
 

Distinguishing double neutron star from neutron star-black hole binary
populations with gravitational wave observations

Margherita Fasano,
1,*

Kaze W. K. Wong ,
2,†

Andrea Maselli ,
1,‡

Emanuele Berti ,
2,§

Valeria Ferrari,
1,∥

and B. S. Sathyaprakash
3,4,5,¶

1
Dipartimento di Fisica, Sapienza Università di Roma & Sezione INFN Roma1,
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Gravitational waves from the merger of two neutron stars cannot be easily distinguished from those

produced by a comparable-mass mixed binary in which one of the companions is a black hole. Low-mass

black holes are interesting because they could form in the aftermath of the coalescence of two neutron stars,

from the collapse of massive stars, from matter overdensities in the primordial Universe, or as the outcome

of the interaction between neutron stars and dark matter. Gravitational waves carry the imprint of the

internal composition of neutron stars via the so-called tidal deformability parameter, which depends on the

neutron star equation of state and is equal to zero for black holes. We present a new data analysis strategy

powered by Bayesian inference and machine learning to identify mixed binaries, hence low-mass black

holes, using the distribution of the tidal deformability parameter inferred from gravitational-wave

observations.
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I. INTRODUCTION

The past few years have seen remarkable advances in

gravitational-wave (GW) astronomy. The ground-breaking

discovery of merging binary black holes (BHs) [1–4] was

soon followed by the spectacular observation by the Laser

Interferometer Gravitational-Wave Observatory (LIGO) [5]

and Virgo [6] of the coalescence of binary neutron stars

(BNSs) [7,8], whose counterpart and afterglow was also

witnessed in the entire electromagnetic spectrum by dozens

of telescopes and detectors around the world and in space

[9]. This latter observation has already shed light on a

number of unsolved problems in physics and astronomy: it

provided the first direct evidence that BNSs power the

central engines of short gamma ray bursts [10], identified

the merger debris of such systems as prolific sites of the

formation of r-process elements [9,11], and confirmed that

GWs travel essentially at the speed of light [10]. Most

importantly for our present purposes, the discovery of

GW170817 has helped demonstrate that GW observations

can infer the tidal deformability of neutron stars (NSs)

[8,12–15] (but see [16] for caveats).
LIGO and Virgo observations have so far firmly con-

firmed GWs from two classes of ultracompact binaries:
binary BHs and BNSs. With the recent discovery of

GW190425, they have potentially also observed the first
example of a mixed system containing a BH and a NS

(BHNS) [17], although GW190425 could well be a BNS
merger [18]. When the masses of BHs in such systems are

similar to those of NSs, how can one tell them apart?
The presence of NSs in a binary can leave behind

relativistic ejecta that predominantly contain energetic

neutrons, which source r-process heavy elements and
kilonovae [19]. Indeed several studies used electromagnetic
information to understand whether the low-mass compact

binary mergers detected so far are BHNS or BNS systems
[20–24]. However, if the primary companion is a massive

BH (where the precise mass threshold depends on the BH
spin [25–27]) then no ejecta might be left behind, as tidal

forces will be small. If instead the BH mass is comparable
to the NS mass, the electromagnetic afterglow might be
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similar to that of BNSmergers. Simulations suggest that the

disk mass in this case may be small, so that the electro-

magnetic counterpart may be hard to detect [26,28].

Besides, not all binaries detected by LIGO and Virgo

might be accessible for electromagnetic follow-ups for

various reasons, including their large distance, the line-of-

sight dependence of the ejecta (see, e.g., [29]), and large

uncertainties in the sky position of the source as determined

by LIGO and Virgo.

Even so, discriminating the BNS population from the

BHNS population is an important science goal for GW

detectors, as this could shed light on the origin of the two

populations, testing astrophysical models of the formation

and evolution of such systems. The presence of a NS in a

binary can, in principle, be inferred by GWobservations as

the tidal field of the companion (BH or NS) can induce

quadrupole deformation in the NS. This deformation is

measured in terms of a dimensionless “tidal deformability”

parameterΛ, which is related to the quadrupolar l ¼ 2 tidal

Love number k2 and the radius R and massM of the NS via

Λ ¼ ð2=3Þk2ðc2R=GMÞ5 [30–32]. LIGO/Virgo GWobser-

vations have direct access to this parameter, as the quadru-

pole deformation of the star leads to a faster rate of inspiral

of the orbit. This is captured in the observed waveform as a

fifth post-Newtonian order (i.e.,Oðv=cÞ10) correction to the
orbital phase evolution of the system. At this order the

deformability parameters Λi (i ¼ 1, 2) do not appear

separately, but as a dimensionless combination called the

effective tidal deformability, which also depends on the

mass ratio q ¼ M2=M1 of the system:

