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In this paper we introduce a multiscale symbolic information-theory approach for discriminating nonlinear

deterministic and stochastic dynamics from time series associated with complex systems. More precisely, we

show that the multiscale complexity-entropy causality plane is a useful representation space to identify the range

of scales at which deterministic or noisy behaviors dominate the system’s dynamics. Numerical simulations

obtained from the well-known and widely used Mackey-Glass oscillator operating in a high-dimensional chaotic

regime were used as test beds. The effect of an increased amount of observational white noise was carefully

examined. The results obtained were contrasted with those derived from correlated stochastic processes and

continuous stochastic limit cycles. Finally, several experimental and natural time series were analyzed in order

to show the applicability of this scale-dependent symbolic approach in practical situations.
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I. INTRODUCTION

It is clear that recorded signals from experimental mea-

surements give us very useful information to reveal the

deterministic or stochastic character of the system under

analysis. However, the task to distinguish between regular,

chaotic, and stochastic dynamics from complex time series

can be a critical and subtle issue [1]. Particularly, deterministic

chaotic time series arising from high-dimensional nonlinear

systems share several properties with those generated by

stochastic processes, e.g., a wide-band power spectrum and

a long-term unpredictable behavior. Moreover, experimental

chaotic signals are unavoidably contaminated by noise, making

the discrimination task even more challenging [2]. It is also

well known that the observed dynamics can be strongly

dependent on the resolution scale used to sample the signal.

The notion of chaotic or stochastic behavior of a system on a

certain range of scales was introduced by Cencini et al. [3]. The

time scales where these two behaviors dominate the system’s

dynamics are usually different since the stochastic forcing

kicks the dynamics to larger scales and this effect is bounded

to scales smaller than those showing chaotic motion [4].

The identification of these temporal scales is fundamental

to develop suitable models for simulation and forecasting

purposes. Consequently, it is essential to explicitly include

the time scale notion in the measure devised for a more proper

characterization. We can mention the multiscale entropy [5]

and the scale-dependent Lyapunov exponents [4] as two

alternatives introduced with this aim in mind. The importance

of addressing the multiscale feature is straightforwardly
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concluded from different applications associated with these

previously introduced measures [6].

In this paper we present a reliable and computationally fast

multiscale symbolic information-theory approach to identify

the time scales where stochastic and nonlinear deterministic

components govern the system’s dynamics. It can be easily

applied to the time series obtained from some representative

variable of the complex system under analysis. As will be

shown below, short noisy scalar time series can be efficiently

characterized on a wide range of scales, discriminating where

the stochastic and chaotic dynamics are intrinsically present.

Thus, this methodology can help shed new light on the

characterization of noisy chaotic time series.

II. MULTISCALE COMPLEXITY-ENTROPY CAUSALITY

PLANE

An information-theory quantifier can be defined as a

measure that is able to characterize some property of the

probability distribution associated with an observable or

measurable quantity. Entropy, regarded as a measure of

uncertainty, is the most paradigmatic example. For a discrete

variable x, which can take a finite number M of possible values

xi ∈ {x1, . . . ,xM} with corresponding probabilities pi ∈ P =

{p1, . . . ,pM}, Shannon’s logarithmic information measure is

defined by S[P ] = −
∑M

i=1 pi lnpi [7]. This functional is

equal to zero when we are able to predict with full certainty

which of the possible outcomes i whose probabilities are

given by pi will actually take place. Our knowledge of the

underlying process, described by the probability distribution,

is maximal in this instance. In contrast, this knowledge is

minimal, commonly, for a uniform distribution. It is well

known, however, that the degree of structure present in

a process is not quantified by randomness measures and,
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consequently, measures of statistical or structural complexity

are necessary for a better understanding of chaotic time series

[8]. The opposite extremes of perfect order and maximal

randomness (a periodic sequence and a fair coin toss, for

example) are very simple to describe because they do not have

any structure. The complexity should be zero in these cases.

At a given distance from these extremes, a wide range of

possible degrees of physical structure exists. The complexity

measure allows one to quantify this array of behavior [9].

In this work we have considered the effective statistical

complexity measure (SCM) introduced by Lamberti et al. [10]

since it is able to detect essential details of the dynamics,

and it also discriminates different degrees of periodicity, i.e.,

cycles of period 2,4,8,16,32, . . . associated with the period-

doubling bifurcation route to chaos are clearly distinguished.

