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Distinguishing features of current COVID-19 vaccines:

knowns and unknowns of antigen presentation and modes of

action
Franz X. Heinz 1✉ and Karin Stiasny 1✉

COVID-19 vaccines were developed with an unprecedented pace since the beginning of the pandemic. Several of them have

reached market authorization and mass production, leading to their global application on a large scale. This enormous progress

was achieved with fundamentally different vaccine technologies used in parallel. mRNA, adenoviral vector as well as inactivated

whole-virus vaccines are now in widespread use, and a subunit vaccine is in a final stage of authorization. They all rely on the native

viral spike protein (S) of SARS-CoV-2 for inducing potently neutralizing antibodies, but the presentation of this key antigen to the

immune system differs substantially between the different categories of vaccines. In this article, we review the relevance of

structural modifications of S in different vaccines and the different modes of antigen expression after vaccination with genetic

adenovirus-vector and mRNA vaccines. Distinguishing characteristics and unknown features are highlighted in the context of

protective antibody responses and reactogenicity of vaccines.

npj Vaccines           (2021) 6:104 ; https://doi.org/10.1038/s41541-021-00369-6

INTRODUCTION

The development of COVID-19 vaccines was extremely fast and
successful, with several manufacturers having obtained market
authorization for their products within the first year from the
identification of the virus (SARS-CoV-2). These vaccines are now
used worldwide for mass immunization programs, and data on
vaccine efficacies justify the hope that vaccination can indeed be
the main instrument for preventing serious disease and death, and
more generally for combating the pandemic1–4. Despite incom-
pletely resolved questions (e.g. duration of immunity, prevention
of transmission, and protection against emerging virus variants)
the availability of effective COVID-19 vaccines is an enormous
relief and certainly a great success story already now.
All current vaccines that are authorized for general use and for

which clinical efficacy data have been published rely on the viral
spike protein (S) as an immunogen, either alone or—in the case of
inactivated virus vaccines—together with other viral proteins
present in the viral particle (see sections below). Because of its
essential functions during viral entry (receptor binding and
membrane fusion), the S protein is the major target of antibodies
that can potently neutralize the virus. Increasing evidence
indicates that neutralizing antibodies are indeed a reliable
correlate of protection5–9. The potency of these antibodies
depends on high-affinity interactions with specific parts of the
complex three-dimensional structure of the spike in a native
conformation10,11. Efficient formation of such antibodies by B cells
requires helper functions of CD4 T cells that are specifically
stimulated by peptides derived from the same antigen in complex
with MHCII molecules. Other components of cellular immunity,
such as CD8 T cells, also contribute to immune responses after
SARS-CoV-2 infection or vaccination, although their role in COVID-
19 infections and protection from disease is still incompletely
resolved12,13.
Current COVID-19 vaccines present the spike protein in very

different ways to the immune system, and two main categories

have to be discerned. The first category consists of mRNA and
adenoviral vector vaccines (herein referred to as genetic vaccines,
sections: “Genetic vaccines—general, “mRNA vaccines”, “Adeno-
virus-vector vaccines”), both of which do not contain the spike
protein but provide genetic information for its biosynthesis in
body cells of the vaccinee. With this kind of vaccines, the specific
design of genetic sequences for the correct formation and
presentation of properly folded spike proteins to B cells are in
the foreground of interest. The second category encompasses
protein-based approaches, i.e. classical inactivated whole-virus
and innovative subunit vaccines, which contain S in different
forms and combinations with adjuvants (Sections: “Protein-based
vaccines—general”, “Inactivated vaccines”, “Subunit vaccines”).
Irrespective of these categories, all vaccines have to cope with the
intrinsic problem of conformational instability of the spike protein,
whether it is synthesized in the vaccinee after genetic vaccination
or in cell culture systems for production of conventional vaccines.
In this review, we discuss the biosynthesis and relevant

structural features of the viral spike as a basis for understanding
differences of its presentation in current COVID-19 vaccines. Our
major focus is on variations of the constructs for S biosynthesis in
genetic vaccines and on possible conformational differences of S
in conventional vaccines. We also address the ‘grey matter’ of
additional variables, such as ill-defined downstream production
processes and purity of vaccines as well as differences in
triggering sensors of innate immunity. All of these distinguishing
features might provide clues to yet unresolved vaccine-specific
determinants of immune responses, efficacy, and potentially
adverse reactions. Our review is limited to those vaccines in
current use for which phase 3 clinical efficacy data have been
reported, and for which published information on the nature and
manufacturing process exists. However, we would like to
emphasize that there is an enormous pipeline of further
developments (https://www.who.int/publications/m/item/draft-
landscape-of-covid-19-candidate-vaccines), including subunit
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vaccines that contain only parts of the S protein, in some instances
combined with components of other viral proteins. Therefore, the
landscape of vaccines becoming available for general use may
expand in the near future. Key features of the vaccines discussed
in this review are summarized in Table 1.

