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We propose an indistinguishability measure for assessment of ansatz wavefunctions with numer-
ically determined wavefunctions. The measure efficiently compares all correlation functions of two
states and can therefore be used to distinguish phases by defining correlator classes for ansatz wave-
functions. It also allows identification of quantum critical points. We demonstrate the approach
for the transverse Ising and bilinear-biquadratic Heisenberg models, using the matrix product state
formalism with the time evolving block decimation algorithm.
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I. INTRODUCTION

A growing number of quantum many-body models
have been constructed to study order that is readily char-
acterized by wavefunctions as opposed to simple order pa-
rameters. Models of topological order! in particular can
be examined with a combination of numerical techniques
and ansatz states. Examples include idealized models of
the fractional quantum Hall regime?34 and spin liquids
such as the AKLT model® or the toric code®. The exact
ground states of these models, e.g., the Laughlin? or va-
lence bond solid® (VBS) wavefunctions, serve as ansatz
states for more realistic many-body models. A compari-
son of idealized ansatz wavefunctions and numerically ob-
tained, realistic wavefunctions then becomes an essential
element in the search for novel phases in real materials.

Several procedures are currently available for verifying
ansatz states. The variational theorem allows compar-
ison of the energetics of proposed ground states. It is
useful in ruling out trial states but can fail in establish-
ing a particular trial state because irrelevant wavefunc-
tions often show competitive energetics. Diagonalization
of small systems can be used to compute overlaps be-
tween ansatz and exact states. But the scaling of overlap
to larger systems does not always allow for a clear iden-
tification of a particular phase. For example diagonal-
ization studies® of proposed v = 5/2 fractional quantum
Hall states show overlaps of ~ 0.8 — 0.9 of competing
paired states, complicating unambiguous identification
of the true ground state. Variational tests and overlaps
must be combined with systematic analyses of other cor-
relation functions to make a case for how well an ansatz
state captures output from numerics.

In the following, we present a new measure for assess-
ment of ansatz wavefunctions by comparison with numer-

ical wavefunctions that allows for a clear identification of
a particular phase. This measure, which we refer to as the
indistinguishability, I, is based on a quantum information
measure of quantum state distinguishability?1%11. We
demonstrate the use of this indistinguishability measure
by application to the assessment of ansatz wavefunctions
for the ground state of two different models, the trans-
verse Ising chain and the spin-one bilinear-biquadratic
Heisenberg chain. The former provides a simple test of
the approach while the latter allows us to exploit its
power to analyze a challenging and rich model whose
solution has not yet been fully characterized. We use
accurate ground state wavefunctions that are obtained
with the time-evolving block decimation algorithm of
Vidalt2:13, This yields the state in the form of a matrix-
product state (MPS)412 from which our measure can
easily be calculated. We note that the notion of quantum
state distinguishability has been used recently to derive
order parameters!®. We emphasize that we take an en-
tirely different approach here by using distinguishability
to assess the degree of similarity of a proposed ansatz
wavefunction with output from an accurate simulation,
thereby gaining insight from the structure of the wave-
functions.

We also show that the indistinguishability measure al-
lows identification of quantum critical points and leads
to an indistinguishability susceptibility that provides
an accurate signature of these. Recent work has ex-
plored the characterization of quantum phase transitions
without making recourse to ansatz wavefunctions. In-
stead, quantities related to quantum information the-
ory such as concurrencel”18 entanglement entropy? and
fidelity2%:2! have been used to extract information about
quantum phase transitions from numerical output. These
and other quantities signal changes of phase but without
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revealing detailed information about the nature of the
quantum states.

The outline of this paper is as follows: in Sect. [l and
[ we introduce the new measure and discuss the scaling
in the thermodynamic limit. In Sect. [V], we show how
to calculate the measure efficiently for a given state in
the MPS representation. In Sect. [V] and [VI, we discuss
our results for the transverse Ising chain and the bilinear-
biquadratic Heisenberg chain, respectively.

