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Abstract In the present paper, we investigate the dynamics
of magnetized particles around magnetically and electrically
Reissner–Nordström (RN) black hole. The main idea of the
work is to distinguish the effects of electric and magnetic
charges of the RN black hole and spin of the rotating Kerr
black hole through the dynamics of the magnetized particles.
In this study, we have treated a magnetized neutron star as
a magnetized test particle, in particular, the magnetar SGR
(PSR) J1745-2900 orbiting around the supermassive black
hole Sagittarius A* (SMBH SgrA*) with the magnetic inter-
action parameter b = 0.716 and the parameter β = 10.2.
The comparison of the effects of the magnetic and electric
charges, and magnetic interaction parameters on the dynam-
ics of the magnetar modeled as a magnetized particle near
the SMBH Sgr A* has shown that the magnetic charge of
the RN black hole can mimic the spin parameter of a rotat-
ing Kerr black hole up to a/M ≃ 0.82. The external mag-
netic field can mimic the magnetic charge of the RN black
hole up to Qm/M = 0.4465. We have shown that the elec-
tric charge of the RN black hole can mimic the black hole
magnetic charge up to Qm/M = 0.5482 and the magnetic
field interaction with the magnetized particle acts against the
increase of the mimicking value of the black hole spin param-
eter. The studies may be helpful to explain the observability
of radio pulsars around the SMBH SgrA* system and tak-
ing it as a real astrophysical laboratory to get more precise
constraints on the central black hole and dominated param-
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eters of the alternate gravity. Finally, we have investigated
the effects of magnetic and electric charge of the RN black
hole in the center-of-mass energy of head-on collisions of
magnetized particles with neutral, electrically charged, and
magnetized particles. Both electric and magnetic charges of
the RN black hole would lead to an increase in the center of
the mass–energy of the collisions.

1 Introduction

Studies of dynamics of particle motion around a compact
gravitational object are one of the interesting and highly
motivated special subjects in relativistic astrophysics. They
may be helpful in developing new approaches to describ-
ing the gravitational and electromagnetic interaction in both
the strong-field and the weak-field regimes. Particularly,
black holes as a simple astrophysical object can simply be
described with the black hole’s total mass M , the spin param-
eter a, and electric/magnetic charge Q. For the first time the
static spherically-symmetric electrically and magnetically
charged black hole solution have been obtained by Reiss-
ner and Nordström independently and this case is called the
Reissner–Nordström black hole (RN BH) solution [1,2].

Due to the recent direct detection of gravitational waves
from the close binary black holes [3–5] and neutron stars
mergers by the LIGO-VIRGO Collaboration, observations of
the SMBH M87 image by Event Horizon Telescope (EHT)
consortium [6,7], the gravitational redshift in strong gravity
regime in observations of S2 star dynamics in SgrA* close
environment by GRAVITY Collaboration [8,9] and other
relevant recent astrophysical observations of black holes
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and neutron stars motivate the great interest to probe the
black hole and alternate gravity properties. For astrophys-
ical stellar-mass black holes, the particle dynamics at the
inner edge and X-ray spectra analysis of the accretion disks
[10] provide important information on the black hole spin
and the constraints on the parameters of alternate theories of
gravity.

To study the spacetime structure around RN black hole one
may consider the test particle motion [11–22]. The properties
of the RN solution and impact of the electromagnetic field
on spacetime structure around compact objects have been
explored in Refs. [23–26].

The role of the external electromagnetic field surrounding
black holes or proper magnetic field of neutron stars on the
astronomical observation of compact objects through electro-
magnetic radiation or its influence on astrophysical processes
around it plays a very important role. Since the external test
electromagnetic field with the magnitude < 1019G does not
change the spacetime structure, the role of the external elec-
tromagnetic field on the energetic processes and dynamics
of charged and magnetized particles around the gravitational
compact objects is essential. The no-hair theorem implies that
no black hole can have its own intrinsic magnetic field [27]
and this shows one way to explore the external magnetic field
surrounding black holes. In particular, the studies of exter-
nal electric and magnetic field structure around rotating and
static black holes immersed in an external asymptotically
uniform magnetic field have been performed in the pioneer-
ing work of Wald in Ref. [28]. In past years, different prop-
erties of the electromagnetic fields in the vicinity of black
holes immersed in external asymptotically uniform magnetic
fields and proper magnetic field of rotating magnetized neu-
tron stars with the dipolar structure were widely studied by
several authors in different models of gravity [29–39]. This
electromagnetic field will change the dynamics of charged
particle in a close black hole environment [40–47]. Together
with charged particles one may study the influence of an
electromagnetic field near the black hole on the magnetized
particle’s motion. The dynamics of particles with the intrin-
sic non-zero dipolar magnetic field around non-rotating and
rotating black holes immersed in an external magnetic field
have been studied in [48,49]. Our recent work was devoted
to a study of the magnetized particle motion around an RN
black hole in a magnetic field in different gravity models and
theories [50–61]. The electromagnetic field properties and its
influence on particle dynamics have been explored in Refs.
[29–31,62–76].

Numerous astronomical observations in the whole elec-
tromagnetic spectrum show the brightness of the galactic
center where a supermassive black hole is situated; it being
much more luminous than any other place of the galaxy.
From the astrophysical point of view, in order toexplain the

enormous luminosity of active galactic nuclei including jet
phenomena, the investigations of energy release processes
from the vicinity of black holes through different possible
mechanisms are always interesting. It is a topic of focus in
relativistic astrophysics. The energy extraction mechanism
in the so-called ergosphere region of rotating black holes has
first been suggested by Penrose and is called the classical
Penrose effect [77]. It was developed in Refs. [78,79] in the
presence of an external magnetic field; then we speak of a
magnetic Penrose process (MPP). Astrophysical applications
of such processes have been widely studied in Refs. [80–82].
More recently, Banados et al. [18] have shown that for an
extremely rotating black hole head-on collisions can produce
particles of extremely high center-of-mass energy (the so-
called Banados–Silk–West, BSW process). Energy release
and particle collisions in the vicinity of a rotating black hole
in Hořava–Lifshitz gravity have been investigated in detail
in our paper in Ref. [83]. Here we will explore the effects
of magnetic and electric charge of the RN black hole in the
center-of-mass energy of collisions of the magnetized parti-
cles.

