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RIKEN’s FANTOM project has revealed many previously unknown coding sequences, as well as an unexpected degree
of variation in transcripts resulting from alternative promoter usage and splicing. Ever more transcripts that do not
code for proteins have been identified by transcriptome studies, in general. Increasing evidence points to the
important cellular roles of such non-coding RNAs (ncRNAs). The distinction of protein-coding RNA transcripts from
ncRNA transcripts is therefore an important problem in understanding the transcriptome and carrying out its
annotation. Very few in silico methods have specifically addressed this problem. Here, we introduce CONC (for ‘‘coding
or non-coding’’), a novel method based on support vector machines that classifies transcripts according to features
they would have if they were coding for proteins. These features include peptide length, amino acid composition,
predicted secondary structure content, predicted percentage of exposed residues, compositional entropy, number of
homologs from database searches, and alignment entropy. Nucleotide frequencies are also incorporated into the
method. Confirmed coding cDNAs for eukaryotic proteins from the Swiss-Prot database constituted the set of true
positives, ncRNAs from RNAdb and NONCODE the true negatives. Ten-fold cross-validation suggested that CONC
distinguished coding RNAs from ncRNAs at about 97% specificity and 98% sensitivity. Applied to 102,801 mouse
cDNAs from the FANTOM3 dataset, our method reliably identified over 14,000 ncRNAs and estimated the total number
of ncRNAs to be about 28,000.
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Introduction

The central dogma of molecular biology, first postulated by
Francis Crick about 50 years ago [1], holds that genetic
information is stored in DNA, that it is transferred into RNA
through transcription by DNA polymerase, and that the
information is finally decoded when RNA is translated into
proteins. The paradigm has been that proteins largely
constitute the machinery that makes life live: proteins carry
out all structural, catalytic, and regulatory functions. In this
view, RNAs mostly play the passive role of a ‘‘messenger.’’
When in vitro RNA splicing experiments revealed that RNAs
can act as enzymes [2], this was initially considered an
exception. Many more biological functions of RNAs are
known today. RNAs can be divided into two classes:
messenger RNAs (mRNAs), which are translated into pro-
teins, and non-coding RNAs (ncRNAs), which are functional

as RNA molecules rather than encoding proteins. The
textbook examples of ncRNAs are tRNAs and rRNAs. ncRNAs
have been found to carry out very diverse functions, from
mRNA splicing (snRNAs) and RNA modification (snoRNAs)
to translational regulation (microRNAs) and chromatin
structure modulation (XIST) [3,4]. The functions of many
ncRNAs remain unknown. During the first two phases of the
Functional Annotation of Mouse cDNAs (FANTOM) project,
only 17,594 of the 33,409 transcriptional units were deter-
mined to have coding potential; all remaining units were
considered as putative ncRNAs [5,6]. The third phase of
FANTOM [7] has discovered even more putative ncRNAs.
Many of these ncRNAs are polyadenylated just like mRNAs;
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possibly more surprisingly, many of these ncRNAs are not
short, rather they are, on average, even longer than protein-
coding transcripts [6]. It has been estimated that 98% of the
human genomic output may be ncRNAs, and speculated that
differences in organism complexity may originate mainly
from the vast difference in the amount of ncRNAs between
higher eukaryotes and simpler organisms, rather than from
the difference in protein-coding genes [8]. Given the
importance of ncRNAs and the increasing body of large-
scale data, the development of computational methods that
distinguish between mRNAs and ncRNAs, i.e., between
protein-coding and non-coding, becomes both increasingly
urgent and increasingly feasible.

Few computational approaches have been specifically
designed for the distinction between mRNAs and ncRNAs.
Instead, methods developed for related tasks (detection of
protein-coding regions within cDNAs, expressed sequence
tags [ESTs], or prokaryotic genomic DNAs) have been applied
to this task. The analysis of DNA alignments and codon usage
is one of the most widely used strategies. CSTminer [9]
identifies conserved sequence tags by comparing cross-
species DNA alignments, based on the observation that in
homologous regions, synonymous changes (i.e., base changes
without amino acid substitution) occur more frequently than
non-synonymous ones, and that non-synonymous substitu-
tions often result in amino acid changes that preserve
structural similarity. QRNA [10] adopts a similar strategy by
using a hidden Markov model to identify ncRNAs. CRITICA
[11] identifies protein-coding sequences in prokaryotic
genomic DNAs through the combination of information
from DNA alignments and from dicodon usage. Statistical
models for mRNA constitute an alternative strategy. DIANA-
EST [12] distinguishes coding ESTs from untranslated regions
or out-of-frame cDNA windows with artificial neural net-
works, and ESTScan [13] detects coding sequences within
ESTs through hidden Markov models. Alignments to known
proteins in the databases were used by rsCDS [14] to identify
coding regions in the FANTOM2 project [5]. Additional
unpublished methods have also been used in the FANTOM3
distinction between protein-coding RNAs and ncRNAs (M. C.
Frith, T. L. Bailey, T. Kasukawa, F. Mignone, S. K. Kummer-
feld, et al., unpublished data). These include methods based