Λ̃≡
16

13

ð1þ 12qÞΛ1 þ ðqþ 12Þq4Λ2

ð1þ qÞ5 : ð1Þ

While the primary goal behind measuring the tidal

deformability is to determine the equation of state (EOS)

of dense hadronic or quark matter in NS cores, in this paper

we wish to exploit this measurement to distinguish BNS

from BHNS systems. In particular, our goal is to develop a

new statistic to discriminate between the two populations

and measure a population hyperparameter that gives the

fraction of BNS and BHNS systems in the observed

population. To this end, we exploit the fact that according

to our current understanding BHs have zero tidal deform-

ability (see Refs. [32–35] for further details), while NSs,

depending on the stiffness of the EOS, could have a large

tidal deformability [14,30].

While it has long been known that massmeasurements are

not sufficient to distinguish between BNS and NSBH

systems [36,37], our work differs from similar recent

proposals. Measurements of the tidal deformabilities Λ1

and Λ2 of the individual binary components could be

consistent with a NSBH system even for large-SNR signals

and large tidal effects if at least one of the two tidal

deformabilities is consistent with zero at the 50% confidence

level [38], therefore it is hard to distinguishBNS fromNSBH

systems with GWs alone
1
if we assume that Λ1 and Λ2 are

independent [39]. However, certain NS properties that can be

measured via GWs can be expected to be similar for all NSs.

This “universality” can be used to distinguish between the

two classes of binaries, as described in Ref. [40]. The main

caveat of this method is the requirement that the NS radius

must be approximately constant for all NSs in binary

systems, at least within statistical errors. This is reasonable

when the EOS is hadronic, but it is not expected to hold if the

EOS allows for phase transitions to quark matter [41,42].

Conversely, the method we propose can be applied to any

EOS model. We consider two “extreme” EOS models (see

Sec. II), one ofwhich (theALF2EOS) indeed leads to hybrid

stars. Previous work developed a method to distinguish

BNSs and low-mass binary BHs solely from their GW

signals, considering the imprint of the tidal deformability

of the NSs on the GW signal for systems undergoing prompt

BH formation after merger [43]. More recently, tidal heating

ofBHhorizons hasbeen suggested as awayof distinguishing

BNS from BHNS systems [44].

The rest of this paper is organized as follows. In Sec. II

we describe our assumptions on the mass distribution and

the EOS, and their implications for the distribution of the

effective tidal deformability parameter. In Sec. III we use

hierarchical Bayesian inference to reconstruct the fraction

of BHNS (BNS) systems from simulated observations.

Finally, in Sec. IV we discuss our results and point out

possible directions for future work. Appendix A lists some

of the proposed formation scenarios that could produce

BHs in the mass range ∼1–3 M⊙. Appendix B shows that

EOS uncertainties can affect the inference in the worst-case

scenario where we use the stiffest EOS to recover astro-

physical systems that correspond to the softest EOS (or vice

versa). Appendix C shows that our results are largely

insensitive to the inclusion of tidal disruption effects in the

waveform models.

II. THE MASS DISTRIBUTION OF COMPACT

BINARIES

In this section we discuss and motivate our assumptions

on the mass distribution of BNSs and BHNSs, which is an

important ingredient to distinguish between the two fam-

ilies of compact objects.

Stellar evolution theory suggests that the minimum

mass of isolated, nonrotating NSs should be ∼1 M⊙ (see,

e.g., [45,46] and references therein), and there is a

growing body of experimental and theoretical constraints

on the upper end of the mass spectrum. The timing of

radio pulsars recently established a new observational

1
Distinguishing low-mass binary BHs from BNSs is easier, as

both tidal deformabilities vanish in the case of binary BHs.
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lower limit on the maximum mass of ∼2.14þ0.20
−0.18 M⊙ at

95.4% confidence level [47]. Bayesian inference based on

the electromagnetic observations of pulsars, nuclear

physics calculations of the EOS and the recent observation

of GW170817 together imply values of the maximum

mass of stable NSs clustering around ∼2 M⊙ [14,48–56],

although there are claimed observations of even more

massive NSs [57], and theoretically the maximum mass

can be as large as ∼3 M⊙ [58]. In general, the mass

spectrum of isolated BHs can span several orders of

magnitude ranging from subsolar mass objects to the

supermassive BHs of mass ≳106 M⊙ found in galactic

centers. In this work we are interested in BHs with masses

comparable to NSs, and therefore we will focus on the

range 1 M⊙ ≲MBH ≲ 3 M⊙.

A. Neutron star binaries

We consider two BNS mass distribution models.

