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Current methods for statistical analysis of neuropsycholog-
ical test data in schizophrenia are inherently insufficient
for revealing valid cognitive impairment profiles. While
neuropsychological tests aim to selectively sample discrete
cognitive domains, test performance often requires several
cognitive operations or ‘““attributes.” Conventional statisti-
cal approaches assign each neuropsychological score of
interest to a single attribute or ‘“domain” (e.g., attention,
executive, etc.), and scores are calculated for each. This can
yield misleading information about underlying cognitive
impairments. We report findings applying a new method
for examining neuropsychological test data in schizophre-
nia, based on finite partially ordered sets (posets) as clas-
sification models.

A total of 220 schizophrenia outpatients were adminis-
tered the Positive and Negative Symptom Scale (PANSS)
and a neuropsychological test battery. Selected tests were
submitted to cognitive attribute analysis a priori by two
neuropsychologists. Applying Bayesian classification
methods (posets), each patient was classified with respect
to proficiency on the underlying attributes, based upon
his or her individual test performance pattern.

Twelve cognitive ‘“classes” are described in the sample.
Resulting classification models provided detailed ““diagno-
ses” into “‘attribute-based” profiles of cognitive strength/
weakness, mimicking expert clinician judgment. Classifica-
tion was efficient, requiring few measures to achieve accu-
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rate classification. Attributes were associated with PANSS
factors in the expected manner (only the negative and cog-
nition factors were associated with the attributes), and
a double dissociation was observed in which divergent
thinking was selectively associated with negative symp-
toms, possibly reflecting a manifestation of Kraepelin’s
hypothesis regarding the impact of volitional disturbances
on thought.

Using posets for extracting more precise cognitive infor-
mation from neuropsychological data may reveal more
valid cognitive endophenotypes, while dramatically reduc-
ing the amount of testing required.
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Introduction

Clinical neuropsychological (NP) examinations are usu-
ally employed to determine whether a patient has neu-
rocognitive deficits and, where present, to determine
whether they selectively affect certain neurocognitive
operations relative to others. The latter process involves
expert interpretation of the profile of NP test scores as
well as patterns of responding within particular tests.
Some patterns have diagnostic significance in that they
are associated with focal damage to particular brain
regions, or to degenerative processes having a well-
documented course/sequence of cognitive deterioration.
Cognitive profiles may also have rehabilitative value,
where cognitive strengths may be engaged to offset weak-
nesses, thereby improving the patient’s functionality.

This approach is impractical for large-scale clinical
studies such as those widely conducted in schizophrenia.
As a result, the subdomain method, reviewed below, has
been used in most large-scale studies of schizophrenia,
including our own.'®

We report on an application of statistical cognitive
modeling methods that can systematically, accurately,
and efficiently diagnose cognitive functioning in a manner
that more closely approaches that of an expert neuropsy-
chologist than currently available methods. The methods
we will describe are based on finite partially ordered sets
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(posets) as classification models.”!° Poset models can
provide concise and accurate information about cogni-
tive functioning at the level of the attributes that underlie
test performance. (We define attributes as cognitive oper-
ations (e.g., vigilance, working memory, etc.), which are
latent constructs, that may be present or absent. An at-
tribute must be present for a patient to be able to perform
well on a test that requires that attribute (e.g., “naming
ability” is an attribute that must be present to perform
well on the Boston Naming Test).) The objective of
this article is to demonstrate the validity of this new sta-
tistical classification system for NP functioning using
existing NP data in a sample of schizophrenia patients.
This will be accomplished by applying the poset method-
ology to classify patients (“test subjects”) into “‘states’ in
a poset model. In our application, a state describes
a group of patients. Patients in the same state share
the same pattern of attribute strengths and weaknesses,
that is, they have the same cognitive deficit profile. Posets
are natural models for cognition since the cognitive def-
icit profile associated with a given state may differ from
that of another state both qualitatively and also in terms
of its overall severity (e.g., the number of attributes lack-
ing). Moreover, it is also possible for one state to have
higher levels of functioning, with respect to all the attrib-
utes of interest, than another. Partial orderings can rep-
resent these inherent relationships between states. In our
view, the classification of cases into cognitive deficit pro-
files is more likely than previous methods to reveal valid
neurocognitive treatment targets for novel interventions.
We hypothesize that patients having common neuro-
cognitive deficit profiles (sharing the same “‘state” in
the poset model) are more similar with respect to brain
pathology to one another than they are to patients in dif-
ferent states. Hence, a state may be a more valid endo-
phenotype for genetic studies than a single test score
(e.g., the Wisconsin Card Sorting Test), which may be
impaired to the same degree in two different patients
but for very different reasons (described further below).