on protein-domain-like regions from Pfam [15] and SUPER-
FAMILY [16,17], imposing a size threshold for longest open
reading frame (ORF), and mTRANS, which uses both ORF
length and cDNA coding potentials according to common
features found in cDNA.
Most of the above methods succeed partially in the

identification of protein-coding regions from cDNAs. How-
ever, the sustained performance in specifically distinguishing
mRNA from ncRNA has not been thoroughly evaluated for
any method because of the previous lack of data. Many
methods were assessed using 59 and 39 untranslated regions
as negative examples, which may not have the same
characteristics as ncRNAs. Growing interest in ncRNA
functions has prompted the construction of several databases
cataloging different types of ncRNAs. Rfam [18] provides
structure-annotated multiple sequence alignments for
ncRNA families, most of which are structural ncRNAs. The
major focus of Rfam is on the use of alignments and
covariance models for automatically analyzing and annotat-
ing sequences, in analogy to Pfam [15]. However, for many
Rfam sequences the direct experimental evidence for their
transcription is missing. RNAdb [19] catalogs more than 800
experimentally studied mammalian ncRNAs, including mi-
croRNAs and snoRNAs, but not structural RNAs. NONCODE
[20] contains more than 5,000 manually curated ncRNAs
from 861 organisms, with more than 80% of the entries
based on experimental data. It also classifies ncRNAs by their
cellular function.
Here, we introduce CONC, a novel method for distinguish-

ing between protein-coding RNAs and ncRNAs. The partic-
ular focus of CONC is on the reliable distinction of coding
versus non-coding for long transcripts such as those
abundantly identified by FANTOM3. Support vector ma-
chines (SVMs), like other supervised machine learning
algorithms, try to learn decision rules from labeled input
data (in this case, known protein-coding RNAs and ncRNAs)
and use these rules to classify novel data. SVMs have a unique
way of mapping input data into a very high dimensional
feature space using kernel functions, and of identifying a
hyperplane in this highly complex space that maximizes the
distance from the closest samples to the hyperplane [21].
SVMs have been widely used for pattern recognition, as well
as image and text classification. Recently, they have also been
extensively applied to many problems in computational
biology [22], including the detection of distant relatives of
proteins [23], the prediction of subcellular localization
[24,25], and the classification of microarray data [26]. In this
study, we trained SVMs using eukaryotic ncRNAs from the
RNAdb and NONCODE databases, and showed that protein
features can be used to reliably distinguish protein-coding
RNAs from ncRNAs. Sustained performance was demonstra-
ted through rigorous cross-validation. When applied to the
FANTOM3 data, the method estimated the number of
ncRNAs in mouse to be about 28,000.

Results/Discussion

SVMs Using Proteins Features Were Excellent Classifiers
for ncRNAs
Our major hypothesis for the development of our method

was that native proteins have particular structural and
sequence properties that distinguish them from putative
translation products of ncRNAs. The protein characteristics
that we selected included peptide length, amino acid
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Synopsis

There are two types of RNA: messenger RNAs (mRNAs), which are
translated into proteins, and non-coding RNAs (ncRNAs), which
function as RNA molecules. Besides textbook examples such as
tRNAs and rRNAs, non-coding RNAs have been found to carry out
very diverse functions, from mRNA splicing and RNA modification to
translational regulation. It has been estimated that non-coding RNAs
make up the vast majority of transcription output of higher
eukaryotes. Discriminating mRNA from ncRNA has become an
important biological and computational problem. The authors
describe a computational method based on a machine learning
algorithm known as a support vector machine (SVM) that classifies
transcripts according to features they would have if they were
coding for proteins. These features include peptide length, amino
acid composition, secondary structure content, and protein align-
ment information. The method is applied to the dataset from the
FANTOM3 large-scale mouse cDNA sequencing project; it identifies
over 14,000 ncRNAs in mouse and estimates the total number of
ncRNAs in the FANTOM3 data to be about 28,000.