This statistical complexity measure is defined, following the

seminal notion advanced by López-Ruiz et al. [11], through

the product

CJS[P ] = QJ [P,Pe] HS[P ] (1)

of the normalized Shannon entropy

HS[P ] = S[P ]/Smax (2)

with Smax = S[Pe] = ln M , (0 � HS � 1) and Pe = {1/M,

. . . ,1/M} the uniform distribution, and the disequilibrium

QJ defined in terms of the Jensen-Shannon divergence.

That is, QJ [P,Pe] = Q0J [P,Pe] with J [P,Pe] = {S[(P +

Pe)/2] − S[P ]/2 − S[Pe]/2} the above-mentioned Jensen-

Shannon divergence and Q0 a normalization constant, equal

to the inverse of the maximum possible value of J [P,Pe].

This value is obtained when one of the components of P , say

pm, is equal to one and the remaining pi are equal to zero.

The Jensen-Shannon divergence, that quantifies the difference

between two (or more) probability distributions, is especially

useful to compare the symbolic composition between different

sequences [12]. Note that the above introduced SCM depends

on two different probability distributions, the one associated

to the system under analysis, P , and the uniform distribution,

Pe. Furthermore, it was shown that for a given value of HS ,

the range of possible CJS values varies between a minimum

Cmin
JS and a maximum Cmax

JS , restricting the possible values of

the SCM in a given complexity-entropy plane [13]. Thus, it

is clear that important additional information related to the

correlational structure between the components of the physical

system is provided by evaluating the statistical complexity

measure.

In order to calculate the two information-theory-derived

quantifiers mentioned previously, a probability distribution

should be estimated from the time series of the system. The

Bandt and Pompe permutation methodology was employed in

our analysis due to its simplicity and effectiveness [14]. This

symbolic technique, based on the ordinal relation between

the amplitude of neighboring values, arises naturally from

the time series, and allows one to avoid amplitude threshold

dependencies that affect more conventional methods based on

range partitioning. It is clear that, applying this prescription

for symbolizing time series, some details of the original

amplitude information and variability are lost. However,

a meaningful reduction of the complex systems to their

basic inherent structure is provided. Furthermore, the ordinal

pattern distribution is invariant with respect to nonlinear

monotonous transformations [14]. Thus, nonlinear drifts or

scalings artificially introduced by a measurement device do not

modify the quantifiers’ estimations, a property highly desired

for the analysis of experimental data. Technically speaking,

the ordinal pattern probability distribution is obtained once we

fix the embedding dimension D and the embedding delay time

τ . The former parameter, D, refers to the number of symbols

that form the ordinal pattern. Its choice depends on the length

N of the time series in such a way that the condition N ≫ D!

must be satisfied in order to obtain reliable statistics [15]. It is

worth remarking that there are D! possible permutations, and

accessible states, for a D-dimensional vector. For practical

purposes, Bandt and Pompe recommend D = 3, . . . ,7 in

their cornerstone paper. The embedding delay τ is the time

separation between symbols, and it physically corresponds

to multiples of the sampling time of the signal under analysis.

Consequently, different time scales are considered by changing

the embedding delays of the symbolic reconstruction [16].

(Please see Refs. [17,18] for further details about the Bandt

and Pompe permutation methodology.) A related approach,

based on computing the number of forbidden ordinal patterns

present in the time series, has been successfully used to find

evidence of determinism in noisy time series [19]. In this

work the normalized Shannon entropy HS [Eq. (2)], and

the SCM CJS [Eq. (1)], are evaluated using the permutation

probability distribution. Defined in this way, these quantifiers

are usually known as permutation entropy and permutation
statistical complexity [20]. They characterize the diversity and

correlational structure, respectively, of the orderings present in

the complex time series. We have previously shown that these

quantifiers are able to efficiently identify the delay phenomena

from chaotic time series [17]: HS is minimized and CJS is

maximized when the embedding delay τ of the symbolic re-

construction matches the intrinsic time delay τS of the system.