The RN BH is the exact analytical solution of the nonlin-
ear Einstein–Maxwell system. We consider in our study two
types of the RN black holes: (i) electrically charged, (ii) mag-
netically charged ones. For a magnetically charged RN BH
there is an intrinsic magnetic field created by the BH, which
interacts with the magnetic dipole moment of the magnetized
test particle. In the case of a nonlinear RN BH which is elec-
trically charged, since it is static, there is no magnetic field
created by the BH. Due to this, we assume that a test lin-
ear electromagnetic field is created by the current of charged
particles in the accretion disk and interacts with the magnetic
moment of magnetized test particles.

In this paper, we study the dynamics of the magnetized par-
ticle motion around the RN black hole. We explore the influ-
ence of the electromagnetic field of the charged black hole on
the magnetized particle orbits and compare the results with
the particle dynamics around the Kerr black hole. Further-
more, we study magnetized particles collisions around both
magnetically and electrically charged RN black holes. The
paper is organized as follows: In Sect. 2 we study the dynam-
ics of the magnetized particles around the electrically RN
black hole in the external magnetic field. In Sect. 3 magne-
tized particle motion in the vicinity of magnetically charged
RN black hole is explored. We consider possible astrophys-
ical applications of the obtained results in Sects. 4 and 5,
studying collisions of the magnetized particles in the vicin-
ity of electrically and magnetically charged RN black hole.
Finally, we summarize our results in Sect. 6.

We use the space-time signature (−,+,+,+) and the
geometrized units system GN = c = 1. Latin indices run
from 1 to 3 and Greek ones from 0 to 3.
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2 Magnetized particle motion around electrically

charged RN black hole in magnetic field

The spacetime exterior to electrically charged RN black hole
with total mass M and electric charge Q can be described by
the metric:

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

where the radial metric function is

f (r) = 1 − 2M

r
+ Q2

r2
. (2)

Since there is no electromagnetic interaction between
magnetized particles and electric charged RN black hole
we assume that the black hole is immersed in an external
asymptotically uniform magnetic field and finally, the elec-
tromagnetic four-potentials can be expressed using the Wald
method [28] in the following form:

Aφ = 1

2
B0r2 sin2 θ, (3)

At = − Q

r
, (4)

where B0 is the asymptotic value of the external magnetic
field. One may immediately find the non-zero components
of the electromagnetic tensor using the definition Fμν =
Aν,μ − Aμ,ν in the following form:

Frφ = B0r sin2 θ, (5)

Fθφ = B0r2 sin θ cos θ. (6)

The orthonormal components of the magnetic field around
the electrically charged RN black hole measured by a proper
observer are

Bα = 1

2
ηαβσμFβσ wμ, (7)

where wμ is four-velocity of the proper observer, ηαβσγ is
the pseudo-tensorial form of the Levi-Civita symbol ǫαβσγ

with the relations

ηαβσγ =
√

−gǫαβσγ , ηαβσγ = − 1√−g
ǫαβσγ , (8)

and with g = det|gμν | = −r4 sin2 θ for the spacetime metric
(1) we have

B r̂ = B0 cos θ, B θ̂ =
√

f (r)B0 sin θ. (9)

According to Ref. [48] the equation of motion of magne-
tized particles in the spacetime of a black hole immersed in

the external magnetic field can be described by the Hamilton–
Jacobi equation:

gμν ∂S

∂xμ

∂S

∂xν
= −m2

(

1 − Dμν Fμν

2m

)2

, (10)

where m is mass of the particle, S is the action for magne-
tized particles in the spacetime of the black hole, the scalar
term came from the product of polarization and electromag-
netic field tensors Dμν Fμν being responsible for the interac-
tion between the external magnetic field and dipole moment
of magnetized particles. The polarization tensor Dμν corre-
sponding to the magnetic dipole moment of the magnetized
particles is described by the relation [48]

Dαβ = ηαβσνuσ μν, Dαβuβ = 0, (11)

where μν and uν are the four-vector of magnetic dipole
moment and four-velocity of the magnetized particles as
observed by the proper observer. The electromagnetic field
tensor can be decomposed through Fαβ by the electric Eα

and the magnetic Bα field components as

Fαβ = u[α Eβ] − ηαβσγ uσ Bγ . (12)

One can find the product of polarization and electro-
magnetic tensors taking into account the condition given in
Eq. (11) in the following form:

Dμν Fμν = 2μα̂ Bα̂ = 2μB0

√

f (r), (13)

where μ =
√

|μ
î
μî | is the norm of the dipole magnetic

moment of the magnetized particles. Here we have assumed
that the direction of the magnetic dipole moment of the parti-
cles is perpendicular to the equatorial plane being parallel to
the external magnetic field and the magnetic dipole moment
μα = (0, μθ , 0).

Here we investigate the dynamics of the magnetized par-
ticles in circular orbits around the electrically charged RN
black hole. The action for magnetized particles in the equa-
torial plane (where θ = π/2 and θ̇ = 0) can be described
by

S = −Et + Lφ + Sr , (14)

which allows one to separate the variables in the Hamilton–
Jacobi equation. The equation of radial motion of the mag-
netized particles can be found to be

ṙ2 = E2 − Veff(r, Q, l, b), (15)

where the effective potential of radial motion of the magne-
tized particles has the following form:

Veff = f (r)

[

(

1 − b
√

f (r)

)2
+ l2

r2

]

(16)

where l = L/m is specific angular momentum of the par-
ticle and b = 2μB0/m is the magnetic coupling parameter
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responsible for the interaction between dipole moment of the
magnetized particle and the external magnetic field. In real
astrophysical scenarios one may treat a neutron star with the
magnetic dipole moment μ = (1/2)BNS R3

NS like a magne-
tized particle, orbiting a supermassive black hole (SMBH)
immersed in an external magnetic field with different con-
figurations. In such a case the magnetic coupling parameter b

can easily be estimated through the observational parameters
of the neutron star and we have an approximate value of the
external magnetic field around the SMBH in the following
form:

b = BNS R3
NS Bext

mNS
≃ π

103

(

BNS

1012G

) (

Bext

10G

)

×
(

RNS

106cm

)3 (

mNS

1.4M⊙

)−1

. (17)

