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Abstract

Summary statistics are widely used in population genetics, but
they suffer from the drawback that no simple sufficient summary
statistic exists, which captures all information required to distinguish
different evolutionary hypotheses. Here, we apply boosting, a recent
statistical method that combines simple classification rules to maxi-
mize their joint predictive performance. We show that our implemen-
tation of boosting has a high power to detect selective sweeps. Demo-
graphic events, such as bottlenecks, do not result in a large excess of
false positives. A comparison to other neutrality tests shows that our
boosting implementation performs well compared to other neutrality
tests. Furthermore, we evaluated the relative contribution of different
summary statistics to the identification of selection and found that
for recent sweeps integrated haplotype homozygosity is very informa-
tive whereas older sweeps are better detected by Tajima’s π. Overall,
Watterson’s θ was found to contribute the most information for dis-
tinguishing between bottlenecks and selection.

Introduction

A popular approach to statistical inference concerning competing population
genetic scenarios is to use summary statistics (Tajima, 1989b; Fu and Li,
1993; Fay and Wu, 2000; Sabeti et al., 2002; Voight et al., 2006). Since the
complexity of the underlying models usually does not permit for a single
sufficient statistic, this led to the development of a considerable number of
summary statistics, and consequently to the issue which summary statistic
should be used for a particular purpose. Methods that try to approximate the
joint likelihood of several summary statistics via simulations suffer from the
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curse of dimensionality, and are usually computationally intractable. There-
fore proposals to combine summary statistics to a single number in a plausible
way can be found in the literature (Zeng et al., 2006, 2007). In recent work,
Grossman et al. (2010) use a Bayesian approach that is capable of combining
the information of stochastically independent summary statistics.

Boosting (Bühlmann and Hothorn, 2007; Freund and Schapire, 1996) is
a fairly recent statistical method that permits to estimate combinations of
summary statistics such that the sensitivity and specificity of the resulting
classification rule is optimized. In contrast to the Bayesian approach of
Grossman et al. (2010), boosting does not require independent summary
statistics and is therefore more widely applicable. Here we explore boosting
as a method to distinguish between competing population genetic scenarios.
Although boosting could also be used in other settings, we chose positive
selection, neutral evolution and bottlenecks as our competing scenarios. The
choice of such fairly well studied scenarios permits us to compare boosting
with other summary statistics based approaches available in the literature
(Tajima, 1989b; Voight et al., 2006; Tajima, 1983; Fay and Wu, 2000). Here
the expectation is that boosting might gain something by deriving novel
combinations of site frequency and linkage disequilibrium based statistics.
Since they measure different aspects of selection, their combination is not
obvious. A comparison with a recently proposed method (Pavlidis et al.,
2010) that uses support vector machines to combine site frequency and LD
information is also provided.

It may be also of interest to understand how boosting combines the sum-
mary statistics used in the light of what we know about the traces of selec-
tion. By now, the footprints of positive selection are quite well understood.
They include a reduced number of segregating sites, as well as changes in
the mutation frequency spectrum and the linkage disequilibrium structure
(Sabeti et al., 2006; Biswas and Akey, 2006). Besides selection, however,
there may be other explanations for the observed deviation from neutrality,
such as the demographic history of the population. Bottlenecks, for instance,
lead to footprints that can be similar to those caused by selection (Tajima,
1989a). In contrast to the demographic history however, the effect of positive
selection is usually thought to be local, changing the DNA pattern only in
a limited spatial range. Typically, summary statistics show their extreme
values right at the selected site, and return to their normal values gradually
when moving away from the selected site. This leads to a characteristic “val-
ley” pattern which can be exploited for discriminating between selection and
demography (Kim and Stephan, 2002).

In the Methods section, we first explain how boosting works and point
out some relevant literature. We then explain, how we implemented boosting
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for the purpose of detecting selection.
In the Results section, we present simulations, illustrating the power of

boosting for the detection of selective sweeps. In comparison with other
methods, boosting seems to perform very well. We then explore the sensitiv-
ity of the method against demographic effects, and consider also bottlenecks
with and without a simultaneously occurring selective sweep. An application
to real data from maize is also provided. We discuss furthermore what can
be learned from boosting about the relative importance of various summary
statistics. This may be helpful also in combination with other methods such
as ABC (Beaumont et al., 2002), where boosting might be used in a first step,
helping to choose a summary information measure to use in a further sta-
tistical analysis. In ABC, the choice of summary statistics is an important
ingredient in order to ensure a good approximation to the posterior. Re-
cently Joyce and Marjoram (2008) proposed to use approximate sufficiency
as a guideline for choosing summary statistics, but further research is needed
on this topic according to Sisson and Fan (2010).

Methods

Boosting

Boosting is a popular machine learning method that has recently attracted
a lot of attention in the statistical community. (See Bühlmann and Hothorn
(2007) for a recent review.) We will use boosting as a classification method
between competing population genetic scenarios, but boosting can also be
used for regression purposes.

A boosting classifier is an iterative method that uses two sets of training
samples simulated under two competing scenarios to obtain an optimized
combination of simple classification rules. In each step, a base procedure
leads to a simple (weak) classifier that is usually not very accurate. This
classifier is combined with those obtained in previous steps and applied to
the training samples. The training samples are then reweighed, giving more
importance to those items that have not been correctly classified. This is
done by using a loss function that measures the accuracy of the individual
predictions. When the iterations are stopped, the final decision is made
by a combination of weak classifiers in a way that might be viewed as a
voting scheme. The better a weak classifier does, the more it contributes to
the final vote. As a consequence of the aggregation step, boosting is called
an ensemble method, with the ensemble of simple rules being usually much
more powerful than the base classifiers themselves. An alternative way to
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understand boosting is as a steepest descent algorithm in function space
(Functional gradient descent, FGD(Breiman, 1998, 1999)).

Several versions of boosting can be obtained by choosing among possible
base procedures, loss functions and some further implementation details. We
use simple logistic regression with only one predictor a time as our base
procedure, since this choice leads to results for which the relative importance
of the input variables is particularly easy to interpret. However, several other
versions of boosting have been proposed (Hothorn and Bühlmann, 2002) and
could in principle also be applied to our setting.

To obtain our boosting classifier, we simulated 500 training samples under
each of two competing population genetic scenarios such as selection versus
neutrality in the simplest case. In total, our training data set thus contained
n = 500+500 samples. For the i-th training sample, we computed a predictor
vector Xi which consists of all potentially useful summary statistics. The
response variable Yi indicates under which scenario the samples have been
generated. (For instance Yi = 1 under selection and Yi = 0 under neutrality.)
Values for Yi are known for the simulated training data but unknown for real
and testing data. The whole data set can be then represented as

(X1, Y1), . . . , (Xn, Yn)

We denote our classifier by f , and use f(X) to predict Y. More specifically,
we predict that Y = 1, if f(X) > γ for some threshold γ. We may choose γ =
0.5 if type I and type II errors are to be treated symmetrically. Otherwise one
may want to calibrate γ in order to achieve a desired type I error probability.

A loss function ρ has to be chosen in order to measure the difference
between the truth Y and the prediction f(X). The objective is then to find
a function f that minimizes the empirical risk.