The first model (“double Gaussian,” henceforth BNS-

DG) is based on the electromagnetic observations of

Galactic radio pulsars, whose evolutionary path is

described in Refs. [59–61]. In the standard isolated binary

formation channel, the primary NS is spun up to

∼10–100 ms through accretion, whereas the secondary

star spins down to a typical period of ∼1 s after birth. A

recent Bayesian analysis using a sample of 17 Galactic

BNSs [62] indicates that the nonrecycled (secondary) NS

mass is uniformly distributed within the range

MNS ∈ ½1.14; 1.46� M⊙, while the recycled (primary) NS

follows a double Gaussian distribution

GðmjθÞ ¼ α
ffiffiffiffiffiffi

2π
p

σ1
e

ðm−μ1Þ2

2σ2
1 þ 1 − α

ffiffiffiffiffiffi

2π
p

σ2
e

ðm−μ2Þ2

2σ2
2 ; ð2Þ

where we introduced the four-dimensional parameter vec-

tor θ ¼ ðμ1; μ2; σ1; σ2Þ with μ1 ¼ 1.34M⊙, μ2 ¼ 1.47 M⊙,

σ1 ¼ 0.02 M⊙, σ2 ¼ 0.15 M⊙, and the “mixing param-

eter” α ¼ 0.68. The BNS-DG prescription is completed by

setting an EOS-dependent threshold Mmax
EOS for the maxi-

mum stellar mass (see Sec. III). This model is based on

observations of galactic NSs, and therefore it should be

viewed with some caution if we consider third-generation

(3G) interferometers such as the Einstein Telescope

[63–65] or Cosmic Explorer [66], which are expected to

detect binary systems out to large redshifts [66,67].

In the second, more agnostic model (BNS-U), both NS

masses are extracted from a uniform distribution with

MNS ∈ ½1 M⊙;M
max
EOS�. This model is less physically moti-

vated, but we use it to bracket uncertainties and to take into

account the recent detection of GW190425 [17], which

seems to suggest that the formation and evolution of the

BNS population observed in GWs may be different from

the Galactic population [68].

B. Black hole-neutron star binaries

The formation and evolution of BHNS binaries are

arguably even more uncertain. “Low-mass” BHs can form

from the gravitational collapse of stars of mass ≳8 M⊙ or

from overdensities in the early Universe (“primordial

BHs”, henceforth PBHs [69–78]). If the BH mass

m > Mmax
EOS (where no stable NS configurations are

allowed) the BH could have either primordial or stellar

origin [79]. There are several (more or less exotic)

formation scenarios that could produce BHs in the mass

range ∼1–3 M⊙. To improve readability, we briefly review

them in the Appendix A.

There are large uncertainties in current estimates of BNS

and stellar BHNS merger rates (see, e.g., [80]) and in key

parameters of someof themore “exotic” formation scenarios,

such as the fraction of dark matter in PBHs fPBH (see, e.g.,

[81–86]), but it is reasonable to expect that BNSmerger rates

should be larger thanBHNSmerger rates in themass range of

interest here. LIGO-Virgo observations have measured a

90% credible rate (to the nearest significant figure) of

100–4000 yr−1 Gpc−3 for BNS mergers, while the upper

limit (in the absence of any candidates) on BHNS binaries is

600 yr−1 Gpc−3 [87,88]. However, we will be agnostic and

allow for the possibility that BHNS rates may dominate over

BNS rates.We adopt a flat distribution for the BHmassMBH

in the range ½1; 3� M⊙, and (just as we did for BNSs) we

consider either the double Gaussian distribution of Eq. (2) or

a uniform NS mass distribution in the range MNS ∈

½1;Mmax
EOS� M⊙. In the followingwewill refer to thesemodels

as BHNS-DG and BHNS-U, respectively.

C. Choice of EOS

In our analysis we consider two EOS models, APR4 [89]

and ALF2 [90], as prototypes for “soft” and “stiff” nuclear

matter. Soft and stiff EOSs lead to more and less compact

stellar configurations, respectively. The APR4 EOS is

computed from a nonrelativistic model which includes

relativistic boost corrections to the two- and three-nucleon

interactions using variational methods [89]. The ALF2 EOS

is a nuclear and quark matter EOS based on the so called

MIT bag model, with a phase transition from nucleons to

deconfined quarks at density ρ ∼ 8 × 1014 g · cm−3 [90].

As shown in Table I, for a given mass (here chosen to be the

“canonical”M ¼ 1.4 M⊙) the APR4 EOS yields a NS with

smaller radius and tidal deformability than the ALF2 EOS.

TABLE I. Radius and dimensionless tidal deformability Λ≡

λ=m5 for a prototype 1.4 M⊙ NS modelled with two examples of

theoretical EOSs, namely APR4 [89] and ALF2 [90], which

represent to cases of soft and stiff nuclear matter, respectively.

