Distinguisher and Related-Key Attack on the Full AES-256

Alex Biryukov, Dmitry Khovratovich, Ivica Nikolić

University of Luxembourg

CRYPTO 2009 Santa Barbara 18 August 2009

AES-256

- 128-bit block;
- 256-bit key;
- 14 rounds;
- Approved for TOP SECRET in the U.S.

Cryptanalysis

Cryptanalysis timeline:

Year	Attack	Rounds	Authors
1998	Square	6	Daemen-Rijmen
2000	Square	8	Kelsey, Lucks et al.
2000	Related-key square	9	_
2005	Related-key rectangle	10	Biham et al.
2007	Known-key square	7	Knudsen-Rijmen

Cryptanalysis

Cryptanalysis timeline:

Year	Attack	Rounds	Authors
1998	Square	6	Daemen-Rijmen
2000	Square	8	Kelsey, Lucks et al.
2000	Related-key square	9	<u> </u>
2005	Related-key rectangle	10	Biham et al.
2007	Known-key square	7	Knudsen-Rijmen

Best attack on 10 rounds: 26 related keys, 2114 data, 2173 time.

Outline of our paper

We show that AES is insecure in both models.

Differential Trail for the Full AES-256

Slow diffusion in the key schedule

- One-byte difference
- Start from the last subkey
- Every inverted round affects only one more byte.

Idea of a local collision

SHA-0

Difference from the message:

Probability 2^{-3}

AES

Difference from the key:

Probability 2^{-6}

Rounds 1
S-boxes in the state (\blacksquare) 1
Probability 2^{-6}

Rounds 2
S-boxes in the state (\blacksquare) 1
Probability 2^{-6}

Rounds 4
S-boxes in the state 3Probability 2^{-18}

Rounds 6
S-boxes in the state 5
Probability 2^{-30}

Rounds 9 S-boxes in the state 10 Probability 2^{-61}

- 5 active S-boxes in the key schedule;
- The trail is thus valid for 1 of 2³⁵ key pairs.

Rounds 12 S-boxes in the state 14 Probability 2^{-87} Key pairs 2^{35}

Rounds 14 (full) S-boxes in the state 19 Probability 2^{-119} Key pairs 2^{35}

S-boxes

S-boxes in the state 19 S-boxes in the key 5

Attack directions

Trail is used in two models:

- Key is unknown and fixed (fixed-key model);
 - Find a secret key K.
- Key may be chosen (chosen-key model).
 - lacktriangle Find keys ${\mathcal K}$ and plaintexts ${\mathcal P}$ that satisfy special properties.

Fixed-key model

Related-key attack

Related-key attack

- K is unknown;
- Encrypt and decrypt on K and $K \oplus \Delta$;
- 1 of 2³⁵ keys can be attacked.
- Complexity 2⁹⁶ after we detect a right key pair.

Chosen-key model

Chosen-key model

- AES is theoretically (2¹³¹) insecure with a secret key.
- It is much less secure compared to an ideal cipher, which can be shown on a PC.

Ideal cipher

- Set of randomly chosen permutations.
- Can be modeled as two oracles.
- Used as a primitive in provably-secure constructions.

Ideal cipher

- Set of randomly chosen permutations.
- Can be modeled as two oracles.
- Used as a primitive in provably-secure constructions.

We show that AES should not be used in provably-secure constructions.

Differential q-multicollision

Introduce a new notion:

Definition. Differential *q*-multicollision:

$$F_{\Delta_K}(P,K) \stackrel{\text{def}}{=} E_K(P) \oplus E_{K \oplus \Delta_K}(P);$$

 $F(P_1,K_1) = F(P_2,K_2) = \cdots = F(P_q,K_q).$

Differential q-multicollision

Introduce a new notion:

Definition. Differential *q*-multicollision:

$$F_{\Delta_K}(P,K) \stackrel{\text{def}}{=} E_K(P) \oplus E_{K \oplus \Delta_K}(P);$$

 $F(P_1,K_1) = F(P_2,K_2) = \cdots = F(P_q,K_q).$

Provably hard to find in an ideal cipher: $\gtrsim q \cdot 2^{\frac{q-1}{q+1}n}$.

A set of q pairs (key, plaintext) that satisfy the trail.

A set of q pairs (key, plaintext) that satisfy the trail.

Can be found in $q \cdot 2^{67}$ with our *Triangulation Algorithm* (CT-RSA 2009).

Multicollision search

The trail has 41 active S-boxes.

Multicollision search

The trail has 41 active S-boxes.

