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Background: The at-risk mental state for psychosis 

(ARMS) and the �rst episode of psychosis have been 

associated with structural brain abnormalities that could 

aid in the individualized early recognition of psychosis. 

However, it is unknown whether the development of 

these brain alterations predates the clinical deterioration 

of at-risk individuals, or alternatively, whether it 

parallels the transition to psychosis at the single-subject 

level. Methods: We evaluated the performance of an 

magnetic resonance imaging (MRI)-based classi�cation 

system in classifying disease stages from at-risk individuals 

with subsequent transition to psychosis (ARMS-T) and 

patients with �rst-episode psychosis (FE). Pairwise and 

multigroup biomarkers were constructed using the structural 

MRI data of 22 healthy controls (HC), 16 ARMS-T and 

23 FE subjects. The performance of these biomarkers 

was measured in unseen test cases using repeated nested 

cross-validation. Results: The classi�cation accuracies 

in the HC vs FE, HC vs ARMS-T, and ARMS-T vs FE 

analyses were 86.7%, 80.7%, and 80.0%, respectively. 

The neuroanatomical decision functions underlying 

these discriminative results particularly involved the 

frontotemporal, cingulate, cerebellar, and subcortical 

brain structures. Conclusions: Our �ndings suggest 

that structural brain alterations accumulate at the onset 

of psychosis and occur even before transition to psychosis 

allowing for the single-subject differentiation of the 

prodromal and �rst-episode stages of the disease. Pattern 

regression techniques facilitate an accurate prediction 

of these structural brain dynamics at the early stage of 

psychosis, potentially allowing for the early recognition of 

individuals at risk of developing psychosis.

Key words: at-risk mental state/early prediction of 
psychosis/voxel-based morphometry/multivariate 
analysis/machine learning/support vector machine

Introduction

Over the past decade, research on the prodromal phase 
of psychosis has exponentially progressed, allowing 
for preventive therapeutic interventions in clinical 
psychiatry.1 In the light of the severe functional, social, 
and economic long-term impact of psychosis, psychiatric 
imaging needs to increasingly shift its research focus to the 
translation of imaging �ndings to clinical applications, 
targeting important stages of the disease course, including 
transition, remission, and response to preventative 
interventions.2 Because it is dif�cult to predict which 
subjects with an at-risk mental state (ARMS) will later 
develop psychosis on the basis of their presenting clinical 
features, there is a need for objective surrogate markers 
to identify the individuals at highest risk of developing 
overt psychosis and those who might bene�t most 
from preventive interventions. Although neuroimaging 
techniques seem promising for this issue in subjects with 
an ARMS, inconsistent �ndings across individual studies 
prevent applicability of imaging methods to clinical 
psychiatry. In recent years, a range of neuroimaging 
techniques showed alterations in brain structure,3 
function,4 and neurochemistry5 in the prodromal phase 
of psychosis.6 These neuroimaging studies have shown 
that alterations in brain anatomy and neurophysiology 
found in established psychosis are also present in people 
with an ARMS for the disease.4 Overall, ARMS subjects 
show qualitatively similar, but less pronounced, structural 
brain abnormalities than patients with established 
schizophrenia. Studies comparing ARMS subjects showed 
reduced gray matter (GM) in prefrontal, temporal, and 
cingulate regions; insula; and cerebellum in those subjects 
who develop psychosis.7 Interestingly, similar areas were 
also recently found to be related in volume to schizotypal 
personality, a subclinical schizophrenia spectrum trait.8 
Although there are few structural imaging studies that 
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compared ARMS subjects according to clinical outcome, it 
is still not clear which magnetic resonance imaging (MRI) 
abnormalities are speci�c to vulnerability as opposed to a 
later transition to psychosis. Volumetric reductions in the 
temporal, cingulate, insular, and prefrontal cortex and in 
the cerebellum have been speci�cally associated with the 
development of psychosis.9