composition, percentage of residues that were predicted by
PROFsec [27–29] to adopt the secondary structure of alpha
helix or beta strand, percentage of residues predicted by
PROFacc [28–30] to be exposed to solvent, sequence
complexity as measured by sequence compositional entropy
[31], number of homologs from database searches, and
sequence conservation computed as alignment entropy. We
chose the longest possible translation products from each of
the three forward frames, including those without obvious
start codons. This approach was motivated by the attempt to
account for sequencing errors: our method would be able to
capture most of the protein regardless of the position of the
error (immediately after the start codon or middle of ORF)
and the type of the error (point mutation or insertions/
deletion).

One important measure of performance is provided by
receiver operating characteristic (ROC) curves [32] that plot
sensitivity against the value 1� specificity over the full range
of the specificity (Figure 1). The area under the ROC curve
(the ROC score) describes the overall performance of the
method under different thresholds. The ROC score of above
0.98 achieved by CONC (Figure 1) indicates an excellent
performance. At the particular decision boundary chosen by
a prediction method, the performance is more intuitively
measured by specificity (Equation 1), sensitivity (Equation 2),
or the harmonic mean of those two, known as the F-measure
(Equation 3). Since the numbers of mRNAs and ncRNAs
differ significantly in our dataset, reporting performance for
both types (predicted mRNAs and predicted ncRNAs)
becomes crucial (Table 1). At the threshold selected by our
SVM classifier, protein-coding RNAs were predicted at F .

97% and ncRNAs at F . 94% (Table 1). We compared CONC
with ESTScan [13], one of the publicly available methods that

have been applied in the discrimination of ncRNAs. Run on
our dataset with ‘‘–O –S’’ options so that only positive strands
were analyzed, and using the default threshold of zero,
ESTScan was about ten percentage points less accurate than
our SVM-based method (Table 1). In contrast, using the same
input features to train another machine learning algorithm,
namely, a naı̈ve Bayes classifier (see Materials and Methods),
we were surprised to find that this simpler method yielded
only slightly worse performance (Table 1).

All Features Helped, but the Combination Was Best and
Most Robust
We investigated the importance of individual input

features by training separate SVMs on each feature. Most
single features already discriminated coding from non-
coding. However, the combination of all features performed
much better than single features alone. The top-performing
individual features were the number of database homologs
and peptide length, followed by alignment entropy and
amino acid composition (Figure 2). It is not surprising that
the length or the number of homologs, alone, discriminate at
reasonable accuracy. Most ncRNAs are short (the average
length of ncRNAs was 526 nucleotides in our dataset,
compared with 1,746 nucleotides for coding sequences), and
having homologous proteins is certainly a very good
indication for protein-coding. In fact, some methods ex-
clusively rely on one of these two features: rsCDS [14]
analyzed alignments with protein databases to make coding
cDNA assignments for the FANTOM2 project, and ‘‘longest
ORF’’ was also tested to evaluate ncRNAs in FANTOM3 (M. C.
Frith, T. L. Bailey, T. Kasukawa, F. Mignone, S. K. Kummer-
feld, et al., unpublished data). However, there are obvious
limitations to these two features. Many ncRNAs (about 10%
in our dataset) can be conceptually translated into peptides
longer than 100 amino acids, and cDNAs coding for short
proteins would also be incorrectly predicted as non-coding
based on length alone. Similarly, protein-alignment-based
predictions would err for cDNAs coding for novel proteins
and ncRNAs that happen to align with some misannotated
hypothetical proteins in the protein databases.
It was in light of these considerations that we chose to

combine eight different protein properties, each of which has
a good discrimination power by itself. The resulting
combined SVM improved both specificity and sensitivity by
more than three percentage points. The other advantage of

Figure 1. The ROC Curves for CONC

A ROC curve plots the true positive rate (i.e., sensitivity) against the false
positive rate (i.e., 1 � specificity). Shown are the ROC curves for CONC
using all features, two of the top single features, and ESTScan. The
diagonal line indicates random prediction.
DOI: 10.1371/journal.pgen.0020029.g001