The complexity-entropy causality plane (CECP) is defined

as the two-dimensional (2D) diagram obtained by plotting

permutation statistical complexity (vertical axis) versus per-

mutation entropy (horizontal axis) for a given system [21].

This representation space follows directly from the original

complexity-entropy diagram approach introduced by Crutch-

field and Young [22]. The term causality remembers the fact

that temporal correlations between successive samples are

taken into account through the Bandt and Pompe recipe used to

estimate both information-theory quantifiers. This diagnostic

tool was shown to be particularly efficient to distinguish

between the deterministic chaotic and stochastic nature of a

time series since the permutation quantifiers have distinctive

behaviors for different types of motion. According to the

findings obtained by Rosso et al. [21], chaotic maps have

intermediate HS values, while CJS reaches larger values,

very close to those of the limit. For regular processes, both

quantifiers have small values, close to 0. Finally, totally

uncorrelated stochastic processes are located in the planar

location associated with HS and CJS near 1 and 0, respectively.

It has also been found that 1/f α correlated stochastic processes

with 1 < α < 3 are characterized by intermediate permutation

entropy and intermediate statistical complexity values [20].

As pointed out by Cencini et al. [3] the underlying chaotic

or stochastic nature of a system may depend on the resolution
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of the data record, and, as a consequence, it is more suitable to

define the concept of deterministic or stochastic behavior on

a certain range of scales. Hence, a scale-dependent scheme

is the most natural for dealing with complex multiscaled

data [4]. Basically, we propose to generalize the estimation of

both symbolic quantifiers, permutation entropy and statistical

complexity, to different embedding delays. Therefore, the scale

is explicitly included in these measures and their dependence

on resolution can be thoroughly explored. The multiscale
complexity-entropy causality plane refers to the parametric

curve described by the permutation quantifiers estimated from

a time series with the embedding delay as parameter and a

chosen embedding dimension. According to the location in

this representation space, the regular, chaotic or stochastic

character for different scale ranges can be concluded. This

approach offers a more versatile tool for discriminating

dynamics at different temporal or spatial scales. In fact, the

importance of selecting an appropriate embedding delay in

the estimation of the permutation quantifiers (HS and CJS) has

been recently confirmed for other purposes, such as identifying

periodicities in natural time series [16], estimating intrinsic

time scales of delayed systems [17,18], quantifying the degree

of unpredictability of the high-dimensional chaotic fluctua-

tions of a semiconductor laser subject to optical feedback [23],

and classifying cardiac biosignals [24].

III. NUMERICAL RESULTS

We have initially analyzed the behavior of the proposed

scale-dependent approach in a numerically controlled situa-

tion. More precisely, we consider the well-known Mackey-

Glass equation, a paradigmatic time-delay system [25], given

by

dx

dt
= −x +

ax(t − τS)

1 + xc(t − τS)
(3)

with t being a dimensionless time, τS the time-delay feedback,

a the feedback strength, and c the degree of nonlinearity. In

particular, we choose the typical values a = 2, c = 10, and

τS = 60 for which the system operates in a high-dimensional

chaotic regime. The time series were numerically integrated

by using the Heun method (also called the modified Euler

method) with an integration step �t = 0.01 and sampling step

δt = 0.02 time units/sample. We analyzed time series with

N = 105 data points (the total integration time was 2 × 103

time units). Gaussian white noise was added to the original

noise-free chaotic simulations in order to test the effect that an

uncorrelated stochastic component has on the results. Different

noise levels (NL), defined by the standard deviation of the

noise divided by the standard deviation of the original signal,

were considered. In Fig. 1 we plot the normalized permutation

entropy HS and the permutation SCM CJS as a function of the
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FIG. 1. (Color online) (a) Permutation entropy HS and (b) permutation statistical complexity CJS as a function of the embedding delay τ

with embedding dimension D = 6 for the Mackey-Glass oscillator operating in a chaotic regime. The effect of different levels of observational

noise can be contrasted with the results obtained for the original noise-free chaotic dynamics. Mean and standard deviation for τHmin and τCmax

values corresponding to 20 independent numerical realizations of length N = 105 data points are depicted in (c) for different noise levels

(NL = 0.05,0.1, . . . ,0.95,1.0). Curves described by the permutation quantifiers in the CECP are illustrated in (d). The dashed lines represent

the maximum and minimum complexity values for a fixed value of the entropy.

