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Abstract

Distinguishing causes from effects is an important problem in many areas. In this paper, we
propose a very general but well defined nonlinear acyclic causal model, namely, post-nonlinear
acyclic causal model with inner additive noise, to tackle this problem. In this model, each ob-
served variable is generated by a nonlinear function of its parents, with additive noise, followed
by a nonlinear distortion. The nonlinearity in the second stage takes into account the effect of
sensor distortions, which are usually encountered in practice. In the two-variable case, if all the
nonlinearities involved in the model are invertible, by relating the proposed model to the post-
nonlinear independent component analysis (ICA) problem, we give the conditions under which
the causal relation can be uniquely found. We present a two-step method, which is constrained
nonlinear ICA followed by statistical independence tests, to distinguish the cause from the ef-
fect in the two-variable case. We apply this method to solve the problem “CauseEffectPairs" in
the Pot-luck challenge, and successfully identify causes from effects.

Keywords: causal discovery, sensor distortion, additive noise, nonlinear independent compo-
nent analysis, independence tests

1. Introduction

Given some observable variables, people often wish to know the underlying mechanism gener-
ating them, and in particular, how they are influenced by others. Causal discovery has attracted
much interest in various areas, such as philosophy, psychology, machine learning, etc. There
are some well-known algorithms for causal discovery. For example, conditional independence
tests can be exploited to remove unnecessary connections among the observed variables and to
produce a set of acyclic causal models which are in the d-separation equivalence class (Pearl,
2000; Spirtes et al., 2000).

Recently, some methods have been proposed for model-based causal discovery of contin-
uous variables (see, e.g., Shimizu et al., 2006; Granger, 1980). Model-based causal discovery
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assumes a generative model to explain the data generating process. If the assumed model is
close to the true one, such methods could not only detect the causal relations, but also discover
the form in which each variable is influenced by others. For example, Granger causality as-
sumes that effects must follow causes and that the causal effects are linear (Granger, 1980). If
the data are generated by a linear acyclic causal model and at most one of the disturbances is
Gaussian, independent component analysis (ICA) (Hyvärinen et al., 2001) can be exploited to
discover the causal relations in a convenient way (Shimizu et al., 2006).

However, the above causal models seem too restrictive for real-life problems. If the assumed
model is wrong, model-based causal discovery may give misleading results. Therefore, when
the prior knowledge about the data model is not available, the assumed model should be general
enough such that it could be adapted to approximate the true data generating process. On the
other hand, the model should be identifiable such that it could distinguish causes from effects.
In a large class of real-life problems, the following three effects usually exist. 1. The effect of
the causes is usually nonlinear. 2. The final effect received by the target variable from all its
causes contains some noise which is independent from the causes. 3. Sensors or measurements
may introduce nonlinear distortions into the observed values of the variables. To address these
issues, we propose a very realistic model, called post-nonlinear acyclic causal model with inner
additive noise. In the two-variable case, we show the identifiability of this model under the
assumption that the involved nonlinearities are invertible. We conjecture that this model is
identifiable in very general situations, as illustrated by the experimental results.

2. Proposed Causal Model

Let us use a directed acyclic graph (DAG) to describe the generating process of the observed
variables. We assume that each observed continuous variable xi, corresponding to the ith node
in the DAG, is generated by two stages. The first stage is a nonlinear transformation of its
parents pai, denoted by fi,1(pai), plus some noise (or disturbance) ei (which is independent
from pai). In the second stage, a nonlinear distortion fi,2 is applied to the output of the first
stage to produce xi. Mathematically, the generating process of xi is

xi = fi,2( fi,1(pai)+ ei). (1)

In this model, we assume that the nonlinearities fi,2 are continuous and invertible. fi,1 are not
necessarily invertible. This model is very general, since it accounts for the nonlinear effect
of the causes pai (by using fi,1), the noise effect in the transmission process from pai to xi

(using ei), and the nonlinear distortion caused by the sensor or measurement (using fi,2). In
particular, in this paper we focus on the two-variable case. Suppose that x2 is caused by x1. The
relationship between x1 and x2 is then assumed to be

x2 = f2,2( f2,1(x1)+ e2), (2)

where e2 is independent from x1.