One may apply the calculation to estimating the value of
the magnetic coupling parameter for a realistic case of the
magnetar SGR (PSR) J1745-2900 orbiting around Sagittarius
A* (Sgr A*). In the estimation of the coupling parameter we
have considered a magnetic field around SgrA* that is of the
order of 10 G, the magnetic dipole moment of the magnetar
μ ≈ 1.6 × 1032G · cm3 and its mass m ≈ 1.4M⊙ ([84]);

bPSRJ1745−2900 ≃ 0.716

(

Bext

10G

)

. (18)

Figure 1 illustrates the radial dependence of the effective
potential for radial motion of the magnetized particles around
electrically charged RN black hole immersed in the external
magnetic field for the fixed values of the specific angular
momentum L/M = 4 and the different values of the black
hole charge and the magnetic coupling parameters proving
the comparison with the Schwarzschild case. One can see

Fig. 1 The radial profiles of the effective potential for radial motion of
magnetized particles with the specific angular momentum L/M = 4,
around the electrically charged RN black hole for the different values of
the electric charge of the black hole and the magnetic coupling param-
eter b

that the maximum value of the effective potential decreases
with the increase of the magnetic coupling parameter, and
it implies that magnetized particle can be at circular orbits
with a lower energy in the existence of external magnetic
field. However, the electric charge of the black hole causes
an increase of the maximum value and the point where it is
maximum comes close to the central black hole.

Generally, the circular motion of a particle around an axi-
ally symmetric black hole is described by the following stan-
dard condition:

ṙ = 0,
∂Veff(r; Q, l, b)

∂r
= 0. (19)

One can find specific angular momentum of the particle for
circular motion through the solution of Eq. (19) with respect
to l in the following form:

l2(r; Q, b) =
r2

[

1 − b
√

f (r)
] [

1 − 2b
√

f (r)
]

[r(r − 3M) + 2Q2](Mr − Q2)−1
, (20)

and the specific energy of the particle for circular orbits can
be found by inserting Eq. (20) into the effective potential
given by Eq. (16) in the following form:

E2(r; Q, b) = f (r)

(

1 − b
√

f (r)

)

{

1 − b
√

f (r)

+
(

1 − 2b
√

f (r)
) (

Mr − Q2
)

r(r − 3M) + 2Q2

}

. (21)

Radial profiles of specific energy and angular momen-
tum corresponding to the circular motion of the magne-
tized particles around the electrically charged RN black hole
immersed in the external magnetic field is demonstrated in
Fig. 2 with a comparison of the Schwarzschild case. It is
seen that the increase of the magnetic coupling parameter
and the black hole charge causes decreasing of both energy
and angular momentum. It does mean that a particle with a
magnetic dipole moment can be in a circular orbit with less
energy/angular momentum in the presence of the external
magnetic field than in the absence due to the feature of mag-
netic interaction. The distance where the energy and angular
momentum is minimum shifts towards the central black hole.
The effects of the black hole charge are strong at the close
environment of the black hole and at the circular orbits, the
particle feels more magnetic interaction due to a decrease of
the gravitational effect of the black hole charge. Moreover,
the minimal radius of circular orbits also shifts towards the
central object due to the increase of the RN black hole charge.

Now we will investigate when the orbits of the magnetized
particles are circular, or more specifically the innermost sta-
ble circular ones. We use the following standard condition:

V ′′
eff(r) = 0. (22)
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Fig. 2 The radial dependence of the specific energy (top panel) and
angular momentum (bottom) corresponding to circular orbits for mag-
netized particles around the electrically charged RN black hole for the
different values of the electric charge of the black hole and the magnetic
coupling parameter b.

Fig. 3 Dependence of the ISCO radius of a magnetized particle around
magnetically charged RN black holes from the magnetic charge (top
panel) and the parameter β (bottom)

Due to the complicated form of the relation between elec-
tric charge and ISCO radius of the magnetized particles, we
will provide an analysis of the effects of the black hole charge
and magnetic coupling parameter on the ISCO radius by plot-
ting the condition given by Eq. (22).

The effects of the electric charge of the RN black hole on
the ISCO radius of magnetized particles for different values
of the magnetic coupling parameter is shown in Fig. 3. One
can see that the ISCO radius decreases under the effect of
the black hole charge and positive (negative) values of the
magnetic coupling parameter cause an increase (a decrease)
of the ISCO radius.

3 Magnetized particles motion around the magnetically

charged RN black hole

In this section, we perform the studies of the dynamics of
magnetized particles around the magnetically charged RN
black holes described by the lapse function

f (r) = 1 − 2M

r
+ Q2

m

r2
. (23)

The electromagnetic four-potential is

Aφ = Qm cos θ. (24)

Using the potential given in Eq. (24) one may immediately
obtain the non-zero component of the electromagnetic field
tensor,

Fθφ = −Qm sin θ. (25)

The orthonormal radial component of the magnetic field
generated by the magnetic charge of the RN black hole

B r̂ = Qm

r2
. (26)

Equation (26) implies that the radial component of the mag-
netic field around the magnetically charged black holes is
not affected by the spacetime curvature and looks like the
standard Newtonian expression.

In the analysis of the dynamics of the magnetized par-
ticle around the magnetically charged RN black hole, we
assume the direction of the magnetic dipole moment of the
magnetized particle to be parallel to the equatorial plane and
to the magnetic field of the generic black hole. The com-
ponents then are μi = (μr , 0, 0), the other configurations
of magnetic dipole moment components cannot provide the
magnetized particle with a stable equilibrium. In fact, in the
equilibrium of the minimum energy of the magnetic inter-
actions the direction of magnetic field lines and magnetic
dipole moment of the magnetized particle have to be the
same. Moreover, the second part of the condition (11) allows
one to study the particle motion in the proper frame and the
choice of the observer velocity may help to avoid a relative
motion problem. The magnitude of the magnetic moment is
constant and maintained during the motion. One may rewrite
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the interaction using Eqs. (13) and (25) in the following form:

Dαβ Fαβ = 2μQm

r2
. (27)

Since the axial symmetric configuration of the proper mag-
netic field of the RN black hole does not break the space-
time symmetries, there are still two conserved quantities, the
energy pt = −E and the angular momentum pφ = l. The
radial motion of a magnetized particle around the magneti-
cally charged RN black hole in the equatorial plane, where
θ = π/2, with pθ = 0, using Eqs. (13), (10) and the action
given in Eq. (14), is described by the following form:

ṙ2 = E2 − Veff(r; l,B). (28)

The effective potential has the form

Veff(r; l,B, Qm) =
(

1 − 2M

r
+ Q2

m

r2

)

×
[

(

1 − B

r2

)2

+ l2

r2

]

, (29)

where the relation
B = μ

m
Qm

is a new introduced parameter which is responsible for the
interaction between dipole moment of the magnetized parti-
cles and the proper magnetic field of magnetically charged
RN black hole and β = μ/(m M) is a parameter which char-
acterizes the parameters of the magnetized particle and the
central black hole being always positive for the system when
the magnetized neutron star is treated as a magnetized test
particle orbiting around a SMBH,

β = BNS R3
NS

2mNS MSMBH

≃ 0.18

(

BNS

1012G

) (

RNS

106cm

)(

mNS

M⊙

)−1 (

MSMBH

106 M⊙

)−1

.