046210-3



L. ZUNINO, M. C. SORIANO, AND O. A. ROSSO PHYSICAL REVIEW E 86, 046210 (2012)

embedding delay τ for embedding dimension D = 6. Similar

results were also obtained for other embedding dimensions

(D = 4, D = 5, and D = 7). Our main intention is to compare

the results obtained in the noise instance with respect to those

obtained for the pure chaotic dynamics. In the absence of

observational noise, Figs. 1(a) and 1(b) show, respectively, that

HS has a monotonically increasing behavior for increasing

embedding delays, while CJS reaches a maximum at an

intermediate embedding delay τCmax
. The value associated with

this temporal scale, which appears to be slightly dependent on

the noise environment [please see vertical lines in Fig. 1(b)],

represents the minimally required sampling rate to capture all

the information related to the nonlinear correlations of the un-

derlying chaotic dynamics [18,26]. In the presence of noise, the

entropy quantifier reaches a minimum value at an embedding

delay smaller than τCmax
. This embedding delay, henceforth

denoted as τHmin
, can be interpreted as the transitional time

scale between the stochastic and the chaotic dynamics. Note

that τHmin
increases with the noise level, as is evident following

vertical lines added to Fig. 1(a). What is more, τHmin
tends to

τCmax
for highly noisy data [Fig. 1(c)]. Since this behavior is

directly related to the amount of observational noise added,

it might be possible to quantify the noise level with this

procedure. A more detailed investigation of this issue is beyond

the scope of the present paper and will be performed elsewhere.

From Fig. 1(d) it can be concluded that, under the

presence of uncorrelated observational noise, the permutation

quantifiers describe a clear clockwise loop in the CECP as

the embedding delay increases. This result can be interpreted

taking into consideration that (i) for small embedding delays,

the uncorrelated stochastic dynamics is detected and, conse-

quently, the quantifiers are located in the bottom right corner

withHS andCJS near 1 and 0, respectively; (ii) for intermediate

embedding delays, the nonlinear structures related to the

intrinsic chaotic dynamics are optimally discriminated with

CJS reaching a maximum value for τCmax
; and (iii) for larger

embedding delays the original noisy chaotic dynamics is un-

dersampled, any information about the nonlinear determinism

is progressively lost, and the data appear to be stochastic

rather than chaotic. Contrarily, in the pure chaotic case,

the positions described by these symbolic quantifiers move

gradually from the left-hand corner to the right-hand corner

of the CECP. The difference is principally due to the fact that,

now, the underlying deterministic behavior is oversampled

for very low values of the embedding delay, and an artificial

regular behavior is spuriously concluded for these small scales.

Colinearities are introduced when a high sampling rate is used

to capture a low frequency dynamics, leading to a decrease in

the entropy value [27]. Summarizing, the curve described by

the permutation quantifiers as a function of the embedding

delay allows us to characterize the relative importance of

the information redundancy, determinism, and stochasticity

present in the underlying complex dynamics. We have also

confirmed a quantitatively similar behavior for the Lorenz and

Rössler systems by numerical simulations in the chaotical

regime. Our results clearly demonstrate that the choice of

an inappropriate sampling time can hinder the evidence on

nonlinear determinism from a chaotic dynamics.

With the aim to test the approach in a purely stochastic

scenario, we have studied numerical simulations of correlated

stochastic processes. Particularly, we have considered the

fractional Brownian motion (fBm) process because this is

a paradigmatic model for 1/f α processes. Moreover, the

ubiquity of time series with long-range correlation in many

areas of science and engineering is widely accepted [28].