II. INDISTINGUISHABILITY

We define the indistinguishability I,,(A,E) of two N-
particle states, an ansatz state W and the exact state
U, as the n-particle probability of error in distinguishing
the two states with an n-particle measurement:

I,(AE) = %

where Tr|O| is the trace norm of O and p™) = Try_, (p)
is the n-particle reduced density matrix?1%1l The last
term in Eq. [l is a well known statistical distance mea-
sure, the Kolmogorov distance between two probability
distributions. When I,,(A,E) is zero, the states are dis-
tinguishable and the ansatz wavefunction Wy is clearly a
bad approximation to Wg. However, when it is non-zero,
there is a finite probability that an n-particle measure-
ment can not distinguish the ansatz from the numeri-
cal wavefunction, implying that the ansatz provides a
good description of the state up to n-particle correlators.
I, (AE) = 1/2 corresponds to maximum indistinguisha-
bility, implying identical states. Since the measure is
defined in terms of reduced density matrices, the state
indistinguishability implicitly scans all correlators with
up to n particles, to yield a single number that quanti-
fies the ability of an optimally chosen set of n-particle
correlators to distinguish two states?10. 1 — I,, gives the
probability that an optimally chosen correlation function
involving at most n particles will be able to distinguish
the two states.

We use I, as a quantifier of the degree of indistin-
guishability of two states via correlators in an N-particle
system. When I, is intensive in N, so that small n val-
ues suffice to characterize the correlators, we define two
states to be in the same n-particle correlator class if I,
is finite in the thermodynamic limit, i.e., as N — oo, and
to be in different correlator classes if I,, = 0 in this limit.

IIT. QUANTUM CHERNOFF BOUND

It is possible that I,, vanishes in the thermodynamic
limit regardless of the ansatz. When I, is extensive in
N so that large n values are required (e.g., n ~ O(N)),
we can nevertheless use the scaling of I,, with N to iden-
tify correlator classes. The scaling of the indistinguisha-
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Figure 1: Top: Schematic of the matrix product decomposi-
tion of a four-site lattice. The circles indicate sites, 7, with
an applied tensor, F[i], and the diamonds denote bonds which
carry Schmids coefficients, A[?, on the i*” bond. The shading
indicates a decomposition into left and right subsystems de-
scribed by a renormalized basis |l ) and |r.) of eigenvectors of
the respective reduced density matrices. Bottom: Schematic
depicting an overlap of two matrix product states. The top
line corresponds to a state A (e.g., an ansatz state) in the ma-
trix product representation while the bottom line corresponds
to a second state E (e.g., an exact state).

bility to the thermodynamic limit can be quantified in
terms of the quantum Chernoff bound (QCB). Assuming
that on sufficiently large scales, a translationally invari-
ant ground state can be regarded as a tensor product of
subblocks (or copies), a recent result?2 for the indistin-
guishability of many copies of the system shows that we
should expect an exponential dependence for large n, i.e.:
I, ~ exp(—nécp), where the QCB can be identified in
the thermodynamic limit from

lim

i = — lim log(L,)/n (2)

with n = N/2. A remarkable relation?? connects the
QCB directly to the reduced density matrices of finite
blocks, namely

grﬁ = féB (3)

with
p_ . (n)\s/ (M)\1—s
SoB = logoglslgl T [(p“‘ )(e) } ’ )

thereby allowing a direct evaluation in terms of the re-
duced density matrices pl(zn) and pg"). Using either of
these expressions for the QCB we can then identify cor-
relator classes in the thermodynamic limit: small values
of £cp correspond to large values of I, and indicate a

successful ansatz.



IV. CALCULATING I USING
MATRIX-PRODUCT STATES

Our simulation uses an MPS approximation to a state
in the full spin Hilbert space. The coefficients ¢({o;}) of
the expansion of the state in the o*-basis,

0) =Y efoi})lon) .- lon) ()
{o:}
are given as a product of matrices:
c({oi}) =Y ThlealITfe AR i~ (6)

A1y, XN

where « indexes the auxiliary state space (of size M), T’
are rank three tensors that must be determined, and the
coefficients A are the Schmidt eigenvalues of a bipartite
splitting of the system at that site, i.e. they are equal to
the eigenvalues of the reduced density matrices obtained
by such a splitting. In the following we denote MPS

states as |U) = (I‘[Z]:Z;l /\[Z])

The accuracy of the MPS approximation depends on
the decay of these eigenvalues and can be controlled
by tuning the matrix dimension M. In the case of
the Ising model in transverse field, the Schmidt coef-
ficients are found to decay very quickly. We therefore
perform our calculations with a matrix size M = 100
and up to N = 64 spins. Imaginary time evolution is
used to project into the ground state. We apply a first-
order Trotter decomposition with an initial time-step
dr = 0.05, which is decreased to dr = 0.0001 during the
simulation. In what follows an "exact” state (E) refers
to an MPS approximation to the exact ground state.