However, univariate image analysis methods such as 
voxel-based morphometry (VBM) detect group differ-
ences on the basis of spatially con�ned image elements 
like single voxels or clusters, instead of providing infor-
mation on the complex spatial patterns of neuroanatomi-
cal disease characteristics. Thus, VBM is a research tool 
for structural and functional brain differences11 between 
groups of subjects, and not a diagnostic or classi�ca-
tion device.12 In contrast, multivariate pattern recogni-
tion methods categorize individual structural brain scans 
by separation of images taking into account the innate 
interregional dependencies of different pathologies.13 In 
this context, support vector machines (SVMs) emerged 
as a powerful diagnostic tool to evaluate the categoriza-
tion of complex, high-dimensional training data and to 
generalize the learned classi�cation rules to new, unseen 
individual data.14,15 In the context of structural MRI, 
SVM tools successfully identi�ed spatial patterns across 
brain regions that provide a single-subject, diagnostic 
separation between different clinical populations eg, in 
Alzheimer’s disease and mild cognitive impairment16–18; 
multiple sclerosis,19 schizophrenia15 and presymptomatic 
Huntington’s disease.20 Therefore, these multivariate neu-
roimaging tools may promote a potentially accessible and 
objective way to improve clinical decision making, taking 
into account the risk of developing psychosis in individu-
als with an ARMS. The prediction of subsequent disease 
conversion has been shown by nonlinear MRI-based 
SVMs operating at the individual level.15 Recently, we 
have shown that SVM has the potential to increase the 
prediction accuracy of established clinical decision in 2 
independent ARMS samples from Munich and Basel to 
over 80%.15,21 To our knowledge, SVMs have neither been 
applied to structural MRI data using GM segments for 
distinguishing individuals with an ARMS with subse-
quent transition to psychosis (ARMS-T) vs patients with 
a �rst-episode psychosis (FE) nor been applied to distin-
guish FE from healthy controls (HC). This is important 
because there may be a neurobiological process that par-
allels the clinical transition process from the prodromal 
stage to the manifest disease. SVMs can be used to eval-
uate whether this occurs at the single-subject level. We 
hypothesized that the neuroanatomical alterations found 
in the manifest disease are (almost) equally present in 
the prodrome and make it impossible to distinguish pro-
dromal from FE subjects at the single-subject level using 
SVM. Secondly, we expected a robust discrimination of 
FE patients and HC.

Methods

Study Design

This MRI study was embedded in the naturalistic, pro-
spective, and multidomain FePsy-study on the prediction 
of psychosis development in ARMS individuals, covering 
a service area of 200 000 habitants in and around Basel, 
Switzerland. A more detailed description of the overall 
study design can be found elsewhere.22,23 All aspects of 
the study were reviewed and approved by the institutional 
ethics committee of the University of Basel, and written 
informed consent was obtained from each participant 
before study inclusion.

Participants

Within the prospective FePsy-study, ARMS individuals 
received a structural MRI scan at study inclusion. 
For screening purposes, we used the Basel Screening 
Instrument for Psychosis (BSIP),24 a 46-item instrument 
based on variables that have been shown to be risk factors 
or early symptoms of psychosis such as DSM-III-R 
– “prodromal symptoms,” social decline, drug abuse, 
previous psychiatric disorders, or genetic liability for 
psychosis. The BSIP enables a reliable identi�cation of 
vulnerable individuals at risk of developing psychosis 
using clinical criteria that closely correspond to the 
well-established ultrahigh-risk de�nitions of the Personal 
Assessment and Crisis Evaluation clinic in Melbourne.24,25 
In keeping with previous MRI studies of ARMS cohorts 
recruited using these high-risk criteria,9,26 inclusion into 
the present study required one or more of the following: 
(a) attenuated psychotic-like symptoms (APS; a score 
of 2 or 3 on the Brief  Psychiatric Rating Scale [BPRS] 
hallucination item, or 3 or 4 on BPRS items for unusual 
thought content or suspiciousness—at least several 
times a week and for more than 1 week duration), (b) 
brief  limited intermittent psychotic symptoms (BLIPS; 
scores of 4 or above on the hallucination item, or 5 or 
above on the unusual thought content, suspiciousness 
or conceptual disorganization items of the BPRS, with 
each symptom lasting less than 1 week before resolving 
spontaneously), or (c) a �rst or second degree relative with 
a psychotic disorder plus at least 2 further risk factors 
for or indicators of beginning psychosis according to the 
BSIP screening instrument. A more detailed description 
of these ARMS criteria can be found in our previous 
work.23 Psychopathology was assessed with the BPRS, 
in combination with the BSIP and the Scale for the 
Assessment of Negative Symptoms (SANS).