1

n

n∑

i=1

ρ(Yi, f(Xi))

The classifier f is obtained iteratively. Its initial value f [0] is chosen as
the mean of all the response variables in the training data set, and then
f changes stepwise towards the direction of ρ’s negative gradient, in order
to approach the f that minimizes the empirical risk. Our focus has been
on the squared error loss function ρ(Yi, f) = 1/2(Yi − f)2. An alternative
possible loss measure would be given by the negative binomial log-likelihood
ρ(Yi, p) = −Yi log(p) − (1 − Yi) log(1 − p) with p(X) = P (Y = 1|X) =
exp(f(X))/[exp(f(X)) + exp(−f(X))](Bühlmann and Hothorn, 2007).
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Algorithm 1 below summarizes how a boosting classifier is obtained. The
algorithm is available in the R package mboost (Hothorn and Bühlmann,
2002), and a simple illustrative example is presented in the supplementary
material.

Algorithm 1: An FGD procedure (Bühlmann and Hothorn, 2007).

1. Give f an offset value

f̂ [0](·) ≡ arg min
c

n∑

i=1

ρ(Yi, c).

Set m=0.

2. Increase m by 1. Compute the negative gradient vector (U1, . . . , Un)
and evaluate at f̂ [m−1](Xi), i.e.

Ui = −
∂

∂f
ρ(Yi, f)

∣∣∣
f=f̂ [m−1](Xi)

.

3. Fit the negative gradient vector (U1, . . . , Un) to X1, . . . , Xn by a real-
valued base procedure

(Xi, Ui)
n
i=1

baseprocedure
−−−−−−−−→Ui ≈ ĝ[m](Xi)

4. Update f̂ [m](·) = f̂ [m−1](·) + νĝ[m](·) where 0 < ν ≤ 1 is a step-length
factor.

5. Repeat steps 2 to 4 until m = mstop.

For the step-length ν in the fourth step of Algorithm 1, we chose the
default value ν = 0.1 of the R package mboost (Hothorn and Bühlmann,
2002). A small value of ν increases the number of required iterations but
prevents overshooting. According to Bühlmann and Hothorn (2007) however,
the results should not be very sensitive with respect to ν.

A further tuning parameter is the number of iterations of the base proce-
dure. The larger the number of iterations, the better the classifier will predict
the training data. A better performance on the training data however, does
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not necessarily carry over to the real data to which boosting should even-
tually be applied. Indeed, a classifier may eventually perform worse when
applied to real sequences, if too many iterations are carried out with the
training data. This phenomenon is known as over-fitting. According to the
literature (Bühlmann and Hothorn, 2007) however, boosting is believed to be
quite resistant to over-fitting, and therefore not very sensitive to the number
of iterations. Nevertheless, a criterion for stopping the iteration process is
useful in practice. As stopping criteria, resampling methods such as cross-
validation and bootstrap (Han and Kamber, 2005) have been proposed to
estimate the out-of-sample error for different numbers of iterations. Another
computationally less demanding alternative is to use Akaike’s information
criterion (AIC) (Akaike, 1974; Bühlmann, 2006) or the Bayesian information
criterion (BIC) (Schwarz, 1978).

In our computations, we stop the iterations when

AIC = 2k(m) − 2 ln(L(m))

attains a minimum. Here k(m) is the number of predictors used by the
classifier f [m] at step m, and L is the the (negative binomial) likelihood of
the data given f [m].

Input to the boosting classifier

We consider a sample consisting of several DNA sequences covering the same
region and partition the region into several smaller subsegments. Our predic-
tor variables are different summary statistics calculated separately for each
subsegment. Computing the summary statistics separately for each subseg-
ment permits to identify “valley” patterns that are know to be a trace of
positive selection. Considering j summary statistics on k subsegments, leads
to a total of k × j values that are combined to an input vector. Recall that
the input vector is denoted by Xi for the i-th training sample.

As our basic summary statistics, we choose Watterson’s estimator (Wat-
terson, 1975)

θ̂w =
( n−1∑

i=1

1

i

)
−1

n−1∑

i=1

Si,

Tajima’s θ̂π (Tajima, 1983)

θ̂π =

n−1∑

i=1

2Sii(n − 1)

n(n − 1)
,
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as well as θ̂h (Fay and Wu, 2000)

θ̂h =

n−1∑

i=1

2Sii
2

n(n − i)

where Si is the number of derived variants found i times in a sample of n
chromosomes.

We furthermore consider Tajima’s D (Tajima, 1989b) and Fay and Wu’s
H (Fay and Wu, 2000; Zeng et al., 2006) that both combine the information
of two of the above mentioned summary statistics. Therefore they both are
somewhat redundant. As a measure of linkage disequilibrium, we add the
integrated extended haplotype homozygosity iHH (Sabeti et al., 2002; Voight
et al., 2006).

Figure 1 summarizes how a predictor vector X of length 120 is obtained
for a 40kb DNA sequence using these k = 6 statistics on twenty subsegments,
each of length 2kb. Whereas θ̂w, θ̂π, θ̂h, Tajima’s D and Fay and Wu’s H is
calculated separately for each subsegment, iHH is computed from the center
up to a distance of 2kb, 4kb,. . . ,20kb separately on each side. As shown in
Figure 1, iHH is first computed by integrating from the starting point of the
sequence up to 20kb. The result is denoted by iHH1. Next iHH2 uses the
window from 2kb up to 20kb. The final iHH statistic for the left hand part is
iHH10 going from 18kb up to 20kb. For the right hand part of the sequence
extending from 20kb up to 40kb, ten values of iHH are obtained analogously.

Simulation

Both for training and testing, we simulated scenarios involving n = 10 se-
quences each of length l = 40kb with a recombination rate of ρ = 0.02. We
chose several different values for α and the time τ since the beneficial mu-
tation became fixed (in units of 2N generations) when simulating selection
samples and assumed that the beneficial site is located in the middle of the
sequence (Bsite = 20kb). For each set of parameters, 500 neutral samples
and 500 selection samples were simulated as training data set. The same
sample size has also been used for the test data.

We considered two different mutation schemes: (1) a fixed mutation rate
θ = 4Nµ = 0.005); (2) a fixed number of segregating sites (K = 566, which
is the expected number of segregating sites under neutrality when θ = 0.005,
see Watterson (1975)). In practical applications, the second mutation scheme
corresponds to a strategy where, under both scenarios, one generates training
samples with the number of segregating sites being equal to that observed
for the actual data.
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To simulate neutral samples and samples under selection, we used the
SelSim (Spencer and Coop, 2004) software. Bottleneck samples were simu-
lated via the ms program of Hudson (Hudson, 2002). The mbs program by
Teshima and Innan (2009) has been adapted to simulate selective sweeps that
occurred with bottlenecks. The simulation parameters and some notation are
summarized in Table 1.

Controlling the type one error

By default, boosting treats type I and type II errors symmetrically and pre-
dicts that Y = 1, if f(X) > γ = 0.5. If one desires to control the type I error
probability under a null model such as neutrality, this can be achieved by
adjusting the threshold γ. For this purpose, we first obtain a boosting classi-
fier based on training samples as usual. Then we generate 500 independent
training samples under the null model and choose γ such that 95% of these
samples are classified correctly. To investigate the efficiency of the resulting
classifier under the alternative model, we generated 500 further independent
test samples.

Results

Discriminatory power

According to Figure 3, all our summary statistics, except for iHH, show a
“valley” pattern under the selection scenario only. For iHH, the integration
causes a “valley” both for the neutral and the selection case. However, there
are still differences in level and shape under the two competing scenarios.

We first investigate samples generated under the same values for α and τ
both for training and testing. The results in Table 2 show that our method
is quite efficient in distinguishing neutrality from selection. Even when the
selective sweep is weak and old (α = 200 and τ = 0.2), we get an accuracy of
88.0% under a fixed value of θ. See Li and Stephan (2006) for a categorization
of strong and weak selection in Drosophila.