(30)

For the system of the magnetar SGR (PSR) J1745-2900
with magnetic dipole moment μ ≃ 1.6 × 1032G · cm3 and
mass m ≈ 1.5M⊙ orbiting around the supermassive black
hole Sgr A* (M ≃ 3.8 × 106 M⊙) [84], the value of the
parameter β can be easily estimated based on the observa-
tional data,

β = μPSR J1745−2900

mPSR J1745−2900 MSgrA∗
≈ 10.2. (31)

The circular stable orbits of the magnetized particle
around the central object can be defined by the standard con-
ditions,

V ′
eff = 0, V ′′

eff ≥ 0. (32)

The specific angular momentum and energy of the magne-
tized particle along the circular orbits can be described by

Fig. 4 The radial dependence of the specific angular momentum (top
panel) and energy (bottom) for circular orbits of magnetized particles
around the magnetically charged RN black hole for different values of
the magnetic charge of the black hole and the parameter β. The magnetic
charge reads Qm → Qm/M

the following expressions:

l2 = r2 − βM Qm

2Q2
m + r(r − 3M)

×
{

βM Qm

(

2− 5M

r
+ 3Q2

m

r2

)

+Mr −Q2
m

}

, (33)

E2 = [Q2
m + r(r − 2M)]2(r4 − β2 M2 Q2

m)

r6[2Q2
m + r(r − 3M)] . (34)

Figure 4 demonstrates radial profiles of the specific angu-
lar momentum and energy of the magnetized particles for
circular motion around the magnetically charged RN black
hole with the comparison to the Schwarzschild spacetime in
the top and bottom panels, respectively. One can see from
the figure that the increase of both the magnetic charge of
the RN black hole and the parameter β causes decreasing in
the minimum value of the specific angular momentum and
energy for the circular motion of the magnetized particles.

One can easily obtain the equation for the ISCO taking
into account the conditions (32) for the effective potential
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Fig. 5 Dependence of the ISCO radius of a magnetized particle around
the magnetically charged RN black holes from the magnetic charge (top
panel) and the parameter β (bottom)

(29) in the following form:

2r4(9M Q2
mr + Mr2(r − 6M) − 4Q4

m)

+2M2 Q2
mβ2[Q2

mr(12r − 37M) + 12Q4
m

+r2(30M2 − 21Mr + 4r2)] ≥ 0. (35)

It is seen from Eq. (35) that when the magnetic charge of
RN black hole vanishes, Qm = 0, it gives ISCO radii with
rISCO = 6M . Since it is difficult to solve analytically Eq. (35)
with respect to the radial coordinate we can only analyze the
ISCO profiles, presenting them in plot form.

The dependence of the ISCO radius from the magnetic
charge of the RN black hole is presented in Fig. 5 for differ-
ent values of the parameter β. One can see from the figure that
the increase of the magnetic charge ISCO radius of the mag-
netized particles decreases and the decreasing rate increases
with the increase of the values of the parameter β. Moreover,
there is an upper limit for the values of the magnetic charge
of the black hole for each non-zero value of the parameter β

due to the increase of the interaction. It means that no stable
orbits can exist when βQm < (βQm)upper.

4 Astrophysical applications

The importance of the detailed analysis of test particle
dynamics around black holes in various theories of gravity is
in deep understanding of the effects of the black hole param-
eters on the circular orbits of the particles. It may be helpful
in the explanations of the physical properties of spacetime
around a black hole in the observations of real astrophysi-
cal events/phenomena. In observations of star motion around
astrophysical black holes, one may describe the black hole
by its total mass, which one can measure in the Newtonian
framework. Spin and (electric and magnetic) charge parame-
ters of the black hole play the role of effects of the general rel-
ativistic framework. However, for now, measurements of the
parameters in direct astrophysical observations are impos-
sible. One way to obtain constraints to the values of black
hole parameters is by using data from indirect observations
such as the photon sphere and ISCO radius. On the other
hand, it is impossible to see which gravity parameter effects
are dominant for the motion of particles around a black hole
when the two different gravity parameters effects are simi-
lar. In fact, as the spin of the rotating Kerr black hole and
charge of the RN black hole similarly affect the ISCO radius
of test particles and the photon sphere, an increase of both of
them causes decreasing of it. The other most interesting and
actual problem is how to distinguish the effects of spin and
charge parameters based on the observational data as regards
the ISCO radius, for example, at the accretion disks. Fortu-
nately, one way to estimate the range of possible values for
the parameters is to compare their effects on ISCO radius
and photon sphere in detail. Moreover, even in the charged
static black hole model, distinguishing the type of charge—
magnetic or electric—is also one of the more crucial impor-
tant issues in relativistic astrophysics. Since we are studying
magnetized particle motion, in this section, we will focus on
the scenarios when the parameter effect plays a dominant
role in the studies of the magnetized particle motion.