BIOSYNTHESIS AND KEY PROPERTIES OF THE SPIKE PROTEIN

Biosynthesis of S

In the course of cellular SARS-CoV-2 infection (Fig. 1a), the S
protein is synthesized from one of the viral subgenomic mRNAs
and co-translationally transported into the lumen of the endo-
plasmic reticulum (ER) by the use of a signal sequence at its N-
terminus, comprising residues 1 to 13 of its total 1273 amino
acids14. The signal sequence is cleaved off by signal peptidase
attached to the inner ER membrane, generating the final
N-terminus of the viral spike protein (14-QCVNL…). After
completion of translation, the protein remains attached to the
ER membrane through a C-terminal membrane anchor, trimerizes
and moves to the ER-Golgi intermediate compartment (ERGIC)
where virus assembly occurs by budding into the ERGIC lumen
(Fig. 1a)15. During exocytosis, virus particles encounter the
protease furin in the trans-Golgi network (TGN), which cleaves
the S protein into its membrane-associated S2 subunit and the
distal S1 subunit at a characteristic polybasic cleavage site16.
These subunits remain associated in the trimer through non-
covalent interactions, and the virus is probably secreted via
exocytic lysosomes with disrupted lysosomal functions17. Exten-
sive modifications by N- and O-glycosylation occur in the
compartments encountered by S during its intracellular
transport18.
When S is synthesized as an isolated protein (Fig. 1b) (as in

mRNA and adenovirus vector vaccines as well as for production of
recombinant subunit vaccines), the pathway of biosynthesis is
very similar. However, the absence of interactions with other viral
components for particle assembly may modulate glycosylation
patterns and stability of the S trimers. Furthermore, S1 may
dissociate from recombinantly produced spikes after furin
cleavage in the TGN (shedding) and allow S2 to convert into its
post-fusion conformation in the absence of mutations that
remove the cleavage site18. Manipulations of the authentic viral
signal sequence may cause inhomogeneities of the N-terminus
and impair native folding of S19 (see also section “Adenovirus-
vector vaccines” and Fig. 5).

Structural properties of S

Each monomer of S is composed of several structural elements,
including the N-terminal domain (NTD) and receptor-binding
domain (RBD) in S1, which occlude the S2 moiety in the native S
trimer (Fig. 2a–c)20,21. The RBD oscillates between an ‘up’ and
‘down’ position, and interaction with the cellular receptor (ACE2) is
only possible with the transiently exposed RBD in the up
position20,21. In its mature form, the S trimer is metastable and
ready to undergo triggered conformational changes that allow S2
to drive fusion of the viral and cellular membranes upon virus
entry22. The trigger comprises binding of RBD to ACE2 and a
further proteolytic cleavage by cellular proteases (in addition to
the furin cleavage between S1 and S2) at the so-called S2’ site,
resulting in the removal of a small sequence element and the
exposure of the fusion peptide at the N-terminus of S2 (Fig. 2c)22–
24. As a consequence of these changes, the S1 subunits dissociate
from the trimer, releasing S2 from its constraints in the pre-fusion
conformation to allow an irreversible conversion into a character-
istic elongated post-fusion structure (Fig. 2d)24–26. The energy
gained by the formation of this hairpin-like structure, in which the
fusion peptide is juxtaposed to the C-terminal membrane anchor,
is the driving force for viral membrane fusion during entry22. Ta
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The potential of the S trimer to adopt different conformations
may pose a problem for its use in vaccines, because the native
structure—required to induce potently neutralizing antibodies—
may be disrupted during manufacturing of conventional vaccines
or when the protein is expressed in cells of the vaccinee after
genetic vaccination. Some manufacturers have therefore intro-
duced stabilizing mutations that are intended to prevent
inadvertent structural conversion of the labile S protein. These
modifications (indicated in Table 1 and in the discussion of
individual vaccines below) include two proline mutations in S2
(K986P and V987P) at the junction between two alpha helices in
the pre-fusion form to avert their fusogenic conformational switch
into a long alpha helix in the post-fusion form, and mutations that
abolish furin cleavage between S1 and S2 to maintain the pre-
fusion trimer and to prevent shedding of S118 (Fig. 2c, d).

Antigenic structure of S

A number of monoclonal antibodies were isolated from COVID-19
patients and used for antigenic characterization of the S trimer,
including 3D structure determinations of complexes between S (or
parts thereof) and antibody Fab fragments. Collectively, these data
showed that the most potently neutralizing antibodies were

specific for the RBD27–34, but several strongly neutralizing
antibodies also recognized the NTD27,34–37, and some were
dependent on the quaternary assembly of the trimer27,38.
Neutralizing activity was also observed for antibodies against S2,
but the potency was lower than of those against S127. Importantly,
the human neutralizing antibody response in SARS-CoV-2 infec-
tion appears to be dominated by RBD-specific antibodies, which—
on average—were shown to contribute 90% of the total
neutralizing activity of human post-infection sera39. It is therefore
a major goal of all COVID-19 vaccines to present the spike and its
RBD in a most native conformation for inducing a high proportion
of potently neutralizing antibodies after vaccination.