3. Identifiability1

3.1 Relation to post-nonlinear mixing ICA

We first consider the case where the nonlinear function f2,1 is also invertible. Let s1 , f2,1(x1)

and s2 , e2. As e2 is independent from x1, obviously s1 is independent from s2. The generating

1. When this paper was finalized, a systematic investigation of the identifiability of the proposed causal model was
already reported in Zhang and Hyvärinen (2009), which contains some different results from this paper. Please
refer to (Zhang and Hyvärinen, 2009) for more rigorous results on the identifiability.
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process of (x1,x2), given by Eq. 2, can be re-written as

{

x1 = f−1
2,1 (s1),

x2 = f2,2(s1 + s2).
(3)

We can see that clearly x1 and x2 are post-nonlinear (PNL) mixtures of independent sources s1

and s2 (Taleb and Jutten, 1999). The PNL mixing model is a nice special case of the general
nonlinear ICA model.

ICA is a statistical technique aiming to recover independent sources from their ob-
served mixtures, without knowing the mixing procedure or any specific knowledge of the
sources (Hyvärinen et al., 2001). The basic ICA model is linear ICA, in which the observed
mixtures, as components of the vector x = (x1,x2 · · · ,xn)

T , are assumed to be generated from
the independent sources s1,s2 · · · ,sn, with a linear transformation A. Mathematically, we have
x = As, where s = (s1,s2 · · · ,sn)

T . Under weak conditions on the source distribution and the
mixing matrix, ICA can recover the original independent sources up to the permutation and
scaling indeterminacies with another transformation W, by making the outputs as independent
as possible. That is, the outputs of ICA, as components of y = Wx, produce an estimate of the
original sources si. In the general nonlinear ICA problem, x is assumed to be generated from
independent sources si with an invertible nonlinear mapping F , i.e., x = F(s), and the separa-
tion system is y = G(x), where G is another invertible nonlinear mapping. Generally speaking,
nonlinear ICA is ill-posed: its solutions always exist but they are highly non-unique (Hyvärinen
and Pajunen, 1999). To make the solution to nonlinear ICA meaningful, one usually needs to
constrain the mixing mapping to have some specific forms (Jutten and Taleb, 2000).

The PNL mixing ICA model plays a nice trade-off of linear ICA and general nonlinear
ICA. It is described as a linear transformation of the independent sources s1,s2, ...,sn with the
transformation matrix A, followed by a component-wise invertible nonlinear transformation
f = ( f1, f2, ..., fn)

T . Mathematically,

xi = fi

( n

∑
k=1

Aiksk

)

.

In matrix form, it is denoted as x = f(Ax), where x = (x1,x2, ...,xn)
T and s = (s1,s2, · · · ,sn)

T .
In particular, from Eq. 3, one can see that for the causal model Eq. 2, the mixing matrix is

A =

(

1 0
1 1

)

, and the post-nonlinearity is f = ( f−1
2,1 , f2,2)

T .

3.2 Identifiability of the Causal Model

The identifiability of the causal model Eq. 2 is then related to the separability of the PNL mixing
ICA model. The PNL mixing model (A, f) is said to be separable if the independent sources
si could be recovered only up to some trivial indeterminacies (which includes the permutation,
scaling, and mean indeterminacies) with a separation system (g,W), The output of the separa-
tion system is y = W · g(x), where g is a component-wise continuous and invertible nonlinear
transformation. The separability of the PNL mixing model has been discussed in several con-
tributions. As Achard and Jutten (2005) proved the separability under very general conditions,
their result is briefly reviewed below.

Theorem 1 (Separability of the PNL mixing model, by Achard & Jutten) Let

(A, f) be a PNL mixing system and (g,W) the separation system. Let hi , gi ◦ fi. Assume the

following conditions hold.

• Each source si appears mixed at least once in the observations.
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• h1,h2, ...,hn are diffenrentiable and invertible (same conditions as f1, f2, ..., fn).

• There exists at most one Gaussian source.

• The joint density function of the sources si is differentiable, and its derivative is continuous

on its support.

Then the output of the separation system (g,W) has mutually independent components if and

only if each hi is linear and WA is a generalized permutation matrix.

The above theorem states that under the conditions stated above, by making the outputs
of the separation system (g, W) mutually independent, the original sources si and the mixing
matrix A could be uniquely estimated (up to some trivial indeterminacies). If f2,1 is invertible,
the causal model Eq. 2, as a special case of the PNL mixing model, can then be identified. Thus,
the theorem above implies the following proposition.

Proposition 1 (Identifiability of the causal model with invertible nonlinearities) Suppose

that x1 and x2 are generated according to the causal model Eq. 2 with both f2,2 and f2,1

differentiable and invertible. Further assume that at most one of f2,1(x1) and e2 is Gaussian,

and that their joint density is differentiable, with the derivative continuous on its support. Then

the causal relation between x1 and x2 can be uniquely identified.