- Fix values of 30 active S-boxes.
- 2 Run the triangulation algorithm and derive a set of free variables.
- 3 Produce many pairs (P, K) and check for remaining S-boxes in 2^{67} .

Practical distinguisher for 13 rounds (14 are similar):

 $\Delta_{\mathcal{K}}$ 0f070709 0e070709 0f070709 0e070709 371f1f21 00000000 371f1f21 00000000

Δ_K	0f070709 0e070709 0f070709 0e070709
	371f1f21 00000000 371f1f21 00000000
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000

Δ_K	0f070709 0e070709 0f070709 0e070709	
	371f1f21 00000000 371f1f21 00000000	
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000	

Δ_K	0f070709 0e070709 0f070709 0e070709
	371f1f21 00000000 371f1f21 00000000
Δ_{P_1}	a31f1f21 00000000 191f1f21 00000000
Δ_{P_2}	3a 1f1f21 00000000 db 1f1f21 00000000
Δ_{P_3}	13 1f1f21 00000000 7e 1f1f21 00000000

Δ_K	0f070709 0e070709 0f070709 0e070709	
	371f1f21 00000000 371f1f21 00000000	
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000	
Δ_{P_2}	3a 1f1f21 00000000 db 1f1f21 00000000	
Δ_{P_3}	13 1f1f21 00000000 7e 1f1f21 00000000	
Δ_{P_4}	fd 1f1f21 00000000 06 1f1f21 00000000	

Δ_K	0f070709 0e070709 0f070709 0e070709
	371f1f21 00000000 371f1f21 00000000
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000
Δ_{P_2}	3a 1f1f21 00000000 db 1f1f21 00000000
Δ_{P_3}	13 1f1f21 00000000 7e 1f1f21 00000000
Δ_{P_4}	fd 1f1f21 00000000 06 1f1f21 00000000
Δ_{P_5}	ab 1f1f21 00000000 db 1f1f21 00000000

Δ_K	0f070709 0e070709 0f070709 0e070709
	371f1f21 00000000 371f1f21 00000000
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000
Δ_{P_2}	3a 1f1f21 00000000 db 1f1f21 00000000
Δ_{P_3}	13 1f1f21 00000000 7e 1f1f21 00000000
Δ_{P_4}	fd 1f1f21 00000000 06 1f1f21 00000000
Δ_{P_5}	ab 1f1f21 00000000 db 1f1f21 00000000
Δ_{C}	01000000 01000000 01000000 01000000

Δ_K	0f070709 0e070709 0f070709 0e070709
	371f1f21 00000000 371f1f21 00000000
Δ_{P_1}	a3 1f1f21 00000000 19 1f1f21 00000000
Δ_{P_2}	3a 1f1f21 00000000 db 1f1f21 00000000
Δ_{P_3}	13 1f1f21 00000000 7e 1f1f21 00000000
Δ_{P_4}	fd 1f1f21 00000000 06 1f1f21 00000000
Δ_{P_5}	ab 1f1f21 00000000 db 1f1f21 00000000
$\Delta_{\mathcal{C}}$	01000000 01000000 01000000 01000000

- Lower bound for q = 5: 2^{75} ;
- Find 5-multicollision in a few hours on the PC;
- Try to find it for your favorite cipher.

Conclusion

Summary

- Differential trail on the full AES;
- Related-key attack in 2⁹⁶ · 2³⁵;
- Practical insecurity in the chosen-key model.

See in the full paper

- All the trail details;
- Proof of the multicollision hardness;
- Insecurity of AES in the Davies-Meyer mode.

New attacks

New results?

Rump session today.

Details

User chooses a secret key pair with our relation.

Then for each key pair:

Relax two S-boxes and recover 80 bits of the key;

User chooses a secret key pair with our relation.

Then for each key pair:

- Relax two S-boxes and recover 80 bits of the key;
- 2 Relax one more S-box and recover 64 bits of the key;

User chooses a secret key pair with our relation.

Then for each key pair:

- Relax two S-boxes and recover 80 bits of the key;
- Relax one more S-box and recover 64 bits of the key;
- 3 Exhaustive search on the other bits.

User chooses a secret key pair with our relation.

Then for each key pair:

- Relax two S-boxes and recover 80 bits of the key;
- Relax one more S-box and recover 64 bits of the key;
- 3 Exhaustive search on the other bits.

Works in 2^{96} time for a right key pair, 2^{131} in total.

Alternative on the key recovery

Given: bytes of different subkeys.

Find: the key.

Tool: triangulation algorithm (CT-RSA 2009).

- Write the key schedule as a system of equations;
- Perform a Gaussian-like elimination;
- Try all values for free variables.