Once the ground state has been found, we must ob-
tain the density matrix in a common, orthonormal ba-
sis {|vg)} for both the ansatz and exact states. We
first join the two bases by concatenating Schmidt co-
efficients and the tensors blockwise, i.e. for two states
(o) = (C2% NG 10y = (0% ALY we have [¥) given
by

a,fe{l,...,M}

[i]lo
N 1)
“ M7 0,8 e{M+1,...,

2M}
;\[i] _ i\([;-] [V AS {1,...,M} (8)
° N ae{M+1,...2M).

We define the overlap matrix of two sets of states |wy,) =
(I‘z]gl, /\M) and |Wy,) = (1:‘[;]; ,5\5]) describing some part
of the system (bottom panel, Fig.[Il), which are taken to
be the Schmidt eigenvectors of a bipartite decomposition

of the system:

<U~)a;|wa Z]:<HF“TZ)\ Hraqal a7>’ (9)
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Figure 2: (color online) Indistinguishability Iy,2(A, E) plot-
ted as a function of magnetic field h for the one-dimensional
transverse quantum Ising model for several different system
sizes, N, and two different ansatz states, A = F, (ferro-
magnetic, hye = 0, black lines) and A = P (paramagnetic,
hret = 2, blue lines). The inset plots the crossing point of
Inso(F,E) and Iy /o(P, E), with Up evaluated for hyer = 100,
versus N 1. A straight line fit yields a quantum critical point
at her = 0.999(1) as N — oo, in agreement with standard re-
sults?.

where the summation runs over all orthogonal spin con-
figurations and F indicates the summation over all re-
maining indices. This allows us to find a transformation
that we can use to orthonormalize the basis of |¥) for a
specific bipartition.

The reduced density matrices can now be computed
using

P = D Aars(valla)Uslow) (relra) (ralre).  (10)
a,B,t

|re) and |l,) denote states obtained from a right and left
partitioning of the lattice (top panel, Fig. ). The sum
over states |ry) traces out the right N — n sites.

V. ISING CHAIN IN TRANSVERSE FIELD

We first apply the indistinguishability measure to the
simplest model with a quantum phase transition, the fer-
romagnetic transverse Ising model:

Hy, = — Zaa hZa (11)

Here of*, o = z,y, 2z are the Pauli matrices and the sites
1 are located on an N-site chain with open boundary
conditions. For a review of the properties of this model
see Ref. (23) and references therein.

Physically motivated ansatz wavefunctions can be de-



fined for Eq. ({0} by noting that for A > 1 the ground
state is a paramagnet with exponentially decaying corre-
lators, (ofof) ~ exp (—j/€), while for h < 1 the ground
state is in the ferromagnetically ordered phase with long
range order, (ofof) ~ m? for j — oo, where m is the
spontaneous magnetization. On the ferromagnetic side
the exact h — 0 ground state (one of the two degen-
erate ground states) is given by: Wp = [],| 1);, while
on the paramagnetic side in the limit h — oo we have:
Up = [[,| —)i- These states are ansatz wavefunctions
that we will apply at all values of magnetic field h. In
the thermodynamic limit there is a quantum phase tran-
sition at h = 1. Without relying on the explicit behavior
of any correlation functions, we will show using I,, that
for h # 1 our ansatz wavefunctions fall into two distinct
correlator classes that characterize the two phases on ei-
ther side of the transition. I,, thus allows an efficient
test of the accuracy of ansatz states in reproducing all n-
particle correlation functions of the exact state, without
explicit calculation of these. We further show that the
location of the transition can be accurately identified.

We focus here on calculations for large values of n that
will allow us to analyze the scaling of I,, when this is an
intensive quantity. Thus we consider n = N/2, where the
total number of spins N varies. The indistinguishability
I,,— /2 of the exact ground state of Eq. () with the fer-
romagnetic and paramagnetic ansatz states Ur and Up
was computed. We use Uy = \IJ%CFO for the ferromag-
netic ansatz. For most calculations it is sufficient to use
Up = \I!]%‘“ef with hyet = 2 for the paramagnetic ansatz but
larger values of h.ot will be used to extract information
about the phase transition.