In practice this approach will be too optimistic, since the parameters of
the selection scenario are usually unknown. One more practical strategy is
to do the training over a whole range of parameter values, representing the
prior belief concerning possible parameter values. For this purpose we use
samples generated under parameters chosen from a normal prior distribution
with support restricted to the range of possible parameter values. We also
generated parameters from a uniform distribution with very similar results
(see Table 1 in the supplementary material). To facilitate interpretation,
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testing is usually done with samples generated under fixed parameter val-
ues. Not unexpectedly, training our classifier with samples generated under
randomly chosen parameter values leads to some decrease in accuracy. Ac-
cording to Table 2 however, the power is still 87.6% in the most difficult test
case (α = 200, τ = 0.2, with fixed θ).

If the alternative scenario is mis-specified, our method seems to be quite
robust at least in the situations we considered. When we trained the clas-
sifier with strong(α = 500) and recent(τ = 0.001) selection but tested on
a weak(α = 200) and old(τ = 0.2) sweep, or vice versa, the power of the
boosting classifier remains quite high(see the last two rows in Table 2).

Since θ will often be unknown in practice and may also vary for reasons
other than selection, an option is to simulate training data for the two com-
peting scenarios under a fixed number of segregating sites K that equals
the one seen in the actual test data. With this strategy, boosting is still
able to learn the ”valley” pattern. Obviously the exclusion of information
concerning differences in the overall value of θ will lead to some decrease in
power. Table 2 illustrates the amount of power lost. Among our considered
scenarios, the predictive power turned out to be above 75% in all cases.

The results are for boosting with the L2fm loss function (Bühlmann and
Hothorn, 2007). Using a different loss function does not affect the results
much. (See Supplementary Tables 2 and 3.)

We also studied the use of Akaike’s information criterion(AIC) as a stop-
ping rule for our boosting iterations. A typical example is provided in Figure
4. As the number of iterations increases, AIC decreases very rapidly at first,
and then slows down, maintaining a steady level for a long period. In the
example, the lowest AIC value is obtained at the 175th iteration. Stopping
at the 1000th or 10000th iteration, led to almost the same predictive accu-
racy(results not shown), providing empirical support for the slow over-fitting
of boosting.

Another quantity influencing the predictive accuracy is the sequence length.
In Table 3, we investigate the decrease in power when the available sequences
have a length shorter than 40kb, the length considered so far. The results
suggest that the decrease in power is not dramatic even when going down
until sequences of length 1kb.

Boosting based genome scans

It turns out that the boosting classifier is quite specific with respect to the
position of the selected site. When training the classifier with the selected
site at 20kb, the power decreases quickly, if the position of the selected site is
moved away from this position in the testing samples (Table 4). This can be
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exploited in the context of genome scans for selection. Indeed, if sufficiently
large sequence chunks are available, it is possible to slide a window consisting
of our 20 subsegments along the sequence. A natural estimate of the position
of the selected location is then the center of the window with the strongest
evidence for selection.

In order to learn which summary statistics are most specific with re-
spect to the selected position, we investigate them separately by applying
the boosting classifier based on just one of the summary statistics a time.
It turns out that the effect of smaller deviations from the hypothetical se-
lected site is particularly strong for θ̂h, Tajima’s D and iHH. (Table 5). One
might therefore want to increase the specificity to position by using only θ̂h,
Tajima’s D, and iHH. See Figure 5 for an example of a genome scan based
on these three summary statistics.

If a longer chromosome region is not available, or if a high specificity
with respect to location is not desired, the specificity of the method can be
reduced by cutting the sequences into fewer subsegments of larger size (Table
6), which intuitively smoothes the ”valley” pattern.

Since the range of influence of a selective sweep depends on the strength
of selection (α), the sensitivity of the classifier with respect to spatial position
depends also on α. The smaller α is, the narrower the affected nearby region,
and the higher the sensitivity with respect to the assumed position of the
sweep.

Sensitivity towards bottlenecks

Demography leaves traces in genomic data similar to those caused by selective
events (Tajima, 1989b,a), making it difficult to distinguish between these
competing scenarios (Hamblin et al., 2006; Thornton and Andolfatto, 2006;
Schlötterer, 2002; Schmid et al., 2005). To investigate, how often selective
sweeps and bottlenecks are confounded, we applied the boosting classifier,
previously trained on neutral and selective sweep samples, and tested it on
bottleneck samples. When simulating bottleneck samples, we fixed D = 0.01,
and tried different values of t0 and t1.

When training under neutrality and selection with fixed identical values
for θ, bottlenecks and sweeps cannot be distinguished reliably (see the col-
umn “1st step (Fθ)” in Table 7). The reason is that a reduced number
of segregating sites is observed both under bottlenecks and sweeps but not
under neutrality. One way to avoid this is to train the boosting classifier
conditional on the observed number of segregating sites. With this strategy,
the number of mis-classifications (i.e. classifying a bottleneck as a sweep)
goes down considerably (see the column “1st step (FK)” in Table 7).
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In order to make our method even more specific, we propose a 2-step
method, which is in the spirit of Thornton and Jensen (2007). For this
purpose, we use two classifiers, denoted by C1 and C2. C1 is trained under
neutrality versus selection, whereas C2 under bottleneck versus selection. For
a test sample, we first apply C1. If selection is predicted, then we use C2,
to classify between selection and bottleneck. The results (see in particular
the column “2nd step (FK)” in Table 7) indicate that this approach is quite
efficient in the sense that mis-classifications of bottleneck samples were very
rare. On the other hand, the price for this is a somewhat decreased power of
sweep detection when K is chosen equal in training and testing.

If a bottleneck sample and a selection sample are similar such that they
produce similar overall values of a certain summary statistic, our method still
works. In fact, the fixation of K implies that θ̂w is identical both for selection
and bottleneck samples when computed over the whole sequence. Ignoring
subsegments, we also generated selection and bottleneck samples with an
identical average value of the overall θ̂π. This was done by first generating
sel(500, 0.001) samples and then choosing the bottleneck parameter D in
order to get the same value of θ̂π under both scenarios. It turned out that
even in this situation the false positive still remained low (see the line bot#
in Table 7).

Comparison with other methods

By now there are several methods available to identify genomic regions af-
fected by selection. Our main focus has been on comparing boosting with
other approaches that also combine different pieces of information. More
specifically, we considered both summary statistic based approaches, as well
as the support vector machine approach of Pavlidis et al. (2010) that com-
bines site frequency information (SweepFinder, Nielsen et al. (2005)) with
linkage disequilibrium information (ω-statistic, Kim and Nielsen (2004)).
Further approaches, we did not consider here, include the composite-likelihood
method of Kim and Stephan (2002) and selection scans based on Hidden
Markov Models (Boitard et al., 2009).

As tests that use summary statistics, we considered Tajima’s D (Tajima,
1989b), Fay and Wu’s H (Fay and Wu, 2000), as well as their combined form,
the DH test (Zeng et al., 2006). We calibrated all methods to give a type one
error probability of 5%, and then applied them to the same test data sets. In
Table 8, we provide a comparison of the predictive accuracy between boosting
and the above mentioned methods that use summary statistics. We consider
different selection scenarios, as well as bottleneck scenarios with randomly
chosen parameters. Boosting did always distinguish better between neutral-
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ity and selection than the other three methods. While 1-step boosting often
interpreted bottlenecked samples as evidence for selection, even when the
DH test did not, the 2-step boosting algorithm has a much better specificity
than the DH-test.