All subjects were followed-up regularly and were 
offered supportive counseling and clinical management. 
Because we are interested in the pure prodromal state 
of psychosis, we included only those ARMS individuals 
who subsequently made transition during the follow-up 
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period. Conversion to frank psychosis was monitored 
using the criteria described by Yung et al25: BPRS scores 
of 4 or above on the hallucination item; or scores of 5 
or above on the unusual thought content, suspiciousness, 
or conceptual disorganization items. Symptoms had to 
occur daily and persist for more than 1 week to be deemed 
a conversion to frank psychosis. Using these de�nitions, 
16 converters (ARMS-T) to psychosis were included.

The �rst-episode group (n  =  23) was de�ned as sub-
jects who met the operational criteria for FE described by 
Yung et al25 as it was done in previous MRI studies of the 
ARMS.27 Inclusion required scores of 4 or above on the 
hallucination item, or 5 or above on the unusual thought 
content, suspiciousness, or conceptual disorganization 
items of the BPRS. The symptoms must have occurred 
at least several times a week and persisted for more than 
1 week.

Exclusion criteria were age below 18  years, insuf�-
cient knowledge of German, IQ < 70 (measured with the 
MWT-B), previous psychotic episodes treated with major 
tranquillizers for more than 3 weeks, a clearly diagnosed 
brain disease or substance dependency (except for canna-
bis dependency), or psychotic symptoms within a clearly 
diagnosed depression, bipolar or borderline personal-
ity disorder. 2 out of 16 ARMS-T individuals received 
low-dose antipsychotic medication prior to MRI scan-
ning. These participants had been administered low doses 
of atypical antipsychotic medication for behavioral con-
trol by the referring psychiatrist or general practitioner (1 
participant olanzapine, 1 risperidone) at some time prior 
to study inclusion, both for less than 3 weeks. A large pro-
portion of FE patients were scanned within 1–3 days of 
�rst contact, therefore most of the FE patients (14/23; 
61%) were also antipsychotic-naive. Six had been taking 
antipsychotics for < 1 month and 3 had been taking them 
for 1–3 months.

Twenty-two HC were recruited from the same geo-
graphical area as the ARMS group through local adver-
tisements and were matched to the ARMS sample 
groupwise for age, gender, handedness, and education 
level. These individuals had no current psychiatric dis-
order, no history of psychiatric illness, head trauma, 
neurological illness, serious medical or surgical illness, 
substance dependency (except for cannabis and nico-
tine), and no family history of any psychiatric disorder 
as assessed by an experienced psychiatrist in a detailed 
clinical interview.

MRI Data Acquisition

Subjects were scanned using a SIEMENS (Erlangen, 
Germany) MAGNETOM VISION 1.5T scanner at the 
University Hospital, Basel. A  three-dimensional volu-
metric spoiled gradient recalled echo sequence gener-
ated 176 contiguous, 1-mm-thick sagittal slices. Imaging 

parameters were time-to-echo, 4 ms; time-to-repetition, 
9.7 ms; �ip angle, 12°; matrix size, 200  × 256; �eld of 
view, 25.6  × 25.6 cm matrix; voxel dimensions, 1.28  × 
1 × 1 mm.

MRI Data Preprocessing

After inspection for artifacts and gross abnormalities, 
the images were segmented into GM, white matter 
(WM), and cerebrospinal �uid (CSF) maps in native 
space using the VBM5 toolbox (http://dbm.neuro.
uni-jena.de), an extension of  the SPM5 software pack-
age (Wellcome Department of  Cognitive Neurology, 
London, UK). Details of  this segmentation protocol 
have been described in our previous work.28 Then, the 
estimated tissue maps of  each individual were com-
bined into a single labeled volume (CSF: 10, GM: 150, 
and WM: 250) and registered to the single-subject brain 
template of  the Montreal Neurological Institute, using 
a well-established, high-dimensional, elastic warping 
algorithm. The volumetric changes occurring during 
this normalization process were written out to the reg-
istered tissue maps, allowing for a Regional Analysis 
of  Volumes in Normalized Space (RAVENS). Similar 
to the “modulation” step used in VBM, RAVENS 
maps low for local comparisons in standard space 
that are equivalent to volumetric comparisons of  the 
original tissue maps in native space. The individual 
GM-RAVENS maps were proportionally scaled to the 
global GM volume computed from the native tissue 
maps and entered the subsequent multivariate pattern 
classi�cation analysis.