Twenty independent realizations of length N = 105 data points

for fBm with Hurst exponents H = 0.3 (antipersistent corre-

lation), H = 0.5 (ordinary Brownian motion), and H = 0.7

(persistent correlation) were simulated, each series starting at

a different initial condition, by employing the method of Wood

and Chan, which is both exact and fast [29]. Small amounts of

Gaussian white noise (NL = 0.01, 0.05, and 0.1) were added to

investigate the effect of an observational additive noise. From

Fig. 2 it can be concluded that the curves described by the per-

mutation quantifiers in the CECP for these stochastic instances

are different than those obtained for the chaotic ones. In the

noise-free case and for the different Hurst exponent, it is found

that both permutation quantifiers have constant values inde-

pendently of the embedding delay τ . This constant behavior

is expected since fBm are self-similar processes, i.e., invariant

in distribution under suitable scaling of time. So, the relative

frequencies of the ordinal patterns do not depend on the value

of the embedding delay, and quantifiers derived from the per-

mutation probability distribution, such as permutation entropy

and permutation statistical complexity, are independent of the

time scale considered [30]. When observational noise is added,

permutation quantifier estimations are especially affected for

smaller time scales: HS → 1 and CJS → 0 when τ → 1

independently of the Hurst exponent value. The effect is much

more pronounced for higher noise levels and for higher H . It

should be stressed that a very small amount of noise is enough

to destroy the self-similarity feature of the original fBm.

Finally, we have tested the behavior of the introduced

symbolic approach in the case of stochastic oscillations, where

other methods, such as the noise titration technique [31], are

shown to fail by giving a false positive detection of chaos [32].

Following the analysis performed by Gao et al. [4,32], we have

studied the stochastically driven van der Pol’s oscillator given

by

dx/dt = y + D1η1(t), dy/dt = −(x2 − 1)y − x + D2η2(t),

(4)

where 〈ηi(t)〉 = 0, 〈ηi(t)ηi(t
′)〉 = δijδ(t − t ′), i,j = 1,2, and

the parameters Di, i = 1,2 characterize the strength of noise.

Time series of length N = 105 data points, integration step

�t = 0.001, and sampling step δt = 0.02 were numerically

generated by using the Euler-Maruyama method. The x

coordinate of the system was chosen for the study. Results

obtained for both permutation quantifiers as a function of

the embedding delay τ with embedding dimension D = 6 are

shown in Fig. 3. Curves described by the estimated quantifiers

in the CECP are displayed in Fig. 4. Specifically, we have

compared the results obtained in the noise-free case [Fig. 3(a)]

with those derived for strengths of noise D1 = D2 = 0.01

[Fig. 3(b)], D1 = D2 = 0.03 [Fig. 3(c)], and D1 = D2 = 0.05

[Fig. 3(d)]. On the one hand, from Fig. 3(a), it can be concluded

that both quantifiers have small estimated values, close to 0,

when the embedding delay τ matches the period and multiples

of the period of the van der Pol’s oscillator. On the other
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FIG. 2. (Color online) Permutation quantifiers (HS and CJS) as a

function of the embedding delay τ with embedding dimension D = 6

for fBm with Hurst exponent H = 0.3 (upper plot), H = 0.5 (central

plot), and H = 0.7 (lower plot). Mean values corresponding to 20

independent numerical realizations of length N = 105 data points

are depicted for the noise-free case and for different noise levels

(NL = 0.01, NL = 0.05 and NL = 0.10). Curves described by the

permutation quantifiers in the CECP are displayed in the insets. The

dashed lines represent the maximum and minimum complexity values

for a fixed value of the entropy.

hand, in the stochastic instances, Figs. 3(b)–3(d), HS jumps

abruptly to values close to 0.9 for these particular embedding

delay values. Therefore, the presence of dynamical noise can

be clearly detected by the permutation entropy quantifier

when the embedding delay matches the oscillation period

and its multiples. As a consequence, curves described by

the permutation quantifiers in the CECP, depicted in Fig. 4,
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FIG. 3. (Color online) Permutation quantifiers as a func-

tion of the embedding delay τ with embedding dimension

D = 6 for the van der Pol’s oscillator. (a) Noise-free case,

(b) D1 = D2 = 0.01, (c) D1 = D2 = 0.03, and (d) D1 = D2 =

0.05.
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FIG. 4. (Color online) Curves described by the permutation

quantifiers in the CECP for the van der Pol’s oscillator (D = 6).

The dashed lines represent the maximum and minimum complexity

values for a fixed value of the entropy.

move from the regular behavior associated with the original

oscillatory dynamics to the stochastic and unpredictable one

detected for these more noise-sensitive temporal scales.

IV. EXPERIMENTAL RESULTS

Several experimental and natural records were tested in or-

der to illustrate the performance of our method in real contexts.