Table 1. Prediction Performance of Different Methods

Method Coding Prediction Non-Coding Prediction

F-Mea-

sure

Speci-

ficity

Sensi-

tivity

F-Mea-

sure

Speci-

ficity

Sensi-

tivity

CONC 97.4%a 97.1% 97.8% 94.5% 95.2% 93.8%

Naı̈ve Bayes 96.7% 95.6% 97.9% 92.8% 95.3% 90.5%

ESTScan 86.7% 84.7% 88.7% 69.9% 73.7% 66.5%

All three methods were evaluated on the same dataset, with the non-coding set being the
combination of NONCODE-E (eukaryotic ncRNAs from the NONCODE database) and
RNAdb. The performance numbers for CONC and naı̈ve Bayes were from 10-fold cross-
validation.
aMean of the ten F-measures obtained from cross-validation. Range ¼ 96.6%–98.2%;
standard deviation¼ 0.6.
DOI: 10.1371/journal.pgen.0020029.t001
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combining all features is that predictions become more
robust against mistakes in a single feature (e.g., incorrect
alignment or incorrect peptide length). In such cases, other
features can still contribute enough to the overall score and
lead to correct predictions. For example, since our positive
samples were taken from mRNAs that code for proteins in the
Swiss-Prot database, it is trivial for them to find homologs in
the databases. Consequently, SVMs using protein alignment
alone are likely to perform worse on novel transcripts than
on the well-defined datasets used to develop the SVM. In
contrast, SVMs based on additional input features are likely
to suffer less from this imbalance because they also rely on
other signatures. Additionally, incorporating nucleotide
frequencies (single nucleotide, dinucleotide, and triplet) into
the multi-feature SVM slightly improved performance (about
one percentage point) over the SVM with only protein-
derived features.

Most Predictions Were Very Reliable
Prediction specificity and SVM output scores were highly

correlated: the further the raw score was away from the SVM
decision boundary (score ¼ 0), the more accurate the
prediction (Figure 3A). For the extreme ends of the score
range, i.e., greater than 0.5 (coding) or less than �1 (non-
coding), specificity exceeded 96%. As scores approached zero,
specificity dropped sharply to about 50%, i.e., to levels
reminiscent of random predictions. Therefore, the SVM
output score is likely to be a good indicator for the reliability
of novel predictions. Most predictions in our cross-validation
tests fell into the region of high reliability (Figure 3A, solid
line). Of all 5,601 positive samples in our dataset, 94% had
output scores greater than 0.5, and 79% of the negative
samples had a score less than �1 (Figure 3B). The score
distribution was similar for random DNAs: the vast majority
were reliably predicted as non-coding (Figure 3A).
We inspected a few cases for which CONC was very wrong

indeed, i.e., ncRNAs with high scores and protein-coding
sequences with very low scores. In many of the ncRNA cases,
the experimental evidence for non-coding was ambiguous.

Figure 3. Distribution and Reliability of SVM Scores

(A) The gray shading indicates prediction accuracy as a function of SVM
score (left y-axis). Predictions are most accurate (.96%) when SVM scores
are 0.5 or higher (for coding) or lower than �1 (for non-coding). Also
shown are the score distributions (right y-axis) of three datasets: the
training/testing set, random DNAs, and FANTOM3 transcripts. The solid
vertical line in the middle indicates the SVM decision boundary (score¼0).
(B) Most SVM predictions for the training/testing set are in the high
specificity range. FANTOM3 transcripts have a slightly larger fraction of
low accuracy predictions.
DOI: 10.1371/journal.pgen.0020029.g003

Figure 2. Performance of CONC with Different Input Features

F-measures (harmonic mean of specificity and sensitivity; see Materials
and Methods) were calculated for different SVMs for both the coding (A)
and non-coding (B) predictions. Since the coding set was twice as big as
the non-coding set, the percentage of incorrect predictions was bigger
for the non-coding set, hence the smaller F-measures. When used
individually, input features achieved F-measures of 67.6 to 90.9 on the
non-coding set. Combining the features improved the performance to
97.4 for coding and 94.5 for non-coding. In comparison, ESTScan
received F-measures of 86.7 and 69.9 for coding and non-coding
predictions, respectively. The top-performing features were number of
homologs in the protein database and peptide length.
DOI: 10.1371/journal.pgen.0020029.g002

