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Abstract

Given a graph G, alabeling ¢ : V(G) — {1,2,...,d} is said to be d-distinguishing
if the only element in Aut(G) that preserves the labels is the identity. The distin-
guishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. If GOH denotes the Cartesian product of G and H, let
G’ = GOG and G" = GOG™ ™. A graph G is said to be prime with respect to
the Cartesian product if whenever G = G10G5, then either G1 or Gy is a singleton
vertex. This paper proves that if G is a connected, prime graph, then D(G") = 2
whenever r > 4.

1 Introduction

Given a graph G, a labeling ¢ : V(G) — {1,2,...,d} is d-distinguishing if the only
element in Aut(G) that preserves the labels is the identity. The idea is that the labeling
together with the structure of G uniquely identifies every vertex. Formally, c is said to be
d-distinguishing if ¢ € Aut(G) and c(¢p(x)) = c(z) for all x € V(G) implies that ¢ = id.
The distinguishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. It is a measure of the relative symmetry of G.

It is immediate that D(K,,) = n and when ¢ > p, D(K,,,) = ¢q. It is straightforward
to see that D(K,,) = n + 1. The original paper on distinguishing [1] was inspired by
a recreational puzzle [5]. The solution requires showing that if n > 6, then D(C,) = 2.
The attraction of this puzzle is the contrast with smaller cycles where D(C,,) = 3 when
3<n<5.

The inspiration for this paper is the solution to the problem of distinguishing the gen-
eralized cubes. Let @, denote the r-dimensional hypercube: V(Q,) = {x = (z1,...,2,) :
x; € Zo} and xy € E(Q,) if x and y differ in exactly one coordinate. Note that Q2 = Cy,
Q3 is the standard cube, and D(Q2) = D(Q3) = 3.
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The Cartesian (or box) product of two graphs G and H, denoted by GOH, is the
graph whose vertex set V(GOH) = {(u,v) : u € V(G),v € V(H)}. The vertex (u,v) is
adjacent to the vertex (w, z) if either u = w and vz € E(H) or v = z and vw € E(G). The
box notation illustrates the Cartesian product of two edges. Here we let G* denote GOG
and recursively let G° = GOG . The connection between hypercubes and Cartesian
products is that Q, = K,. For more on Cartesian products see [4].

Recently Bogstead and Cowen showed that if » > 4, then D(Q,) = 2 [2]. Their proof
idea is elegant: find H, an induced subgraph of G, such that any nontrivial automorphism
of G maps some vertex in H to a vertex not in H. In such a circumstance the natural
labeling {c(z) = 2 if x € V(H) and ¢(z) = 1 otherwise} is 2-distinguishing. Using this
technique it is straightforward to prove that D(K3) = D(P;) = 2, and it is natural to
think that larger powers of these graphs will also be 2-distinguishable. All of this suggests

the following conjecture.

Conjecture 1. If G is connected, then there exists R = R(G) such that if r > R, then
D(G") = 2.

The connectivity is necessary since if G is two independent vertices, then D(G") = 2".

This purpose of this note is to prove Theorem 2, a significant strengthening of the
above conjecture for a slightly smaller class of graphs. In its full generality Conjecture 1
remains open.

2 Cartesian Products

A graph H is said to be prime with respect to the Cartesian product if whenever H =
H,0OH,, then either H; or H, is a singleton vertex. It is well known that if GG is connected,
then G has a unique prime factorization i.e. G = H10OH,0---0OH, such that for 1 <i <
t, H; is prime. About thirty-five years ago Imrich and Miller independently showed the
following theorem.

Theorem 1. [4] If G is connected and G = H,OH,0- - - OH, is its prime decomposition,
then every automorphism of GG is generated by the automorphisms of the factors and the
transpositions of isomorphic factors.

Corollary 1.1. If G is a connected prime graph with |V (G)| = n, then Aut(G") <
Aut(K))

Proof. Since every automorphism of G is an automorphism of K, it follows that every
automorphism of G is an automorphism of K. O

Corollary 1.2. If G is a connected prime graph with |V (G)| = n, then D(G") < D(K,)).
Proof. Any labeling that destroys every automorphism of K, must also destroy every

automorphism of G . O
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We now state our main result, though its proof will be postponed until the end of the
next section.

Theorem 2. If G is a connected graph that is prime with respect to the Cartesian
product, then D(G") = 2 whenever r > 4. Futhermore, if in addition, |V (G)| > 5, then
D(G") = 2 whenever r > 3.

It is well known that almost all graphs are connected. Graham [3] has shown that
almost all graphs are irreducible with respect to the ©* equivalence class; see [4]. Since
every such irreducible graph is prime, almost all graphs satisfy the hypotheses of Theorem
2.

It seems that it should be possible to prove Theorem 2 using the Bogstead Cowen
strategy. Whether there is such a proof remains open.