EOS RNS [km] Λ Mmax
EOS [M⊙]

APR4 11.43 260.35 2.21

ALF2 13.02 666.23 2.08
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Both of these models are compatible with the LIGO/

Virgo events GW170817 [8,12,13] and GW190425 [17]

and with recent electromagnetic observations [91–95].

Furthermore, as shown in the left panel of Fig. 1, APR4

and ALF2 span a wide range of mass-radius configurations.

The difference in stiffness between the two models has a

large impact on the tidal deformability parameter Λ, which

differs by a factor ≳2 between the two models for a given

mass. In the right panel of Fig. 1 we plot the tidal

deformability as a function of mass for the same equations

of state. The soft EOS APR4 yields smaller values of Λ

than the stiff EOS ALF2 for all NS masses. This is

important for our purposes, because large values of Λ

enhance matter effects in the signal, and, therefore, lead to

tighter constraints [96].

D. Tidal deformability probability distribution

We populate the models BNS-DG, BNS-U, BHNS-DG,

and BHNS-U with n ∼ 8 × 106 samples, each representing

a binary with component masses randomly selected

according to the criteria described in Sec. II. For each

system (BNS and BHNS), we compute the NS tidal

deformability by solving the relativistic stellar structure

equations for a given EOS [30], while the tidal deform-

ability of the BH is assumed to be zero [33,34,100]. From

these data sets we compute the dimensionless tidal

deformability Λ̃ defined in Eq. (1), and the corresponding

conditional probability distributions PðΛ̃jBNSÞ and

PðΛ̃jBHNSÞ.
The blue and red histograms in Fig. 2 show the probability

distributions PðΛ̃jBHNSÞ (red) and PðΛ̃jBNSÞ (blue) for

EOS ALF2 (left panel) and APR4 (right panel). Within

each panel, solid (dashed) lines correspond to a double

Gaussian (uniform) mass distribution for NSs. The EOS

has a small effect on the qualitative shape of the probability

functions for both BNS and BHNS systems. However, the

stiffness of the EOS does change the median and the

68% confidence intervals, as shown in Table II. To guide

the eye, in Fig. 2 we mark all 68% confidence intervals by

vertical lines.

Compare for example the probability functions

PðΛ̃jBHNS − DGÞ and PðΛ̃jBNS − DGÞ. The left panel

of Fig. 2 shows that they have some overlap when 300≲

Λ̃≲ 700 for ALF2, while the right panel implies that they

overlap for 100≲ Λ̃≲ 300 for APR4. However, for both

EOS models the 68% confidence levels of the two

distributions are disjoint. These qualitative considerations

provide a first visual indication that it may indeed be

possible to disentangle the nature of low-mass binaries

from these probability distributions, with small and large

values of Λ̃ corresponding to BHNS and BNS systems,

respectively, while intermediate values would suggest a

mixture of the two populations.

The mass function of NSs does not significantly affect

PðΛ̃jBHNSÞ, which remains sharply peaked at small

values of Λ̃, but it does change the qualitative behavior

of PðΛ̃jBNSÞ. Table II shows that the median value

of Λ̃ is significantly lower for PðΛ̃jBNS-UÞ than for

PðΛ̃jBNS-DGÞ, so the region in which the tidal deform-

ability of BHNS and of BNS overlap increases significantly,

andwe can expect that our ability to distinguishBHNSs from

BNSs will degrade significantly. Note that this is a blessing

FIG. 1. Left panel: Mass-radius relations for selected EOS models. Left to right: APR4 [89] (thick green), SLY4 [97] (dashed blue),

APR3 [89] (dashed red), MPA1 [98] (dashed orange), ALF2 [90] (thick brown), and H4 [99] (dashed cyan). The gray lines represent the

90% confidence regions for the companion masses and their radii for the LIGO/Virgo event GW170817, assuming a parametrized EOS

and imposing a lower limit on the maximum mass of 1.97 M⊙ (cf. Fig. 3 of Ref. [13]). Right panel: Dimensionless tidal deformability Λ

(on a log scale) as a function of the NS mass for the same EOS models considered in the left panel.
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and a curse: reconstructing the form of the probability

distributions with future GW observations may allow us to

reconstruct the mass distribution and the formation scenarios

of BNS components.

The distributions of the tidal deformability shown in the

bottom panels of Fig. 2 can be exploited to identify the

specific type of binary. Let us introduce the ratio

rðΛ̃Þ≡ PðΛ̃jBHNSÞ
PðΛ̃jBNSÞ

: ð3Þ

Large (small) values of rðΛ̃Þ indicate that Λ̃ is more likely

to come from a BHNS (BNS, respectively). In the top

panels of Fig. 2 we plot rðΛ̃Þ for the four possible

combinations of EOS models (either ALF2 or APR4)

and NS mass distributions (either double Gaussian or

uniform). When this ratio is above the shaded region,

the binary is likely to be a BHNS. Below the shaded region,

it is likely to be a BNS. In the grey shaded region, the

binary’s origin is uncertain.