The Subdomain Method for Identifying Cognitive
Operations in NP Testing

The prevalent method for studying cognitive domain
specificity in large-scale studies of schizophrenia is to
create subscale scores by summing standard scores of
tests judged a priori to belong to a particular subdo-
main.">%!"12 In a previous review of this literature,
we addressed some of the problems attending this
work, including disagreements between studies about
which domains were identified and their constituent
measures.® Although there has been a proliferation of
published studies of NP test performance in mental ill-
ness, especially schizophrenia, the attempts to discern
replicable cognitive profiles within aggregate data using
existing statistical and psychometric methods (mainly
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factor analysis) remain at best marginally successful,
with a “generalized” deficit overwhelming more subtle
patterns. >3

This is largely owing to the fact that individual NP tests
are almost unavoidably polyfactorial.'* '® Except in rare
instances, no single test can be used to measure a single
cognitive operation. For example, a verbal list-learning
task involves not only memory (subsuming encoding
and retrieval), but also (among other things) the ability
to attend to the words as they are presented. Neverthe-
less, in an NP study, the number of words remembered
would typically be treated as an index of verbal memory
ability for all subjects in a sample, including those in
whom there was an impairment of sustained attention.
In large sample analysis, this could result in a finding
of impairment in both attention and memory when in
fact it is possible that the latter is the spurious conse-
quence of attentional demands inherent in list-learning
tasks.>>!7 In clinical practice, a trained neuropsycholo-
gist distinguishes whether a true verbal memory impair-
ment exists in such a case by considering performance on
other tests and in some cases also performance patterns
within the list-learning test itself.

The statistical approach in NP studies of deeming a test
score to be an index of a single cognitive attribute pro-
duces inaccuracies in data interpretation. When scores
are aggregated into cognitive subdomains, this problem
becomes exacerbated. This problem applies equally to
subdomain methods that use sums of standard scores
from measures within a priori domains® as those using fac-
tor analysis.'® This problem has been recognized by others
who have employed covariance, '° subtyping according to
threshold cutoffs,'®*° cluster analyses narrowly focusing
on one domain,?! or experimental control paradigms®* in
the attempt to reveal fundamental deficit profiles in
schizophrenia. Unfortunately, cluster analyses of schizo-
phrenia subjects based on comprehensive neuropsycho-
logical test batteries have not done much better, with
the most replicable clusters being a “near normal” group
and a “dementia” group.? Clusters are in general difficult
to replicate, as changes in the clustering algorithm and/or
data can alter the clusters that emerge. Moreover, the in-
terpretation of the common cognitive functionality within
a cluster may not always be straightforward.

Partially Ordered Models of Cognition

As an alternative, we employ a more refined statistical
method based on partially ordered models of cognition
that can explicitly recognize the polyfactorial nature of
widely used NP measures. Posets are comprised of states,
into which cases are classified, that are associated with
distinct patterns of attribute strengths and weaknesses.
In general, a first state is said to be of higher order
than a second state if and only if the associated attributes
in which there is proficiency for the second state are
included in the analogous associated attributes for the
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Fig. 1. Sample Poset Model.

Note: “A” and “B” denote cognitive attributes (say, divergent
thinking capacity and working memory). States 1 through 4 are
partially ordered (see text).

first state. Figure 1 illustrates a simple poset simulating
possible “‘states’ of cases on the basis of their level of
competency on two attributes, denoted by A and B
(for example, representing cognitive flexibility and diver-
gent thinking).

Note the “partially ordered” quality of the collection
of possible states, as for this illustration 1 has the
“highest” functionality, 4 has the “least,” yet states 2
and 3 are ordered only relative to states 1 and 4, but
not to each other. Posets thus represent a richer and
more flexible class of models than linearly ordered mod-
els,* which assume that states are all relatively ordered
with respect to each other.

Test scores from measures are used to classify a test
subject to one of the states in a poset model. For the ex-
ample in Figure 1, suppose that a measure requires both
attributes A and B in order to perform well. Strong ob-
served performance on such a measure would indicate
that the test subject has proficiency in both A and B.
On the other hand, if observed performance is poor,
then it is still unclear whether the test subject is lacking
in proficiency with A alone, B alone, or both A and B.
Further testing is required to distinguish between these
latter possibilities in the poset methodology. In the sub-
scale approach, however, poor performance would di-
rectly affect any associated scale scores. For instance,
suppose that the measure is associated with a subscale re-
lating to attribute B. It is possible that the test subject has
full proficiency with attribute B but is lacking attribute
A, yet the subscale score associated with attribute B
will be adversely affected. Hence, the subscale approach
can give quite misleading results.

Distinguishing Neurocognitive Functions in Schizophrenia

In order to relate test score information to cognitive
states, each NP measure must first be associated with
its underlying cognitive attributes. This “expert’ analysis
of the cognitive attributes associated with individual NP
test measures, critical in expert interpretation of neuro-
psychological test profiles, is the first step in poset mod-
eling. States in a poset are comprised of attribute profiles,
so the step of identifying and associating attributes to
measures is what determines the structure of the poset.
This approach to determining the latent cognitive states
relies on expert opinion and background information,
and thus enhances the possibility that the underlying
model will accurately describe NP functioning. Gener-
ally, test measures are associated with several attributes
that can affect performance. In this manner, the polyfac-
torial nature of measures can be explicitly recognized
within the poset methodology. For example, the Wiscon-
sin Card Sorting test (WCST) perseverative errors score
might be identified as requiring, for intact performance,
the attributes of attention/vigilance, high levels of work-
ing memory, divergent thinking capacity, and cognitive
flexibility, while Trails B might be identified as requiring
attention/vigilance, a modest working memory capacity,
cognitive flexibility, and the additional attribute of motor
dexterity.

