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We propose a method to infer the coupling structure in networks of nonlinear oscillatory systems with
multiple time scales. The method of partial phase synchronization allows us to infer the coupling structure
for coupled nonlinear oscillators with one well-defined time scale. The case of oscillators with multiple
time scales has remained a challenge until now. Here, we introduce partial recurrence based synchroni-
zation analysis to tackle this challenge. We successfully apply the proposed method to model systems and
experimental data from coupled electrochemical oscillators. The statistical significance of the results is

evaluated based on a surrogate hypothesis test.
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Oscillators in complex real-world systems typically ex-
hibit multiple time scales. Examples are climate oscilla-
tions from EI Nifo or Southern Oscillation and the
Monsoon, active drilling vibrations in engineering, stock
market oscillations, and biological oscillators, such as
neuronal oscillators with their spiking and bursting behav-
ior and brain activity measured from electroencephalo-
grams or functional magnetic resonance imaging. Here
we focus on small networks consisting of a few nodes,
which are typical for many applications, such as the detec-
tion of motifs embedded in larger networks or data mea-
sured from a few regions of interest in the brain [1]. One
crucial step towards understanding the characteristic be-
havior of such systems consists in inferring the connection
topology of their constituting parts based on synchroniza-
tion properties. When studying the connectivity structure
in networks of such systems, one faces two main chal-
lenges: (i) bivariate measures to quantify the degree of
synchronization inevitably lead to false positive conclu-
sions about the network structure due to confounding
factors; (ii) due to multiple time scales in real-world sys-
tems, conventional techniques to quantify the degree of
synchronization are not applicable. To approach the first
challenge, partial spectral coherence was introduced for
linear systems [2] and extended to nonlinear systems by
partial phase synchronization [3]. These methods can dis-
tinguish direct from indirect interactions. However, inves-
tigations using partial phase synchronization are
constrained by the requirement that the oscillatory systems
under study are phase coherent; i.e., they have one well
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defined time scale. To tackle the second challenge, a
synchronization measure based on the concept of recur-
rence in phase space was introduced [4,5] to detect and
quantify synchronization in real-world systems with mul-
tiple time scales. This recurrence based method is bivari-
ate, however, so that it cannot detect unequivocally the
coupling configuration in a system consisting of three or
more subsystems. Therefore, the challenge of distinguish-
ing direct from indirect connections in oscillatory systems
with multiple time scales remained unsolved. In this Letter,
we generalize partial phase synchronization by introducing
partial recurrence based synchronization (PARS) analysis.
We demonstrate how this technique can be successfully
applied to infer the connection topology of networks of
oscillators with multiple time scales.

The method of partial phase synchronization was intro-
duced [3] to distinguish direct from indirect interactions in
networks of nonlinear oscillators with one predominant
time scale. Consider, e.g., the network of coupled oscilla-
tors in Fig. 1(a). A bivariate measure for synchronization
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FIG. 1. Networks of coupled oscillators. Dashed arrows indi-
cate indirect interactions.
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would detect synchronization between oscillator &,(¢) and
&5(1), in spite of them being coupled only via the mediating
influence of &,(7). Assuming that we have N interdepend-
ent oscillatory systems &,(z), ..., £y(t), where &,(t) € R?
denotes the trajectory of oscillator i in d-dimensional
phase space and r = 1, ..., T, the method of partial phase
synchronization calculates first the synchronization indices

IR/ =

T
Ty exp(idy (1))
=1

. Ryl E[0,1] (1)

for all pairs of oscillators &(¢) and &(7). Here @ (1) =
|®, (1) — ®,(1)] is the phase difference of oscillators &,(r)
and &,(r) at time ¢ [6,7]. The phase ®(z) of an oscillator
&(1) can be obtained using, e.g., the analytical signal
approach ¥(¢) = x(¢) + ixy (1) = A(r) expiD(r) [8] where
x(r) is an observed scalar time series from oscillator £(z),
xy(2) is the Hilbert transform of x(f), and A(z) is the
instantaneous amplitude. The analysis of the bivariate
synchronization indices Ry ; results in a Hermitian bivari-
ate synchronization matrix

I Ry, Ry
Ri, 1 Ryn
R = ) . 2
Ry Riy ... |1

Based on matrix inversion of the synchronization matrix
R, the partial phase synchronization index

Riy. = IR /A RGIR, 3)

yields the mean phase coherence between &,(¢) and &;(r)
conditioned on the remaining processes {&.(7)|z =
1,..., N,z # k, I} [3]. Thus, if the bivariate synchroniza-
tion index Ry, is considerably different from zero, while
the multivariate index Ry, vanishes, there is strong evi-
dence for an indirect coupling between oscillators & (z)
and &,(z).