The calculated indistinguishabilities I /o(F, E) and
In/2(P, E) are shown in the main panel of Fig. @ as a
function of h for several system sizes. For h < 1, we
find I /2(F, E) large with a weak decay with N. In con-
trast, we find here a strong suppression of IN/Q(P, E) as
N — o0, implying that an optimally chosen correlator of
up to N/2 particles will not successfully distinguish the
exact state from Wk but will successfully distinguish the
exact state from the paramagnetic state for large enough
N. For h 2 1, we find the reverse situation.

We can use I, to accurately identify the phase transi-
tion point, he.. We search for the critical point by finding
the h at which Iy /o(F, E) = In/2(P, E) and extrapolat-
ing to the thermodynamic limit. The inset of Fig.[2shows
a linear extrapolation in 1/N that agrees with the known
solution, hey = 1.

We compute the QCB for each of the two phases in the
transverse Ising model to demonstrate that the existence
of two distinct correlator classes can also be found via the
scaling exponent of I,,. Fig. B plots the QCB versus h
evaluated with two different methods. The dotted lines
plot the finite size extrapolation of §lcir§ for both A=F
(hret = 0, black) and A=P (hyet = 2, blue). The remain-
ing lines show how the data collapse towards this line for
several discrete IV values. We see that the scaling expo-
nent, {cp, remains finite in the thermodynamic limit and
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Figure 3: (color online) The quantum Chernoff bound versus
magnetic field using the extrapolation of indistinguishability,
eim (dotted line) and the reduced density matrices directly,
&lp, (solid, dashed and dot-dashed). A suppression of &cm
indicates success for the ferromagnetic, F, black lines (para-
magnetic, P blue lines) ansatz for h < 1 (h 2 1). The inset
plots shows a log plot of I/ (F, E) versus N for several h to
show an abrupt change in scaling near h = 1.

correctly identifies correlator classes on either side of the
critical point. Precise location of the critical point from
the QCB is complicated by the need to extrapolate an
exponent and the associated numerical error. Location
from the scaling of I,, as in Fig. 2] is more direct and
appears more robust in this case.

The critical point can be defined in terms of the in-
distinguishability as the unique point in parameter space
that, for a given ansatz wavefunction, separates regions
characterized by dramatically different scaling of I,,. As
demonstrated above, both the direct evaluation of I,, and
evaluation of the QCB allow the critical point between
two phases to be located as the point where the indistin-
guishability measures for the two different ansatz func-
tions are equal. To further characterize the critical point
for finite sized systems we can define an indistinguisha-
bility susceptibility for I,,(4, E) by

X1, = lim dIL,(Uke, why/dh

h—%hyet
05— In(\I]href7 qjhrefis)
=l e (%)

where we have used ¥y = \I/g“f . Eq. (I2) should coincide
with the maximum of the derivative of I,(A, E) for a

given hyer, when Wp = \If];]’“ef . Our direct calculations of

I, show that for the transverse Ising model, the critical
point can be identified with a peak in X7, , versus h.
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Figure 4: Indistinguishability versus 6 for the bilinear-biquadratic Heisenberg model, Eq.[I3] with N = 36 and n = 18. Distinct
correlator classes surround 5 different reference states for which I/, = 1/2: the ferromagnetic (solid), quadrupolar (dot-double
dashed), Haldane (dot-dashed) and dimerized (dashed) phases. The AKLT point (double dot-dashed) at 6 = tan™'(1/3)

appears within the Haldane phase.

VI. SPIN-1 BILINEAR-BIQUADRATIC CHAIN

We now apply our distinguishability measure to an-
alyze a richer model with ground states characterized
by more complicated correlators, the bilinear-biquadratic
Heisenberg chain, defined by

Hblqu = Z [COS G(SZSZJrl) + sin Q(SZSHrl)Q} y (13)

i

where S is the spin-1 operator and 6 a parameter. A
growing body of analytic and numerical work has shown
that this model hosts a variety of ground state phases
(for a review see Ref. (24) and references therein).