In our comparison of the behavior of the ISCO radius of
magnetized particles around a magnetically and electrically
charged RN black hole with the ISCO radius of the particle
rotating around a Kerr black holes we use the following well-
known expression for ISCO radius of test particles (note that
a magnetized particle feels like a test particle in the absence
of magnetic fields) corresponding to retrograde and prograde
orbits [85]:

risco = 3 + Z2 ±
√

(3 − Z1)(3 + Z1 + 2Z2), (36)

where

Z1 = 1 +
(

3
√

1 + a + 3
√

1 − a
)

3
√

1 − a2,

Z2
2 = 3a2 + Z2

1 .
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Fig. 6 Relation between degeneracy values of spin parameter of the
rotating Kerr black hole and magnetic charge of RN black hole which
provides the same values of the ISCO radius for the fixed values of the
parameter β = 5, 10, 15

At the next step, we show how to distinguish the effects
of different parameters on the ISCO radius considering test
particle dynamics around black holes. They are (i) the Kerr
black hole case, (ii) the electrically and magnetically charged
RN black hole case, and (iii) the case of a Schwarzschild
black hole immersed in an external asymptotically uniform
magnetic field. Then we compare the obtained results.

4.1 Magnetically charged RN black hole versus Kerr black
hole

In this subsection, we will focus on the study of a mag-
netized particle motion around a magnetically charged RN.
Then we compare it with the particle dynamics in Kerr black
hole spacetime showing a degeneracy between the magnetic
charge of the RN black hole and the spin of the rotating
Kerr black hole, these providing the same values of the ISCO
radius.

Figure 6 illustrates the relation between degeneracy val-
ues of the spin parameter of a rotating Kerr black hole and
the magnetic charge of the RN black hole providing the same
values of the ISCO radius to magnetized particles. One can
see from the figure that the upper mimicker values of the mag-
netic charge of the RN black hole decrease with the increase
of the parameter β due to increasing interaction between
the magnetically charged RN black hole and the magne-
tized particle’s dipole moment. When a/M = Qm/M = 0
the magnetized particle feels the gravitation field of the
Schwarzschild black hole without external magnetic field
orbiting in the ISCO radius; then we have 6M. Moreover,
numerical calculations show that magnetic charge of the RN
black hole can mimic the spin of Kerr black hole up to
a/M ≃ 0.82 in the range of its values Qm/M ∈ (0, 0.6475)

for the magnetar SGR (PSR) J1745-2900 with the parameter
β = 10.2. It implies that the spin effects of SMBH Sgr A*

(a/M = 0.44) can reflect a magnetic charge of the SMBH
RN Sgr A* with a magnetic charge Qm/M ≃ 0.5268.

4.2 Magnetically charged RN black hole vs Schwarzschild
black hole in external magnetic field

In this subsection, we will compare the effects of the external
magnetic field around a Schwarzschild black hole and mag-
netic charge of the RN black hole by the motion of the mag-
netized particles. Here, we will focus on how the magnetic
charge parameter can mimic the magnetic interaction of the
external magnetic field around the Schwarzschild black hole
for the same ISCO radius for magnetized particles. For the
first time, the dynamics of the magnetized particles around a
Schwarzschild black hole in the external magnetic field has
been formulated and studied in detail by de Felice in [48].
Here we have extended this study to the different modified
and alternate theories of gravity.

The important result has been shown that magnetized par-
ticle orbits cannot be stable at b ≥ 1 [55,57], which helps
to estimate the upper value of the external magnetic field for
a magnetized particle. Simple numerical calculations show
that for the magnetar SGR (PSR) J1745-29 orbiting around
Sgr A* Bext ≤ 14G. The value of magnetic field near the
SMBH Sgr A* is around 100G and there the magnetic inter-
action parameter for the magnetar (SGR) PSR J1745-2900
is b ≃ 7.16. One may predict that the magnetar’s orbit in
the SMBH Sgr A* environment cannot be stable and the sta-
bility analysis shows that the possible value for the surface
magnetic field of the pulsar which may orbit around the Sgr
A* environment is less than 1012 G.

Figure 7 demonstrates the relation between magnetic
interaction parameter and magnetic charge of the RN black
hole. One can see that the magnetic interaction parameter

Fig. 7 Relation between magnetic interaction parameter b and mag-
netic charge of the RN black hole Qm giving the same value of ISCO
radius of the magnetized particles for the fixed values of the parameter
β = 0, 15
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with the value b < 1 can mimic magnetic charge of the RN
black hole in the range Qm/M ∈ (0.3289÷0.8273) when the
parameter β ∈ (0 ÷ 15). Using applications of the obtained
results we have found that the mimic value of the magnetic
charge of the supermassive RN black hole SgrA* when the
magnetar (SGR) PSR J1745-2900 is treated as a magnetized
particle is Qm/M = 0.4465.

4.3 Electrically charged RN black hole in the external
magnetic field versus Kerr one

In this subsection, we will compare the effects of the spin of
the rotating Kerr black hole and the electric charge of the RN
black hole (immersed in the external magnetic field) on the
ISCO radius of magnetized particles.

Figure 8 demonstrates relations between the spin of the
Kerr black hole and the electric charge of the RN black hole,
which provides the same value for ISCO radius of the mag-
netized particles with different values of the magnetic cou-
pling parameter with a comparison of the test particle’s ISCO.
One can see that in the absence of an external magnetic field
the black hole charge can mimic the spin parameter up to
a/M ≃ 0.4759. Moreover, the black hole charge can mimic
the spin parameter for the particle with magnetic coupling
parameter b = 0.2 and b = − 0.2 up to a/M ≃ 0.3569 and
a/M ∈ (0.0334, 0.5347), respectively.

4.4 Magnetically charged RN black hole vs electrically
charged RN in external magnetic field

Finally, we will focus on possible ways to distinguish the
effects of magnetic and electric charges of the RN black hole
on the dynamics of the magnetized particles. In this subsec-
tion, we assume that the magnetized particle is the magne-
tar (SGR) PSR J1745-2900 orbiting around SgrA* with the

Fig. 8 Relation between degeneracy values of spin parameter of the
rotating Kerr black hole and magnetic charge of RN black hole which
provides the same values of the ISCO radius for the fixed values of the
parameter β = 5, 10, 15.

Fig. 9 Relation between magnetic charge and electric charge of the
RN black hole providing the same value of the ISCO radius of the
magnetized particle for the fixed values of the parameter β = 10.2 and
b = 0.716.

parameters β = 10.2 and b = 0.716 where the external
magnetic field is about 10 G.

Figure 9 illustrates the relation between magnetic and
electric charges of the RN black hole providing the same
value for the ISCO radius of the magnetar (SGR) PSR J1745-
2900. One can see from the figure that the relation is lin-
ear and represents the case that electric charge can mimic
the black hole magnetic charge up to Qm/M = 0.548232.
It implies that the effect of magnetic interaction between
the magnetar and magnetically charged RN is almost twice
stronger than the effect of the electric charge of the RN black
hole on the spacetime around the black hole where the mag-
netar orbits are stable.