VACCINE-SPECIFIC DIFFERENCES OF S-ANTIGEN STRUCTURE
AND PRESENTATION

The different classes of currently available COVID-19 vaccines
exhibit fundamental differences with respect to their modes of
action and the ways by which the spike antigen is presented to
the immune system. In the following sections, we will discuss
these basic differences, and provide information on variations and
modifications that can affect the structural integrity of the spike in
genetic and conventional vaccines.
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ER

ERGIC

TGN

ERGIC TGN

Lysosome
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Fig. 1 Biosynthesis and intracellular transport of S. a Infected cells: Subgenomic mRNAs for viral structural proteins are translated in
association with the ER (S, M, and E) or in the cytoplasm (N), and virus assembly takes place in the ERGIC. Virus particles are transported
through the TGN and released from the cells probably via lysosomes. During transport, S is cleaved into S1 and S2 by the cellular protease
furin in the TGN. Some spike molecules, not assembled into virions, are also transported to the plasma membrane despite the presence of an
ER retention signal15. b Transfected cells: Biosynthesis of S occurs in the absence of interactions with other viral proteins. Proteolytic cleavage
into S1 and S2 occurs in the TGN similar to that in infected cells, but some shedding of cleaved S1 and conversion of S2 into its post-fusion
structure (S2*) may occur in the absence of stabilizing mutations. ER—endoplasmic reticulum; ERGIC—endoplasmic reticulum Golgi
intermediate compartment; TGN—Trans Golgi Network; RNP—Ribonucleoprotein; Viral proteins: S—spike, M—membrane; E—envelope; N—
nucleoprotein.
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Genetic vaccines—general

The uniting feature of current genetic COVID-19 vaccines is the
provision of mRNAs for the whole, membrane-anchored spike
protein (Figs. 1, 2) in tissues after intramuscular application. RNA
vaccines contain fully functional mRNAs that can be translated
directly into the S protein, whereas additional biosynthetic steps
are required with adenovirus vector vaccines, including intra-
nuclear transcription of the vector DNA into RNA and processing
to generate functional mRNAs. It is believed (but not system-
atically studied and formally shown) that muscle cells, fibroblasts,
endothelial cells, and/or immune cells such as dendritic cells
contribute to the expression of S after intramuscular vaccina-
tion40–42. Production of potently neutralizing antibodies requires
the interaction of B cells with the native protein, most likely by
recognition of the spike anchored in the plasma membrane of
S-expressing cells (Fig.1b). In contrast, CD8 and CD4 T cells are
stimulated by complexes of peptides (derived from intracellular S
after its proteolytic processing) with MHCI and MHCII,
respectively43.

mRNA vaccines

The two mRNA vaccines in current widespread application
(BioNTech-Pfizer and Moderna) (Table 1) are technologically very
similar. They contain codon-optimized sequences for efficient
expression of the full-length S protein and use the authentic signal
sequence for its biosynthesis44–47 (Fig. 1b). Both constructs include
the two stabilizing mutations in S2 (K986P and V987P) that were
shown to prevent the conformational change of the pre-fusion
into the post-fusion structure of S (section “Introduction” and
Fig. 2c)20,21.
The production process of vaccine mRNAs involves the cloning

of the corresponding sequence into a plasmid DNA containing a
DNA-dependent RNA-polymerase promoter. After amplification in
bacterial cells, the plasmid DNA is linearized and impurities are
removed before in vitro transcription into RNA. The addition of a
5′ cap structure is a critical part of this production step that has
been improved by new technology suitable for large-scale

production48,49. In vitro transcription is followed by several steps
of mRNA purification, including the removal of dsRNA, which
could lead to an excessive innate immune response and
concomitant reactogenicity48,50. Both mRNA vaccines have
modulated 5′ and 3′ untranslated sequences to optimize mRNA
stability and translation efficiency44,45, and all uridines are
replaced by N1-methylpseudouridine (m1Ψ) to further increase
RNA stability and to reduce innate immune responses (Fig. 3a; see
section “Vaccine-specific differences of innate responses”)51,52.
Details of manufacturing processes may differ between the
companies, and subtle product-specific variations of RNA
sequences were recently confirmed by comparative analyses of
RNA extracted from original vials of the two vaccines (https://
github.com/NAalytics/Assemblies-of-putative-SARS-CoV2-spike-
encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-
1273/blob/main/Assemblies%20of%20putative%20SARS-CoV2-
spike-encoding%20mRNA%20sequences%20for%20vaccines%
20BNT-162b2%20and%20mRNA-1273.docx.pdf).
For delivery, the RNA vaccines are formulated as complexes

with specific lipids in the form of lipid nanoparticles (LNP), which
not only provide protection from RNA degradation in tissues but
also facilitate cellular uptake and release into the cytoplasm for
RNA translation (Fig. 3b)53,54. The components used for LNP
formulation include phospholipids, cholesterol, special cationic
(ionizable) lipids and polyethylene glycol (PEGylated) lipids that
are mixed in a sophisticated and critical production step (parts of
which are not documented in the published literature) to yield the
final vaccine53. Specifically developed and improved ionizable
lipids are used in the Moderna and Biontech-Pfizer vaccines
(designated Lipid H, SM-102 and ALC-0315, respectively), which
together with the molar ratios of the lipid components in LNPs
play a critical role for RNA delivery54. The precise mechanisms of
how the RNA is taken up by different cells after vaccination and
escapes from LNPs and intracellular vesicles is incompletely
resolved53,55. Collectively, there are subtle differences between
the two vaccines, both with respect to the RNA and the LNP
carriers, and a higher amount of RNA per dose is used in the
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Moderna vaccine (100 µg) than in the BioNTech-Pfizer vaccine
(30 µg)46,47.
Another mRNA vaccine, manufactured by the company CureVac