3 The Motion Lemma and Its Consequences

For ¢ € Aut(G) let m(o) = {x € V(G) : o(x) # z}| and let m(G) = min{m(o) :
o # id}. Call m(o) the motion of 0 and m(G) the motion of G. Using an appealing
probabilistic argument Russell and Sundaram showed that if the motion of G is large,
then the distinguishing number of GG is small. Specifically they proved the motion lemma,
Theorem 3.

m(G)

Theorem 3. [6] If d * > |Aut(G)|, then D(G) < d.
To apply the motion lemma we need determine [Aut(K),)| and m(K,).
Theorem 4. |[Aut(K))| =r!(n!)".

Proof. K, is vertex transitive and has n" vertices. Each vertex, say x, is contained in
exactly r cliques of size n and the vertices in these cliques are disjoint except for . An
automorphism might take x to any of the n” vertices. Once the image of z is chosen, then
a clique that contains x can be mapped to a clique that contains the image of x in any
of r(n — 1)! ways. A second clique containing = can be mapped in any of (r — 1)(n — 1)!
ways. The j* clique containing z can be mapped in any of (r —j+ 1)(n — 1)! ways. Once
all cliques containing = are mapped, the entire automorphism is fixed. Alternatively, one
can recognize Aut(K,) as an appropriate wreath product and arrive at the count that
way. U

Theorem 5. If n > 3, then m(K)) = 2n" .

Proof. For every xs, ..., ,, let oy be the automorphism of K|, in which oo(1, o, ..., 2,) =
(2,29,...,2.);00(2,29,...,2,) = (1,29,...,2,); and oy fixes everything else. Clearly
m(og) = 2n” " It remains to show that no non-trivial automorphism has smaller motion.

The proof that m(K) > 2n" will use a combination of induction and contradiction.
The base case holds since when r = 1, any non-identity automorphism must move at least
two vertices.
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Let Fj, j,..io = {(x1,...,2,) € V(K,) : ©1 = j1,Ta = jJo, ..., 2 = j;}. The notation is
chosen to emphasize that we are looking at vertices in K whose first coordinates are fixed.
Let Ly = {(z1,...7,) € V(K)) : z, = k}. The notation is chosen to emphasize that we
are looking at vertices in K, whose last coordinate is fixed. Note that |Fj al=n""
and that |Ly| =n'"

If o € Aut(K) is such that 0 < m(c) < 2n" ', then o fixes more than (n—2)n" " ver-
tices. By the pigeonhole principle and appropriate reindexing there exists ji, jo, ..., Jr_1
such that o fixes more than (n — 2)n" ~ vertices in Fj,; o fixes more than (n — 2)n
vertices in Fj, j,; o fixes more than (n — 2)n’ " vertices in F}, ;,. ;.; and o fixes more
than n — 2 vertices in F}, ;.. Alternatively ¢ moves at most one vertex in this clique.
Since n > 3, o fixes the entire clique F)

1502505

1y Jr—1"

For 1 <k<n, LyNFj ., ={0J2---,Jr—1,k)}. This vertex is fixed by 0. Now
any vertex in K, that is adjacent to (ji,ja, ..., jr—1, k) is either in Fj, _; , orin Ly. In
the former case it is fixed by o. In the latter case in order to preserve adjacency, it must
be mapped to a vertex in L,. Now all the vertices in L, that are at distance two from
(71,72, - - - Jr—1k must also be mapped to Li. Continuing we see that o maps Ly to itself.

Next, for the moment suppose that for a particular value of k, L; is fixed by ¢. Since
every vertex in K; — Ly, is adjacent to exactly one vertex in L, o0 must map Ly, Lo, ... L,
onto Ly, Ly, ..., L,. Since o is the identity on Fj, _; ,, o is the identity on all of K;.

Thus we may assume that for every k with 1 < k < n, ¢ maps L; to L; moving some
of the vertices in Ly. Since o|, is an automorphism on K;_l we can inductively assume
that o moves at least 2n' ~ vertices. Since this is true for each k, m(s) > 2n" . O

We now turn to the proof of Theorem 2.

Proof. First we note that when r > 1, G' is not rigid. Thus D(K]) > 1. If n = 2, then
Theorem 2 is just the result of Bogstead and Cowen. When n > 3 we can substitute
the results of Theorems 3 and 4 into the Motion Lemma. Thus if r!(n!)” < 2" then
D(K,) < 2.
Case (i): Suppose n > r > 4. Tt is straightforward to check the following inequalities.
The logarithms are base 2.

log(r!) + rlog(n!) < nlog(n) +n’log(n) <n’ <n'

Exponentiating the extremes gives r!(n!)" < onr=H

Case (ii): Suppose 7 > n > 3 and r > 5. It is straightforward to check the following
inequalities. The logarithms are base 2.

r—1

log(r!) + rlog(n!) < rlog(r) + rQIOg(T) <3 7 <n
Again exponentiating the extremes gives r!(n!)" < o™
Case (iii): Suppose 7 =4 and n = 3. A direct calculation shows that rl(n!)" < 207"

Finally it is straightforward to check that if r = 3 and n > 5,6(n!)’ < 27°. O
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