatches. Both the small number of epipolar geometryistarg correspondence
and the small ratio of EG consistent to tentative correspooés suggests we are near
the limits of the method.

Experiment Ill.. Cooperation of multiple DR detectors. This experiment was
conducted on one of the most difficult pairs from e BONNE set, see Figure 5.
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This matching problem can be viewed as a benchmark sincégesuvALBONNE
images have been published in the literature [14, 12]. SéVactors contribute to
the complexity of this matching problem. The main problefffialilty is that only a
set of parallel planes with small relative depth is visilsldoth images. Importantly,
not a single wall with significant relative depth is presenbbth images (the walls
perpendicular to plane of the portal). For example, onlyftbatal side of the bell
tower is visible in both images.

We have tacitly used combination of two types of DR detectibrs MSER+ and
MSER- , already in Experiment Il. Here we combine SECs with tivo types of
MSERs. The number of DRs detected in each of the images ig Fagh. The frac-
tion of DRs that gave rise to a tentative correspondencerigleg. This is due to
the non-distinctive nature of DRs on the wall; often a DR ¢edea single stone. Per-
haps surprisingly, some of the DR corresponding to a sirtgieeswere successfully
matched, probably because of the fairly large measurenegiins combined in the
robust similarity measure. The numbers of DRs detectedarett and right image,
the number of tentative correspondences (TC), epipolamgéy consistent corre-
spondences (EG) and mismatches (miss) are summarised aaptien of Figure 5.
The table shows that the number of correct matches consustigrthe found epipolar
geometry for each type of DRs was between 8 and 10, whichudficigent for reliable
EG estimation since. In total, 26 correct correspondence$oaind, which is much
less likely to arise randomly.

7 Conclusions

In the paper we first discussed the choice of image elemeatstk put into corre-
spondence in the wide-baseline matching problem. We iotred and defined for-
mally the concept of a distinguished region and we arguegldheeligible candidates
for matching.

The main contribution of the paper is the introduction of tew types of distin-
guished regions. For both types, tBeparated Elementary Cycles of the Edge Graph
(SECs)and theMaximally Stable Extremal Regions (MSERS) efficient (near linear
complexity) and practically fast detection algorithm wasgented. Experimentally
we showed the stability of the proposed DRs in disparate vigfareal-world scenes
with significant change of scale, camera rotation, and 3Dstedion of the viewpoint.

In a second contribution, a robust similarity measure ftaldgshing tentative cor-
respondences was proposed. Due to the robustness, we viete abnsider invari-
ants from multiple measurement regions, even some thatsigmdicantly larger (and
hence probably discriminative) than the associated djsigied region.

Good estimates of epipolar geometry were obtained on citaflg wide-baseline
problems with the robustified matching algorithm operatinghe output produced by
the proposed detectors of distinguished regions. Fullgaffistortions and significant
occlusion were present in the tests. Test images includ#dd daddoor and indoor
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scenes, some already used in published work.

The use of multiple types of distinguished regions was destrated in an exper-
iment conducted on a non-trivial pair from theLBONNE set, where the estimation
process of epipolar geometry vaNSAC failed for any single DR type. Finally, we
proposed a modification of the linking part of an edge detdotreasing its repeata-
bility.

A Constructing the edgel graphg

First, the Deriche filter is applied [2] and non-maxima s@ggsion is carried out. Un-
like in standard edge detectors, the output of hysteresgsthiolding is not a set of
edgel strings but a graph. Aetdgelis a pixel, i.e. an element &2, that was assigned
value 1 in the hysteresis thresholding process. Definitfongdgel stringand start
(end) edgehre given in Table 1. The edge detector outpsitransformed in an at-
tributed graphg = (V, E,¢). The the set of vertice®” and the set of edges are
extracted in the following manner. Each start (end) edgetpsesented by a vertex,
each edgel string is represented by an edge between vertitesstart and end edgels
connected by the edgel string. The edgel string (repredasta list of edgels) is stored
as an attribute of the edge it gave rise to.

Technical details The algorithm for construction of as described above of
would not be able to represent edgel strings that do not htare and end edgels
(closed loops of edgels; not to be confused with cycle§!df The situation is easily
detected, an arbitrary edgel is chosen as the start (andeelge) and a vertex rep-
resenting it is inserted into the graph. The graph may havices of degree zero
(representing isolated edgels) as well as self-loops,edges starting and ending in
the same vertex, representing closed edgel strings. Shdaype of neighbourhood
relationship has not been specified. To interpret the edgeksrings as far as pos-
sible a mixture of 4 and 8 connectivity is used. We start byckhmg the number of
4-neighbours of an edgel. If two or more neighbours are fotimel search for neigh-
bours stop. If less than two are found, a subset of 8-neigisboonsistent with the
4-neighbours is checked. The switching between 4 and 8 ctimite is clearly ap-
parent in the scaled-up part of teLBONNE-003 image shown at the bottom right
of Figure 1. Edgel strings are in black, each white point giWe rise to a vertex .
Each connected component of black points is represented edge inG. The com-
plexity (linear in the number of pixels) as well as practispéed of construction @f
is effectively identical to a standard edge linking proaedun common implemen-
tations, edgel strings are either broken or follow a randaith @t points where there
are more than two neighbours. Together with the hysteressiiolding process, both
common methods significantly reduce repeatability of thgeedietector output, since

3]t would be more appropriate to speak about edgel detectbeicontext of this section. The term
'edge’ refers here to an entity in the gragh
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pixels above the higher threshold are connected with éiffesubset of edgels each
time.
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| | left [right | TC [ EG[ miss|
SECs 529 | 523 | 50 | 11 3
MSERs - | 320 | 127 | 49 | 8 0
Figure 5: \ALBONNE: Esti-| MSERs+| 518 | 362 | 89 | 11| 1
mated epipolar geometry. total 1367 | 1012| 188| 30 4
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