5 Magnetized particles acceleration near RN black

holes

One of the actual issues in relativistic astrophysics is energy
release processes from rotating black holes by different sce-
narios. The active galactic nuclei with luminosity ∼ 1045 erg·
s−1 are powered by central black holes. The first model for
energy extraction from rotating Kerr black holes was sug-
gested by Penrose [86] and developed by several authors
during the last 50 years. The model implies that in a large
ergosphere the acceleration processes become more efficient.
When the ergoregion disappears the energy release from the
rotation of the Kerr black hole does not occur. The process
has been extended to a magnetic Penrose process (MPP) by
Wagh et al. [78] and developed by Tursunov et al. [79].

For the first time acceleration of particles by the collision
falling to Kerr black hole is studied in Ref. [18] in the case
of the extreme rotating black hole where the center-of-mass
energy of the colliding particles may diverge. The effects
of the external magnetic field on acceleration processes of
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charged particles around black holes have been studied by
the authors (see for example to Ref. [66]). It was shown that
the efficiency of the energy extraction process is more effec-
tive in head-on collision cases. Here we will investigate the
collisions in two different cases.

5.1 Magnetized particles acceleration near magnetically
charged RN black holes

Here we will explore the acceleration of the magnetized par-
ticles near a magnetically charged RN black hole using the
following standard expression for the center-of-mass energy
of two colliding particles with the same mass:

E2
cm = E2

cm

4m2c4
= 1 − gαβuα

1 u
β
2 , (37)

where uα
1,2 are the four-velocities of the colliding particles.

Now we plan to investigate several scenarios of collisions of
the magnetized particles in the equatorial plane (where θ =
π/2) with magnetized, electrically (magnetically) charged,
and neutral particles in the frame of the proper observer.

5.1.1 Two magnetized particle collisions

The four-velocity of the magnetized particle in the equatorial
plane (θ = π/2; θ̇ = 0) has the following components:

ṫ = E

f (r)
,

ṙ2 = E2 − f (r)

[

(

1 − β
M Qm

r2

)2

+ l2

r2

]

,

φ̇ = l

r2
. (38)

Consequently, the expression for the center-of-mass energy
of the two magnetized particles given in Eq. (37) after insert-
ing Eq. (38) takes the following form:

E2
cm = 1 + E1E2

f (r)
− l1l2

r2

− 1

f (r)

√

√

√

√E2
1 − f (r)

[

(

1 − β1
M Qm

r2

)2

+ l2
1

r2

]

×

√

√

√

√E2
2 − f (r)

[

(

1 − β2
M Qm

r2

)2

+ l2
2

r2

]

, (39)

where r stands for the radius of the collision point.
Figure 10 illustrates the radial dependence of the center-

of-mass energy of two colliding particles with the same
(opposite) direction of magnetic dipole moment (in the top
(bottom) panel) around the magnetically charged RN black
hole with the comparison of a Schwarzschild black hole.
Here we consider head-on collisions of two magnetized par-
ticles with the specific angular momentum l1 = 2M and
l2 = −2M but with the same initial energies, E1 = E2 = 1
using the parameter of the magnetar PSR J1745-2900 orbit-
ing SgrA* to evaluate magnetized particles with the value of
the parameter β = 10.2. One can see from the top panel of the
figure that the center-of-mass energy of the colliding mag-
netized particles with the same direction of magnetic dipoles
increases with the increase of the magnetic charge param-
eter of the RN black hole. However, in the cases when the
particles collide in the opposite direction to their magnetic
dipoles, the center of mass energy decreases, with increasing
magnetic charge of the black hole. Meanwhile the minimal
distance where the magnetized particles can collide grows
large as the magnetic charge growth due to the repulsive

Fig. 10 The dependence of the center-of-mass energy of collision
of two magnetized particles with the same value of initial energy
E1 = E2 = 1 and the parameter β = 10.2 from the radial coordinate,
around the magnetically charged RN black hole for different values of
the magnetic charge parameter of the black hole. The top panel cor-

responds to the collision of two magnetized particles with the same
direction of magnetic dipole moment, and the bottom one corresponds
to collisions of the magnetized particles with the opposite direction of
magnetic dipole moment
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Fig. 11 Dependence of center-of-mass energy of collision of charged
and magnetized particles with the same initial energy E1 = E2 = 1,
around the magnetically charged RN black hole for the different values

of the magnetic charge Qm of the black hole. Top (bottom) panel cor-
responds to the cases of collisions between magnetized particles with
the parameter β = 10.2 and negatively (positively) charged particles

behavior of the magnetic interaction. Moreover, even in the
Schwarzschild case, when the charge dipole’s direction goes
to the opposite, the center-of-mass energy slightly decreases,
and the particles cannot collide at a small distance to the event
horizon due to dominant effects of the dipole interaction of
the magnetized particles.

5.1.2 Magnetized and charged particles collisions

Now, we will study the center-of-mass energy of the col-
lisions of the magnetized and (negatively and positively)
charged particles. Generally, the four-velocity of a charged
particle can be found using the following Lagrangian:

L = 1

2
mgμνuμuν + euμ Aμ, (40)

here e is the electric charge of the particle. The conserved
quantities of energy and angular momentum have the form

E = mgt t ṫ, (41)

L = mgφφ φ̇ + eAφ, (42)

and one can immediately find the expressions for the four-
velocity of the charged particle in the equatorial plane in the
following form:

ṫ = E

f (r)
,

ṙ2 = E2 − f (r)

[

1 + l

r2
(l − Q)

]

,

φ̇ = l − Q

r2
, (43)

where Q = (e/m)Qm is a parameter corresponding to the
interaction of the magnetic field generated by the magnetic
charge of the magnetically charged RN black hole and the
electrically charged particle.