In particular, we have analyzed the behavior described by the

permutation quantifiers in the multiscale complexity-entropy

causality plane for time series originating from a chaotic laser,

three different geophysical processes (river flow dynamics,

Madden-Julien oscillation, and North Atlantic oscillation), the

price evolution of two different commodities (crude oil and

gold), and the human postural dynamics.

A. Chaotic laser data

We have analyzed the chaotic intensity pulsations recorded

from a single-mode far-infrared NH3 laser by employing

a LeCroy oscilloscope. This experimental time series was

used for the Santa Fe Time Series Competition (Series A

from Ref. [33]). Further details of the recording procedure

of this data set can be found in Ref. [34]. The longer data

set (N = 104 data points) was considered. Figure 5 shows

the behaviors of the permutation quantifiers as a function

of the embedding delay for different embedding dimension

(D = 4, . . . ,7) together with the curves described by these

quantifiers in the CECP. The chaotic fingerprint is observed for

the higher embedding dimensions (D = 6 and D = 7), with

a maximum for the permutation statistical complexity and an

increasing behavior for the permutation entropy. Indeed, the

chaotic dynamics is discriminated without any noise influence.

This is reasonable if we take into consideration that the

signal-to-noise ratio was about 300, slightly under the half bit

uncertainty of the analog to digital conversion. The analysis

of this experimental data confirms that higher values of D

allow the use of larger minimally required sampling times,

retaining all the information about the chaotic dynamics of

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

H
S
,
C

J
S

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

HS

C
J

S

HS

CJS

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

H
S
,
C

J
S

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

HS

C
J

S

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

H
S
,
C

J
S

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

HS

C
J

S

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

H
S
,
C

J
S

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

HS

C
J

S

FIG. 5. Permutation quantifiers (HS and CJS) as a function of

the embedding delays with different embedding dimensions (D =

4, . . . ,7 from top to bottom) for the chaotic laser data. Curves

described by the symbolic quantifiers in the CECP are shown in

the insets. The dashed lines represent the maximum and minimum

complexity values for a fixed value of the entropy.
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FIG. 6. Permutation quantifiers (HS and CJS) as a function of the

embedding delays with embedding dimensions D = 6 for the Grand

River flow dynamics. Qualitative similar results were also obtained

for D = 4, 5, and 7. Curve described by the symbolic quantifiers

in the CECP is shown in the inset. The dashed lines represent the

maximum and minimum complexity values for a fixed value of the

entropy.

the system under analysis. This fact was recently proved

numerically [18].

B. River flow dynamics

Over the last decade controversial results have been

obtained about the hypothetical chaotic nature of river flow

dynamics [35]. We have analyzed the streamflow data cor-

responding to the Grand River at Lansing [Michigan; US

Geological Survey (USGS) ID 04113000] trying to provide

new insights regarding this issue. A high frequency record with

a sampling time equal to 15 min over a period of more than

two years (from May 2007 to September 2009, N = 78 578

data points) was retrieved from the USGS Instantaneous Data

Archive website [36]. The results obtained are shown in Fig. 6.

The curve described by the permutation quantifiers in the

CECP suggests that the Grand River flow dynamics might

be chaotic and, at least for the temporal resolution of the

data, noise effects are not observed. CJS has a well-defined

maximum value around τ = 8, and HS is increasing over

this domain. According to this evidence, the apparent chaotic

dynamics associated with this river can be optimally captured

with a sampling time equal to 2 h.

C. Madden-Julian oscillation

As a second geophysical application, we have analyzed the

Madden-Julian oscillation (MJO) [37]. This is the dominant

component of the intraseasonal variability in the tropical

atmosphere. Developing suitable models for the MJO is

relevant because a wide range of tropical weather and climate

are affected by this pattern [38]. Daily MJO time series from

1979 to the middle of 2002 (N = 8572 data points) was

analyzed via our multiscale symbolic technique looking for

evidence of deterministic chaos. The original data are available

at the historical climate data archive of the Joint Institute

for the Study of the Atmosphere and Ocean website [39].