An integrable point>2® at Oaxrt = tan~!'1/3 has a
particularly simple form for the exact ground state that
belongs to a class of VBS wavefunctions related to the
Laughlin ansatz state28. The VBS state at OaxrT can
be written as Wypg = ]_L-(ajbl-LJr1 — b1a1+1)|0), where a
and b annihilate Schwinger bosons defined by 5% 445Y =
a'h, 8% = (ata — b'b)/2, and a'a + b'b = 2. Wypg char-
acterizes a state with exponentially decaying local cor-
relators. The AKLT state is also characterized by hid-
den, long-ranged chain correlators?’. Notably, this state
does not break translational symmetry. On a finite chain
with open boundary conditions, a four-fold degeneracy
appears which is related to open spin-1/2 degrees of free-
dom at the ends of the chain.

We address the phases of this model from the point
of view of ansatz states by taking five specific values
of 6 as reference points to capture the various possible
phases. In particular, we choose 0,f = 7 for the ferro-
magnetic (F) phase, 0o = 0.47 for the quadrupolar (QP)
phase, Oy = 0 and 0, = Oaxyr for the Haldane phase
(corresponding to the Heisenberg and AKLT states) and
Ot = —m /2 for the dimerized phase. In addition to these
ansatzes defined by the ground states of the Hamiltonian
Eq. (@3)) for the five reference 6 values, we shall also con-
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Figure 5: Indistinguishability susceptibility, Eq.[I2, computed
for the bilinear-biquadratic chain, Eq. Here we use N =
36,72, n = N/2 and ¢ = 0.02 for the relevant part of the
phase diagram. The peaks indicate phase transitions. In the
case of discontinuous transitions, peaks remain finite only due
to the discretization of the values of hyef.

sider a trial wave function for a fully dimerized state,
obtained at § = —7/2 with a modified Hamiltonian that
results from omitting all even-bond terms in Eq. ([I3)).

Since, with the exception of the Haldane phase, ana-
lytic forms for the ground state wave function at these
reference points are not known, the ansatz wavefunctions
are given here by numerical solution for the ground state
of Eq. (I3) at the reference values of 6,¢. These numeri-
cal solutions W4 are generated with the matrix product
approach of Section[[V] at ..¢, just as the exact solutions
U are generated at arbitrary values of . This illustrates



an important practical feature of the method, namely
that we are not restricted to use of analytic ansatz func-
tions. We then calculate the indistinguishability mea-
sure, I/, for system sizes N = 24...72 with open
boundary conditions. Due to this choice of boundary
conditions, we need to take N as a multiple of 3 in order
to be able to capture correlations at k = 2m/3 which are
important in the quadrupolar phase.

A typical result, for N = 36, is presented in Fig. [l
which shows Iy /5 as a function of ¢ for the five different
correlator classes defined by the above values of 0,.;. The
general variation of I/, for each correlator class is con-
sistent with what little is known about the phase bound-
aries in this system24:27:28 hut also reveals new insights.
In particular, we find several remarkable features. First,
the ferromagnetic ansatz is seen to be indistinguishable
from the exact ground state over a wide range of 6 val-
ues, < —3w/4 and § > +7/2, with sharp, possibly first
order, transitions signalling vanishing of the ferromag-
netic state at § = 7/2 and —3w/4. Second, the ground
state of the Heisenberg point at # = 0 is in the same cor-
relator class as the AKLT state, supporting suggestions
that there is a finite range of 6 over which the ground
state has the symmetry of the AKLT state?’. Third,
although the indistinguishability for h..s in the Haldane
phase drops quickly as the dimerized phase is approached
() — —m/4), the signature of the phase transition does
not appear as strongly as the alternative Haldane to
quadrupolar transition (0 — +/4) for this system size.

Additionally, we have calculated the n = N/2 indis-
tinguishability susceptibility, Eq.[I2] for this model with
N =36 and N = 72 (Fig.[]). The sharp transitions from
the ferromagnetic state are reflected in large peaks in the
susceptibility; the height of these peaks is controlled only
by the discretization of the 6 values. These sharp peaks
at @ = /2 and —37/4 are consistent with the possibility
of first order transitions out of the ferromagnetic phase.
A well-pronounced transition also appears between the
Haldane and the quadrupolar phase, with a pronounced
shift due to finite size effects. The indistinguishability
susceptibility is thus sensitive to the difference between
first order and continuous phase transitions, with the lat-
ter showing finite size shifts due to the divergence of the
intrinsic length scales.