Multivariate Pattern Classi�cation Analysis

SVMs are multivariate statistical methods that have been 
increasingly employed for diagnostic purposes in a wide 
range of  biomedical applications because they provide 
optimal decision rules for classifying individuals. Instead 
of  describing statistical between-group differences, 
nonlinear classi�cation models that reliably predict 
the study participants’ group membership are used. 
As customary in predictive analytics, the SVM models 
were constructed from one set of  subjects (the training 
sample) and applied to a different set of  subjects (the 
test sample), using cross-validation (CV). This process 
produced an unbiased estimate of  the method’s expected 
diagnostic accuracy on new individuals rather than 
merely �tting this study population. The principles of 
generating and validating predictive models on separate 
training and testing samples have been previously 
described.15 Based on the LIBSVM software (www.csie.
ntu.edu.tw/cjlin/libsvm), our machine learning toolbox 
NeuroMiner running under MATLAB (R2009b, The 
MathWorks Inc.) produced compact ensembles of  SVMs 
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that optimally separated single individuals from different 
groups, while avoiding the danger of  over�tting to the 
peculiarities of  the training data. It consisted mainly of 
three successive steps that were wrapped into a repeated 
nested CV framework (see online supplementary 
material):

Neuroanatomical Feature Generation. First, each training 
sample’s GM-RAVENS maps were adjusted for age 
and gender effects using partial correlations and scaled 
voxelwise to the range [0,1]. These scaled and adjusted maps 
entered a recently proposed, multivariate �lter method,29 
which automatically determined those sets of voxels 
that conjointly maximize the geometric distance between 
the training subjects in the HC vs ARMS-T, HC vs FE, 
and ARMS-T vs FE analyses. This algorithm removed 
irrelevant/unreliable voxels from the high-dimensional 
MRI input space that did not contribute to the respective 
binary classi�cation problem. Then, correlated voxels 
within the extracted discriminative patterns were projected 
to a number of uncorrelated principal components 
(PC) using principal component analysis (PCA). This 
further reduced the dimensionality of the discriminative 
patterns to compact sets of neuroanatomical features. The 
optimum number of PC was determined using CV (see 
online supplementary material).

SVM Training. These discriminative PC features were 
projected to a high-dimensional feature space using the 
radial basis functions in order to account for possible 
nonlinear relations between the training subjects’ neuro-
anatomical features and their group membership. In this 
feature space, the SVM found the optimal between-group 
boundary by maximizing the geometric distance between 
the neuroanatomically most similar subjects of  opposite 
groups (the “support vectors”). It has been shown that 
this maximum-margin principle in conjunction with the 
nonlinear projection generates classi�cation rules that 
are adaptive to subtle between-group differences and 
therefore generalize well to unseen individuals.

Classi�cation of Unseen Test Data. The group assignment 
of unseen test subjects was predicted after applying all 
training parameters successively to their MRI data, 
including (a) the adjustment for age and gender effects, 
(b) the selection of optimally discriminative voxels, (c) 
the projection of these voxels to PC, and (d) the nonlinear 
transformation of these neuroanatomical features. Then, 
for each subject, the 3 trained binary SVM models (HC 
vs ARMS-T, HC vs FE, and ARMS-T vs FE) determined 
its geometric position relative to their learned decision 
boundaries, resulting in 3 decision values and group 
assignment predictions. We used these decision values 
to construct a multigroup classi�er (HC vs ARMS-T vs 
FE), where the binary SVM model with the maximum 
decision value decided about the test subject’s group 