However, if the oscillators exhibit multiple time scales,
the definition of the phase is not straightforward anymore,
and the synchronization index defined in Eq. (1) cannot be
calculated. This is because for an oscillator with a broad-
band spectrum there is no clear center of rotation if its
trajectory is projected on a plane [8]. In these cases, we can
detect phase synchronization by a measure that is based on
the recurrences of a trajectory and considers phase syn-
chronization in a more statistical sense [5]. The recurrences
in phase space of an oscillator £(r) are represented by the
recurrence matrix [9]

P(e),, = O(e — 1£(1) — £, tr=1..T,

4
where O(-) is the Heaviside function, || - - - || is an appro-

priate norm, and ¢ is a predefined threshold. An estimate of
the probability p(e, 7) that a system recurs to the & neigh-

borhood of a former point of the trajectory after 7 time
steps is given by the diagonal-wise calculated 7-recurrence
rate r.(g),

1 T—1
ple,7) = r(e) = ——— 3 P(e)ysr (5)
=1

This measure can be considered as a generalized autocor-
relation function [5], since it describes higher-order corre-
lations among the points of the trajectory depending on 7.
Note that it is defined for a trajectory, and not restricted to
scalar time series. For oscillatory systems, the function
p(e, 7) shows maxima at multiples of the main time scales
of the system. If two oscillators &,(r) and &,(¢) synchro-
nize, their respective time scales adapt to each other, and
hence, the positions of the maxima of their corresponding
generalized autocorrelation functions p,(e, 7) and p,(e, 7)
coincide. To quantify these coincidences, the cross corre-
lation coefficient of the probabilities of recurrence

pri €0, 1] (6)

can be calculated. In the case of locked phase dynamics,
the probability of recurrence is simultaneously maximal
for both systems and hence p,; significantly differs from
zero. The applicability of this synchronization measure
was demonstrated for a general class of non-phase-
coherent and nonstationary systems and even for time
series corrupted by strong noise [5].

To treat the multivariate case of N interdependent os-
cillators based on the recurrence method, the matrix of
the bivariate synchronization indices [Eq. (6)] p =
(Pr.D)ki=1,...n is introduced. This matrix has the same sym-
metry properties as the synchronization matrix in Eq. (2).
Using the inverse matrix p~!, the partial recurrence based
synchronization (PARS) index is defined as follows

pri: = ot/ pitpils (7)

where p; 11 indicates the (k, /) element of the inverse matrix
p~'. This measure quantifies phase synchronization be-
tween two oscillators &,(7) and &;(¢), conditioned on the
remaining  oscillators  {£.(Dlz=1,...,N,z # k I}.
Therefore, this method solves both crucial challenges in
the analysis of networks of oscillators with multiple time
scales: it distinguishes direct from indirect connections and
it is applicable to real-world oscillators with a broadband
power spectrum.

To illustrate the performance of PARS analysis, a net-
work consisting of three funnel Rossler oscillators [10]

X —oyr it leuk,z(xz — X)
. (R 7
Se= |\ W)= wpxg t ayy ’

2k 0.1 — (x; — 8.5)z

Pkl = (Pr(e, T)py(e, 7)),

®)

for k =1, 2, 3, is examined. The subsystems are non-
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identical (w; = 0.98, w, = 1.02, and w3 = 1.06) and dif-
fusively coupled via their x components. The oscillator
&,(1) is bidirectionally coupled to both &,(z) and &;(),
whereas there is no direct coupling between &, () and &;(7)
[Fig. 1(a)]. The parameter a = 0.2925 is chosen such that
the oscillators are in the highly non-phase-coherent funnel
regime [10]; i.e., they exhibit multiple time scales. The set
of differential equations was numerically integrated and
sampled at 20 Hz, starting from randomly chosen initial
conditions. The first 10000 transient data points were
discarded and time series consisting of 24 850 data points
were analyzed. From the x component, the phase space was
reconstructed by delay embedding with delay time 30 and
embedding dimension 6. The embedding parameters were
estimated by the mutual information and the method of
false nearest neighbors [11]. For the computation of the
recurrence matrices, the threshold & was chosen so that a
recurrence rate of 0.1 resulted [cf. Eq. (5)] [9].

In Fig. 2 the bivariate indices p;; and the multivariate
PARS indices p; ., are compared for w = w1, = ty3
varied in the range [0, 0.3]. To evaluate the statistical
significance of the results, the method of twin surrogates
is utilized [12]. A twin surrogate of a given trajectory
corresponds to an independent trajectory of the same
underlying system starting at different initial conditions.
The significance level for p,,; was obtained from the
synchronization indices py; , where the oscillator &(r)
was replaced by its twin surrogate. Alternatively, one could
have replaced oscillator &;(7) by its surrogate. The 1%
significance level was given by the second highest value
from 100 realizations of the surrogates. To compute the
significance level of the PARS indices, these values were
arranged in the matrix pg,,, which was then inverted and
renormalized following Eq. (7). The bivariate measures
indicate that each oscillator is connected to all others, since
for sufficiently strong coupling strength w the indices py
are significant for all {k, [} combinations [Figs. 2(a)-2(d)].
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FIG. 2. (a)-(c) Bivariate synchronization indices and (d)—
(f) multivariate PARS indices depending on the coupling
strength w for three interdependent funnel Rossler systems
exhibiting multiple time scales. The significance levels (gray)
are based on the method of twin surrogates. The curves have
been smoothed over 8 data points. (e) Only the PARS indices
correctly determine the indirect coupling between oscillators

&,(1) and &;5(2).