In the discussions above, we have constrained the nonlinearity f2,1 to be invertible. Other-
wise, f−1

2,1 does not exist, and the causal model Eq. 2 is no longer a PNL mixing one. A rigorous
proof of the identifiability of the causal model in this situation is under investigation. But it
seems that it is identifiable under very general conditions, as verified by various experiments.
It should be noted that when all the nonlinear functions fi,2 are constrained to be identity map-
pings, the proposed causal model is reduced to the nonlinear causal model with additive noise
which was recently investigated by Hoyer et al. (2009). Interestingly, for this model, it was
shown that in the two-variable case, the identifiability actually does not depend on the invert-
ibility of the nonlinear function f2,1.

4. Method for Identification

Given two variables x1 and x2, we identify their causal relation by finding which one of the
possible relations (x1 → x2 and x2 → x1) satisfies the assumed causal model. If the causal
relation is x1 → x2 (i.e., x1 and x2 satisfy the model Eq. 2), we can invert the data generating
process Eq. 2 to recover the disturbance e2, which is expected to be independent from x1. One
can then examine if a possible causal model is preferred in two steps: the first step is actually a
constrained nonlinear ICA problem which aims to retrieve the disturbance corresponding to the
assume causal relation; in the second step we verify if the estimated disturbance is independent
from the assume cause using statistical tests.

4.1 A two-step method

Suppose the causal relation under examination is x1 → x2. According to Eq. 2, if this causal
relation holds, there exist nonlinear functions f−1

2,2 and f2,1 such that e2 = f−1
2,2 (x2)− f2,1(x1)

is independent from x1. Thus, we first perform nonlinear ICA using the structure in Figure 1.
The outputs of this system are y1 = x1, and y2 = g2(x2)− g1(x1). In our experiments, we
use multi-layer perceptrons (MLP’s) to model the nonlinearities g1 and g2. Parameters in g1

and g2 are learned by making y1 and y2 as independent as possible, which is achieved by
minimizing the mutual information between y1 and y2. The joint density of y = (y1,y2)

T is
py(y) = px(x)/|J|, where J is the Jacobian matrix of the transformation from (x1,x2) to (y1,y2),
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i.e., J =
[

∂ (y1,y2)
/

∂ (x1,x2)
]

. Clearly |J|= |g′2|. The joint entropy of y is then

H(y) =−E{log py(y)}=−E{log px(x)− log |J|}= H(x)+E{log |J|}.

Finally, the mutual information between y1 and y2 is

I(y1,y2) = H(y1)+H(y2)−H(y)

= H(y1)+H(y2)−E{log |J|}−H(x)

= −E{py1(y1)}−E{py2(y2)}−E{log |g′2|}−H(x),

where H(x) does not depend on the parameters in g1 and g2 and can be considered as constant.
One can easily find the gradient of I(y1,y2) w.r.t. the parameters in g1 and g2, and minimize
I(y1,y2) using gradient-descent methods. Details of the algorithm are skipped.

x2

x1

g1

+
-

g2

y1

y2

Figure 1: The constrained nonlinear
ICA system used to verify
if the causal relation x1→
x2 holds.

y1 and y2 produced by the first step are the assumed
cause and the estimated corresponding disturbance, re-
spectively. In the second step, one needs to verify if they
are independent, using statistical independence tests. We
adopt the kernel-based statistical test (Gretton et al.,
2008), with the significance level α = 0.01. If y1 and
y2 are not independent, indicating that x1→ x2 does not
hold, we repeat the above procedure (with x1 and x2 ex-
changed) to verify if x2 → x1 holds. If y1 and y2 are
independent, usually we can conclude that x1 causes x2,
and that g1 and g2 provide an estimate of f2,1 and f−1

2,2 ,
respectively. However, it is possible that both x1→ x2 and x2→ x1 hold, although the chance is
very small. Therefore, for the sake of reliability, in this situation we also test if x2→ x1 holds.
Finally, we can find the relationship between x1 and x2 among all four possible scenarios: 1.
x1 → x2, 2. x2 → x1, 3. both causal relations are possible, and 4. there is no causal relation
between x1 and x2 which follows our model.

4.2 Practical considerations

The first issue that needs considering in practical implementation of our method is the model
complexity, which is controlled by the number of hidden units in the MLP’s modelling g1 and
g2 in Figure 1. The system should have enough flexibility, and at the same time, to avoid
overfitting, it should be as simple as possible. To this end, two ways are used. One is 10-fold
cross-validation. The other is heuristic: we try different numbers of hidden units in a reasonable
range (say, between 4 and 10); if the resulting causal relation does not change, we conclude that
the result is feasible.