PLoS Genetics | www.plosgenetics.org April 2006 | Volume 2 | Issue 4 | e290532

Distinguishing Protein-Coding from Non-Coding RNA



For example, human transcript ST7OT3 is part of a complex
multi-transcript system at the RAY1/ST7 locus. This locus
contains two non-coding sense strand genes (ST7OT3 and
ST7OT4) that overlap with many alternative forms of the
coding RAY1/ST7 transcript, and two non-coding genes on
the antisense strand (ST7OT1 and ST7OT2) [33]. Although
there was no explicit evidence that ST7OT3 is protein-coding,
the authors suggested it was possible. Another transcript
from this locus was also annotated as non-coding in RNAdb
(RNAdb ID LIT2007). However, according to GenBank’s
annotation, it seems that it is coding for ST7 isoform A, i.e.,
this may more likely be an example of a possible misanno-
tation in RNAdb than of a serious mistake in our method.
Another example was ncRNA u1056 from NONCODE. This
7,291-nucleotide-long DNA encodes a partial coding se-
quence of the human DISC1 protein-coding gene and DISC2
ncRNA gene since it is the flanking region of the chromosome
translocation breaking point associated with schizophrenia
[34]. This is certainly not an example that the SVMs can learn!
Most of the coding RNAs with very confident non-coding
scores were very short proteins. The average protein length of
the top ten mispredicted coding RNAs was 41 amino acids.
Additionally, these short proteins had very few database
homologs. They are likely to be the most difficult samples for
any ncRNA classifiers. Some of the incorrectly predicted
coding cDNAs encode proteins that are annotated as ‘‘hypo-
thetical protein’’ in Swiss-Prot, i.e., they may not be coding
after all. Overall, this detailed analysis appears to indicate
that our estimates might be too conservative. However, the
few cases for which we could analyze what appeared to be bad
mistakes due to related experimental work did not suffice to
make any general statement. Nevertheless, this detailed
analysis did clearly underline the importance of the output
score as a measure for prediction reliability.

The performance might not appear dramatically different
between multi- and single-feature SVMs. However, the most
important advantage of using multiple features became
apparent when we tried to identify reliable output scores in
single-feature-based predictions: we could not (Figure S1). In
other words, there would have been no way to identify any
subset of reliable ncRNA predictions in the FANTOM3
dataset had we only used single-feature SVMs.

Mammalian ncRNAs Were More Difficult to Predict than
Non-Mammalian

We trained SVMs on three different datasets of ncRNAs.
The first dataset was 778 experimentally documented

mammalian ncRNAs from RNAdb. The cross-validated SVM
for this set identified 99% of the known protein-coding
RNAs, while 14% of the ncRNAs were incorrectly predicted
as coding (Table S1). When the SVM trained on this set was
applied to the classification of eukaryotic ncRNAs from
NONCODE and a set of randomly generated DNAs, the
fractions of incorrect predictions were 8% and 9%, respec-
tively (Table 2). We used random DNAs to assess the ability of
the SVM to extract useful features that distinguish signals
from random background noise. Our second training set
comprised eukaryotic ncRNAs from NONCODE (set NON-
CODE-E). Cross-validation indicated a similar performance
for predicting mRNAs, but a considerably lower false
prediction rate for ncRNAs of around 5%. When this SVM
was applied to the RNAdb set and random DNAs the error
rates were 10% and 7%, respectively (Table 2).
The best SVM was trained on the ncRNAs from both

RNAdb and NONCODE-E. This set included 1,158 mamma-
lian ncRNAs and 1,512 non-mammalian eukaryotic ncRNAs.
The specificity and sensitivity for the coding RNAs were
similar to those for the other sets. However, the sensitivity for
ncRNAs was notably higher when the SVM trained on this set
was tested on RNAdb, NONCODE-NE (prokaryotic and
archaean ncRNAs from NONCODE), and random DNAs
(Table 2). A detailed analysis of the 166 incorrect predictions
showed that 102 (61%) were from mammals and the
remaining 64 from non-mammalian eukaryotes. The differ-
ence in performance indicated that the mammalian ncRNAs
in RNAdb differed from those in NONCODE-E. On the other
hand, SVMs trained on the combination of RNAdb and
NONCODE-E appeared to capture the general features of
ncRNAs, and performed well on all datasets, even on from
NONCODE-NE. This was further confirmed by the high
accuracy on Rfam (Table 2), which mostly contains rRNAs
and tRNAs that are not included in RNAdb and NONCODE
and which served therefore as a means of independent
evaluation for the performance.

ncRNA Predictions for FANTOM3
We applied CONC to 102,801 transcripts from the

FANTOM3 project. Fourteen transcripts were shorter than
80 nucleotides. Since this was the threshold we used for our
training, we automatically classified those 14 as non-coding.
Of the remaining 102,787 transcripts, CONC predicted
28,316 to be non-coding. However, the fraction of highly
reliable predictions was lower than that for our cross-

