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Abstract

Given a graph G, a labeling c : V (G) → {1, 2, . . . , d} is said to be d-distinguishing

if the only element in Aut(G) that preserves the labels is the identity. The distin-

guishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. If G2H denotes the Cartesian product of G and H, let
G

2
= G2G and G

r

= G2G
r−1

. A graph G is said to be prime with respect to
the Cartesian product if whenever G ∼= G12G2, then either G1 or G2 is a singleton
vertex. This paper proves that if G is a connected, prime graph, then D(G

r

) = 2
whenever r ≥ 4.

1 Introduction

Given a graph G, a labeling c : V (G) → {1, 2, . . . , d} is d-distinguishing if the only
element in Aut(G) that preserves the labels is the identity. The idea is that the labeling
together with the structure of G uniquely identifies every vertex. Formally, c is said to be
d-distinguishing if φ ∈ Aut(G) and c(φ(x)) = c(x) for all x ∈ V (G) implies that φ = id.
The distinguishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. It is a measure of the relative symmetry of G.

It is immediate that D(Kn) = n and when q > p, D(Kp,q) = q. It is straightforward
to see that D(Kn,n) = n + 1. The original paper on distinguishing [1] was inspired by
a recreational puzzle [5]. The solution requires showing that if n ≥ 6, then D(Cn) = 2.
The attraction of this puzzle is the contrast with smaller cycles where D(Cn) = 3 when
3 ≤ n ≤ 5.

The inspiration for this paper is the solution to the problem of distinguishing the gen-
eralized cubes. Let Qr denote the r-dimensional hypercube: V (Qr) = {x = (x1, . . . , xr) :
xi ∈ Z2} and xy ∈ E(Qr) if x and y differ in exactly one coordinate. Note that Q2 = C4,
Q3 is the standard cube, and D(Q2) = D(Q3) = 3.
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The Cartesian (or box) product of two graphs G and H , denoted by G2H , is the
graph whose vertex set V (G2H) = {(u, v) : u ∈ V (G), v ∈ V (H)}. The vertex (u, v) is
adjacent to the vertex (w, z) if either u = w and vz ∈ E(H) or v = z and uw ∈ E(G). The
box notation illustrates the Cartesian product of two edges. Here we let G

2
denote G2G

and recursively let G
r

= G2G
r−1

. The connection between hypercubes and Cartesian
products is that Qr = K

r

2
. For more on Cartesian products see [4].

Recently Bogstead and Cowen showed that if r ≥ 4, then D(Qr) = 2 [2]. Their proof
idea is elegant: find H , an induced subgraph of G, such that any nontrivial automorphism
of G maps some vertex in H to a vertex not in H . In such a circumstance the natural
labeling {c(x) = 2 if x ∈ V (H) and c(x) = 1 otherwise} is 2-distinguishing. Using this
technique it is straightforward to prove that D(K

3

3
) = D(P

2

3
) = 2, and it is natural to

think that larger powers of these graphs will also be 2-distinguishable. All of this suggests
the following conjecture.

Conjecture 1. If G is connected, then there exists R = R(G) such that if r ≥ R, then
D(G

r

) = 2.

The connectivity is necessary since if G is two independent vertices, then D(G
r

) = 2
r

.

This purpose of this note is to prove Theorem 2, a significant strengthening of the
above conjecture for a slightly smaller class of graphs. In its full generality Conjecture 1
remains open.

2 Cartesian Products

A graph H is said to be prime with respect to the Cartesian product if whenever H ∼=
H12H2, then either H1 or H2 is a singleton vertex. It is well known that if G is connected,
then G has a unique prime factorization i.e. G ∼= H12H22 · · ·2Ht such that for 1 ≤ i ≤
t, Hi is prime. About thirty-five years ago Imrich and Miller independently showed the
following theorem.

Theorem 1. [4] If G is connected and G = H12H22 · · ·2Hr is its prime decomposition,
then every automorphism of G is generated by the automorphisms of the factors and the
transpositions of isomorphic factors.

Corollary 1.1. If G is a connected prime graph with |V (G)| = n, then Aut(G
r

) ≤
Aut(K

r

n)

Proof. Since every automorphism of G is an automorphism of Kn, it follows that every
automorphism of G

r

is an automorphism of K
r

n.

Corollary 1.2. If G is a connected prime graph with |V (G)| = n, then D(G
r

) ≤ D(K
r

n).

Proof. Any labeling that destroys every automorphism of K
r

n must also destroy every
automorphism of G

r

.
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We now state our main result, though its proof will be postponed until the end of the
next section.

Theorem 2. If G is a connected graph that is prime with respect to the Cartesian
product, then D(G

r

) = 2 whenever r ≥ 4. Futhermore, if in addition, |V (G)| ≥ 5, then
D(G

r

) = 2 whenever r ≥ 3.

It is well known that almost all graphs are connected. Graham [3] has shown that
almost all graphs are irreducible with respect to the Θ∗ equivalence class; see [4]. Since
every such irreducible graph is prime, almost all graphs satisfy the hypotheses of Theorem
2.

It seems that it should be possible to prove Theorem 2 using the Bogstead Cowen
strategy. Whether there is such a proof remains open.

3 The Motion Lemma and Its Consequences

For σ ∈ Aut(G) let m(σ) = |{x ∈ V (G) : σ(x) 6= x}| and let m(G) = min{m(σ) :
σ 6= id}. Call m(σ) the motion of σ and m(G) the motion of G. Using an appealing
probabilistic argument Russell and Sundaram showed that if the motion of G is large,
then the distinguishing number of G is small. Specifically they proved the motion lemma,
Theorem 3.