(current name CVnCoV; Table 1) is in an advanced stage of
development56. The RNA in this vaccine is also codon-optimized
and contains modifications to improve its performance, but—
different from the BioNTech-Pfizer and Moderna mRNA vaccines
described above—it does not contain the m1Ψ nucleoside
modifications57,58. Recently, data from a phase 3 clinical trial
became available, showing a relatively low efficacy of 47% at
preventing disease (https://www.curevac.com/en/2021/06/16/
curevac-provides-update-on-phase-2b-3-trial-of-first-generation-
covid-19-vaccine-candidate-cvncov/), well below the efficacies
reported for the BionTech-Pfizer and Moderna vaccines46,47 and
below the requirement of at least 50% efficacy proposed by WHO
(https://www.who.int/publications/m/item/considerations-for-the-
assessment-of-covid-19-vaccines-for-listing-by-who). The low per-
formance may be attributed in part to the high proportion of
variants that have caused infections in the study population. The
major problem, however, appears to reside in the relatively low
dose of 12 µg RNA that had to be chosen to avoid intolerably
strong side reactions in the absence of RNA modifications such as
the m1Ψ nucleoside modifications used in the two authorized
mRNA vaccines59. Results from a phase 1 clinical trial with the
Curevac vaccine had indeed already shown relatively low titers of
neutralizing antibodies induced by the dose used in the phase 3
clinical trial56,59.
Head-to-head comparisons of current mRNA vaccines with

respect to possible differences in the efficiency of protein
translation, stability or the stimulation of innate responses are
not available in the literature. Persistence of RNA and its
expression after different routes of application (including intra-
muscular) appears to be short (at least in mice), with a maximum
of 10 days60.

Adenovirus-vector vaccines

Compared to mRNA vaccines, adenovirus-vector vaccines com-
prise several additional layers of complexity (including production
in mammalian cell cultures) that can lead to heterogeneities of
immune reactions and adverse effects. Variations include (but are
not limited to) the type of adenovirus used as a vector, genetic
modifications of the vector, the cell lines used for vaccine
production, procedures for purification, and the specific design
of the gene for expressing S (Table 1).
Currently, four adenovirus-vector vaccines are in widespread

use. These are the products (in alphabetical order) of CanSino
Biological Inc./Beijing Institute of Biotechnology, Janssen-John-
son&Johnson, Oxford-AstraZeneca and The Gamaleya Institute
Moscow (Table 1). They use derivatives of different adenoviruses
as vectors for reasons more specifically discussed in section
“Distinguishing features of vaccines independent of immunogen”,
as follows: CanSino—human adenovirus 561, Janssen-Johnson&-
Johnson—human adenovirus 2619,62,63, Oxford-AstraZeneca—

chimpanzee adenovirus Y2564–66; Gamaleya Institute—human
adenovirus 26 for the first vaccination and human adenovirus 5
for the second67,68.
The unifying feature of all current adenovirus-vaccine vectors is

the replacement of one of the early adenoviral genes (E1) for the
full-length SARS-Cov-2 S gene in the adenoviral DNA (Fig. 4a) and
the additional deletion of E319,61,62,64,65,69. The loss of the E1 gene
abolishes replication competence of the vector. Therefore, for
production of the engineered particles as a vaccine, immortalized
helper cell lines are used that contain the E1 gene in their
chromosomal DNA and provide the missing function, allowing the
biosynthesis of structural proteins, replication of modified
genomic DNA, and finally assembly of replication-incompetent
virus particles in the cells (Fig. 4b)70. Production cell lines for the
Oxford-AstraZeneca, Gamaleya and CanSino vaccines are derived
from primary human embryonic kidney cells (HEK293), and for the
Janssen vaccine from human embryonic retinal cells (PER.C6)
(Table 1). Quantitative recovery of adenoviral vector particles
involves lysis of the cells by detergents (Fig. 4B, right) and further
downstream processes for the removal of cellular components
and free viral DNA71. Details of these processes, affecting the
purity and quality of the final vaccines (containing at least 5 × 1010

particles per dose), are not accessible in the published literature
(see section “Contaminations from cell substrates”).
Similar to mRNA vaccines, adenovirus vector vaccines are

intended to result in the production of native S proteins from a
specific mRNA in cells of the vaccinee (Figs. 1b, 4c). The pathway
to this mRNA however is substantially more complex than with
mRNA vaccines because it takes a detour of the adenoviral DNA
through the nucleus (where it remains extrachromosomal) and
requires a number of additional cellular processes, including RNA
transcription and processing (Fig. 4c). Although in vitro model
studies with one of the current adenovirus vector vaccines
(ChAdOx1 nCoV-19; Table 1) have shown that S-coding transcripts
dominate the transcription patterns, rare aberrant splicing or
polyadenylation site usage were observed72. Recent work by
Kowarz et al.73 provides further evidence for alternative splice
events that might lead to the formation of C-terminally truncated
and therefore soluble S protein. The authors speculate that such
secreted forms may bind to ACE2-expressing endothelial cells and
could contribute to thrombotic events via antibody-mediated
mechanism as observed after vaccination with adenovirus vector
COVID-19 vaccines74,75 (see also section “Reactions due to vaccine
constituents other than the immunogen”).
In addition, background expression of remaining adenoviral

genes has been demonstrated in this as well as in other studies
with human adenovirus-based vectors72,76. It is part of the
unknowns of current COVID-19 adenovirus vector vaccines, how
the patterns of background-vector DNA and protein expression
look like after vaccination and whether immune reactions to such
proteins are induced.
Although the constructs for all four adenovirus-vector vaccines