Background

This work was first applied in educational testing, %2>

where there is interest in identifying attributes or skills
that are mastered or not mastered by a student (e.g.,
whether a seventh grader can find “a common denomi-
nator” in subtraction of fraction problems) to provide
more insightful testing information than just the report-
ing of a score, which reflects only the number of correct
responses. It was hypothesized that the same benefits can
be obtained in the realm of NP assessment, since it has
both conceptual and statistical similarities to educational
testing. For example, in both settings, partially ordered
models are natural representations of the various states
of cognition associated with a cognitive domain. None-
theless, NP assessment poses statistical problems not
necessarily shared with educational assessment (e.g.,
a range of possible responses to NP measures, whereas
in educational testing, items are generally “correct” or
“incorrect”).

Method

Statistical Framework

Classification of each test subject to a state is conducted
based on his or her scores on NP test measures through
the use of Bayesian methods. (See the procedures section
below for a step-by-step description.) The collection of
states into which subjects are classified is assumed to
be partially ordered. For each measure, it will be assumed
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that there are two test score probability distributions for
observing a score on the measure. One distribution will be
associated with subjects in states that have proficiency
on the attributes associated with the measure. The other
distribution will represent the test score distribution for
test subjects in states that do not have proficiency on all
the associated attributes. (This is illustrated in paragraph
2 of the results section below, using data from our test
sample.)

For each subject, prior probabilities are assigned for
state membership. For each state in the poset model,
a probability is assigned to represent the prior belief
that the test subject belongs to that state. Taking into
account observed NP test scores for the test subject,
the posterior probabilities of state membership are then
calculated using Bayes’s rule.

The posterior probability that a given subject is in
a given state after observations of measures represents
a combination of the prior information as reflected by
the prior probability, and the empirical information pro-
vided by the observations of the measures. As the number
of observations of measures increases, the contribution of
the prior probability value lessens, and the observed test
scores become predominant in determining posterior
probability values. Where there is certainty that a subject
belongs to a given state, the calculated posterior probabil-
ity for that state would be one, while the posterior prob-
ability corresponding to the other states within the poset
would be zero. Hence, a large posterior probability value
for one state indicates that a classification is decisive.

A hallmark of Bayesian analysis is the specification of
probabilities to represent the uncertainty in inference.
Note that the prior probabilities of state membership
are assigned for each test subject. For the present study,
a uniform, non-informative prior probability was as-
signed, so that each state was viewed as being equally
likely to be the true one prior to updating the probabil-
ities of state membership after test scores were observed.
While not done in the present study, an advantage of
the Bayesian approach is that pertinent background in-
formation or expert opinion can be incorporated into
a test subject’s state membership prior probability spec-
ifications, if it is believed a priori that certain states are
more likely to be the true cognitive state than others.

An important statistical property of these poset models
is that they are very efficient in terms of the amount
of measures needed to make accurate classifications.”
Note below that only seven measures are used in the pres-
ent analysis, a significant reduction from what a clinical
neuropsychologist would use to test the functionality of
each of the attributes under study here.

Participants

NP test data from 220 outpatients with schizophrenia
(N = 135) or schizoaffective disorder (N = 85) were in-
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cluded in this study. Participants were tested within six
months after hospital discharge. The study was approved
by the North Shore Long Island Jewish Health System
Human Subjects Review Board, and all study partici-
pants provided written informed consent after having
been judged competent to do so. The sample was com-
posed of 83 females (38%) and 137 males (62%); the
mean age was 36.3 years (SD = 8.9), the mean duration
of illness was 16.9 years (SD =9.3), and the average FSIQ
was 83.3 (SD = 10.95). The mean education was 12.04
years (SD = 2.34, range 3-18) with 63 (28.6%) not com-
pleting a high school degree, 127 (57.8%) completing high
school or a GED, and 30 (13.6%) completing a college
degree (AA, BA/S, MA/S). Sample ethnicity was 84
(38%) Caucasian, 96 (43%) African American, 25
(11.4%) Hispanic, 8 (3.6%) Asian, and 7 (3.2%) Pacific
Islander.

Procedure

1. Identifying Attributes and Assigning Tests to Attributes

The Positive and Negative Symptoms Scale (PANSS)?’
and a comprehensive battery of NP tests were con-
ducted.® Only a small subset of the available NP measures
was required for classification according to the attributes
being studied. Tests are selected by neuropsychology ex-
perts (JJ, SMB) based on their cognitive content, with in-
put (from CT) on their statistical properties. Attribute
content was specified, also by neuropsychology experts
(JJ, SMB) for each measure selected, along with associ-
ated proficiency levels. Table 1 lists the measures used
and the assignment of attributes to each measure.

The attribute analysis process involves identifying,
for each NP measure of interest, the (most important)
underlying cognitive attributes that determine perfor-
mance. In our case, two levels of proficiency per attri-
bute are used for four of the five attributes. Subjects
are considered to have either “proficiency” or “no pro-
ficiency” for these attributes (i.e., “high” performance
level or “low” performance level). For working memory,
we identified three levels of proficiency: no proficiency,
medium working memory, and high working memory.
Note that if a measure requires high working mem-
ory, then it necessarily requires medium working memory.

2. Identification of States ( Collections of Attributes) on
the Basis of Shared Response Patterns

A poset model is generated based on the attribute spec-
ifications given to the measures.'® The poset that resulted
from this procedure in the present set of NP measures is
illustrated in Figure 2.