Since the above mentioned test statistics were computed only once across
the whole 40kb region, one might wonder whether the selective signal was
weakened due to an averaging effect. We therefore recomputed the test statis-
tics using only the center section of the region. This improved the perfor-
mance of the test statistics, but boosting still performed better (Table 8).
While the DH test that uses only the central window did better than the
version using the whole sequence information, 2-step boosting still provided
the highest specificity towards bottlenecks. While 2-step boosting can easily
distinguish almost all the bottleneck events from selection, it can still recog-
nize at least 87.6% true selection events when θ is fixed and 75.8% when K
is fixed (Table 8).

Additionally, we compared our method with another recently published
method developed by Pavlidis et al. (2010). The method uses support vector
machines, another machine learning method, to combine a site frequency
based statistic obtained from SweepFinder with the ω-statistic that measures
linkage disequilibrium.

We first investigated the behavior when distinguishing neutrality from
selection, and also bottlenecks from selection. For our simulations, we used
the same program ssw(Kim and Stephan, 2002) as Pavlidis et al. (2010),
and chose identical parameters (n = 12, l = 50kb, Bsite = 25kb, ρ = 0.05).
The bottleneck samples were simulated with ms(Hudson, 2002). For further
parameters please refer to Table 9. To permit for a fair comparison, we
followed Pavlidis et al. (2010) and used the same parameters for both training
and testing. The results (Table 9) show that our method performs better
under all considered scenarios.

Our next comparison with Pavlidis et al. (2010) involves a class of sce-
narios where a selective sweep happened within a bottleneck. We again
simulated under identical parameters (n = 12, l = 50kb, Bsite = 25kb,
ρ = 0.01) and used the same software mbs(Teshima and Innan, 2009) to gen-
erate data. The results as well as further implementation details are shown
in Table 10. Our method always provided better results both in terms of
false positives(FP ) and accuracy(Table 10).

To avoid a too optimistic picture of the performance in practice, we also
present cross-testing results where training and testing parameters differ.
The FP rates have been adjusted to 0.05 (Table 11). When testing for old
sweeps (older than the bottleneck) (b s4 and b s8) while training with other
scenarios, or vise versa, the power tends to be low. Classification tends to
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be particularly difficult in cases where the selective sweep happened much
earlier than the bottleneck (see b s4 and b s8), and an explanation might be
that the signal of the sweep gets diluted by the bottleneck event.

In many situations however, the power remains at an acceptable level,
indicating to some extent the robustness of our method.

We also checked the robustness of the false positive rate with respect to
the null scenario. For this purpose we again adjusted the boosting classifier
in order to get a false positive rate of 5% under the null training scenario.
When training is done under short and deep bottlenecks (bot1), long and
shallow bottlenecks (bot2) without a simultaneous selective sweep are rarely
misclassified and the false positive rate remains small except for bot1+b s4
where the sweep happened much earlier than the bottleneck (Table 11). The
results in the opposite direction are less robust: Under training with long
and shallow bottlenecks (bot2), short and deep bottlenecks (bot1) lead more
frequently to false signals of selection: Depending on the specific alternative
scenario used for training, we get false positive rates between 3% and 17%
(Table 11).

As a further check for robustness, we trained under bottleneck versus
selection but tested on selection within a bottleneck without adjusting the
false positive rate. Compared to the results shown in Table 10, the power
decreases in b s4 and b s8, but remains higher than the one obtained by
Pavlidis et al. (2010) in most cases. Detailed results can be found in Table 4
of the supplementary material.

Application to real data

We applied boosting to a small region of the maize genome. We follow an
analysis by Tian et al. (2009), where they investigate 22 loci spanning about
4Mb on chromosome 10 and identify a selective sweep that affected this
region. We implemented the 2-step method and used the real sequence data
as our testing data. For training, we simulated samples under the parameters
estimated in Tian et al. (2009). We used in particular the estimated mutation
rate θ = 0.0064, and the estimated recombination rate ρ = 0.0414.

We chose to investigate 12 of their 22 loci located at 85.65Mb on chromo-
some 10, each of length 1 kb. Since the number of individuals varied slightly
from 25 to 28 between the loci (Tian et al., 2009), we simply set n = 25.
Training data under selection were generated with parameters chosen ran-
domly according to sel(N(500, 2002),N(0.2, 0.12)).

According to previous studies, maize experienced a bottleneck event and
the bottleneck parameter k (population size during bottleneck/duration of
bottleneck in units of generations) was 2.45 (Tian et al., 2009; Wright et al.,
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2005). We set t0 = 0.02 and t1 = 0.02 (in units of 2N generations, where
N is the effective population size). We then chose D = 0.098 such that
D ∗ N/(t1 ∗ 2N) = 2.45.

In Tian’s paper, θ̂π, θ̂w and Tajima’s D were computed for each locus
(values at certain loci were unavailable). We used these 3 statistics and
ignored missing values. Then we applied the 2-step method using the L2fm
loss. The threshold between neutrality (Y = 0) and selection (Y = 1) was
0.462, and the first step result was f=1.382; since f is much larger than 0.462
this provides strong evidence for selection. The threshold between bottleneck
(Y = 0) and selection (Y = 1) was 0.407, and the second step result was
4.700 indicating that the signal at the considered locus cannot be explained
by a bottleneck only. The result supports the findings in Tian et al. (2009),
where a selective sweep has also been identified. There α has been estimated
to be 22187.8 which is much larger than the value we used in our training
data generated from (N(500, 2002)).

Learning about the relative importance of summary statis-

tics

One advantage of the version of boosting we used is that the approach leads
to coefficients for each of the considered summary statistics. The coefficients
can be used to measure the relative importance of each summary statistic.
It is important to standardize the coefficients, since otherwise the estimated
coefficients will depend on the scale of variation of the respective summary
statistics. For the jth component of the predictor variable, X(j), the coef-

ficient is β̂(j), and the standardized coefficient is β̂(j)

√
V̂ ar(X(j)). The im-

portance of a statistic is indicated by the absolute value of its standardized
coefficient. The closer a coefficient is to zero, the smaller the contribution of
the statistic to the classifier. To make the results fairly independent of the
randomness of an individual data set, we report the average coefficients over
10 trials, with each trial involving boosting with 500 neutral (or bottleneck)
samples and 500 selection samples.

When considering the statistics at all positions simultaneously, the rela-
tive importance will depend on two components: the relative importance of
different positions and the relative importance of different statistics. To get a
clearer picture, we consider the different subsegments separately and use the
boosting classifier on the information of only one subsegment at a time. The
results can be found in Figure 6. Because iHH uses not only local informa-
tion (see Figure 1), the information content for a given subsegment is higher
than for other summary statistics, especially at the border subsegments.
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Figure 6 provides the standardized coefficients for several scenarios. Here,
we note some observations concerning the patterns shown in the figure:

1. For classifying between neutrality and selection, θ̂π plays an important
role, consistently over all scenarios. On the other hand, θ̂w plays a
role only when selection happened recently, but not for old sweeps. A
reason might be that the occurrence of new mutations after selection
makes the relative amount of low-frequency mutation increase. But
as age increases, some low-frequency mutations drift to intermediate-
frequency mutations, thus the proportion of low-frequency mutations
decreases. Since θ̂w should be more affected by such low-frequency
mutations than θ̂π (Fay and Wu, 2000), θ̂w becomes less important
when selection gets older.