The range of Λ̃ corresponding to an uncertain binary

origin (i.e., to the ratio r being in the shaded region)

depends sensitively on the mass distribution of NSs in

BNS systems, being large when the mass distribution is

flat. In general, the mixing fraction between BHNS and

BNS systems will be hard to measure when the tidal

FIG. 2. Bottom: Conditional probability distributions PðΛ̃jiÞ, where i ¼ BHNS−DG (solid red), BHNS-U (dashed red), BNS-DG (solid

blue) or BNS-U (dashed blue), for EOS ALF2 (left panel) and APR4 (right panel). Vertical lines identify the 68% confidence intervals

for the three distributions (cf. Table I). Top: log10ðrÞ, where r is the probability ratio defined in Eq. (3) for different combinations of mass

distribution models, as indicated in the legend. When this ratio is above the shaded region the binary is likely to be a BHNS. Below the

shaded region it is likely to be a BNS. In the grey shaded region, the binary’s origin is uncertain.

TABLE II. Median and 68% confidence intervals of the tidal

deformability Λ̃ (cf. Fig. 2).

model

EOS

ALF2 APR4

BHNS-U 100
þ225

−70
30

þ90

−24

BHNS-DG 160
þ380

−78
60

þ150

−31

BNS-U 410
þ600

−260
230

þ300

−140

BNS-DG 870
þ280

−200
350

þ130

−87
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deformability distributions for BNSs and BHNSs have a

large overlap, i.e., when r is in the shaded region over a

broad range of values of Λ.

III. BAYESIAN INFERENCE

The previous qualitative considerations can be put on a

more solid footing by a Bayesian analysis. First of all, we

can combine the probability distributions of the two

compact binary families to obtain the observable proba-

bility distribution of Λ̃:

PðΛ̃Þ ¼ PðΛ̃jBHNSÞPobsðBHNSÞ
þ PðΛ̃jBNSÞPobsðBNSÞ; ð4Þ

where PobsðBNSÞ and PobsðBHNSÞ are the probabilities to
observe a BNS and a BHNS system, respectively.

Equation (4) can be used to infer the relative abundance

of BNSs and BHNSs as follows. We define a “mixing

fraction” parameter F ¼ PobsðBHNSÞ such that 0≤F ≤1

and PobsðBNSÞ ¼ 1 − F . Then Eq. (4) reads

PðΛ̃Þ ¼ PðΛ̃jBHNSÞF þ PðΛ̃jBNSÞð1 − F Þ: ð5Þ

For simplicity, in the following we will compare the

BHNS-U and BNS-DGmodels only. In Fig. 3 we show how

the shape of PðΛ̃Þ changes with F . The left panel refers to

the ALF2 EOS, and the right panel to the APR4 EOS. The

two plots are qualitatively similar, although the range of

possible values for Λ̃ is very different. When F is close to

unity most binaries are BHNSs, and PðΛ̃Þ has a single peak
at values of Λ̃≲ 300ð200Þ for ALF2 (APR4). As F

decreases below ≃0.7 the distribution becomes bimodal,

with a second broad peak between 300≲ Λ̃≲ 1400

(100≲ Λ̃≲ 600) for ALF2 (APR4). This second peak

becomes more and more dominant in the limit F → 0,

when BNSs dominate the observed population.

We sample the probability distribution of the hyper-

parameter F using a machine-learning emulator trained on

numerical predictions and inserted into a Bayesian hierar-

chical framework [101–103]. We train a Gaussian process

regression interpolant on 100 values of F ∈ ½0; 1�. The
resulting emulator slots into a hierarchical Bayesian analy-

sis and is fed with simulated data from observations with

second- and third-generation interferometer networks, pro-

viding different constraints on F . We consider two detector

configurations: (i) a network consisting of LIGO Hanford,

LIGO Livingston [5] and Virgo [6] (HLV), all operating at

design sensitivity [104], and (ii) a third-generation network

[105] composed of two Cosmic Explorer (CE) detectors

[66,67] and one Einstein Telescope (ET) [63,65].

The observations injected within the code are simulated

using the publicly available code BILBY, a Bayesian

inference library for GW astronomy [106–108]. For each

binary injected in the data analysis pipeline, we randomly

draw the component masses according to the specific

model,
2
while the luminosity distance dL is sampled from

a uniform distribution between 10 and 120 Mpc.