Twelve states resulted, representing the cognitive states
that are identifiable (statistically distinguishable) from
the battery of seven NP measures. Each state is associated
with information about the pattern of functioning on the
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Table 1. A priori Assignment of Attributes to NP Test Measures

Distinguishing Neurocognitive Functions in Schizophrenia

Attribute
Attention/ Sustained Working Memory Working Memory Divergent Cognitive Psycho-motor
Vigilance (Medium) (High) Thinking Flexibility Speed
D2 J
LNS N Vv Vv
COWAT J N J
WCST N Vv Vv N N
Trails A N N
Finger Tapping J N
Trails B J N N J J

\J = proficient

D2 = Concentration Endurance Test (Brickenkamp 1981; Brickenkamp and Zillmer 1998)

LNS = Letter Number Span Test (Gold et al. 1997)*

37,38

COWAT = Controlled Oral Word Association Test (Benton and Hamsher 1978)*

WCST = Wisconsin Card Sorting Test (Heaton 1981)*' perseverative error score (Grant and Berg 1995)*
Trails A, B = Trailmaking Test (Reitan 1969)*® time to completion for forms A and B, respectively
Finger Tapping Test = Finger Tapping Test Preferred Hand (Reitan and Davidson 1974)*

attributes that were selected. The states within the poset
provide information about proficiency levels associated
with the attributes (e.g., high vs. low functioning on at-
tention/vigilance, divergent thinking, etc.). Note that the
resultant poset is a reduction from the poset containing
all 2° possible patterns of functioning of the six attributes.
The present set of NP measures cannot distinguish all

Fig. 2. Graphic Representation of Poset Result.

these patterns. Table 2 lists for each state the attributes
for which it is clear that a test subject belonging to that
state will have proficiency. Conservatively, in terms of
our clinical analysis below, it will otherwise be assumed
that the test subject does not have proficiency.

3. Prior Assumptions and Examination of
Actual Score Distributions

It was assumed that there are two different class condi-
tional test score distributions per measure across the
states in a poset. (A class conditional test score distribution
refers to the distribution of test scores for subjects in an
associated state (or class).) One will be associated with
the states that have functional ability with respect to as-
sociated cognitive attributes to perform well on the
measure, and another for states without functionality
in all attributes associated with the measure. By way
of illustration for the WCST, the states in Table 2 with
the attribute functionality to perform well are states 1
and 2, which require functionality on sustained vigilance,
a high level of working memory, capacity for divergent
thinking, and cognitive flexibility. The remaining states
(3 through 12) without the functionality of all attributes
associated with the WCST have a different test score
distribution.

The range of possible scores for each NP measure was
partitioned into intervals. Depending upon the NP vari-
able, either three or four intervals were selected, based on
quartile values from the entire sample. If there were only
three intervals in a partition (for WCST and Grooved
Pegboard), then the first interval represents the range
of values from the minimum value to the first quartile,

683

220z 1snbny 9| uo Jasn aonsnp jo uswyedaq ‘SN Aq 8907£61/629/1/ZE/a101Me/una|ingeluaiydoziyos/wod dno-ojwapese//:sdjy woly papeojumoq



J. Jaeger et al.

Table 2. Poset Results Attribute Combinations Associated with Each of 12 Resulting States and Number of Subjects (Ss) Classified to Each

Attribute
N subjects 1. Attention/ 2. Working 3. Working
classified into Sustained Memory Memory 4. Divergent 5. Cognitive 6. Psycho-motor
State each state Vigilance (medium) (High) Thinking Flexibility Speed
1 38 Vv v N v v v
2 13 v v N v v
3 13 v v N v v
4 10 v v N v v
5 8 Vv v N v
6 10 v v N Vv
7 10 v Vv N
8 25 v N v Vv
9 19 N N
10 14 N J N
11 22 N,
12 38

\/ = proficient

Note: The poset consists of a collection of cognitive states that are associated with combinations of attributes. The twelve cognitive
states that emerged in our sample are shown, along with the number of subjects classified into each.

while the third interval represents the range of values
from the third quartile to the maximum value. Based
on a training sample, the NP test score distributions
were estimated.'® Actual score distributions were studied
in several ways. A main statistical property of interest
involves the discriminatory capabilities of each test (as
can be measured for instance by Kullback-Leibler infor-
mation values between estimated class conditional test
score distributions for the test). The statistical analysis
of tests follows.'°

The underlying classification model is latent, which
presents difficulty in estimation of the class conditional
test score distributions, since the class membership of
each subject is not known precisely. To alleviate this
difficulty, only two class conditional test score distribu-
tions are estimated per measure. States in the model are
partitioned into two groups: those with the requisite func-
tionality and those without. The determination of these
two groups utilizes the partial ordering of states. As men-
tioned above, a uniform, non-informative prior probabil-
ity was assigned for the present study, so that each state
was viewed as being equally likely to be the true one, prior
to updating the probabilities of state membership, after
test scores were observed. Thus, in this application, no
prior information was incorporated into the classification
process for each subject. However, in general, prior infor-
mation about state membership for a test subject can be
incorporated into the classification process through the
specification of the prior distribution.
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4. Posterior Probabilities and Validation of
Cognitive States

Posterior probabilities are assigned, as a result of the pos-
et analyses, for each subject and for each possible state in
the poset. Subjects can be “assigned” to one of the resul-
tant states based upon that state having the highest pos-
terior probability relative to all the other states for that
subject. For each subject, the sum of the posterior prob-
abilities for each of the states will be 1.0.