But computing the PARS indices, we see that only p; 53
and p, 3|, are significant for large w, correctly detecting
that the connection between oscillators &,(r) and &;(¢) is
indirect [Figs. 2(d)-2(f)]. We emphasize that the same
results are obtained when using ‘“‘natural” surrogates
[12], i.e., using the differential equations of the Rossler
oscillators to generate independent trajectories.

In Fig. 3 we investigate a network consisting of four
coupled funnel oscillators (w; = 0.98, w, = 1.04, w3 = 1
and w, = 0.94). All oscillators are coupled to oscillator
&4(1), without any further direct connections [Fig. 1(b)].
Furthermore, we add 50% observational noise containing
auto and cross correlations to all four oscillators. This
coupling configuration is correctly detected by the PARS
indices [Fig. 3]. Also for other levels of observational noise
between 5% and 50% the PARS analysis is able to reveal
the actual coupling structure (results not shown). We em-
phasize that other multivariate techniques, including the
linear ones, usually lead to false positive conclusions about
the coupling configuration when the time series are con-
taminated with 50% correlated observational noise.
Moreover, note that for the maximal coupling strength
considered in both Figs. 2 and 3 the oscillators are phase
synchronized. If we increase further the coupling strength,
the synchronization becomes almost complete, in which
case it is not possible anymore to infer the correct coupling
configuration.

Now we apply PARS analysis to the challenging case of
a network of experimental data exhibiting multiple time
scales. The data were obtained from chemical experiments
with Ni electrodissolution in 4.5 mol/L sulfuric acid. The
experiments were carried out with three 1 mm Ni wires
(with a spacing of 2 mm) embedded in epoxy so that the
dissolution processes took place only at the ends. The
potential of the electrodes was set with a potentiostat to
V = 1.400 V vs a Hg/Hg,SO,/sat. K,SO, reference elec-
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FIG. 3. Multivariate PARS analysis with significance levels
(gray) of four interdependent funnel Rossler systems with cou-
pling strengths w5 = pog = p1g =0and u = py3 = pi3 =
w34 > 0. All oscillators are contaminated by 50% of auto- and
cross-correlated  observational noise 7;(f) = an;(t — 1) +
xi(0) + bz‘#i)(j(t) where i =1,...,4, a=0.1, » =0.01 and
X 1s standard Gaussian white noise. The PARS indices correctly
determine both the indirect couplings (a)—(c) and the direct
couplings (d)—(f).
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FIG. 4. (a) Segment of the time series and (b) power spectrum

of current oscillations exhibiting multiple time scales of one of
the three electrochemical oscillators.

trode in an electrochemical cell with a 1.57 mm diameter
Pt coated Ti wire counter electrode. When 250 () resis-
tances were connected to each wire at 35 °C, the currents
of the electrodes exhibited chaotic dynamics on multiple
time scales as shown in Fig. 4, triggered by the hidden
negative differential resistance caused by bisulfate ion
adsorption [13,14]. The observed time series consisted of
38 125 data points, sampled at 250 Hz. The phase space
was reconstructed by delay embedding with delay 20 and
embedding 6 [11]. As discussed in [14], the electrodes did
not show a significant level of synchrony without exter-
nally added interactions. Local interactions among the
oscillators were introduced by a resistance R inserted
between electrodes 1 and 2, and between electrodes 2
and 3, respectively. Note that a smaller resistance leads
to a stronger coupling.

In Fig. 5 the results of the bivariate synchronization
analysis and the multivariate PARS analysis are compared.
The bivariate synchronization indices erroneously indicate
interactions between all pairs of oscillators. But the multi-
variate PARS index p,; 3, does not become statistically
significant, even for large coupling strengths [Fig. 5(e)],
so that we can conclude that the connection between the
oscillators {1, 3} is indirect, in agreement with the experi-
mental setup.

In summary, partial recurrence based synchronization
analysis has been introduced to generalize partial phase
synchronization. PARS analysis allows distinguishing di-
rect from indirect interactions in networks of oscillatory
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FIG. 5. (a)-(c) Bivariate analysis and (d)—(f) multivariate
PARS analysis with significance levels (gray) of three electro-
chemical oscillators with varied local interactions depending on
the resistance R. (e) PARS analysis correctly determines the
indirect coupling between the oscillators {1, 3}.

systems with multiple time scales, where a straightforward
definition of the phase is ambiguous or not possible. Here,
we have focused on phase synchronization, but the meth-
odology is applicable also to generalized synchronization
and is very robust with respect to high levels of noise [5].
Moreover, we have validated the statistical significance of
our results using twin surrogates. To illustrate the perform-
ance of the method, we have successfully applied it to
model systems of oscillatory networks with multiple time
scales and to experimental data from three non-phase-
coherent electrochemical oscillators. The methodology
proposed here will have a strong impact on complex net-
works research and its applications, in particular, to the
detection of motifs embedded in larger networks.
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