For the GW signal we use the IMRPhenomPv2_

NRTidal model [109,110]. Numerical relativity simula-

tions have shown that tidal disruption may occur in BHNS

mergers, affecting the merger dynamics and introducing a

characteristic frequency cutoff in the waveform. In general,

the occurrence of tidal disruption and the waveform mor-

phology are sensitive to the BH spin, the binary mass ratio

and the EOS [25,111–114]. We focus (conservatively) on

systems where tidal disruption does not occur, because the

FIG. 3. Violin plot showing the probability distribution of PðΛ̃Þ defined in Eq. (4) for the ALF2 (left) and APR4 (right) EOS and for

selected values of F ¼ ½0; 0.1; 0.2;…1�. The population is dominated by BNSs when F → 0, and by BHNSs when F → 1.

2
BILBY cannot handle very small (and rare) values of Λ̃.

Therefore we discard the lowest values of Λ̃, and this effectively
sets the upper mass limit for BHs in our catalogs at 2 M⊙.
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frequency cutoff due to tidal disruption makes BHNS

binaries easier to tell apart from BNS binaries [115,116].

We also verified by an explicit calculation that using

PhenomNSBH [114], a waveform model which includes

tidal disruption, would not affect our conclusions (see

Appendix C).
We assume an isotropic source position and orientation

in the sky. We neglect the spins of both NSs (in which

case the dimensionless spin parameter is expected to be

≲0.3 [117]) and BHs (see e.g., [118,119]). Although BHs,
in principle, can have large spin, this should not signifi-

cantly affect our results, because tidal deformability

effects are expected to be dominant over spin effects at

the relevant post-Newtonian order [120]. Moreover, we

are focusing on black hole masses up to 2 M⊙. These may

involve BHs of primordial origin or dark matter cores

(see Appendix A), and theoretical calculation in these

scenarios suggest that BH spins should be negligible

[119,121,122].

For each posterior distribution of F we run three

independent chains of ∼104 samples, discarding the first

∼10% points as burn in. The convergence of the Markov

Chain Monte Carlo simulations is determined by cross-

checking the chains through a standard Rubin test [123].

We compute PðΛ̃Þ, as defined in Eq. (5), for 100 values

of F ∈ ½0; 1�. We have checked that the Gaussian process

regression interpolant emulator reconstructs the probability

distributions PðΛ̃Þ shown in Fig. 3 with accuracy better

than 10% for any value of F .

We choose a subset of binaries such that the inferred

PðΛ̃Þ lies within the regions where we can correctly

distinguish BNSs from BHNSs for both EOS models.

For BHNSs (BNSs) we consider Λ̃ in the range ∼½50; 200�
([300, 600]) for APR4 and [120, 500] ([400, 1200]) for

ALF2. We inject these values into the machine learning

emulator and reconstruct PðF Þ.
Figure 4 shows the results of 10 and 60 simulatedBNS and

BHNS events assuming the ALF2 EOS in the HLV network

(left panel) and for the third-generation network of two CEs

and one ET (right panel). We reconstruct PðF Þ through a

hierarchical Bayesian analysis under three assumptions: a

“pure BNS” population (F ¼ 0), a “pure BHNS” population

(F ¼ 1) and a “perfectly mixed” population (F ¼ 0.5). For

the third-generation networks (right panel) the tidal deform-

ability errors are roughlyone order ofmagnitude smaller than

for the second-generation network (left panel). This leads to

slightly narrower probability distributions, but our results

indicate that (quite remarkably) present detectors are suffi-

cient to discriminate between the two populations, as long as

the number of observations is large enough. The median and

the 68% confidence intervals of the distributions are listed in

Table III. Note that the comparison in Fig. 4 (wherewe fix the

number of observations) is somewhat unfair, because the

higher sensitivity of third-generation detectors implies that

event rates must increase with the cube of the sensitivity

enhancement. As the number of events and detectors

improve, the reconstruction of PðF Þ and our ability to

determine F will get sensibly better.

FIG. 4. Reconstructed probability density functions of the parameter F assuming Nobs ¼ 10 observations (solid lines) or Nobs ¼ 60

observations (dashed lines). The left panel refers to a second-generation detector network (HLV), and the right panel to a third-

generation network composed of two CEs and ET. We focus on three extreme cases: a pure BNS population (F ¼ 0, blue), a “perfectly

mixed” population (F ¼ 0.5, green), and a pure BHNS population (F ¼ 1, red). For concreteness here we focus on EOS APR4 and we

compare the mass distribution models BHNS-U and BNS-DG, but results are qualitatively similar for other EOS models and mass

distributions.
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This is one of the main conclusions of this work: current

interferometers should already be able to determine the

nature of low-mass compact binaries by measuring the tidal

deformability distribution. Roughly Oð10Þ GW observa-

tions in the low-mass range can identify whether F favors

double NSs or mixed binaries when one of the two families

dominates the population, and a few tens of observations

are sufficient to measure F with an accuracy ∼0.1 even if

both families contribute to the overall observed population.