Several validation procedures follow. Frequency dis-
tributions are used to examine the range of observed larg-
est posterior probabilities to provide an indication of the
likely accuracy of state assignments. (The objective of the
classification process is to concentrate probability on one
state, so the higher this value for most cases, the more
successful the classification.) In addition, the sum of
the two largest posterior probabilities is examined, since
this can provide evidence of functionality for the shared
attributes between the two associated states and hence is
of interest. A lack of concentration of probability values
can be an indication of poor model fit (e.g., poorly spec-
ified attributes).

Face validity is illustrated by selecting individual sub-
jects in individual states and examining their test per-
formance, and then determining whether the attributes
associated with the assigned state match their test score
profile. For data analytic validation, individual test score
distributions are examined, contrasting subjects classified
by the poset into states “having” the attributes assigned
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Table 3. Estimated Probabilities for Subjects (Ss) Performing at
the First through Fourth Quartiles on the Letter Number Span
Test as a Function of Whether They Were Classified into States 1
through 7 (Having Proficiency in Attention/Sustained Vigilance
[Att/SV], Working Memory Medium [WM1], and Working
Memory High [WM2]) versus States 8 through 12 (NOT Having
Proficiency on These Three Attributes)

LNS LNS LNS LNS
0,8  [8,11) [I11,13)  [13,25
Ss HAVING 0.08 0.23 0.27 0.42
proficiency with
Att/SV, WM1, WM2
Ss NOT HAVING 0.58 0.33 0.06 0.04

proficiency with
Att/SV, WM1, WM2

Note: LNS score ranges are denoted using set notation in which
[0,8) refers to the range of scores from 0, inclusive but not
including 8.

to that test from subjects assigned to states “not having”
these attributes. Subjects in the former collection of states
should have higher scores on the test than subjects in the
latter states. To examine the clinical validity of the attrib-
utes, we calculate for each subject the sum of the posterior
probabilities for each state that includes each of the cog-
nitive attributes (i.e., working memory, divergent think-
ing, cognitive flexibility, psychomotor speed/dexterity)
and relate those values to clinical factors. In this case,
we examined the factor scores on the PANSS.® We hy-
pothesize that these attributes will have differential rela-
tionships to these factors, in particular with respect to the
negative symptom and cognition factor relative to posi-
tive symptoms, emotional discomfort, and hostility.

Results

The specific attribute combinations associated with each
of these 12 states are indicated on Table 2, as well as the
number of subjects classified to each of these states.
States 1 and 12, describing 38 and 43 of the cases respec-
tively in the sample, consist of those who had high or low
functioning respectively on all six attributes. The remain-
ing 139 cases were classified to one of the 10 remaining
states, reflecting various other combinations of attribute
strengths and weaknesses. States 2, 3, and 4 are not or-
dered relative to one another, since they reflect high
functioning on five of the six possible attributes. Simi-
larly, states 5, 6, and 8 reflect high functioning on four
of the six possible attributes, although the particular
combination of attributional strengths and weaknesses
is different among these three states. Examining the com-
bination of attribute strengths and weaknesses reveals the
neurocognitive deficit profile that applies to each subject
belonging to that state. In this sense, the process is similar
to assigning a neurocognitive diagnosis to each subject.

Distinguishing Neurocognitive Functions in Schizophrenia

Number of Cases

0.2 0.4 0.6 0.8
Largest Posterior Probability Values

Fig. 3. Frequency Distribution Displaying the Largest Posterior
Probability Observed for Any of the 12 States.

Referring to Table 2, it can be noted that if a subject is
classified in any of states 1 through 7, it can be inferred
that he or she has demonstrated competency in the first
three attributes listed, while those classified in states 8
through 12 lack at least one of them. These three attri-
butes indicate high levels of competency in attention/
sustained vigilance, and both medium and high levels
of working memory. Note from Table 1 that the Letter
Number Span (LNS) test is the only measure of a collec-
tion we examined that was judged to require all three
attributes. One would expect therefore that subjects clas-
sified into states 1 through 7 would have a higher prob-
ability of having performed well on this test than subjects
classified into states 8 through 12. Table 3 summarizes
the proportion of cases performing at the first through
the fourth quartiles on LNS as a function of whether
they were classified into states 1 through 7 vs. 8 through
12. Ninety percent of the subjects classified into states 8
through 12 performed below the median on this test,
while 69 percent of those classified into states 1 through
7 performed above the median. These distributions re-
spectively describe the probabilities of a test subject per-
forming in the specified score ranges with or without
proficiency on all the attributes associated with LNS.

The poset methodology results in calculation of a pos-
terior probability for each state for each case. Subjects
are classified into a state on the basis of its being the
one having the largest posterior probability. Figure 3
reflects a frequency distribution for the largest posterior
probability observed for each case, while Figure 4 reflects
the distribution when the sum of the two largest posterior
probabilities for each case is plotted. Note that the
posterior probabilities of state membership for the test
subjects are in many cases aggregated on two states.