Figure 7 shows the permutation quantifiers as a function of the

embedding delay for this time series. As can be seen in the inset
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FIG. 7. Permutation quantifiers (HS and CJS) as a function

of the embedding delays with embedding dimensions D = 6 for

the Madden-Julian oscillation. Qualitative similar results were also

obtained for D = 4, 5, and 7. Curve described by the symbolic

quantifiers in the CECP is shown in the inset. The dashed lines

represent the maximum and minimum complexity values for a fixed

value of the entropy.

of Fig. 7, the curve described by the symbolic quantifiers in the

CECP suggests a noiseless chaotic dynamics for the MJO. The

permutation statistical complexity reaches a maximum value

for τ ∼ 5. Thus, a sampling period equal to five days appears

to be the optimal one for uncovering information related with

the intrinsic nonlinear correlated dynamics. It is worth noting

that another time scale is clearly discriminated, around τ = 22,

where both quantifiers reach extreme values simultaneously.

This time scale is consistent with a characteristic period of

between 40 and 50 days easily estimated through the power

spectrum. In the case of periodic functions certain ordinal

patterns do not appear, or have very small probabilities, for

embedding delays at the half of the period [16]. For this reason,

HS has a minimum and CJS has a maximum for these particular

embedding delay values [18].

D. North Atlantic oscillation

The North Atlantic oscillation (NAO) is an atmospheric

spatiotemporal phenomenon observed over the North Atlantic

Ocean. Its fluctuations are quantified through the NAO index,

calculated as the difference between the normalized sea level

pressure at two action centers, the southernmost one located

at the Azores High and the northernmost at the Icelandic

Low [40]. Taking into account that the NAO fluctuations have

a significant influence on the winter weather over Western

and Central Europe, there is a great interest in predicting

its behavior. We have studied the monthly mean NAO index,

from January 1950 to May 2012 (N = 749 data points). The

time series was extracted from the Climate Prediction Center

website [41]. The results obtained for this third geophysical ap-

plication are displayed in Fig. 8. Both permutation quantifiers

reach nearly constant values independently of the embedding

delay τ . According to this finding and by comparing with the

results previously shown for fBm (Fig. 2), a chaotic dynamics

should be rejected in favor of a purely stochastic dynamics.

This is consistent with the stochastic model suggested by other

studies on similar data [42]. Additionally, it is shown that
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FIG. 8. Permutation quantifiers (HS and CJS) as a function of the

embedding delays with embedding dimension D = 5 for the monthly

mean North Atlantic oscillation index. Estimated values for both

quantifiers are practically constant whatever the time scale used for

the analysis. Qualitative similar results were also obtained for D = 4.

very short time series can be efficiently characterized with the

proposed scheme.

E. Crude oil and gold price dynamics

It is clear that crude oil and gold are two very important

and representative commodities. The former is the major

energy source for the present economic activity [43] and the

latter one is extremely popular for investment purposes by

governments, households, and institutional and private equity

investors because it provides economic safety against inflation

and deflation [44]. Both commodities tend to rise in periods

of financial instability. With the purpose of unveiling some

information about the nature of their dynamics, we have

analyzed their historical price evolution. The daily closing spot

price of the West Texas Intermediate from January 2nd, 1986

to July 10th, 2012 (N = 6691 oil price observations) obtained

from the US Energy Information Administration website [45]

(quoted in US dollars per barrel), and daily gold price from

January 2nd, 1973 to July 17th, 2012 (N = 9841 gold price

observations) extracted from the USAGOLD website [46]

(quoted in US dollars per ounce) were analyzed by employing

our diagnostic tool. The estimated values for the permutation

quantifiers as a function of the embedding delay can be

found in Fig. 9. HS decreases and CJS increases for an

increasing embedding delay. This effect is more noticeable

for the daily gold price evolution. Based on this evidence,

stochastic dynamics appear to govern the underlying processes

that generated the price fluctuations of both commodities. The

lack of a significant chaotic component in the crude oil spot

market is in accordance with the results obtained by a very

recently published work [47]. Taking into consideration that

these two commodity markets are highly correlated [48], it

is completely reasonable to find that stochastic rather than

deterministic rules are also present in the gold price evolution.