IV. CONCLUSIONS

A new era in astronomy has begun with the observation

of compact binary coalescences by the LIGO and Virgo

GW detectors. This complementary window to observe the

Universe can inform our knowledge of fundamental phys-

ics and astrophysics. In particular, we can address the long-

standing problem of how compact object binaries form and

evolve by measuring their fundamental properties, such as

the distribution of their masses and spins and their

cosmological merger rates.

In this paper we have addressed how GW observations

could be exploited to measure another key property of the

population, namely the relative abundance of BNSs and

BHNSs when the BHs masses are similar to those of NSs.

Delayed supernovae, the coalescence of NSs, certain

models of dark matter and physical processes in the

primordial Universe might produce such BHs. It is, there-

fore, critical to discriminate the two populations to test the

different formation scenarios of BHs.

A crucial difference between BNS and BHNS systems

arises because the dimensionless tidal deformability of NSs

is Λ ∼ few × 100, while it is predicted to be zero for BHs.

Consequently, the effective tidal deformability Λ̃ of a

binary defined in Eq. (1), which depends on the tidal

deformability of the binary components and their mass

ratio, is significantly larger for BNSs (Λ̃BNS ∼ 400–1200

for the stiffer EOS, and ∼300–600 for the softer EOS

considered in this paper) than it is for BHNSs

(Λ̃BHNS ∼ 120–500 for the stiffer EOS, and ∼50–200 for

the softer EOS). We exploit this asymmetry in the dis-

tribution of Λ̃ to differentiate between the two populations.

To this end, we introduced a population hyperparameter

F measuring the fraction of BHNS population relative to

BNS population in the observed catalog of sources. We

have shown that it is possible to infer the hyperparameterF

from the measured distribution of Λ̃. The distribution peaks

at large (small) values of Λ̃ if the population contains no

BHNS (BNS) systems and F ¼ 0 (F ¼ 1), while it will be

bimodal if the population contains a significant population

of BHNS systems, say 0.2 < F < 0.8.

The highlight of this investigation is that the network of

GW detectors that are currently operational (LIGO

Hanford, LIGO Livingston and Virgo) can constrain F

at 68% confidence level to the range [0,0.2], [0.7,1] and

[0.3, 0.7] with only 10 detections if the population is

dominated by BNSs or BHNSs or an equal admixture of

both, respectively. A larger number of observations, with

60 events, would increase our ability to reconstruct F ,

pinning down the confidence intervals to [0,0.05], [0.9,1]

and [0.4, 0.6], for the same populations.

Our results are largely insensitive to the EOS of dense

matter although stiffer equations of state do allow for a

moderately better constraint on F . On the other hand, the

mass ratio of the companion stars spreads the range of

possible values of effective tidal deformability, limiting the

accuracy with which the hyperparameter F can be inferred.

If NS masses are confined to a narrower range than is

assumed in this paper, then it will be possible to measure

the relative fraction of BNSs and BHNSs more accurately.

This is where CE and ET could make an impact: they will

be able to provide us with a very precise distribution of NS

masses by accurately measuring the masses of thousands

of NSs.
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APPENDIX A: LOW-MASS BLACK HOLE

FORMATION SCENARIOS

In this Appendix we present a short overview of

formation scenarios that could produce BHs in the mass

range ∼½1 − 3� M⊙.

1. Supernovae. One possibility to produce low-mass

BHs is through supernova explosion. If the explosion is

driven by rapidly growing instabilities with timescale of

10–20 ms, it is expected to form BHs with masses

>5 M⊙. However, instabilities may develop over a longer

(>200 ms) timescales and lead to lower mass remnants

[124]. In both cases, gravitational collapse could produce

BHs compatible with the mass range considered in this

paper.

2. Accretion-induced collapse. A second possibility is

that NSs may gain mass through accretion and collapse to

low-mass BHs [125–128]. Given current uncertainties on

the maximum NS mass, it is not clear how to distinguish

low-mass BHs formed in accretion-induced collapse from

those formed in other channels.

3. Hierarchical mergers. The hierarchical merger of BHs

in dense environments is a possible channel to form the

heaviest BHs observed by LIGO and Virgo [129–131].

Similarly, the remnant BHs produced by a BNS merger

should often have masses below 3 M⊙ and they could

merge again in dense stellar environments, forming

BHNS binaries with low-mass BHs via dynamical inter-

actions [132] (cf. [133] for caveats on the rates). An

alternative scenario involves 2þ 2 quadruple systems,

i.e., wide binary systems in which each component is

itself a binary [134].