We note that, in contrast to the clear signatures for
transitions from the ferromagnetic phase and from the
Haldane to quadrupolar phase, the transition from the
dimerized phase to the Haldane phase is only very weak
at these system sizes. A small peak does emerge at
N = 72, but for N = 36 the peak corresponding to
the transition appears considerably flattened out, almost
to a plateau, and is also considerably shifted in loca-
tion. To understand this behaviour, we analyzed the
fully dimerized ansatz state derived at § = —m/2 with
the omission of all even-bond terms in Eq. (I3), as de-
scribed above. Fig. [l (b) shows that the indistinguisha-
bility for this ansatz state is relatively small, never ex-
ceeding 0.25, implying that this fully dimerized ansatz
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Figure 6: Analysis of the dimerized phase. (a) MPS ground
state for 0 = —m /2 as the reference state. For small system
sizes, the reference state remains a good ansatz state far be-
yond 0/ = —0.25 into the Haldane regime. (b) Iy, for a
strongly dimerized reference state obtained for 6 = —7/2 by
omitting even-bond terms from the Hamiltonian, Eq. ([I3)).
The indistinguishability remains small even around the max-
imally dimerized point near /7 = —0.5, indicating that a
product of dimers only poorly characterizes the system. (c)
Dimerization order parameter (Eq. ([Id])) for three system
sizes. The dimerization remains finite far towards the AKLT
point, rendering the Haldane and dimerized phases hard to
distinguish on small length scales.

only poorly describes the dimerized phase of Eq. ([I3]),
even in the proximity of the maximally dimerized point
around /7 = —0.5. Our results thus confirm that there
are strong fluctuations away from a simple state consist-
ing entirely of products of dimers and that it is therefore
difficult to precisely characterize the nature of the ground
state in this parameter region.

To analyze the degree of dimerization we define a
dimerization order parameter:

1
D= sz(; l|Hi—Hi+1| (14)

with H; = [cos@(SiSi_H)—l—sin@(SiSHl)Q] In these



units, the fully dimerized state is characterized by D =
2.63. We can then demonstrate the degree of dimeriza-
tion by direct evaluation of Eq.[I4l This is plotted in Fig.
6] (¢), which shows a finite dimerization far into the Hal-
dane regime. For the smallest system sizes, the dimeriza-
tion order parameter vanishes only at the AKLT point.
This is due to the explicit breaking of translational sym-
metry induced by our use of open boundary conditions
as well as to our restricted system sizes. We therefore ex-
pect that the weak peak in the susceptibility at N = 72
should become more pronounced with larger system sizes
or with periodic boundaries.

VII. CONCLUSION

Motivated by the importance of ansatz wavefunctions
for developing physical insight into strongly correlated
phases where the numerically obtained wave function
may be available but too complex for physical analysis,
we have introduced an indistinguishability measure I,
to assess the accuracy of ansatz functions by comparison
with accurate numerical solutions. The indistinguishabil-
ity measure quantifies the ability of any set of n-particle
correlators to distinguish two states, with a value 7,, > 0
in the thermodynamic limit showing that two states lie
in the same correlator class and a value I,, = 0 indicat-
ing that they lie in different classes. The accuracy of an
ansatz wavefunction can then be determined by evalu-
ation of I,,(A, F), the indistinguishability of the ansatz

state W4 from the exact state U . The real space scaling
of the indistinguishability measure can be evaluated di-
rectly, or in terms of the quantum Chernoff bound?2. We
demonstrated with two one-dimensional examples, the
well-known transverse Ising chain and a spin-1 bilinear-
biquadratic chain, that this allows physically motivated
ansatz wavefunctions to be matched to accurate numer-
ical wavefunctions in different phases. We showed that
the phase boundaries can be accurately obtained from
the coincidence of I,,(A, E) values for different ansatzes
U4 and further defined an indistinguishability suscep-
tibility that characterizes the location of the quantum
phase transition.

The indistinguishability measure I,, can be applied to
analysis of ansatz wavefunctions using any of the many
numerical techniques that are now available to efficiently
obtain reduced density matrices, e.g., exact diagonal-
ization, configuration interaction methods, density ma-
trix renormalization group (DMRG)22:3¢ and tensor net-
work methods (e.g., the projected entangled-pair state3!,
multi-scale entanglement renormalization ansatz32, etc.).
As an example of a direct application, our measure may
be used with exact diagonalization® or DMRG22:34 to
study ansatz fractional quantum Hall states.
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