We may now find the expression for the center-of-mass
energy of collisions of magnetized and charged particles
inserting Eqs. (43) and (38) into (37) in the following form:

E2
cm = 1 + E1E2

f (r)
− l1 − Q

r2
l2

− 1

f (r)

√

E2
1 − f (r)

[

1 + l1

r2
(l1 − Q)

]

×

√

√

√

√E2
2 − f (r)

[

(

1 − β
M Qm

r2

)2

+ l2
2

r2

]

. (44)

The radial dependence of center-of-mass energy of colli-
sions of magnetized and electrically charged particles with
different signs around the magnetically charged RN black
hole for different values of the magnetic charge of the RN
black hole is shown in Fig. 11. In this figure, the left panel
corresponds to negatively charged particles and the right one
to positively charged particles. Here, we have chosen for the
value of the parameter β for magnetized particles the param-
eter of the magnetar PSR J1745-2900 orbiting around SgrA*
as β = 10.2 and considered head-on collision with the spe-
cific angular momentum l1 = −l2 = 2M and the same
initial energies E1 = E2 = 1. One may see that the center-
of-mass energy of collisions of negatively charged and mag-
netized particles is slightly bigger than the energy of the col-
lisions of positively charged and magnetized particles. One
may explain the result through the feature of electromagnetic
interaction between the magnetically charged black hole and
electrically charged particles being different.

5.1.3 Magnetized and neutral particles collisions

Finally, in the last subsection, we will study the center of
mass energy of collisions of magnetized and neutral particles
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Fig. 12 Dependence of center-of-mass energy of collision of neutral
and magnetized particles with the same initial energies E1 = E2 = 1,
around the magnetically charged RN black hole for the different values
of the magnetic charge parameter for the fixed value of the parameter
β = 10.2 for the magnetized particle.

around a magnetically charged RN black hole. One may find
the equations of motion for neutral particles around the black
hole in the following form:

ṫ = E

f (r)
,

ṙ2 = E2 − f (r)

(

1 + l2

r2

)

,

φ̇ = l

r2
. (45)

The expression for the center-of-mass energy of collisions
of magnetized and neutral particles can be obtained by insert-
ing Eqs. (38) and (45) into Eq. (37) in the following form:

E2
cm = 1 + E1E2

f (r)
− l1l2

r2
− 1

f (r)

√

√

√

√E2
1 − f (r)

(

1 + l2
1

r2

)

×

√

√

√

√E2
2 − f (r)

[

(

1 − β
M Qm

r2

)2

+ l2
2

r2

]

. (46)

The radial dependence of the center-of-mass energy for
the colliding magnetized and neutral particle’s system is
given in Fig. 12. Here we have also considered the head-
on collision of the particles with the angular momentum
l1 = −l2 = 2M having for the same value of initial energy
E1 = E2 = 1. One may see from the figure that, similarly to
the above-considered cases, we have center-of-mass energy
growth with the increase of the value of the magnetic charge
of magnetically charged RN black hole near the horizon due
to amplification of the magnetic interaction between the black
hole and magnetized particles. However, in all cases of the
collisions in the Schwarzschild black hole case, the center-
of-mass energy is bigger than in the RN black hole case as

the collisions take place at higher distances from the horizon
of the black hole.

5.2 Magnetized particles acceleration near electrically
charged RN black hole

Now, we will study the collisions of the magnetized particles
with (i) magnetized, (ii) electrically charged and (ii) neu-
tral particles around an electrically charged RN black hole
immersed in external asymptotically uniform magnetic fields
in the proper frame of references considering the external
magnetic field as a test field.

5.2.1 The collisions of two magnetized particles

One may find the four-velocity of the magnetized particle
in the equatorial plane (θ̇ = 0) using the Hamilton–Jacobi
equation given in Eq. (10) in the weak magnetic interaction
limit when (Dμν Fμν)2 = 0 in the following form:

ṫ = E

f (r)
,

ṙ2 = E2 − f (r)

(

1 + l2

r2
− b

√

f (r)

)

,

φ̇ = l

r2
. (47)

Consequently, we have the expression for the center-of-mass
energy of collisions of two magnetized particles after substi-
tuting Eq. (47) in to Eq. (37) in the following form:

E2
cm = 1 + E1E2

f (r)
− l1l2

r2

− 1

f (r)

√

√

√

√E2
1 − f (r)

[

1 + l2
1

r2
− b1

√

f (r)

]

×

√

√

√

√E2
2 − f (r)

[

1 + l2
2

r2
− b2

√

f (r)

]

. (48)

Figure 13 illustrates the dependence of the center-of-
mass energy of collisions of two magnetized particles with
the same (top and bottom panels) and opposite (the middle
panel) direction of magnetic dipole moment around electri-
cally charged RN black hole immersed in an external asymp-
totically uniform magnetic field from radial coordinates for
the different values of the black hole charge and the fixed
absolute value of the magnetic coupling parameter. One can
see from the top and bottom panels that increase of the black
hole charge causes increasing in the center-of-mass energy in
the case of the collisions of the two magnetized particles with
the same direction for their magnetic dipole moments. How-
ever, in the case when their dipole directions are opposite the
energy does not change with increasing the electric charge
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Fig. 13 Dependence of center-of-mass energy of collisions of two
magnetized particles with the same initial energy E1 = E2 = 1 from
the radial coordinate, around electrically charged RN black hole for
the different values of the black hole charge for the fixed values of the
magnetic coupling parameter of the colliding magnetized particles.

of the central black hole. As we have a larger distance, the
particles cannot collide due to the dominance of the repul-
sive feature of the magnetic interaction between the colliding
magnetized particles; then the center-of-mass energy does
not appear anymore.

5.2.2 Collision of two magnetized and charged particles

In this subsection, we will consider the collisions of mag-
netized and electrically charged particles with the electric

charge e. The four-velocity of a charged particle is found
using the following standard Lagrangian for charged parti-
cles in the electromagnetic field:

L = 1

2
mgμνuμuν + euμ Aμ. (49)

One can immediately find the expressions for the four-
velocity of the electrically charged particles in the equatorial
plane using the well-known Euler–Lagrange equation in the
following form:

ṫ = E

f (r)
,

ṙ2 =
(

E − e

m

Q

r

)2

− f (r)

[

1 +
(

l

r
− ωBr

)2]

,

φ̇ = l

r2
− ωB, (50)

where ωB = eB/(2mc) is the interaction parameter between
the external magnetic field and electrically charged particle
that is so-called cyclotron frequency.