The second issue is the initialization of the nonlinearities g1 and g2 in Figure 1. If the non-
linear distortions f2,2 and f2,1 are very strong, it may take a long time for the nonlinear ICA
algorithm in the first step to converge, and it is also possible that the algorithm converges to
a local optimum. This can be avoided by using reasonable initializations for g1 and g2. Two
schemes are used in our experiments. One is motivated by visual inspection of the data distri-
bution: we simply use a logarithm-like function to initialize g1 and g2 to make the transformed
data more regular. The other is by making use of Gaussianization (Zhang and Chan, 2005).
Roughly speaking, the central limit theorem states that sums of independent variables tend to
be Gaussian. Since f−1

2,2 (x2) in the causal model Eq. 2 is the sum of two independent variables,
it is expected to be not very far from Gaussian. Therefore, for each variable which is very far
from Gaussian, its associated nonlinearity (g1 or g2 in Figure 1) is initialized by the strictly
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Data Set #1 #2 #3 #4 #5 #6 #7 #8
Result x1→ x2 x1→ x2 x1→ x2 x1←

‡ x2 x1← x2 x1→ x2 x1← x2 x1→ x2

Table 1: Causal directions obtained. (‡ indicates that the causal relation is not significant.)

increasing function transforming this variable to standard Gaussian. In all experiments, these
two schemes give the same final results.

5. Results

The proposed nonlinear causal discovery method has been applied to the “CauseEffectPairs"
task proposed by Mooij et al. (2008) in the Pot-luck challenge. In this task, eight data sets are
given; each of them contains the observed values of two variables x1 and x2. The goal is to
distinguish the cause from the effect for each data set. Figure 2 gives the scatterplots of x1 and
x2 in all the eight data sets. Table 1 summaries our results. In particular, below we take data
sets 1 and 8 as examples to illustrate the performance of our method.
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Figure 2: Scatterplot of x1 and x2 in each data set of the “CauseEffectPairs" task (Mooij et al.,
2008).

The variable x1 in Data set 1 is non-negative and extremely non-Gaussian. We initialized
the nonlinearity g1 with the transformation log(2+ x1) (Gaussianization was also tested and
it finally produced the same causal relation). The scatterplot of y1 and y2 (as outputs of the
constrained nonlinear ICA system in Figure 1) under each hypothesis (x1 → x2 or x2 → x1) is
given in Figure 3(a,b). Clearly y1 and y2 are much more independent under hypothesis x1→ x2.
This is verified by the independence test results in the third row of Table 2. Note that a large
test statistic tends to reject the null hypothesis (the independence between y1 and y2). Figure 4
shows the result on Data set 8. In this case, we applied the transformation log(x2 + 50) for
initialization. By comparing (a) and (b) in Figure 4, also by inspecting the independence test
results in the fourth row of Table 2, one can see clearly that x1→ x2.

6. Conclusion

We proposed a very general nonlinear causal model for model-based causal discovery. This
model takes into account the nonlinear effect of the causes, inner noise effect, and the sen-
sor distortion, and is capable of approximating the data generating process of some real-life
problems. We presented the identifiability of this model under the assumption that the involved
nonlinearities are invertible. Experimental results illustrated that based on this model, one could
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Figure 3: Result on Data set 1. (a) y1 vs. y2 under hypothesis x1→ x2. (b) that under x2→ x1.
(c & d) x1 vs. g1(x1) and x2 vs. g2(x2) under hypothesis x1→ x2.
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Figure 4: Result on Data set 8. For captions of the sub-figures, please refer to Figure 3.

Data Set x1→ x2 assumed x2→ x1 assumed
Threshold (α = 0.01) Statistic Threshold (α = 0.01) Statistic

#1 2.3×10−3 1.7×10−3 2.2×10−3 6.5×10−3

#8 1.2×10−4 1.2×10−4 1.1×10−4 7.4×10−4

Table 2: Result of independence test on y1 and y2 for Data sets 1 and 8 under different assumed
causal directions. For both data sets, the independence hypothesis is accepted in the
scenario x1 → x2, and rejected in the other scenario, with the significance level α =
0.01.
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successfully distinguish the cause from the effect, even if the nonlinear function of the cause is
not invertible. An on-going work is to investigate the identifiability of this model under more
general conditions.
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