F. Human postural dynamics

The human postural control system, i.e., the human task

of maintaining an upright equilibrium, is especially suitable to
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FIG. 9. (Color online) Permutation quantifiers (HS and CJS) as a

function of the embedding delays with embedding dimension D = 6

for the daily price data of the crude oil and gold. In both cases HS

decreases and CJS increases for increasing time scales. Qualitative

similar results were also obtained for D = 4 and D = 5. Curves

described by the symbolic quantifiers in the CECP are depicted in

the inset. The dashed lines represent the maximum and minimum

complexity values for a fixed value of the entropy.

test our multiscale symbolic approach. Some authors have sug-

gested a correlated stochastic process for modeling the com-

plex behavior exhibited by postural sway in humans [49], while

others have claimed the existence of a chaotic dynamics [50].

Moreover, noise is inherently present in all physiological

signals due to the recording equipment. Postural dynamics is

commonly studied by analyzing the center of pressure (CoP)

fluctuations recorded over time while a subject is asked to

stand on a force platform. CoP is the point of application of the

resultant of vertical forces acting on the basis of support [51].

Particularly, CoP data are never free of noise [27]. We have

analyzed the time series of the CoP fluctuations during quiet

standing for a healthy young volunteer. Ten independent trials

of the displacement in the antero-posterior direction recorded

during 30 s at 60 Hz (N = 1800 data points) were analyzed.
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FIG. 10. Permutation quantifiers (HS and CJS) as a function of

the embedding delays with embedding dimensions D = 5 for postural

sway measurements. Mean and standard deviation of the permutation

quantifiers for ten independent trials associated to the same volunteer

are depicted. Curve described by the symbolic quantifiers in the CECP

is shown in the inset. The dashed lines represent the maximum and

minimum complexity values for a fixed value of the entropy.
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Details about the experiment can be found in Ref. [52]. The

original data are available in the PhysioNet database [53].

More precisely, records associated to the control trials for

volunteer MT1419 were considered. Figure 10 shows the

results obtained. The fingerprint related to a noisy chaotic

dynamics is observed with a clear clockwise loop in the CECP.

Similar results were confirmed for other subjects. Then, a noisy

chaotic dynamics seems to be confirmed for the center of

pressure fluctuations. Through this example we also confirm

that the multiscale CECP can robustly characterize short

and noisy data sets. Finally, it is worth remarking that this

multiscale symbolic approach has been recently successfully

applied for distinguishing hyperchaotic dynamics and noise

in experimental time series recorded from a delayed optical

system [54].

V. CONCLUSIONS

In this paper we have shown that complex multiscaled

time series can be reliably characterized by estimating the

permutation entropy and permutation statistical complexity as

a function of the embedding delay. The scale is explicitly

incorporated in this approach by changing the embedding

delay. The location of these permutation quantifiers in the

multiscale CECP allows us to infer useful information about

the underlying dynamics of the complex time series. More

precisely, we are able to identify the range of scales where

deterministic or noisy behaviors dominate the system’s dynam-

ics. The obtained numerical and experimental results confirm

that this multiscale symbolic information-theory approach

provides a conceptually simple and computationally efficient

tool for characterizing complex time series on a wide range of

scales.

According to the evidence gathered from the several tests

performed, the presence of a maximum for the permutation

statistical complexity at a particular time scale together with

an increasing behavior of the permutation entropy around

this domain is a necessary condition for the presence of an

intrinsic chaotic nature. Nevertheless, it is not possible to

confirm that this fingerprint constitutes a sufficient proof

for chaos. The existence of stochastic processes for which

the permutation quantifiers describe a similar behavior in

the CECP cannot be discarded. Further studies should be

performed in order to try to elucidate this issue. We would

like to emphasize, however, that the symbolic tool proposed

in this work is particularly useful for characterizing the

complex interplay between the deterministic and stochastic

components that are usually found in time series derived from

natural and man-made complex phenomena.

In spite of the fact that an inherent limitation of the proposed

approach is that oversampled signals are required, the present

availability of real-time acquisition reaching sampling rates of

up to 120 GSamples/s makes our method feasible for more and

more systems. Actually, the coexistence of regular, nonlinear,

and stochastic dynamics is a major problem directly associated

with such larger temporal resolutions. Taking into account

that the multiscale CECP inherits all the good properties of

the Bandt and Pompe symbolization recipe, i.e., simplicity,

robustness, and very low computational cost, we believe that

this approach can be a practical alternative for unveiling the

intricate nature of complex multiscaled time series.
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