The expression for the center-of-mass energy of colli-
sions of magnetized and charged particles after substituting
Eqs. (50) and (47) into Eq. (37) takes the following form:

E2
cm = 1 + E1E2

f (r)
−

(

l1

r2
− ωB

)

l2

−

√

(

E1 − e

m

Q

r

)2

− f (r)

[

1 +
( l1

r
− ωBr

)2
]

× 1

f (r)

√

√

√

√E2
2 − f (r)

[

1 + l2
2

r2
− b

√

f (r)

]

. (51)

Figure 14 presents the dependence of the center-of-mass
energy of collisions of electrically charged and magnetized
particles around an electrically charged black hole from
radial coordinates for the different values of the black hole
charge in two cases: magnetized particles with the coupling
parameter colliding with negatively (on the top panel) and
positively (in the bottom panel) charged particles with the
absolute value of magnetic interaction parameter |ωB| = 0.1.
Here, we have chosen the value of the specific charge of the
charged particles as the unit. One may see from the figure
that the increase of the black hole charge causes an increase
in the center-of-mass energy in both cases. However, from
the top panel, in the case of head-on collisions of the mag-
netized particles with negatively charged particles, one may
say that at the extreme value of the black hole charge the
center-of-mass energy reaches its minimum at a lower value
than in the Schwarzschild case. One may note that far from
the black hole the center-of-mass energy vanishes due to the
repulsive interaction of charged and magnetized particles.
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Fig. 14 Dependence of center-of-mass energy of collisions of posi-
tively (on the top panel) and negatively (on the bottom panel) charged
particles and magnetized particles with the same value of initial energy
E1 = E2 = 1 and magnetic coupling parameters, around electrically
charged RN black hole for the different values of the black hole charge

5.2.3 Collision of magnetized and neutral particles

Finally, here we will study the collisions of magnetized and
neutral particles. One may find the expression for the center-
of-mass energy of collisions of neutral and magnetized par-
ticles after substituting Eqs. (47) and (45) into (37) in the
following form:

E2
cm = 1 + E1E2

f (r)
− l1l2

r2
− 1

f (r)

√

√

√

√E2
2 − f (r)

(

1 + l2
2

r2

)

×

√

√

√

√E2
1 − f (r)

(

1 + l2
1

r2
− b

√

f (r)

)

. (52)

Figure 15 shows the radial dependence of the center-of-
mass energy of collisions of neutral particles and magnetized
particles with the magnetic coupling parameter b = 0.1
around a magnetically charged RN black hole for differ-
ent values of the black hole charge. Here we have consid-
ered a head-on collision with the specific angular momentum
l1 = −l2 = 2M and the same value for the initial energy of
the particles. One may see from the figure that the center-of-

Fig. 15 Dependence of center-of-mass energy of collisions of the mag-
netized particles, with the parameter b = 0.1, and a neutral particle
having the same initial energy E1 = E2 = 1, in the vicinity of the elec-
trically charged RN black hole for the different values of the black hole
charge.

mass energy increases with the increase of the electric charge
of the black hole.

6 Conclusion

In the present paper, we have explored the dynamics of mag-
netized particles in the vicinity of both a magnetically and
electrically charged RN black hole. The main purpose of the
exploration is to formulate the basic principles for distin-
guishing the effects of magnetic and electric charge of the
RN black hole from the ones of the spin of the rotating Kerr
black hole together with the question of how to distinguish
the effects of the magnetic charge from the electric one.

In the case of an electrically charged RN black hole due
to the absence of interaction between the electric charge of
the black hole and the dipole moment of the magnetized
particles, we have assumed that the black hole is immersed
in an external asymptotically uniform magnetic field. We
have shown that the specific energy and angular momentum
of the magnetized particles for circular orbits decreases in the
presence of the black hole charge and an external magnetic
field. Moreover, the ISCO radius of the magnetized particles
decreases with the increase of the electric charge of the RN
black hole, while a positive magnetic coupling parameter
causes an increase of the ISCO radius.

Magnetized particle motion around the magnetically
charged RN black hole has formulated. It is shown that the
ISCO radius decreases with the increase of both the mag-
netic charge and the parameter β up to the upper limit for their
interaction, which has achieved in magnetic field interaction,
due to dominant Lorentz forces which cause the magnetized
particle to escape from the circular orbits.
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We have concentrated on distinguishing the effects of elec-
tric and magnetic charges of the RN black hole and the spin of
Kerr black holes on the dynamics of the magnetized particles.
Here we have treated the magnetar SGR (PSR) J1745-2900
orbiting around the SMBH Sgr A* as a magnetized test par-
ticle with the magnetic interaction parameter b = 0.716 and
the parameter β = 10.2. A comparison of the effect of the
three parameters on the dynamics of the magnetar around the
Sgr A* environment has shown that the magnetic charge of
the RN black hole can mimic the spin parameter of the rotat-
ing Kerr black hole up to a/M ≃ 0.82. The external mag-
netic field can mimic the magnetic charge of the RN black
hole up to Qm/M = 0.4465. Moreover, we have shown that
the electric charge of the RN black hole can mimic the mag-
netic charge of the black hole up to Qm/M = 0.5482. The
effect of the electric charge of the black hole on the magne-
tized particle dynamics comes from spacetime only, and the
effect of the magnetic charge come from both spacetime and
electromagnetic interaction. However, in the case of a neutral
particle motion, the effects of magnetic and electric charges
of the RN black hole are completely equivalent. One may
conclude that the magnetic field interaction with the mag-
netic dipole moment of magnetized particle acts against the
increase of the mimicked value of the black hole spin param-
eter and radio pulsars to be observed in a close environment
of SgrA* can be used to get better constraints on the black
hole and alternate gravity parameters.

Finally, we have also explored collisions of magnetized
particles with magnetized, electrically charged, and neutral
particles around magnetically and electrically charged RN
black hole in the presence of the external asymptotically uni-
form magnetic field. We have shown that the center-of-mass
energy of the collisions of magnetized particles increases
with the increase of both electric and magnetic charges of the
RN black hole. Moreover, it is found that when the magnetic
dipole moments of the two colliding magnetized particles are
oppositely directed, the center-of-mass energy decreases as
we go far outwards from the central black hole, and at a criti-
cal distance the energy disappears. It implies that the collision
of the magnetized particles does not occur over the critical
distance due to the dominant effects of the magnetic repul-
sive interaction between the two oppositely directed mag-
netic dipoles.
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