assignment (one-vs-one-max-wins method). Feature 
generation, model training, and test subject prediction 
were wrapped into a repeated nested CV framework (see 
online supplementary material).30 The main goal of this 
framework was to completely separate the process of 
estimating the SVMs’ prediction performance in a large 
number of unseen validation samples (outer CV loop) 
from the process of constructing optimally discriminative 
SVM models from a large number of training samples 
(inner CV loop). On the outer CV loop, we performed 
10 repetitions of the following CV cycle. First, the order 
of the subjects was permuted within each group and 
the entire population was split into 10 nonoverlapping 
samples. Each of these samples was iteratively held back 
as validation data, while the nine remaining samples 
entered the inner CV loop as the training data. At this 
inner loop, we used 10-fold CV with 10 repetitions to 
generate ensembles of SVM models. More speci�cally, 
for each validation sample at the outer CV level, 100 
different training data partitions were created at the inner 
CV level. In each of these 100 training partitions the most 
discriminative sets of neuroanatomical features were 
determined. Each of these sets was used to train a separate 
SVM model. Then, each of these models predicted the 
group assignment of the unseen validation subjects on 
the outer loop. These predictions were averaged across 
all 100 training partitions to yield an ensemble decision. 
Finally, for each validation subject, all SVM ensemble 
decisions were aggregated across those outer training 
partitions, in which this subject had not been involved 
in the training process. Majority voting was used to 
determine the validation subject’s class probability and 
thus its �nal out-of-training group assignment.

The nonlinearity of the decision rules determining 
the test subjects’ group assignment made it dif�cult to 
directly visualize each voxel’s contribution to the aver-
age SVM ensemble decision. Therefore, we �rst approxi-
mated the average neuroanatomical decision boundary 
used by the binary nonlinear SVM models as described in 
Koutsouleris et al15 and then measured each voxel’s prob-
ability of reliably contributing to this discriminative pat-
tern across the entire experiment at the 95% con�dence 
interval. The exact visualization procedure has been 
detailed in the legend of �gure  1. Moreover, a supple-
mentary parcellation analysis (see online supplementary 
material �gure) was conducted in order to measure the 
distribution of reliably discriminative voxels across the 
116 brain regions of the automated anatomical labeling 
template.31

Results

Sociodemographic, Clinical and Global 
Anatomical Findings

Subsequent converters, HC, and FE patients did not sig-
ni�cantly differ with respect to age, gender, educational 
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level, and global brain volumes (table  1). Furthermore, 
no signi�cant baseline differences were found between the 
FE and ARMS-T samples regarding educational level, 
family history of psychosis, duration of symptoms prior 
to the MRI examination, BPRS, and SANS (table 1).

SVM Classi�cation Analysis

Classi�cation Performance. Among the 3 binary classi�-
cation analyses (table 2a), the highest diagnostic perfor-
mance (balanced accuracy [BAC] = 86.7%) was observed 
in the HC vs FE comparison, where out of 55 subjects, 
2 FE individuals were classi�ed as HC and 3 HC sub-
jects were assigned to the FE group (sensitivity = 87.0%, 

speci�city  =  86.4%). A  diagnostic performance in the 
HC vs ARMS-T analysis was BAC  =  80.7% because 2 
ARMS-T were wrongly assigned to the HC group and 4 
HC were classi�ed as ARMS-T (sensitivity = 75%, speci-
�city = 86.%). In the critical ARMS-T vs FE analysis, the 
BAC was 80.0% with 4 FE subjects being misclassi�ed as 
ARMS-T and 5 ARMS-T being wrongly labeled as FE 
(sensitivity = 91.3%, speci�city = 68.8%).

In the 3-group classi�cation (table 2b), 21 of the 23 FE 
patients were correctly assigned to their group, while 9 of 
the 16 ARMS-T and 7 of the 22 HC subjects were mis-
classi�ed as FE (sensitivity = 91.3%, speci�city = 57.9%, 
BAC = 74.6%). Of the 16 ARMS-T subjects, 3 were cor-
rectly assigned to their group, while 1 HC individual 