2. When discriminating against a neutral scenario, the iHH statistic seems
particularly important for recent selective sweeps. If the fixation of the
beneficial allele happened a longer time ago, the iHH statistic is much
less important. A possible explanation is that the LD is then broken
up by recombination, or by the recurrent neutral mutations that occur
after the fixation of the beneficial mutation.

3. When discriminating between bottlenecks and selection, θ̂w seems most
important, and its importance increases towards the border of the
observation region. This indicates a larger difference in the number
of low-frequency mutations between bottlenecks and selection further
away from the beneficial mutation. Linkage disequilibrium tends to
contribute less in such a setup.

4. We also investigated the situation for samples where the number of
mutations K is fixed(Figure 7). Compared with the previous samples
where θ was fixed (Figure 6), there is not much difference when distin-
guishing between neutrality and selection. When classifying between
bottleneck and selection however, we observe differences. Since the
overall number of segregating sites is now the same for the two scenar-
ios, the classifier uses the spatial pattern of variation, leading to the
spatial pattern of the coefficients shown in Figure 7.

Discussion and Conclusion

Boosting is a fairly recent statistical methodology for binary classification. It
permits to efficiently combine different pieces of evidence in order to optimize
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the performance of the resulting classifier. In population genetics, a natural
choice for such pieces of evidence are individual summary statistics. By
choosing an appropriate boosting method, one can actually learn about the
relative importance of different summary statistics by looking at the resulting
optimized classifier. For summary statistics that are otherwise difficult to
combine (such as site frequency spectrum and LD measures), this seems to
be particularly interesting.

It is well known that single population genetic summary statistics are
usually not sufficient. For methods such as ABC that rely on inference from
summary statistics, an important issue is the choice and/or combination
of summary statistics in order to obtain precise estimates. A promising
approach seems to be to use boosting as a first step: The situation remains
challenging though, since different summary statistics could in principle be
important in different parameter ranges.

Although boosting could be applied for any set of competing population
genetic scenarios, we focused on the detection of selective sweeps both within
a bottleneck and a neutral background. Such scenarios have been fairly well
studied and several methods have already been proposed. It is therefore pos-
sible to judge the performance of boosting, given what is known about the
performance of other methods. Our simulation results indicate that boosting
performs better than other summary statistic based methods. This indicates
that boosting is able to come up with efficient combinations of summary
statistics. We also applied boosting to the scenarios in Pavlidis et al. (2010)
where the authors used support vector machines (SVM’s) to combine the
composite likelihood ratio statistic obtained from a modified version of the
Sweepfinder software (Nielsen et al., 2005) with a measure of linkage disequi-
librium. Both for sweeps within and without bottlenecks, boosting usually
provided a higher power of detection while the false positive rate was equal
or lower.

Using a sliding window approach, boosting may also provide a way to
carry out genome scans for selection.

So far, our focus has been on an ideal situation where both the mutation
rate and recombination rate were constant; we only considered completed
selective sweeps and no alternative types of selection; the population size has
been taken either constant or has been affected by a bottleneck. However, in
reality, a much more complex population history may have left its traces in
our summary statistics, influencing the accuracy of our method. Based on
knowledge from the current literature, we discuss how to carry out boosting
based scans for selection in the presence of such additional factors. Further
simulations will be needed to confirm our suggestions.
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• Mutation heterogeneity
We considered regions of length 40kb. If the mutation rates are hetero-
geneous within such a segment, this can lead to reduced values of θπ, K,
and a positive Tajima’s D, depending on how severe the heterogeneity
is (Aris-Brosou and Excoffier, 1996). If the extent of heterogeneity is
large, this may lead to false detections of selection, since a reduced θπ

and a reduced K is also encountered under positive selection. If one
suspects mutation rate heterogeneity as a possible alternative expla-
nation for a positive classification result, one may try to resolve the
issue by training the boosting classifier with mutation rates that vary
from site to site according to a gamma distribution (Aris-Brosou and
Excoffier, 1996; Uzzell and Corbin, 1971) in order to mimic mutation
heterogeneity.

On a genomic scale, the mutation rate may also vary. Scanning the
whole genome with a classifier that has been trained under one single
mutation rate may then give misleading results. Think for instance
of a classifier that has been trained under a high mutation rate but
is subsequently applied to DNA segments where the mutation rate has
been much lower. A low level of polymorphism may then be viewed as a
signal of selection. One possible solution is to divide the whole genome
into segments, and to scan each segment independently with a classifier
that is trained under an appropriate mutation rate. Another approach
that we investigated in this manuscript is to carry out training under
the same number K of mutation events that is observed at the currently
scanned genome segment.

• Recombination heterogeneity
In the human genome for instance, there is a recombination hotspot
of length 1kb approximately every 100kb of sequence (Calabrese, 2007;
Kauppi et al., 2004). If the investigated region contains recombina-
tion hotspots, this will reduce the LD, and may consequently reduce
the power of sweep detection. Nevertheless, since the other summary
statistics that use polymorphism and site frequency spectrum informa-
tion are not affected, the decrease in power may be limited. An obvious
option would again be to take potential recombination hotspots into ac-
count when training the boosting classifier.

• Ongoing selection (Incomplete sweeps)
In our simulations, the beneficial mutation has been fixed when the
samples were taken. If selection is ongoing, the mutation frequency
spectrum will be noticably different from the one under neutrality when
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the frequency of the beneficial allele reaches 0.6(Zeng et al., 2006). Thus
there should be a chance to detect selection when the frequency of the
beneficial allele is higher than 0.6.

• Recurrent selection
According to (Pavlidis et al., 2010) recurrent selective sweeps will lead
to a loss of the characteristic local pattern of selection events. On aver-
age, the sweep events will also often be quite old (Pavlidis et al., 2010;
Jensen et al., 2007). Both effects suggest that the power of detecting
recurrent sweeps in a region will be somewhat lower than with a single
selective event.

• Background selection
Like positive selection, background selection will also reduce the poly-
morphism level but it will not generate high frequency mutations(Zeng
et al., 2006; Fu, 1997). If we train under neutrality versus selection
and the excess of low frequency mutations is recognized by the classi-
fier, it is possible that background selection will be wrongly identified
as positive selection. To avoid this, a 2-step method should be helpful.
If a sample is classified as under selection, one may want to train the
classifier using both positive selection and background selection sam-
ples in a second step. When using summary statistics that measure
the abundance of high frequency mutations, we expect that the result-
ing classifier is able to distinguish between background and positive
selection.

• Balancing selection
If the equilibrium frequency of the selected allele is not very high, it is
difficult to discover balancing selection. If on the other hand the equi-
librium frequency is fairly high (e.g. 75%)(Zeng et al., 2006), the sig-
nature of balancing selection resembles that of positive selection. After
the selected allele reaches its equilibrium frequency, some hitchhiking
neutral alleles will also have high frequencies and will stay segregating
for a longer period than under a selective sweep. This is since their fre-
quency will be lower when reaching equilibrium, requiring more time
for fixing them by drift.(Zeng et al., 2006). Thus our method should
also detect balancing selection at high equilibrium frequency, and its
age will affect the efficiency less than under positive selection.

• Population growth
Population growth will cause an excess of low-frequency variants, but
will not affect high frequency mutations(Zeng et al., 2006; Fu, 1997).
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So like bottlenecks and background selection, a 2-step method may be
helpful to rule out population growth as an alternative explanation.

• Population shrinkage
Population shrinkage will cause the number of low frequency variants to
be smaller than those of intermediate and high frequency (Zeng et al.,
2006; Fu, 1996). Since this is quite different from the signature caused
by a selective sweep, we do not expect large problems for shrinking
populations.