Table 2. ncRNA False Prediction Rates for Different Datasets

Negative Part of the

Training Set

False Prediction Rates for Testing ncRNA Sets

NONCODE-Ea NONCODE-NEb RNAdb Rfam Random DNA

NONCODE-E 0.0% 4.1% 9.9% 8.7% 7.3%

RNAdb 7.7% 9.1% 0.1% 28.4% 8.8%

NONCODE-E and RNAdb 0.3% 3.8% 6.4% 7.7% 8.2%

SVMs trained on the ncRNA datasets listed in the first column and a common positive coding RNA set were tested on the datasets listed in the other columns. The SVM parameters were
tuned so that all three SVMs predicted same number of coding RNAs for the positive set during cross-validation, i.e., the same sensitivity for coding prediction. The false prediction rate
was defined as the percentage of ncRNAs in the datasets that were predicted as coding, e.g., 9.9% of ncRNAs were predicted incorrectly as coding when the SVM was trained on
NONCODE-E and tested on RNAdb.
aEukaryotic ncRNAs from the NONCODE database.
bProkaryotic and archaean ncRNAs from the NONCODE database.
DOI: 10.1371/journal.pgen.0020029.t002
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validation set. The SVM output scores were in the reliable
region of less than�1 for 13,873 transcripts (13.5%); another
14,443 (14.0%) were predicted as non-coding with lower
confidence (Figure 3B). Our ncRNA predictions were in
general agreement with FANTOM39s non-coding annotation
[7], most of which was done by using consensus from several
previously developed computational methods. Of the 28,316
transcripts that we predicted as ncRNAs, 22,918 (80.9%) were
annotated as non-coding. Among our confident predictions,
2,348 were not annotated as non-coding by the FANTOM
consortium. This would be the most interesting set for
experimental verification. The correlation between SVM
scores and prediction accuracy provided an alternative
means for estimating the number of non-coding cDNAs in
the FANTOM3 dataset. More precisely, we could estimate the
number of non-coding cDNAs based upon the correlation
and the score distribution of the data. For example, if we
knew that 1,000 samples scored between �0.7 and �0.6 and
that 79% of the predictions were correct in this range, the
number of ncRNAs and coding RNAs would be approx-
imately 790 and 210, respectively. Based on this approach, we
estimate the FANTOM3 dataset to contain 27,787 ncRNAs. By
the same logic, we estimate that while most of these ncRNAs
are in our set of ncRNA predictions, approximately 2,834 of
them are likely in our set of protein-coding predictions.

Throughout the three FANTOM projects the importance
of ncRNAs has become increasingly obvious, in particular for
mammalian genomes. In parallel, detection methods have
evolved. FANTOM3 topped the state of the art by combining
many prediction methods through linear averaging (M. C.
Frith, T. L. Bailey, T. Kasukawa, F. Mignone, S. K. Kummer-
feld, et al., unpublished data). Here, we demonstrated that
combining different protein features in SVMs improves
performance significantly over single-feature SVMs. SVMs
are an excellent framework for the efficient incorporation of
different features; in fact, they are far more successful in
accomplishing this than simple linear averages would be.
Sometimes SVMs trained on different features are needed in
different situations. For example, if the orientation of the
input RNA is not clear, it may be better to use an SVM
trained on protein features from all six frames (both forward
and reverse). For FANTOM3 transcripts, orientation errors
were rare; therefore, SVMs trained only on three forward
frames identified 2,000 more ncRNAs than those trained on
six frames. Presumably, most of these were antisense ncRNAs
that were predicted as coding on the reverse frames. SVMs
trained on protein alignment information are inevitably
biased toward the known proteins. For predicting novel
transcripts unrelated to known proteins it may therefore be
advisable to avoid this bias by using SVMs trained without
protein alignment features.

Conclusions
We used a comprehensive collection of datasets for the

evaluation of methods that distinguish between protein-
coding RNAs and ncRNAs. Most of these data became
available only recently. They were essential in the develop-
ment of a novel prediction method that distinguishes
between mRNA and ncRNA. Our method was essentially
based on the assumption that features that capture general
characteristics of native proteins will help considerably in
this distinction task. We used SVMs to combine many
relevant features that we chose initially largely by intuition

rather than by optimization. The performance of our method
appears to be significantly better than that of simpler
methods. This suggests that our initial hypothesis about the
value of protein-related features was largely correct. Per-
formance may be further improved by incorporating other
features into the SVM, such as output from ESTScan and
other methods. The major strength of our multi-feature SVM
is that it enabled the solution of two different tasks: (1) the
annotation of the most reliable subset of ncRNAs in the
FANTOM3 data (14,000), i.e., those that are most likely to be
confirmed by more detailed, experimental follow-up studies,
and (2) the estimation of the number of ncRNAs in the
FANTOM3 set (28,000). The second task is very different from
the first because our estimates for performance can be
translated into estimated numbers but we cannot pinpoint
exactly which 28,000 transcripts are indeed non-coding.