contain the full-length spike protein, there are some differences in
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Fig. 3 Configuration of mRNA vaccines. a Schematic of the vaccine mRNA in BionTech-Pfizer and Moderna vaccines. UTR—untranslated
region. b Schematic of a lipidnanoparticle (LNP) used for delivery of mRNA vaccines. PEG—polyethyleneglycol.
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construct design with respect to mutations for stabilizing S as well
as to the signal peptide at the N-terminus of S that require
attention. Only the Janssen vaccine contains S-stabilizing muta-
tions (Table 1), comprising not only the two prolines in S2 but also
the S1/S2 furin cleavage site, which is mutated from 682-RRAS-685
to SRAG19,62. Both modifications are intended to avoid conversion
of S into the post-fusion structure (Fig. 2d)19.
Correct processing of the signal peptide by signal peptidase to

generate the final N-terminus of S (Fig. 5a) may be especially
critical for obtaining natively folded S, because there is a cysteine
immediately downstream of the cleavage site (amino acid 2) that
has to form an S-S bond with the cysteine at position 136.
Janssen-Johnson&Johnson and Gamaleya-Institute use the
authentic SARS-CoV-2 S protein signal sequence19,67, whereas
CanSino replaced it with that of human tissue plasminogen
activator (tPA) (Fig. 5a) (https://patents.google.com/patent/
CN111218459B/en). In the Oxford-AstraZeneca vaccine, an
extended form of the tPA signal sequence (containing the tPA
propeptide) was engineered in front of the authentic S protein
signal sequence65,77,78 (Fig. 5b), based on a previous study with
Middle East respiratory syndrome coronavirus (MERS-CoV79

(Fig. 5b). Details of the engineered ‘leader sequence’ in the
ChAdOX1-S vaccine are difficult to track, but likely comprise 32 to
34 amino acids of tPA (according to a document of the European

Medicines Agency assessing thrombotic post-vaccination events,
EMA/205598/2021) and may contain a P to A mutation at position
22 to improve processing by signal peptidase80. The extended
N-terminal ‘leader sequence’ results in two consecutive signal
peptides separated by an intervening stretch of tPA propeptide
(Fig. 5b). This complex artificial sequence element may lead to
some inhomogeneity in proteolytic processing and impairment of
correct formation of the S N-terminus during biosynthesis, as
recently shown in comparative model studies with similar
constructs19.
Despite the absence of S2-stabilizing mutations, structural

studies of the S protein expressed in HeLa cells from the
Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine provided evidence
for proper folding and presentation of the trimeric pre-fusion
conformation at the cellular plasma membrane78. However, the
authors discuss evidence of shedding of the cleaved S1 portion78,
which has also been observed in model studies with unmodified S
proteins compared to mutationally stabilized proteins18 (Fig. 2c).
The effect of dissociation of soluble S1 from the trimer complex on
the quality of immune responses is incompletely understood, but
some data suggest it may contribute to a higher proportion of
non-neutralizing relative to neutralizing antibodies19,81.
Animal experiments have shown that adenovirus-vector DNA

can remain detectable for months after inoculation in
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transcriptionally active form82 in contrast to rapidly degraded
RNA55,83. Persistence of antigen expression may be a distinctive
feature of adenovirus vector vaccines, and has been proposed to
contribute to induction of sustained immune responses and long-

lasting immunity (reviewed in41).

Protein-based vaccines—general

In parallel to genetic vaccines, more conventional approaches of
vaccine development were pursued with similar intensity and led
to the authorization of inactivated whole-virus vaccines and a

subunit vaccine that is in a stage of pre-authorization (Table 1).
Both of these technologies have already been applied successfully
to the production of vaccines against other viral diseases84. With

these vaccines—and in contrast to genetic vaccines—a prede-
fined amount of the S immunogen/antigen is applied to the
vaccinee, but—as discussed in the following sections—its

conformational integrity may vary depending on the conditions
used for vaccine preparation.

Inactivated vaccines

Published information about the production process is available
for two inactivated whole-virus vaccines manufactured by the
Chinese companies Sinopharm and Sinovac (Table 1). In both
instances, the virus is grown in Vero cells and inactivated by beta-
propiolactone (BPL), which is used as an inactivating agent for
other viral vaccines, including rabies vaccines85. Literature data
indicate that production of the Sinovac vaccine includes several
steps of virus purification, leading to a product that contains
primarily the viral proteins and consists of essentially pure viral
particles86,87. The degree of purity of the Sinopharm vaccine
(referred to as BBIBP-CorV; Table 1) is less clear. Two pertinent
references do not indicate specific steps of purification after
inactivation and removal of cell debris88,89, but one figure in a
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publication by Wang et al.90 suggests a step of chromatography,
albeit without providing details of this process and the purity of
the vaccine. Both vaccines use aluminum hydroxide as an
adjuvant. Another inactivated whole-virus vaccine using similar
technology is produced by the Indian company Bharat and has
received emergency use authorization in India even before
completion of phase III clinical trials91 (Table 1). Details of
purification processes used for the manufacturing of this vaccine
are not available in published literature.
There are open questions concerning the structure of S in the