• Population structure
When a population is structured, there may be an excess of low or
hight frequency derived alleles especially if the sampling scheme is un-
balanced among the sub-populations (Zeng et al., 2006). In addition,
population structure may increase LD(Slatkin, 2008). This might obvi-
ously affect the results obtained from our boosting classifier and further
research is needed to use boosting classifiers in the context of structured
populations. Adding Fst as a summary statistic may obviously help in
this context.
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Table 1: Parameters and terminology

General parameters

n the number of sequences in the sample
l the length of the investigated region
θ θ = 4Nµ, the population mutation rate per nucleotide, where

N is the effective population size for a diploid population
µ is the mutation rate per nucleotide per generation

K number of segregating sites in a sample
ρ ρ = 4Nr, the population recombination rate per nucleotide

r is the recombination rate per nucleotide per generation

Selection parameters

α α = 2Ns, the selective strength
s is the selective advantage of the beneficial allele over the ancient allele

τ time since the beneficial mutation became fixed, in units of 2N generations
Bsite distance between beneficial site and left end of sequenced region

Bottleneck parameters (see Figure 2)

t0 time since end of bottleneck, in units of 2N generations
t1 duration of bottleneck, in units of 2N generations
D D = N1/N0, depth of bottleneck
N0 effective population size before and after bottleneck
N1 effective population size during bottleneck

Notation

neu 500 simulated neutral samples
sel(α, τ) 500 simulated selection samples with given α and τ
bot(t0, t1) 500 simulated bottleneck samples with given t0 and t1
N(a, b2) Gaussian distribution, where a = mean and b2 = variance
Fθ or FK simulation with fixed value for θ or K .
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Table 2: Performance of boosting under different training strategies

Training data Testing data Acc(Fθ) Acc(FK)

neu+sel(500,0.001) sel(500,0.001) 100.0% 100.0%

neu+sel(500,0.2) sel(500,0.2) 99.4% 96.4%

neu+sel(200,0.001) sel(200,0.001) 98.6% 97.8%

neu+sel(200,0.2) sel(200,0.2) 88.0% 82.2%

neu+sel(N(500,2002),N(0.2,0.12)) sel(500,0.001) 99.8% 98.4%
sel(500,0.2) 98.4% 96.6%

sel(200,0.001) 93.8% 86.2%
sel(200,0.2) 87.6% 75.8%

neu+sel(500,0.001) sel(200,0.8) 86.6% 77.2%

neu+sel(200,0.8) sel(500,0.001) 100.0% 99.6%

The type one error probability (prob. of incorrect classification of neutral samples)

was adjusted to 5% according to 500 independent neutral samples. The predictive

accuracy (Acc) is in terms of the percentage of correct classification. We consider two

mutation schemes: Fθ and FK. The training and testing samples were independently

generated under identical parameters. See Table 1 for the notation.

Table 3: Detection power in dependence of the sequence length

Testing samples l=20kb l=8kb l=4kb l=2kb l=1kb

sel(500, 0.001) 99.8% 98.8% 99.2% 95.2% 93.4%
sel(500, 0.2) 99.0% 97.8% 96.8% 96.2% 89.0%

sel(200, 0.001) 95.4% 94.8% 89.8% 86.0% 87.8%
sel(200, 0.2) 88.4% 84.0% 78.8% 80.8% 79.6%

We consider samples of sequences of length l and fixed θ to the same value in

training and testing. Training was done with neu+sel(N(500, 2002),N(0.2, 0.12)).

The type one error probability (prob. of incorrect classification of neutral samples)

was adjusted to 5%. When l = 20kb, 8kb or 4kb, the length of the subsegments has

been chosen 2kb; when l = 2kb or 1kb, each subsegment was 0.5kb. The summary

statistics were computed independently for each subsegment. The predictive power

remains quite high even for short regions.
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Table 4: Accuracy depending on the position of the selected site.

Bsite(kb) Acc(Fθ)

20 100.0%
15 80.6%
10 44.2%

Training was done with neu + sel(500, 0.001), Bsite=20kb, and the type one

error probability has been adjusted to 5%. Testing was done on sel(500, 0.001)

with different positions Bsite of the beneficial mutation. It can be seen that

the sweep detection power decreases quickly with increasing distance of the

positions of the selected site between training and testing samples. Acc:

percentage of cases a sweep is detected. See Table 1 for details of the notation.

Table 5: Accuracy depending on the position of the selected site
for different summary statistics

Acc(Fθ)

Bsite(kb) θ̂w θ̂π θ̂h Ta FW iHH

20 100.0% 100.0% 67.6% 82.6% 90.6% 98.0%
15 84.8% 80.8% 10.0% 45.2% 89.6% 42.8%
10 51.6% 44.6% 6.4% 15.4% 75.0% 17.6%

We show the power of detecting a selective sweep depending on the po-

sition Bsite of the selected site. To investigate the sensitivity of the in-

dividual statistics with respect to position, we used only one of the men-

tioned statistics a time both in training and testing. We trained with

neu + sel(500, 0.001), Fθ, Bsite=20kb) and adjusted the type one error

probability to 5%. θ̂h, Tajima’s D, and iHH are particularly sensitive to

the selected position. (Column headings: Ta. . . Tajima’s D. FW. . . Fay and

Wu’s H)
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Table 6: Accuracy with respect to the number of subsegments

Bsite(kb) 20 Sgmts 10 Sgmts 8 Sgmts 4 Sgmts 2 Sgmts 1 Sgmt

10 51.6% 65.8% 71.0% 86.4% 97.2% 97.2%
11 52.8% 72.0% 76.8% 91.6% 97.2% 96.0%
12 63.8% 81.6% 86.4% 96.6% 97.6% 96.8%
13 69.8% 85.2% 87.6% 97.6% 97.0% 96.0%
14 73.2% 87.4% 92.2% 98.4% 96.8% 96.4%
15 86.4% 96.0% 98.8% 99.6% 98.6% 98.4%
16 89.4% 98.2% 99.6% 99.2% 98.4% 97.6%
17 95.4% 98.8% 99.4% 99.0% 98.4% 98.0%
18 98.8% 100.0% 100.0% 100.0% 98.8% 98.6%
19 99.8% 100.0% 100.0% 99.8% 96.8% 96.8%
20 100.0% 100.0% 99.6% 99.0% 97.8% 98.0%

The table displays the percentage of correctly identified sweeps when the sequence is

sliced into different numbers of subsegments. We trained with neu + sel(500, 0.001), Fθ,

Bsite=20kb. The type I error probability has been adjusted to 5%. Testing was performed

on sel(500, 0.001) with different positions Bsite of the beneficial mutation. Each sequence

has been cut into subsegment(s) (“x Sgmt(s)”) of equal size. We do not use iHH here. As

iHH is very sensitive with respect to the sweep position Bsite, the decrease in power is now

smaller than in Table 4 when the actual value of Bsite does not match the one simulated in

the training samples. The percentage of times a sweep is called increases in most cases when

the number of subsegments decreases.
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Table 7: Rate of predicting selection with bottlenecks as an alternative
scenario