Fig. 1. Voxel probability map (VPM) of reliable contributions to the HC vs ARMS-T decision boundary.The approximation of each 
voxel’s contribution to the average nonlinear classi�cation used to separate HC from ARMS-T subjects was obtained as follows: (1) In 
principal component analysis space, the average minimum difference vector (SV mindiff) across the support vectors of a given SVM 
model was computed and projected back to voxel space as described previously. This computation was performed for every training 
sample on the inner cross-validation (CV) loop resulting in 100 SV mindiff  images for a given training partition on the outer CV loop. (2) 
The average and standard error volumes of these 100 SV mindiff  images were computed. (3) For every outer CV partition, the average 
SV mindiff  image was binarized, in that voxels with an absolute value greater than their respective standard error were set to one, or to 
zero otherwise. This thresholding procedure extracted only those voxels that reliably contributed to the average neuroanatomical decision 
boundary of a given outer CV partition at the 95% con�dence interval. (4) The obtained binary images were summed across all 100 outer 
CV partitions and divided by 100, thus forming a single map that speci�ed every voxel’s probability of  reliably contributing to the average 
neuroanatomical decision boundary across the entire experiment. 
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was wrongly labeled as ARMS-T (sensitivity  =  18.8%, 
speci�city = 97.8%, BAC = 58.3%). Fourteen out of 22 
HC individuals were correctly identi�ed by the pattern 
recognition system, while 4 ARMS-T subjects and 2 FE 
patients were misclassi�ed as HC (sensitivity  =  63.6%, 
speci�city = 894.6%, BAC = 74.1%).

Neuroanatomical Mapping of SVM Decision Functions

In summary, the approximation of  the three neuro-
anatomical SVM decision functions (methodological 
descriptions in �gure  1) revealed that reliable voxels 
were not con�ned to single brain regions, but instead 

were distributed across a broad range of  cortical and 
subcortical areas. Within these distributed patterns 
shown in �gures 1–3, foci of  moderate-high probabil-
ity voxels (>65% probability) were detected particularly 
in the prefrontal, limbic, basal ganglia, and cerebellar 
structures. More speci�cally, the average neuroanatomi-
cal decision function of  the HC vs ARMS-T ensemble 
classi�er involved high-probability hotspots particularly 
in the prefrontal cortex, the limbic lobe (e.g. amygdala 
and olfactory regions), and cerebellum. There were no 
clusters of  contiguous high-probability voxels involved 
in the average HC vs FE ensemble decision. Reliable 
high-probability voxels contributing to the average 

Table 1. Sociodemographic, Clinical, and Global Anatomical Characteristics of the 3 Study Groups

Study Groups

ARMS-T FE HC P

Sociodemographic variables
N 16 23 22
Mean age (years) at baseline (SD) 26.4 (6.5) 26.78 (6.5) 23.0 (4.3) ns
Sex (male) 11 (69%) 17 (74%) 13 (59%) ns
Handedness (mixed or left) 3 (19%) 5 (22%) 6 (29%) ns
Educational level ns
<9 yrs 4 (25%) 12 (52%) 2 (9%)
9–11 yrs 6 (38%)  8 (34%) 7 (32%)
12–13 yrs 5 (31%)  1 (4%) 10 (46%)
>13 yrs 1 (6%)  2 (9%) 3 (14%)
Clinical variables
Individuals with a 1° relative with schizophrenia 3 (19%) 4 (17%) na ns
Mean BPRS global score at intake (SD) 41.9 (10.6) 52.7 (13.6) na ns
Mean SANS at intake (SD) 9.5 (5.4) 10.0 (5.3) na ns
Mean duration (months) of symptoms (SD) 42.6 (39.5)a 54.9 (74.1) na ns
Mean interval (days) between baseline MRI scan and disease transition (SD) 306.3 (318.3) na na
Global anatomical volumes
Mean global gray matter volume [ml] (SD) 680.5 (57.5) 680.9 (55.9) 692.2 (52.6) ns
Mean global white matter volume [ml] (SD) 613.0 (79.9) 627.0 (78.9) 615.2 (68.7) ns
Mean global cerebrospinal �uid volume [ml] (SD) 212.6 (36.8) 215.1 (55.2) 204.8 (30.9) ns

Note: ARMS-T, at-risk mental state with subsequent transition to psychosis; FE, �rst-episode psychosis; HC, healty controls; BPRS, 
Brief  Psychiatric Rating Scale; SANS, Scale for the Assessment of Negative Symptoms; SD, standard deviation; na, not applicable; ns, 
not signi�cant.
aDuration of the ARMS symptoms at the inclusion of the study (before transition to psychosis).