inactivated vaccines. Electron microscopical pictures of the viral
spikes in the Sinovac vaccine have been interpreted differently,
either as displaying the pre-fusion structure86 or the post-fusion
structure25,92. Several lines of evidence suggest that BPL-
inactivation in combination with purification processes can indeed
lead to the formation of the post-fusion spike and the
concomitant dissociation of S125,92. Preservation of the native
trimeric pre-fusion conformation, in contrast, was observed in
structural studies with formalin-inactivated virus93, suggesting
that inactivation and/or purification procedures can influence the
ratios of pre- and post-fusion conformations of S and thus the
qualities of killed whole-virus vaccines. Such factors may
contribute to variations in the efficacies reported in clinical trials
with current inactivated whole-virus vaccines94. There is indirect
evidence that virus strains having emerged later in the pandemic
(e.g. containing the mutation D614G in S) may be more stable95,96

and therefore could serve as an improved substrate for the
production of inactivated vaccines. The vaccine produced by
Bharat is indeed based on a seed virus containing this mutation97

(Table 1).

Subunit vaccines

So far, results of phase III clinical efficacy trials were reported and
published for a single subunit vaccine only98, which is manufac-
tured by the company Novavax (NVX-CoV2373) (Table 1)98,99 and
is still in a stage before regulatory approval100. It consists of the
trimeric full-length spike that is produced as a recombinant
protein in insect Sf9 (Spodoptera frugiperda) cells using a
baculovirus expression system and contains mutations to stabilize
S2 (K986P and V987P) as well as to delete the furin cleavage site
(682-RRAS-685 changed to QQAQ)99 (Table 1 and Fig. 2). The
protein has its authentic membrane anchor and remains
associated with the membranes of the Sf9 production cells.
Therefore, isolation of the final product includes detergent
solubilization of the cells and several steps of purification101. The
company formulates the S trimer as a nanoparticle in polysorbate
80 (PS80) detergent and uses a special proprietary saponin-based
adjuvant (Matrix-M™) that comprises 40 nm particles composed of
Quillaja saponins, cholesterol and phospholipids102,103. High-
resolution structural analysis revealed that the purified protein is
stably locked in the preferred pre-fusion conformation, in part as
free trimers and in part as multitrimer complexes103. The vaccine
thus presents the correctly folded immunogen in essentially pure
form and in combination with a potent adjuvant.

Effectiveness of vaccines against viral variants

A plethora of viral mutants arose and spread since the emergence
of SARS-CoV-2104,105. Some of these mutants are considered
‘Variants of Concern’ (VOCs) because of their highly efficient
transmission, the concomitant replacement of previously circulat-
ing strains, and the presence of mutations in the spike protein that
can lead to immune escape (https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/). In principle, all current vaccines
are affected similarly by VOCs, because they are all based on
original wild-type strains from the early phase of the pandemic
(see Table 1) and therefore their S protein sequences differ from
those of VOCs to the same degrees. Indeed, substantially reduced

neutralization titers against some VOCs were observed with sera
after immunization with mRNA and adenovirus vector vaccines106–
109, pointing to the importance of the problem. On the positive
side, results of efficacy as well as field effectiveness studies in
various countries using different vaccines indicated a high degree
of protection also against circulating VOCs, in particular against
the Alpha variant2,98,110,111. Prevention of infection with the Beta,
Gamma and Delta variants might be lower, although evidence
indicates substantial protection from severe disease after two
vaccinations110,112,113. So far, no data are available that would
allow a direct comparison of the various vaccines and their
effectiveness against the different VOCs. Given the same antigenic
difference of all vaccines relative to VOCs, the most important
parameter determining cross-protection may be the quantity of
neutralizing antibodies and relevant cellular immune reactivity at
the time of infection. This quantitative aspect is important for
future analyses of the impact of waning immunity on protection
and decisions about optimal timings of booster immunizations.
Efforts are also underway to replace existing vaccine strains and
corresponding sequences for those of the most relevant circulat-
ing strains114.

DISTINGUISHING FEATURES OF VACCINES INDEPENDENT OF
IMMUNOGEN STRUCTURE

As outlined in the preceding sections, substantial differences
appear to exist among current vaccines that can affect the
conformation of S and its presentation to the immune system.
Independent of such antigenic effects, the fundamentally different
mechanisms of action and ways of production are likely to
introduce additional variation to the characteristics of immune
responses and possible adverse reactions. Adenovirus-vector and
mRNA vaccines promote substantially different innate responses
that will certainly influence the nature of adaptive immune
responses43. There is evidence that the Oxford-AstraZeneca
vaccine might induce higher levels of specific T cells, whereas
mRNA vaccines might induce higher antibody titers115–117. The
relevance of these differences for protection are not yet clear.
Similarly, immune responses to protein-based vaccines are shaped
by the adjuvant used, for example by shifting CD4 T cells towards
either Th1 or Th2118,119. For meaningful conclusions, studies on
these topics will require head-to-head comparisons of vaccines,
and corresponding publications are expected to expand rapidly in
the near future. Here, we briefly discuss existing data and describe
distinguishing features that can contribute to differences among
vaccine responses independent of the structure and presentation
of the S immunogen.