Testing data 1st step(Fθ) 2nd step(Fθ) 1st step(FK) 2nd step(FK)

sel(500,0.001) 99.8% 99.8% 98.4% 76.0%
sel(500,0.2) 98.4% 98.4% 96.6% 72.0%

sel(200,0.001) 93.8% 93.8% 86.2% 62.2%
sel(200,0.2) 87.6% 87.6% 75.8% 48.6%

bot(0.002,0.002) 46.0% 43.2% 7.8% 1.6%
bot(0.002,0.02) 99.8% 0.0% 56.0% 2.2%
bot(0.002,0.2) 100.0% 0.0% 30.2% 0.4%
bot(0.02,0.002) 44.4% 43.2% 7.8% 2.8%
bot(0.02,0.02) 99.8% 0.6% 61.6% 1.8%
bot(0.02,0.2) 100.0% 0.0% 64.6% 0.0%
bot(0.2,0.002) 32.6% 32.6% 8.0% 1.4%
bot(0.2,0.02) 98.6% 91.0% 49.4% 0.0%
bot(0.2,0.2) 100.0% 97.2% 27.4% 0.0%

bot# 48.6% 41.2% 4.0% 1.4%

We investigate, how often selection is predicted by the two step boosting classifier dis-

cussed in the subsection on sensitivity against bottlenecks. For selection scenarios, these

cases contribute true positives; for bottleneck scenarios, they are false positives. 1st step:

the percentage of testing samples being classified as selection by C1(classifier 1); 2nd step:

the percentage of testing samples being classified as selection by both C1 and C2(classifier

2). C1 was trained with neu+sel(N(500, 2002),N(0.2, 0.12)) and the type one error prob-

ability was adjusted according to 500 independent neutral samples. C2 was trained under

bot(N(0.02, 0.012),N(0.02, 0.012)) + sel(N(500, 2002),N(0.2, 0.12)) and the type one error

probability was adjusted according to 500 independent bot(N(0.02, 0.012),N(0.02, 0.012)).

“bot#” indicates that the bottleneck samples have the same average θ̂π value (computed

once across the whole region) as sel(500, 0.001). For Fθ, “bot#” was bot(0.002, 0.002),

and D = 0.0085; for FK, “bot#” was bot(0.002, 0.002), and D = 0.07. See Table 1 for

further notation.
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Table 8: Comparison of boosting with other summary statistic based methods

Fθ

Testing data 1-step 2-step Ta FW DH Ta c FW c DH c

sel(500, 0.001) 99.8% 99.8% 26.6% 79.0% 41.6% 73.8% 71.8% 67.8%
sel(500, 0.2) 98.4% 98.4% 26.8% 23.2% 28.0% 66.4% 12.2% 20.4%

sel(200, 0.001) 93.8% 93.8% 11.0% 25.8% 21.4% 51.0% 52.0% 50.0%
sel(200, 0.2) 87.6% 87.6% 11.6% 8.4% 12.0% 42.6% 11.2% 17.0%
bot random 97.0% 3.8% 51.2% 62.8% 26.2% 52.4% 23.2% 12.6%

FK

Testing data 1-step 2-step Ta FW DH Ta c FW c DH c

sel(500, 0.001) 98.4% 76.0% 26.2% 79.8% 41.6% 72.6% 72.0% 69.8%
sel(500, 0.2) 96.6% 72.0% 29.8% 26.4% 37.0% 69.4% 9.4% 19.0%

sel(200, 0.001) 86.2% 62.2% 9.8% 27.2% 19.8% 51.4% 54.0% 48.8%
sel(200, 0.2) 75.8% 48.6% 13.2% 8.2% 13.2% 42.6% 7.8% 15.2%
bot random 55.8% 3% 52.8% 62.4% 26.4% 62.4% 24.0% 12.0%

The table displays the percentage of times selection was predicted for testing samples that

were simulated under different selective and bottleneck scenarios. We compared the following

approaches that use summary statistics: Ta: Tajima’s D. FW: Fay and Wu’s H. DH: DH test.

First, these statistics were computed only once across the whole 40kb region which may lead

to a weakened selective signal according to an averaging effect. Since the signal in the center

of the region will usually be the strongest, we then tried to use only the 4kb center section of

the region to compute the statistics. The results can be found under Ta c, FW c, and DH c.

“1-step” and “2-step” indicate 1-step boosting and 2-step boosting respectively, these results

are the same as in Table 7. bot random=bot(N(0.02, 0.012),N(0.02, 0.012)). The type one error

probability of boosting (both for 1-step and 2-step) was adjusted to 5%, and we chose cut-off

points for the other tests also according to the 5% quantile estimated from 50,000 simulated

neutral samples. The samples were generated under both fixed θ (Fθ) and fixed K (FK).

We can see that boosting always did much better for distinguishing neutrality from selection,

although the difference between the methods reduced slightly when Tajima’s D, Fay and Wu’s

H, and the DH test were only calculated from the center section of the region. Under the

more difficult situations the advantage of boosting is particularly visible. Notice that 1-step

boosting predicted most of the bottleneck samples as selection whereas the DH test did not.

The application of 2-step boosting however, solved this problem.
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Table 9: Comparison of boosting with the method proposed by Pavlidis et al.
(2010) under neutrality and bottlenecks versus selective sweeps.

Training data Testing data FP Acc Pavlidis’ FP Pavlidis’ Acc

neu1 + sel1 sel1 0% 98% 3% 90%
neu2 + sel2 sel2 0% 100% 0% 98%
bot1 + sel1 sel1 1% 100% 26% 75%
bot2 + sel2 sel2 0% 99% 18% 84%

sel1: sel(500, 0.0001); sel2: sel(2500,0.0001). To make the setup equal to that in Pavlidis

et al. (2010), we generated 2,000 training samples for each parameter set. (The results were

almost identical when we followed our standard training procedure and used only 500 training

samples.) Both sel1 and sel2 were generated under θ = 0.005. For each sample taken according

to sel1, we computed Watterson’s estimate θ̂w (Watterson, 1975), and generated a neutral

sample with θ = θ̂w. The training data neu1 consisted of 2,000 neutral samples obtained in

this way. We obtained neu2 analogously by matching θ to sel2. bot1 and bot2 were bottleneck

samples with the parameters as in Li and Stephan’s paper(Li and Stephan, 2006). This is a

4-epoch bottleneck model: backward in time, a bottleneck happens from 0.0734 time units to

0.075 time units (in 2N0 generations, where N0 is the current effective population size), and the

population size reduces to 0.002N0, then instantly the population size changes to 7.5N0, and

finally it becomes 1.5N0 at 0.279 time units. For each realization of sel1, θ was again estimated,

and a corresponding bottleneck sample was obtained using θ = θ̂. See Pavlidis et al. (2010)

and Zivkovic and Wiehe (2008) for details. Again bot1 consists of samples obtained in this

way and bot2 has been obtained analogously. FP : false positive rate; Acc: accuracy (power of

detecting a selective event). The FP s of the four rows were computed according to neu1, neu2,

bot1 and bot2 respectively. The samples of the same parameter set for training, testing and

FP -computing were independently generated. The two columns “Pavlids’ FP” and “Pavlids’

Acc” show the accuracy of the support vector machine based method of Pavlidis et al. (2010).