Table 4 illustrates, with a single subject, the utility of
examining the two highest probability states where the
highest possible classification accuracy is desirable, and
it also illustrates how posets can mimic a neuropsycholo-
gist’s expert judgment through classification.
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Fig. 4. Frequency Distribution Displaying the Sum of the Two
Largest Posterior Probability Values Observed among the 12 States.

This subject performed very poorly on WCST, a highly
polyfactorial test that is widely held to measure work-
ing memory as well as cognitive flexibility. Divergent
thinking is also involved, since the ability to “think
of” alternative sorting categories is essential. This subject
performed in the third quartile on the COWAT, a mea-
sure generally thought to measure divergent thinking.
Working memory impairment is considered very un-
likely, however, since LNS was performed at the second
quartile. All other measures (D2, Trails A and B, and
Finger Tapping) were performed relatively well. Thus,
a neuropsychologist might conclude confidently, based
on available test data, that this subject’s profile is asso-

ciated with a relative impairment in divergent thinking
(common to the WCST and COWAT, which had the
worst performance). Since the WCST also involves cog-
nitive flexibility (switching response categories), there is
some possibility that cognitive flexibility may be in-
volved. However this would be inconsistent with the
patient’s good Trails B performance. On the other
hand, psychomotor speed was performed so consistently
well (D2, Finger Tapping), including on a test with sim-
ilarities to Trails B (Trails A), that it remains possible that
cognitive flexibility is somewhat impaired, but that the
patient’s excellent psychomotor speed ‘““‘made up for” dif-
ficulties that arose in cognitive flexibility on Trails B.
Turning to the poset classification of this subject, classi-
fication into state 3 was achieved with a posterior prob-
ability of 0.67. State 3 reflects the profile in which five of
the six attributes are performed well, with only divergent
thinking selectively impaired. Classification into state 5,
the second-highest posterior probability for this subject,
was 0.10. State 5 consists of cases performing poorly on
both divergent thinking and cognitive flexibility. Sum-
ming these two posterior probabilities, we conclude
that there is a 77 percent chance that this subject is in ei-
ther state 3 or state 5. Both of these states are associated
with impairments in divergent thinking. Thus, the poset
classification is consistent with the likely conclusion of an
expert neuropsychologist examining this subject’s test
performance profile.

Conventional methods for analyzing these data
would most likely register a low to medium aggregate
score on an ‘“‘executive functioning” subdomain for this
case, on the basis of poor performance on WCST and

Table 4. Illustration with a Single Subject Showing How Posets Can Mimic a Neuropsychologist’s Expert Judgment through Classification

NP Test Raw Score Quartile (first = upper)
D2 402 First
LNS 13 Second
WCST 44 Bottom (tercile)
Trails A 25 First
Trails B 76 First
Finger Tapping 54 First (tercile)
COWAT 30 Third
Attribute

2. Working Memory 3. Working Memory 4. Divergent 5. Cognitive 6. Psycho-motor
State 1. Attention (medium) (High) Thinking Flexibility Speed
3 N N Vv N Vv
5 Vv N Vv Vv

Note: This subject’s posterior probability for classification into state 3 was 0.67, while for state 5 it was 0.10. (Attributes associated with

these two states are illustrated below.)
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COWAT, which would be averaged with contrasting
medium to high scores on LNS and Trails B, respec-
tively. The specificity of the cognitive impairment to
divergent thinking and possibly also to cognitive flexibil-
ity with intact working memory even at high difficulty
levels could not be discerned using conventional methods
of analysis.

Data-Analytic Validation

Data-analytic validation of model fit and of the specifi-
cation of the class conditional NP test score distributions
is essential to providing reliable and accurate results,
since the cognitive processes underlying the assessment
responses are latent and complex. The data-analytic tools
we used involve analyzing test score distribution param-
eter estimates and patterns in the classification results.'”
For instance, respective test score distribution estimates
for a test measure that do not have clearly distinguished
probability values (e.g., for those “having” vs. those “‘not
having” proficiency on an attribute required for that test)
indicate that attributes may be incorrectly associated
with the test, or alternatively, that the underlying cogni-
tive model may not be incorporating all of the clinically
important cognitive states.

Consider thetestscoredistribution estimatesin Figure 5.
This figure displays, for each of the seven NP measures, the
means and standard deviations of the probability esti-
mates. Test performance distributions are divided into
terciles (for WCST and Finger Tapping) or quartiles
(for the remaining variables).

The two sets of probabilities plotted in Figure 5 repre-
sent the respective estimated response probabilities of
subjects in states associated with the presence (closed
circles) or absence (open triangles) of the attributes nec-
essary for performance on that test. Note that the esti-
mates of probabilities for an observation belonging
to certain intervals in most instances reflect the order
structure of the cognitive model,'” and that respective
probabilities are distinguished between the response
distributions for the tests. In other words, subjects in
a state associated with the presence of attributes neces-
sary for performance on an NP test will have higher
probabilities of performing well than subjects in states
not associated with the presence of all the attributes
associated with the NP test. Stated conversely, a subject
without functionality on the attribute(s) required for
a given NP test has a relatively higher probability of
performing poorly. This corroborates the underlying
order structure of the model and indicates that the
attributes that were associated a priori with the NP
measures do indeed play a role in performance. Terciles
were used for WCST and Finger Tapping instead of
quartiles, as the use of terciles corroborated the order
structure in the above manner, while using quartiles in
the interval ranges did not in the middle ranges. This

Distinguishing Neurocognitive Functions in Schizophrenia

could be in part due to the need for more data in estima-
tion. Moreover, small standard deviations (ranging from
0.0017 to 0.0302) among the test score probability esti-
mates among 10 cross-validation replications (stratified
by gender and education level) support the stability
and replicability of the estimation process and hence
the classifications as well. In conjunction with the fairly
decisive classifications, these results give strong indica-
tion that the poset approach can successfully model
the cognitive processes underlying NP assessment in
schizophrenia.