4. PBHs. Current observational constraints on the PBH

abundance from microlensing indicate that their mass

fraction compared to dark matter may be as large as fPBH ≲
10% [86]. If this bound is saturated, and we assume that the

cross section for the dynamical capture of a NS and a BH of

similar mass are comparable (this is reasonable, since the

process is dominated by GW emission [135]), then the

merger rate of BHNSs may be even larger than the merger

rate of dynamically formed BNSs [39].

5. PBH captures. Another possibility is that NSs, white

dwarfs or even main sequence stars could capture mini

PBHs withMBH ≪ 1 M⊙. Efficient accretion from the star

could then increase the PBH mass up to ∼1–3 M⊙

[136,137]. However, it is still not clear which fraction of

NSs could survive this process to form a bound BHNS

system [136].

6. Dark matter cores. It has been speculated that

asymmetric dark matter could accumulate within the NS

cores through nucleon scattering, and eventually form a

BH seed [138–140], providing yet another possibility for

converting a NS to a BH of similar mass.

APPENDIX B: EOS SYSTEMATICS

Uncertainties in the NS EOS can affect our ability to

distinguish BHNS from BNS systems. In this Appendix we

focus on the most pessimistic scenario compatible with

current observations, and we analyze 60 detections with the

HLV network to estimate the worst-case impact of EOS

uncertainties on our results.

We inject GWobservations of binaries modelled with the

ALF2 EOS and different values of the mixing parameter F

into the Bayesian framework trained with APR4. When we

inject purely BNS binaries (blue curve in Fig. 5) we correctly

recover the expected fraction of BNS/BHNS, i.e.F ¼ 0. On

the other hand, when we inject purely BHNS systems (red

distribution in Fig. 5) we obtain inconsistent results, i.e. the

posterior probability of F peaks around the wrong estimate.

This is because the ALF2 EOS yields large values of the tidal

deformability Λ̃ relative toAPR4, and therefore the observed

events are misinterpreted as BNSs when they would be

FIG. 5. Reconstructed probability density functions of the

parameter F assuming Nobs ¼ 60 observations with a second-

generation detector network (HLV). Here we look at the most

pessimistic scenario where we inject an ALF2 population into a

Bayesian framework trained with the APR4 EOS, and we focus

on the two extreme cases: a pure BNS-DG population (F ¼ 0,

blue) and a pure BHNS-U population (F ¼ 1, red).
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interpreted as BHNS with the “correct” assumption on

the EOS.

Vice versa, we can inject observations of binaries

modelled with APR4 into a Bayesian framework trained

with ALF2. In this case, when we inject a pure-BHNS

population we can correctly recover it as such, because

APR4 yields values of Λ̃ which are generally smaller than

those derived using ALF2. However, when we inject BNS

systems the approach leads to the wrong reconstruction.

In summary, EOS uncertainties can dramatically affect

the inference in the worst-case scenario where we use the

stiffest EOS to recover astrophysical systems that corre-

spond to the softest EOS, or vice versa. We expect the

uncertainty in the EOS to reduce significantly through

electromagnetic and GW observations well before third-

generation detectors become operational. A more realistic

Bayesian analysis should reconstruct the EOS and the

population fraction simultaneously. We plan to address this

problem in future work.

APPENDIX C: TIDAL DISRUPTION

Tidal disruption can affect the merger dynamics.

Investigations of BHNS mergers in numerical relativity

have shown that the occurrence and nature of tidal

disruption depends, in general, on the binary parameters,

and in particular on the BH spin, the adopted EOS model,

and the binary mass ratio (cf. [25,113]). Tidal disruption is

a characteristic signature of the presence of a BH in the

binary, because it typically produces a sharp frequency

cutoff in the GW signal [141]. From the presence of such a

cutoff (if detectable) we can conclude that one of the

merging objects is a BH [115,116].

In most of our work we have focused on systems where

tidal disruption does not occur in the sensitive frequency

band of the detectors. This is a conservative choice, in the

sense that our method does not rely on the additional

information provided by tidal disruption. To check that

tidal disruption effects would not significantly affect our

conclusions, we have computed the posterior probability

distribution of F obtained using injections in which

disruptive mergers can occur. Using the criterion in

Eq. (2) of [25], this corresponds to binaries with

q < QDðC; χÞ, where q ¼ MBH=MNS is the binary mass

ratio, C ¼ MNS=RNS is the NS compactness, and χ is the

dimensionless BH spin. In Fig. 6 we compare results

obtained using the IMRPhenomNSBH model [114] (black

line), which allows for tidal disruption, against the results in

right panel of Fig. 4 (red line). Our main conclusions are

clearly unaffected.
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