Table 2a. Two-Group Classi�cation Performance

Binary Classi�ers TP TN FP FN Sens (%) Spec (%) BAC (%) FPR (%) PPV (%) NPV (%)

HC vs ARMS-T 19 12 4 3 75 86.4 80.7 25 82.7 80
HC vs FE 19 20 3 3 87 86.4 86.7 13 86.4 87
ARMS-T vs FE 11 21 2 5 91.3 68.8 80 8.7 84.6 80.8

Notes: The performance of the binary SVM ensemble classi�ers (group “+1” vs group “−1”) was evaluated (1) by constructing a binary 
SVM ensemble from all SVM base learners of a inner cross-validation (CV) partition, in which the respective outer CV test subjects had 
not been included, (2) by computing the average decision value in each of these binary inner CV ensembles in order to determine the 
group membership (average decision value > 0 or < 0) of the respective outer CV test subjects, and (3) through majority voting across 
those binary inner CV loop SVM ensembles, in which the outer CV test subjects had not participated in the training process (see also the 
Methods section for a detailed explanation of the employed ensemble learning framework). Sensitivity (Sens), speci�city (Spec), balanced 
accuracy (BAC), false positive rate (FPR), positive/negative predictive values (PPV/NPV) as well as positive/negative Likelihood Ratios 
(LR+/LR−) were calculated from the confusion matrix containing the number of true positives (TP), false negatives (FN), true negatives 
(TN) and false positives (FP).
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ARMS-T vs FE ensemble decision mainly mapped to 
basal ganglia (including thalamus, pallidum, and puta-
men) and the cerebellum.

Discussion

To our best knowledge, this is the �rst SVM analy-
sis exploring GM pattern in pure prodromal subjects 
(ARMS-T) in relation to FE. The present investiga-
tion expanded our previous �ndings in the same cohort 
of a clinically de�ned at-risk population (ARMS) and 
HC subjects28 in that our fully automated classi�cation 
system reliably identi�ed ARMS-T and FE individuals 
using only their MRI scans acquired at study inclusion. 
Interestingly, we found that the highest diagnostic per-
formance was observed in the HC vs FE comparison 
with a sensitivity of 87% and a speci�city of 86.4%. This 
underlines the ability of this multivariate image analysis 
tool to translate imaging �ndings in the clinical �eld tar-
geting diagnosis, remission, and response to preventative 
interventions. The high discriminative power of FE and 
HC con�rms categorization of individual brain scans 
by separation of images from different groups, taking 
into account the interregional dependencies of different 
pathologies. Interestingly, these classi�cation rates com-
pare to those observed in studies of other illnesses such 
as in dementia16–18 or MS19 attempting the prediction of 
illness conversions.

Table 2b. Three-Group Classi�cation Performance

SVM Predictions

Clinical Groups HC ARMS-T FE

HC 14 1 7
ARMS-T 4 3 9
FE 2 0 21
OOT-performance
TP 14 3 21
TN 33 44 22
FP 6 1 16
FN 8 13 2
Sensitivity (%) 63.6 18.8 91.3
Speci�city (%) 84.6 97. 8 57.9
Balanced accuracy (%) 74.1 58.3 74.6
False positive rate (%) 15.4 2.2 42.1
Positive predictive value (%) 70 75 56.8
Negative predictive value (%) 80.5 77.2 91.7

Notes: Multigroup decisions were obtained by (1) constructing 
a multigroup ensemble classi�er for each CV2 data partition 
using error-correcting output codes (see Methods section and 
online supplementary material) and (2) computing the �nal 
out-of-training (OOT) group membership of a given CV2 test 
subject through majority voting of all CV2 multigroup ensemble 
classi�ers, in which this test subject had not been part of the 
training data and thus had not been seen by these classi�er 
ensembles. The OOT classi�cation performance of the multigroup 
ensembles was then evaluated for 1 group against all other groups. 
For example, in the HC vs ARMS-T vs FE analysis 21 FE 
subjects of 23 (sensitivity: 91.3%) were correctly assigned to their 
group, while 22 of the other 38 (57.9%) subjects were correctly not 
labeled as FE, resulting in a BAC of (91.3% + 57.9%)/2 = 74.6%.