Contaminations from cell substrates

Contaminating cellular proteins can be present in all vaccines
involving production in cell culture. This pertains to many well-
used licensed vaccines such as those against influenza, measles
and rabies120. The amount of impurities depends on the
purification steps applied in the manufacturing process. Except
for mRNA vaccines, different eukaryotic cell cultures are used in
the production of current COVID-19 vaccines (see sections
“Biosynthesis and key properties of the spike protein” and
“Vaccine-specific differences of S-antigen structure and presenta-
tion” and Table 1). Constituents in the Oxford-AstraZeneca vaccine
were recently analyzed in the context of a search for potential
causes of venous sinus thrombosis as a rare post-vaccinal
complication121. The study revealed that the vaccine contains
vast numbers and amounts of cellular proteins from the human
HEK293 production cell line, in addition to adenoviral proteins and
the S protein, which is apparently also synthesized already during
the manufacturing process. The total amount of protein per dose
was found to be 35 to 40 µg, most of which can be assumed to be
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cellular protein, because the protein of 5 × 1010 adenovirus
particles per dose would account for only about 8 µg (for
calculation see122). Although corresponding data do not yet exist
in the public domain for the other adenoviral vector vaccines, the
problem of cellular impurities may be similar, because they all
depend on the lysis of production cells for releasing the
engineered vector particles (section “Adenovirus-vector vaccines”).
Details of purification procedures during manufacturing of the
current adenovirus vector vaccines may differ but are not
published.
Cell cultures are also used for production of the inactivated

whole-virus vaccines (Vero cells) of Sinopharm88, Sinovac86 and
Bharat97 as well as for the Novavax subunit vaccine (insect Sf9
cells)99,101 (sections “Inactivated vaccines” and “Subunit vaccines”
and Table 1). According to published literature, manufacturing of
the Sinovac and Novavax vaccines involves extensive purification
procedures86,101, suggesting that the antigenic contents of these
products consists primarily of the proteins of the virus particle or
the isolated spike trimer, respectively. Details of purification
procedures of the Bharat vaccine and the degree of cellular
contaminants in the Sinopharm vaccine (which is less purified
than that of Sinovac according to ref. 88) could not be found in the
literature.

Reactions due to vaccine constituents other than the
immunogen

Vaccination of millions or even billions of people within a short time
window allows identification of rare adverse reactions that would
otherwise be difficult to be linked causally to vaccination. Currently, a
slightly but significantly increased risk of thrombotic events
(including cerebral venous sinus thrombosis) was reported after
vaccination with Oxford-AstraZeneca and Janssen adenovirus vector
vaccines and has raised considerable concern74,75. Collectively, this
kind of adverse event is designated ‘vaccine-induced immune
thrombotic thrombocytopenia’ (VITT). Sophisticated analyses of the
ChAdOx1 nCoV-19 vaccine to elucidate underlying pathogenic
mechanisms suggest that constituents such as viral DNA and/or
cellular proteins can favor the formation of antibodies against
platelet factor 4 (PF4), thus promoting VITT74,121. Information on
cellular impurities are so far restricted to ChAdOx1 and comparative
analyses of all adenovector vaccines are not yet available.
After vaccination with mRNA vaccines, rare events of anaphylactic

shock above the average incidence in the population have been
reported, largely in individuals with a history of allergy123,124. Most of
the allergens are proteins, which are not contained in these
chemically defined vaccines (section “mRNA vaccines”). One of the
constituents discussed as being causally linked to anaphylaxis is
polyethylene glycol (PEG), which is used in the formulation of LNPs
that protect the RNA and facilitate its transfer into cells (section
“mRNA vaccines”). It has been speculated that pre-existing PEG
antibodies might be involved in these allergic events124. Correspond-
ing scientific investigations into the mechanisms of vaccine-induced
anaphylactic reactions are ongoing125.

Vector immunity

Effects of pre-existing and vaccination-induced immunity against
the vector are a special feature of adenovirus vector vaccines. High
rates of seropositivity against adenovirus 5 (the pioneer of
adenovirus vector development) have been reported in the
population126,127, and a number of studies have shown that pre-
existing vector immunity can impair the response to the vaccine
antigen128–130. Adenovirus 5 is used in the CanSino vaccine and
the second dose of Gamaleya vaccines (section “Adenovirus-
vector vaccines” and Table 1). For reducing potential negative
effects of pre-existing immunity, alternative adenoviruses were
developed as vectors, one of them adenovirus 26, which has lower
rates of seropositivity in the population127 and is now used in the

Janssen-Johnson&Johnson vaccine19,62 as well as in the first shot
of the Gamaleya-Institute vaccine67,68. These considerations of
vector immunity also prompted the development of non-human
adenovirus vectors such as ChAdOx1 derived from chimpanzee
adenovirus Y2564, now used in the Oxford-AstraZeneca vaccine77.
In this case, seropositivity is negligible in Europe (zero in the UK,64)
and low in Africa (9% in Gambian adults,64,131).
Irrespective of pre-existing immunity, all adenovirus vector

vaccines are prone to induce immune responses against the vector
particles129. Each dose contains 5 × 1010 or 10 × 1010 adenoviral
particles (Table 1), which corresponds to 8 or 16 µg of adenoviral
protein (for calculation see ref. 122). It is unclear, at present, which
influences anti-vector responses will have on necessary COVID-19
booster vaccinations in the future. Possible remedies are prime-boost
regimens as already used for vaccination with the Gamaleya-Institute
vaccine (Ad26 followed by Ad5) or combinations with other classes
of vaccines such as mRNA vaccines. Corresponding studies are in
progress (Com-Cov study: Oxdorf-AstraZeneca and BionTech-Pfizer,
launched in February132).