Materials and Methods

The dataset. For protein-coding RNA, we first selected all
eukaryotic proteins in the Swiss-Prot [35] database, and then removed
sequence redundancy so that no protein pair in the set had a
sequence similarity above an HSSP value of zero. The HSSP curve
[36,37] relates alignment length to pairwise sequence identity or
similarity; for alignments of 100 residues, HSSP ¼ 0 corresponds to
33% pairwise sequence identity, and for alignments longer than 250
residues it corresponds to about 20%. cDNAs for these proteins were
extracted from GenBank [38]. Potential sequence redundancy at the
DNA level was further removed by running NCBI BLASTCLUST [39]
with the ‘‘–L 0.7’’ option so that no sequence pairs were similar over
70% or more of their full length. Our final coding DNA set (positive
set) contained 5,610 coding cDNAs.

Three eukaryotic ncRNA sets were used in this study as the
negative set for training and testing: one from RNAdb [19], one from
NONCODE [20] (named NONCODE-E), and the combination of the
two. In all cases, sequences shorter than 80 nucleotides were excluded
since potential translation products from these RNAs were too short
for meaningful protein sequence alignments and secondary structure
predictions. Sequence redundancy was removed in the same way as
for the coding RNAs using BLASTCLUST. The final number of
ncRNAs was 778 in the RNAdb set, 2,178 in the NONCODE-E set, and
2,670 in the combination set. We also tested our SVMs on three
additional negative sets although they were not used during training.
The Rfam set contained 29,009 nonredundant ncRNAs longer than 80
nucleotides from the Rfam database [18], the ‘‘random DNA’’ set
included 2,000 randomly generated DNAs with length ranging from
80 to 3,000 nucleotides, and the NONCODE-NE (non-eukaryotes) set
had 683 ncRNAs from prokaryotes and archaebacteria.

Feature extraction and SVM training. SVMs [21] are machine
learning systems based on recent advances in statistical learning
theory. In our study, we used SVMlight [40], a publicly available
implementation of SVMs. The input features to the SVMs were the
protein properties of potential peptides from RNAs. Specifically,
each input RNA was translated into the three forward reading frames;
the properties of the longest potential peptide from each frame were
encoded into variables ranging from zero to one and were input to
the SVMs. The following properties were used: (1) peptide length
(four variables for length intervals of 20, 40, 80, and longer than 80
amino acids), (2) amino acid composition (20 variables), (3) average
hydrophobicity [41] (one variable), (4) secondary structure content
(percentage of residues in secondary structure classes helix, strand,
and other as predicted by PROFsec [28–30]; three variables), (5)
percentage of residues exposed to solvent as predicted by PROFacc
[28–30] (one variable), (6) sequence compositional entropy [31]
describing sequence complexity (one variable), (7) number of
homologs from database searches using PSI-BLAST [42] against an
in-house protein database (similar to NCBI’s nr database) for four
iterations with an E-value threshold of one (one variable), and (8)
alignment entropy (the relative entropy between the observed
fractions of amino acids and the respective background probabilities
calculated for each position in the multiple alignment and averaged
over the full length of the sequence; one variable).

In addition to these protein features, the frequencies of mono-, di-,
and trinucleotides were also calculated for the entire input RNA and
used as SVM inputs (84 variables). The total number of input
variables was 180. These features were selected based on their
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distinguishing power when used alone in the SVMs. The SVMs were
trained using the radial basis function kernel. The g parameter for the
radial basis function kernel and the C parameter for the trade-off
between training error and margin were determined by optimizing
on a small subset of the training data. Cost factor j was set as the ratio
between the number of negative training samples and the number of
positive samples. The predictions from the SVMs were quite robust
with regard to changes in kernel parameters (Figure S2). The largest
feature weights determined by the SVMs are reported in Table S2.