Fig. 2. Voxel probability map (VPM) of reliable contributions to the HC vs FE decision boundary. See legend of �gure 1.
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The diagnostic performance in the HC vs ARMS-T anal-
ysis was similar to the HC vs FE. In contrast to the high 
classi�cation performance observed in the ARMS-T vs FE 
comparison, we found that the ARMS-T subjects were fre-
quently misclassi�ed as FE in the 3-group analysis. In this 
regard, it is well known that SVMs were primarily devel-
oped to solve binary classi�cation problems rather than 
multigroup classi�cation tasks. Similarly, our feature extrac-
tion method operated on binary classi�cation tasks (see 
Methods section). Taken together, our machine learning 
pipeline was primarily devised to detect pairwise discrimi-
native patterns, which may have limited its ability to detect 
robust neuroanatomical signatures separating the study 
population at the multigroup level. Nevertheless, the main 
purpose of the current analysis was to test the hypothesis 
whether neuroanatomical abnormalities differentiate the 
pure prodromal vs the �rst-episode stage of psychosis at the 
single-subject level. In this context, the BAC of 80% found 
in the ARMS-T vs FE comparison supports that an active 
neurobiological disease process parallels the clinical transi-
tion from the prodromal to the manifest stage of psychosis.

The brain regions most relevant for the present dis-
criminative multivariate classi�cation were in line with 
previously shown GM abnormalities22,27,33–35 we observed 
in the temporal, limbic, and prefrontal cortex within 
the ARMS group and in the temporoinsular cortex and 
cerebellum within the FE subjects (for review of spe-
ci�c regions).32,22,27,33–35 A recently published voxel-based 

meta-analysis of antipsychotic-naive ARMS and FE 
patients indicated similar consistent GM abnormalities 
in the patient groups as compared with controls.10 In 
line with the above �ndings, a recent meta-analysis of 
functional imaging studies con�rmed abnormal neural 
activity in schizophrenic patients during auditory halluci-
nations.36 In terms of predicting clinical outcome and sus-
taining clinical applications of psychiatric imaging, there 
is further evidence from functional and neurochemical 
ARMS studies that the extent of abnormality at baseline 
is predictive of subsequent conversion to psychosis.9

Limitations of this study are as follows. First, our results 
may have been in�uenced by the heterogeneity of ARMS 
subgroups such as patients with APS or BLIPS.1 To account 
for this, we controlled for the potential effects of covariates 
such as age, gender, and education, but other factors like 
substance abuse and cognitive functioning23,37 could have 
played a confounding role. Although only a minor num-
ber of patients received antipsychotic treatment, we cannot 
rule out a modifying effect on neuroanatomical patterns, 
in particular, in contrasts including FE patients. Although 
there is clear evidence demonstrating the impact of anti-
psychotic medication on symptoms, its impact on neuro-
anatomical patterns of GM is widely unclear.38 However, in 
a recent meta-analysis, we have selectively included studies 
in antipsychotic-naive subjects to control for the confound-
ing effect of antipsychotics10 because there is evidence indi-
cating that chronic antipsychotic treatment can in�uence 

Fig. 3. Voxel probability map (VPM) of reliable contributions to the ARMS-T vs FE decision boundary. See legend of �gure 1. 
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GM in subjects with established psychosis39 and in the early 
phases of psychosis, the temporal and prefrontal cortex.38 
As in previous neuroimaging studies in ARMS subjects 
using SVM methods, our group sizes were modest; we can 
therefore not exclude the existence of group differences 
because of limited statistical power. It is important to vali-
date our �ndings in larger, multicentre data sets.

Conclusions

This study provides further evidence that pattern recog-
nition methods may indeed have the potential to delin-
eate neuroanatomical phenotypes that constitute disease 
signatures beyond the level of coarse between-group 
differences. Psychosis onset in patients with FE is char-
acterized by known temporoinsular, anterior cingulate, 
and cerebellar GM reductions; differences in neuroana-
tomical patterns were evident between FE and HC. To 
reveal the diagnostic speci�city of SVM methods, other 
clinical samples at high risk for developing neuropsychi-
atric conditions as bipolar disorder, major depression, or 
borderline personality disorder are needed. To ultimately 
help treating patients, future single-subject imaging stud-
ies will also bene�t from multimodal image analyses6 and 
are needed to link basic research and clinical outcomes.40

Supplementary Material

Supplementary material is available at http://schizophre 
niabulletin.oxfordjournals.org.
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