Theorem 3. [6] If d
m(G)

2 > |Aut(G)|, then D(G) ≤ d.

To apply the motion lemma we need determine |Aut(K
r

n)| and m(K
r

n).

Theorem 4. |Aut(K
r

n)| = r!(n!)
r

.

Proof. K
r

n is vertex transitive and has nr vertices. Each vertex, say x, is contained in
exactly r cliques of size n and the vertices in these cliques are disjoint except for x. An
automorphism might take x to any of the n

r

vertices. Once the image of x is chosen, then
a clique that contains x can be mapped to a clique that contains the image of x in any
of r(n − 1)! ways. A second clique containing x can be mapped in any of (r − 1)(n − 1)!
ways. The jth clique containing x can be mapped in any of (r− j +1)(n−1)! ways. Once
all cliques containing x are mapped, the entire automorphism is fixed. Alternatively, one
can recognize Aut(K

r

n) as an appropriate wreath product and arrive at the count that
way.

Theorem 5. If n ≥ 3, then m(K
r

n) = 2n
r−1

.

Proof. For every x2, . . . , xr, let σ0 be the automorphism of K
r

n in which σ0(1, x2, . . . , xr) =
(2, x2, . . . , xr); σ0(2, x2, . . . , xr) = (1, x2, . . . , xr); and σ0 fixes everything else. Clearly
m(σ0) = 2n

r−1
. It remains to show that no non-trivial automorphism has smaller motion.

The proof that m(K
r

n) ≥ 2n
r−1

will use a combination of induction and contradiction.
The base case holds since when r = 1, any non-identity automorphism must move at least
two vertices.
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Let Fj1,j2,...,jt
= {(x1, . . . , xr) ∈ V (K

r

n) : x1 = j1, x2 = j2, . . . , xt = jt}. The notation is
chosen to emphasize that we are looking at vertices in K

r

n whose first coordinates are fixed.
Let Lk = {(x1, . . . xr) ∈ V (K

r

n) : xr = k}. The notation is chosen to emphasize that we
are looking at vertices in K

r

n whose last coordinate is fixed. Note that |Fj1,j2,...,jt
| = n

r−t

and that |Lk| = n
r−1

.

If σ ∈ Aut(K
r

n) is such that 0 < m(σ) < 2n
r−1

, then σ fixes more than (n−2)n
r−1

ver-
tices. By the pigeonhole principle and appropriate reindexing there exists j1, j2, . . . , jr−1

such that σ fixes more than (n − 2)n
r−2

vertices in Fj1; σ fixes more than (n − 2)n
r−3

vertices in Fj1,j2; σ fixes more than (n − 2)n
r−s−1

vertices in Fj1,j2,...,js
; and σ fixes more

than n − 2 vertices in Fj1,...,jr−1. Alternatively σ moves at most one vertex in this clique.
Since n ≥ 3, σ fixes the entire clique Fj1,...,jr−1.

For 1 ≤ k ≤ n, Lk ∩ Fj1,...,jr−1 = {(j1, j2, . . . , jr−1, k)}. This vertex is fixed by σ. Now
any vertex in K

r

n that is adjacent to (j1, j2, . . . , jr−1, k) is either in Fj1,...,jr−1 or in Lk. In
the former case it is fixed by σ. In the latter case in order to preserve adjacency, it must
be mapped to a vertex in Lk. Now all the vertices in Lk that are at distance two from
(j1, j2, . . . jr−1k must also be mapped to Lk. Continuing we see that σ maps Lk to itself.

Next, for the moment suppose that for a particular value of k, Lk is fixed by σ. Since
every vertex in K

r

n −Lk is adjacent to exactly one vertex in Lk, σ must map L1, L2, . . . Ln

onto L1, L2, . . . , Ln. Since σ is the identity on Fj1,...,jr−1, σ is the identity on all of K
r

n.

Thus we may assume that for every k with 1 ≤ k ≤ n, σ maps Lk to Lk moving some
of the vertices in Lk. Since σ|Lk

is an automorphism on K
r−1

n we can inductively assume
that σ moves at least 2n

r−2
vertices. Since this is true for each k, m(σ) ≥ 2n

r−1
.

We now turn to the proof of Theorem 2.

Proof. First we note that when r > 1, G
r

is not rigid. Thus D(K
r

n) > 1. If n = 2, then
Theorem 2 is just the result of Bogstead and Cowen. When n ≥ 3 we can substitute
the results of Theorems 3 and 4 into the Motion Lemma. Thus if r!(n!)

r

< 2n(r−1)
, then

D(K
r

n) ≤ 2.

Case (i): Suppose n ≥ r ≥ 4. It is straightforward to check the following inequalities.
The logarithms are base 2.

log(r!) + rlog(n!) < nlog(n) + n
2

log(n) < n
3

≤ n
r−1

.

Exponentiating the extremes gives r!(n!)
r

< 2n(r−1)
.

Case (ii): Suppose r > n ≥ 3 and r ≥ 5. It is straightforward to check the following
inequalities. The logarithms are base 2.

log(r!) + rlog(n!) < rlog(r) + r
2

log(r) < 3
r−1

≤ n
r−1

.

Again exponentiating the extremes gives r!(n!)
r

< 2n(r−1)
.

Case (iii): Suppose r = 4 and n = 3. A direct calculation shows that r!(n!)
r

< 2n(r−1)
.

Finally it is straightforward to check that if r = 3 and n ≥ 5, 6(n!)
3
< 2n2

.
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