Clinical Validity of the Attributes

The clinical significance of these and future poset results
will be more fully explored in subsequent research. How-
ever, as a first step, dimensions of psychopathology, as
measured by previously validated factors from the
PANSS,® were studied in relation to the attributes stud-
ied here. For each patient, posterior probability values
were summed for groups of states that “have” each of
the four attributes of interest. For Working Memory,
we included only states that required High Working
Memory. Subjects were grouped into low (< 0.3), me-
dium [0.3, 0.7], and high (> 0.7) posterior probability
groupings for each attribute, and the non-parametric
Kruskal Wallis test was used to relate these groupings
to PANSS factor score (see Table 5).

Results were as expected in the sense that the negative
symptom and cognitive factors were the only ones
among the five factors that approached significance
with the working memory attribute associated with
both of these PANSS factors. (Note that, since our pur-
pose was to explore trends, the table shows p values
meeting an alpha of 0.01; however, after multiplicity cor-
rection looking at all five PANSS factors, alpha should
be set at the more conservative 0.0025.) In addition, a po-
tentially important double dissociation may have been
revealed: The divergent thinking attribute is associated
with negative symptoms but not cognitive flexibility.
Further, the flexibility attribute is uniquely associated
with the cognitive factor.

Discussion and Conclusions

The results of this first application of posets to the prob-
lem of discerning neurocognitive profiles from polyfacto-
rial neuropsychological tests are promising. Posets offer
an alternative to existing data-analytic approaches for
NP test data in studies of cognitively impaired popula-
tions, where it is important to discern patterns of cogni-
tive strength and deficit. Approaches based on principal
components analysis, cluster analysis, and the more prev-
alent approach of summing scaled scores within a priori
subdomains cannot reveal valid measures of discrete
cognitive operations where the tests themselves are
polyfactorial.
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Fig. 5. Response Probability Estimates for Each of the Seven NP Measures.

Note: The two groups plotted reflect estimated probabilities for all test subjects classified into states associated with the presence of the

attributes necessary for performance on that test (open triangles), or test subjects classified into states associated with the absence of those
attributes (closed circles). Values on the x-axis reflect the raw score range in each quartile or tercile using set notation. TMA = Trailmaking test
A, TMB = Trailmaking test B. See caption of Table 1 for remainder of test abbreviations. With the exception of TMA Time, TMB Time, and

WCST, a high value denotes good performance and a low value denotes poor performance.
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Table 5. Kruskal Wallis Results Relating Attributes (Cases Grouped into 3 Groups of Posterior Probability Levels for Total of All States
Requiring That Attribute, Low = (<0.3), Med = [0.3, 0.7], High = (>0.7) to PANSS Factors (Bell et al., 1994)*8

PANSS Factor

Attribute PANSS Negative PANSS Cognitive PANSS Positive Sx PANSS Emotional PANSS Hostility
Working Memory Chi-Sq = 10.9 p =.004 Chi-sq =9.67 p=.008 ns ns ns
Divergent Thinking  Chi-sq = 9.56 p = .008 ns ns ns ns
Cognitive Flexibility ns Chi-sq = 14.23 p=.001 ns ns ns
Motor Dexterity ns ns ns ns ns

A frequent question asked regarding the prior assign-
ment of attributes relates to concerns that these could be
“subjective,” in that different experts might apply differ-
ent taxonomies of cognitive functions. Indeed, the meth-
odology is dependent on the specification of attributes,
and the results could differ between experts. The data-
analytic framework!'® is used to validate model fit, i.e.,
the attribute specification. Criteria, which were applied
here, include classification performance (higher largest
posterior probability values for subjects indicate good
performance), and strong discrimination properties of
tests indicate that they are indeed differentiating valid
cognitive subgroups. Such criteria can help in determin-
ing how to resolve discrepancies between expert opinions.

The cognitive attributes successfully distinguished
here cannot be discerned within clinical neuropsycholog-
ical test batteries in large data sets using conventional
data reduction methods. Our preliminary examination
of the clinical validity of these attributes using PANSS
factor scores revealed an exciting and potentially impor-
tant distinction. Specifically, the results suggest a double
dissociation in which the capacity for divergent thinking,
that is, coming up with alternative ideas or strategies
when called for, may be distinctly associated with nega-
tive symptoms, while this attribute does not contribute to
the PANSS cognitive factor. On the other hand, the cog-
nitive factor (and not negative symptoms) is significantly
associated with cognitive flexibility. A hallmark symp-
tom of the negative “syndrome” is avolition. However,
disturbances of volition are classically examined only
with respect to behavior and movement. Yet disturbances
in the volitional control of thought were essential features
in Kraepelin’s original formulation of the cognitive dis-
turbances of dementia praecox. To the degree that capac-
ity for divergent thinking may reflect willed initiation of
a thought or thought process, this attribute may reflect an
essential element of the cognitive disturbances originally
discerned by Kraepelin.