Evaluation of performance.We tested the performance of our SVM
classifiers via 10-fold cross-validation experiments. The dataset
(coding plus non-coding) was randomly divided into ten equal-sized
subsets. During each test, a SVM was trained on nine subsets and
tested on the tenth one. This procedure was repeated ten times so
that each subset was used as the test set exactly once. Performance
was measured for each test, and the mean was reported. We also
tested our method via 3-fold, 5-fold, 20-fold, and 50-fold cross-
validation, and the results were virtually identical. The xi-alpha and
leave-one-out estimates of the generalized error are reported in
Figure S3.

Several measures were used to evaluate the performance of the
SVMs. All of themwere derived from the numbers of true positives (TP;
coding RNApredicted as coding), false positives (FP; ncRNApredicted
as coding), true negatives (TN; ncRNA predicted as non-coding), and
false negatives (FN; coding RNA predicted as non-coding):

specificity ¼ TP=ðTPþ FPÞ ð1Þ

sensitivity ¼ TP=ðTPþ FNÞ ð2Þ

F ¼ 23 specificity3 sensitivity
specificityþ sensitivity

ð3Þ

Specificity (also known to as accuracy or precision; Equation 1) and
sensitivity (also known as coverage or recall; Equation 2) are the most
commonly used measures. The harmonic mean of these two numbers
(Equation 3), known as the F-measure [43], is often used as a single-
value performance benchmark. Since both prediction categories
(coding and non-coding) are of interest and the sizes of the two
classes differ significantly, measuring performance for only one class
is sometimes misleading and fails to capture the full picture;
therefore, we reported the prediction performance for both classes
in this study.

We also evaluated the SVMs using ROC curves [32]. SVM output
scores were first sorted, and then the rate of true and false positives
was calculated by setting the threshold to each score in the list. ROC
curves plot the true positive rate as a function of the false positive
rate. The area under the ROC curve (the ROC score) is the average
sensitivity over all possible specificity values, which can be used as a
metric for prediction performance over different thresholds. A
totally random predictor will produce a curve around the diagonal
line from bottom left to top right and will receive a score of about 0.5,
while a perfect predictor will produce a curve along the left and top
boundary of the square and will receive a score of one.

We compared our SVM with a naı̈ve Bayes classifier downloaded
from http://fuzzy.cs.uni-magdeburg.de/;borgelt/bayes.html. The naı̈ve
Bayes classifier was trained with default parameters using exactly the
same input features and encoding as our SVM, and evaluated via the
same 10-fold cross-validation procedure.

Supporting Information

Figure S1. Prediction Reliability for Single-Feature and Multi-Feature
SVMs

For SVMs trained on all features (bottom right panel), there is a clear
correlation between SVM output score and prediction accuracy:

predictions are more accurate when the scores are further from the
decision boundary (score ¼ 0). For SVMs trained on single features
(top panels), and to a lesser extent the one trained on two features
(bottom left), there is little correlation, i.e., prediction accuracy can
be very poor even when the SVM score is very far from zero.

Found at DOI: 10.1371/journal.pgen.0020029.sg001 (398 KB TIF).

Figure S2. SVM Parameter Optimization

(A) Performance of the SVMs for different values of g in the radial basis
function kernel when other parameters were fixed (C¼16; j¼0.5).
(B) Performance of the SVMs for different values of C (trade-off
between training error and margin) when other parameters were
fixed (g ¼ 1; j ¼ 0.5).

Found at DOI: 10.1371/journal.pgen.0020029.sg002 (215 KB TIF).

Figure S3. SVM Error Estimates Provided by SVMlight

For each cross-validation run, the xi-alpha estimate (a pessimistically
biased estimator) and the leave-one-out estimate of the generalized
error were obtained from SVMlight output after the training. The
leave-one-out estimate was similar to our reported error for 10-fold
cross-validation.

Found at DOI: 10.1371/journal.pgen.0020029.sg003 (118 KB TIF).

Table S1. Cross-Validation Performance of SVMs Trained on Differ-
ent ncRNA Sets

Found at DOI: 10.1371/journal.pgen.0020029.st001 (10 KB PDF).

Table S2. Feature Weights Determined by the SVM

Found at DOI: 10.1371/journal.pgen.0020029.st002 (12 KB PDF).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
ber for human ST7OT3 mRNA is AF400044, and the RNAdb (http://
research.imb.uq.edu.au/rnadb) ID is LIT1900. The GenBank accession
number for u1056 is AF222983. The GenBank accession number for
LIT2007 is NM_018412.
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