Vaccine-specific differences of innate responses

Specific features of adaptive immune responses are strongly
influenced and shaped by innate responses that are triggered by
pathogen-associated molecular patterns (PAMPs) and their sen-
sing by pattern recognition receptors (PRRs) (reviewed in ref. 133).
Current COVID-19 vaccines are very different with respect to their
compositions and modes of action, and therefore vaccine-induced
innate responses will vary considerably. Adenoviral vectors
contain PAMPs that can be sensed by TLRs at the plasma
membrane (TLR2 and TLR4) and the endosomally located TLR9
(reviewed in ref. 41). In addition, the viral DNA itself can be sensed
after endosomal rupture by cytosolic DNA sensors such as cGAS
and the inflammasome, resulting in downstream signaling
cascades for producing antiviral factors such as type I
interferons41.
Innate responses to RNA that enters cells from the outside (such

as in RNA virus infections or mRNA vaccination) differ from those
stimulated by adenoviruses, because RNA is sensed by other PRRs,
including TLR3, TLR7 and TLR8, all located in endosomes134,135.
Sensors in the cytoplasm, such as retinoic-inducible gene I (RIG-I)
and melanoma differentiation-associated antigen 5 (MDA-5)
recognize preferentially dsRNA, also leading to stimulation of
type I IFN secretion134,135. Excessive innate responses can not only
result in strong reactogenicity of vaccination but also restrict
antigen translation from the vaccine RNA, thus impairing adaptive
immune responses. In the BionTech-Pfizer and Moderna vaccines
this problem was taken into account by modifications of the RNA
sequence and the inclusion of m1Ψ (section “mRNA vaccines”),
which is not contained in CureVac’s mRNA vaccine56. In addition
to direct triggers of innate immunity by RNA, other constituents of
LNPs can contribute to vaccine-induced inflammatory reactions
and provide adjuvant activity for adaptive immune responses.
Such effects have been specifically shown for the ionizable lipid
component in LNPs124. Head-to-head comparisons of mRNA
vaccines will be informative to identify and evaluate differences
of innate and adaptive responses as well as reactogenicity
between representatives of this class of COVID-19 vaccines.
Due to their capacity to stimulate innate responses, the genetic

vaccines are referred to as being ‘self-adjuvanted’55,136. Protein-
based vaccines such as inactivated whole-virus vaccines or
subunit vaccines are usually not sufficiently immunogenic on
their own and require the addition of adjuvants. Alum is the most
frequently used adjuvant in human vaccines and is used in the
Sinopharm and Sinovac vaccines137,138. This adjuvant results in
polarization towards a Th2 response, which has been regarded as
unfavorable in the case of coronavirus and other viral infections
and vaccinations118,139,140. Therefore, other adjuvants or
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combinations thereof with Alum have been developed for use in
COVID-19 vaccines138. The inactivated whole virus vaccine
produced by Bharat (Covaxin, Table 1) is adjuvanted with an
imidazoquinoline class molecule (IMDG, a TLR 7/8 agonist)
adsorbed on aluminum hydroxide gel (Algel-IMDG) that shifts
the response towards Th197,141,142. Another BPL-inactivated
whole-virus vaccine in development (by the European company
Valneva) makes use of Alum in combination with CpG to induce
preferentially a desired Th1 response138, and a similar effect has
been attributed to the Matrix-MTM adjuvant used in the Novavax
subunit vaccine99,101,102.

CONCLUSIONS

The severe consequences of the COVID-19 pandemic have created
a pressing need for vaccines that not only prevent serious disease
but preferentially also transmission. Several of the 291 candidates
listed in the COVID-19 vaccine pipeline by WHO (184 pre-clinical
and 107 in clinical development) (https://www.who.int/
publications/m/item/draft-landscape-of-covid-19-candidate-
vaccines, accessed on July 9, 2021), have already reached the
market and are used for mass immunization. They all proved to
exceed initial hopes and maximal expectations of 50 % protec-
tion143,144, displaying efficacies in preventing clinical disease of
more than 90% in certain instances. Although all current vaccines
for which phase 3 efficacy data are available rely on the whole
viral spike protein as an antigen, its presentation to the immune
system is strikingly different not only between genetic vaccines
and protein-based vaccines, but also between vaccines within
these categories. In addition, approaches to cope with the
problem of the lability of the viral S protein cause variation across
all current vaccines. These also differ with respect to their degree
of purity (presence of extraneous proteins from the production
process) and other vaccine constituents that can affect immune
responses and cause adverse events. We have reviewed the most
apparent and significant differences among the vaccines as far as
they can be recognized from published literature, which
unfortunately is still incomplete. Hopefully, more details will
become available in the near future. Comparative analyses of
antibody and T cell responses and their fine specificities will allow
indirect but important conclusions to be drawn. Studies are
emerging that address antibody formation to the different
domains of S and analyze the ratio of neutralizing and non-
neutralizing antibodies as an important parameter of vaccine
performance145,146. These data can serve as an indirect measure
for the structural integrity of S in the vaccines and the quality of B
cell immune responses. Head-to-head comparisons of vaccinated
cohorts will be especially insightful, considering the profound
differences of antigen presentation and principles of action of
current COVID-19 vaccines.
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