An important goal of experimental psychology and
cognitive science has been to develop tests and methods
that decompose the elemental units of cognition.” 3
Perhaps in the future, such an approach will successfully
reveal one or more neurocognitive endophenotypes

critical for targeting new treatments or distinguishing
biological subgroups.®> While great strides are being
made, a comprehensive battery of such discrete cognitive
probes remains elusive, leading those directing the
NIMH MATRICS initiative®® to adopt a traditional
“paper and pencil” battery such as those that have
been studied in thousands of schizophrenia sufferers,
to define cognitive improvement. Importantly, these leg-
acy databases can be subjected to poset analysis, offering
rich opportunities to take advantage of existing datasets.

There are some limitations in the current study. The
limited number of intervals used for the test score cate-
gories can hinder the decisiveness of the classification
performance, because scores in mid-range intervals do
not always discriminate between functionality states
very efficiently. With a larger data set, finer partitions
of the test score categories can be employed. An advan-
tage in just partitioning the range of values of a measure
into intervals is that parametric assumptions about
response models are not made.

Experts are used in linking test measures to attributes.
However, not all pertinent attributes may be recognized
in any given NP measure, at least for some of the test sub-
jects. The poset methodology requires that attributes be
identified a priori. Attributes selected for this first appli-
cation of posets to NP test data included conventional
ones widely studied in schizophrenia: attention/sustained
vigilance, working memory, set shifting/cognitive flexibil-
ity, ideational fluency (or capacity for divergent think-
ing), and motor dexterity. Subsequent analyses will
address memory and language functions using a different
set of measures in our battery. This initial work with pos-
ets addresses the most firmly established attributes and
task analysis and employs NP measures likely to be found
in many legacy NP databases in schizophrenia, raising
the potential for fruitful retrospective analyses of existing
data sets. Future applications can be directed to ongoing
work in experimental cognition.

Further investigations will also be conducted to exam-
ine the stability of posets in nearly 200 subjects for
whom a repeat NC battery was conducted, as well as
the association between poset classes and functional
outcome.
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Supplementary material is available online at http://
schizophreniabulletin.oxfordjournals.org.
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Appendix: Details of Statistical Framework

Classification is conducted based on scores x; for each
of n NP test measures (¢, i = 1...n) through the use of
Bayesian methods. Define P as a partially ordered collec-
tion of states into which subjects are classified. Define
f(x|e,j) as the class conditional test score density value
(probability) for observing a score x on measure e from
atestsubjectin statej, wherejisin P. The class conditional
test score distribution describes the distribution of test
scores observed on measure e for subjects in state j. Using
as an example for the measure e the total number of cor-
rect responses on the Letter Number Span Test (LNS),
this formula indicates the probability that a subject in
state j could have a score of x on LNS. Each state j is
assigned a test score distribution for each measure e,
i = 1...n, with probability density f{x,|e; ).

Foreach subject, prior probabilities are assigned for state
membership, my(j), foreachjin P, where jrefersto one of the
states in a poset P. Taking into account n observed NP test
scores, the posterior probability of state membership in j,
7,(7), is then calculated using Bayes’s rule:

() o flx1|er ) Wixalezy). .. Axnlen) mo(i),j € S
H_J ~ ~— _/
|

Probability that a subject in state j could
have respective scores of X1, X2, ... X,
on tests €g, €,... €,

Probability that a subject is
in state j after observing
their scores on 7 tests

The posterior probability =,(j) that a given subject is in
a given state j after n observations is proportional to the
product of the probabilities (class conditional test score
density function values associated with state j) for each
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of his or her respective observed test scores (x;i =
1...n). This product is multiplied by the prior probability
To(j). As n increases, the contribution of the prior proba-
bility value lessens, and the probabilities (density values)
corresponding to the observed test scores become predom-
inant in determining posterior probability values. Where
there is certainty that a subject belongs to a given state j,
the calculated posterior probability, wt,(j), for that state
would be one, while the posterior probability correspond-
ing to the other states within the poset P would be zero.

An important statistical property of these poset models
is that when s is the “‘true” state, there is an exponential
rate of convergence of T,(s) to 1 as n increases.’ The small
number of measures needed in the present analysis to ob-
tain useful classification information is an illustration of
the efficiency of this classification process and a signifi-
cant reduction from what a clinical neuropsychologist
would use to test the functionality of each of the attrib-
utes under study here.

Note with respect to the assumption of the (conditional)
independence of test measures: Conditional independence
in this context refers to absence, in individual test scores, of
variance explained by performance on the previous test
(e.g., analogous to the independence of each in a series
of coin flips from all the other coin flips). Neuropsychol-
ogists understand such risks, for example, as they can arise
from test order effects. For example, memory tests are be-
lieved to be more vulnerable to test session fatigue and are
typically administered first in clinical settings, relative to
simple motor speed or dexterity measures. In this study,
test order was standardized, and testers were carefully
instructed (and routinely reminded) to take rest or food
breaks at any point that they felt the patient’s best perfor-
mance could not be achieved on the next test, whether
owing to fatigue, hunger, or any other factor.
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