Rows 1 and row 2 of these columns have been taken from Table 1 in Pavlidis’ et al.,whereas

rows 3 and row 4 are from Table 2.
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Table 10: Comparison of boosting with the method proposed by Pavlidis et al.
(2010): detecting a sweep within a bottleneck

Training data Testing data FP Acc Acc* Pavlidis’ FP Pavlidis’ Acc

bot1 + b s1 b s1 8% 98% 96% 51% 71%
bot1 + b s2 b s2 11% 95% 85% 20% 73%
bot1 + b s3 b s3 0% 98% 99% 8% 97%
bot1 + b s4 b s4 19% 84% 60% 56% 63%
bot2 + b s5 b s5 6% 97% 95% 27% 50%
bot2 + b s6 b s6 8% 97% 94% 22% 60%
bot2 + b s7 b s7 2% 99% 100% 35% 67%
bot2 + b s8 b s8 15% 88% 69% 25% 46%

As in Pavlidis et al. (2010), we used a broad uniform prior for θ and accepted only those real-

izations with K = 50 both for training and testing. We considered the following scenarios: bot1:

bot(0.02, 0.0015), D = 0.002; bot2: bot(0.02, 0.0375), D = 0.05; b s1 ... b s8: selective sweep

within a bottleneck with Bsite = 25, 000bp; b s1: t0 = 0.02, t1 = 0.0015, D = 0.002, s = 0.002,

t mut = 0.02. Here s is the selective coefficient, and t mut is the time when the beneficial allele

occurred in the population. Note that all the time indicators in Pavlidis’ paper are in the units

of 4N generations, but 2N generations in this paper. b s2: t0 = 0.02, t1 = 0.0015, D = 0.002,

s = 0.002, t mut = 0.0214; b s3: t0 = 0.02, t1 = 0.0015, D = 0.002, s = 0.8, t mut = 0.0214;

b s4: t0 = 0.02, t1 = 0.0015, D = 0.002, s = 0.002, t mut = 0.23; b s5: t0 = 0.02, t1 = 0.0375,

D = 0.05, s = 0.002, t mut = 0.02; b s6: t0 = 0.02, t1 = 0.0375, D = 0.05, s = 0.002,

t mut = 0.0214; b s7: t0 = 0.02, t1 = 0.0375, D = 0.05, s = 0.1, t mut = 0.0214; b s8: t0 = 0.02,

t1 = 0.0375, D = 0.05, s = 0.002, t mut = 0.23. The other parameters n = 12, l = 50, 000bp and

ρ = 0.01 are also chosen to match those in Pavlidis et al. (2010). For each parameter set, 2,000

replications were simulated. FP : false positive rate; Acc: accuracy (power of detecting a selective

event). The false positive rate FP in rows 1-4 are under the bottleneck scenario bot1, whereas

bot2 is used in rows 5-8. The results in Acc∗ provide the power when the false positive rate FP is

adjusted to 0.05. The two columns “Pavlids’ FP” and “Pavlids’ Acc” show the accuracy of the

support vector machine based method of Pavlidis et al. (2010). Rows 1-4 of these columns have

been taken from Table 3 in Pavlidis’ et al. whereas rows 5-8 are from Table 4.
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Table 11: Cross-testing: the power of detecting a sweep within a bottleneck if training and
testing parameters do not coincide

Testing data
Training data b s1 b s2 b s3 b s4 b s5 b s6 b s7 b s8 bot1 bot2

bot1 + b s1 96% 85% 99% 15% 77% 74% 98% 16% 5% 2%
bot1 + b s2 94% 85% 99% 13% 81% 77% 97% 10% 5% 2%
bot1 + b s3 84% 70% 99% 49% 62% 60% 98% 68% 5% 6%
bot1 + b s4 73% 59% 99% 60% 53% 53% 96% 81% 5% 10%
bot2 + b s5 99% 95% 99% 23% 95% 94% 99% 14% 17% 5%
bot2 + b s6 99% 95% 99% 22% 95% 94% 99% 14% 16% 5%
bot2 + b s7 99% 94% 100% 33% 93% 91% 100% 41% 14% 5%
bot2 + b s8 71% 54% 99% 46% 45% 45% 95% 69% 3% 5%

Please refer to Table 10 for the definition of the scenarios bot1, bot2, and b s1,. . . ,b s8. The FP rates have

been adjusted to 0.05 under the training null scenario. The percentages should therefore be compared with

the column Acc∗ in Table 10.
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Figure 1: Predictor variables used as input X to boosting.

Ta: Tajima’s D, FW: Fay and Wu’s H. We cut up the whole region (40kb) into 20 sub-

segments, each of length 2kb. For each subsegment, we compute θ̂w, θ̂π, θ̂h, Tajima’s D

and Fay and Wu’s H. Overlapping subsegments are used with iHH. In total, this leads to

6 × 20 = 120 predictor variables, that are used as input vector X to boosting.

N0

N1

t0t1
ancient time

present

Figure 2: Terminology for bottleneck scenarios.

A bottleneck scenario that ended at time t0, and lasted for t1. Both the present and

ancient effective population sizes are N0. During the bottleneck the effective population

size decreases to N1 chosen such that N0/N1=100.
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Figure 3: Spatial patterns of summary statistics.

The spatial effect of selection (versus neutrality) on different summary statistics is shown.

Each point corresponds to an average over 1000 independent samples with fixed θ. The

x-axis gives the position within the sequence, whereas the y-axis displays the value of the

summary statistic calculated at a subsegment centered at this position. For the selection

scenario, the beneficial site is again assumed to be at 20kB.

34



0 200 400 600 800 1000

60
0

80
0

10
00

12
00

The number of iterations

A
IC

Figure 4: AIC

A typical AIC curve from a boosting run(500 neutral samples and 500 selection samples

with α = 200, τ = 0.2, and fixed θ). The x-axis indicates the number of iterations, and

the y-axis the value of AIC. At the 175th iteration AIC reached its minimum. We can

see that AIC decreases very fast at first, but changes only very slowly later on, which is

in accordance with the slow over-fitting feature of boosting.
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Figure 5: Boosting based genome scans

In each of the three diagrams, each column represents an independently simulated 100kb

chromosome region where a beneficial mutation (α = 500, τ = 0.001) occurred. The rows

indicate the position within the sequence. The dot right to the graphs marks the position

50kb where the beneficial mutation occurred. Within a column, each pixel indicates the

classification result based on a 40kb window sliding along the chromosome region(Step

length 2kb.) Training was done with neu + sel(500, 0.001). A black pixel indicates that

boosting predicted the considered position to have experienced a selection event. As de-

sired, the black pixels are concentrated at the selected position. In the upper diagram, six

different summary statistics were used, whereas in the middle diagram, only θ̂h, Tajima’s

D and iHH were used. The type one error probability has been adjusted to 5% in both

cases. In the bottom diagram, the same six summary statistics were used as in the upper

diagram, but the type one error probability has been reduced to 0.2%, corresponding to

a threshold of γ = 0.5 for the boosting classifier. Both using position-specific summary

statistics and decreasing the type I error probability leads to a decreased false positive

rates in a genome scan.
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Figure 6: The relative importance of different summary statistics for the
detection of selection under a fixed value of θ.
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Under different selective scenarios, we investigate the relative importance of our sum-

mary statistics. One way of measuring their importance, is in terms of the absolute value

of the coefficients given to the summary statistics by the boosting classifier. A large coef-

ficient means that a certain statistic is very influential at the considered position for our

classifier. Each figure is based on an average of 10 trials, with each trial contains 500

neutral(or bottleneck) samples and 500 selection samples. All the samples were generated

with fixed θ. The relative importance of the 6 summary statistics was considered sepa-

rately for each subsegment, that is, each time a boosting process was applied to only 6

statistics at a specific position.
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Figure 7: The relative importance of different summary statistics for the
detection of selection under a fixed value of K.

As in Figure 6 we investigate the relative importance of different summary statistics, but

here the samples were generated under a fixed number K of mutations instead of a fixed

θ. Each figure is based on an average of 10 trials. Each trial contains either 500 neutral

and 500 selection, or 500 selection and 500 bottleneck samples.
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