
To assess decadal forecasts it is necessary to identify to what extent regional changes  

are due to natural climate variations, and are thus transitory, and to what extent they  

are due to anthropogenic forcing, and are likely to continue. 

M
OTIVATION. An ambitious effort to produce 

experimental near-term decadal forecasts has 

begun, motivated by the possibility that the 

climate models used for climate change projections 

can capture not only the impact of the changing 

atmospheric composition but also the evolution of 

slow natural variations of the climate system when 

initialized with ocean observations. In the cases 

where initialization improves the forecast, addressing 

the question of how much of that improvement is due 

to the natural versus the forced climate components 

is important to understanding the benefits of the 

initialization. Untangling the natural and forced 

components of the climate is necessary because the 

response to external forcing may project onto or com-

ingle with natural climate variability. As the science 

of decadal prediction is in its infancy, one would like 

to assess and understand the following:

1) the expectations for added regional climate in-

formation and skill achievable from initialized 

decadal predictions;

2) what physical processes or modes of variability 

are important for the decadal predictability and 

prediction problem, and whether their relevance 

may evolve and change with time;

3) what elements of the observing system are im-

portant for initializing and verifying decadal 

predictions; and

4) in terms of attribution, to what extent are regional 

changes in the current climate due to natural cli-

mate variations and thus transitory, and to what 

extent are they due to anthropogenic forcing and 

thus likely to continue.

As with the preceding decade, the climate evolu-

tion in the near term will be a combination of forced 
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climate change and natural variability. As an ex-

ample, consider the prolonged drought conditions of 

the American West since the late 1990s. Most of the 

twenty-first-century climate change projections used 

in the Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4) suggest 

that this region will become drier as precipitation 

decreases and evaporative demand increases with 

future warmer temperatures (Seager et al. 2007). 

However, since dry conditions in this part of the 

world are also associated with natural interannual-

to-decadal variability in sea surface temperatures in 

both the Atlantic and the Pacific basins (e.g. McCabe 

et al. 2004; Seager et al. 2005; Schubert et al. 2009) 

and appear to have occurred before the twentieth 

century (see Jansen et al. 2007), how much of the re-

cent drought can be attributed to natural variability 

and how much can be attributed to ongoing climate 

change? An answer to this question could greatly 

aid western water resource managers in developing 

informed adaptation strategies.

The purpose of this paper is to describe existing 

methodologies to separate decadal natural variability 

from anthropogenically forced variability, the degree 

to which those efforts have succeeded, and the ways 

in which the methods are limited or challenged by 

existing data. Note that the separation of decadal 

natural variability from anthropogenically forced 

variability goes beyond what has already been ac-

complished in previous studies that focused primar-

ily on the detection of a long-term anthropogenic 

signal (Hegerl et al. 2007b) because on decadal time 

scales anthropogenic effects may be nonmonotonic, 

regionally dependent, and/or convolved with natural 

variability.

The World Climate Research Programme (WCRP) 

is coordinating a set of decadal prediction experiments 

(Taylor et al. 2008; Meehl et al. 2009a) that are being 

conducted by modeling centers around the world. It 

must be clearly emphasized that these are prelimi-

nary experiments to assess the current feasibility of 

decadal predictions. The approaches for separating 

natural and forced variability discussed in this paper, 

presented with their benefits and limitations, are in-

tended to serve as a starting point from which these 

decadal prediction experiments can be assessed and 

from which the processes and potential predictability 

of decadal variations can be better understood.

PHYSICAL PROCESSES INVOLVED WITH 

DECADAL TIME SCALES IN THE CLIMATE 

SYSTEM. To assess naturally occurring decadal 

variability in the climate system and the ability of 

models to simulate and forecast it, one must identify 

the relevant physical processes. Most studies point to 

oceanic mechanisms as central to climate memory, 

particularly those related to reservoirs of ocean heat 

or slowly evolving circulation and their interaction 

with the atmospheric variability. For example, in 

midlatitudes sea surface temperatures (SSTs) are well 

described by the stochastic climate model paradigm 

(Frankignoul and Hasselmann 1977), where random 

atmospheric surface forcing with a “white noise” 

spectrum, or equivalent power at all frequencies, 

is integrated by the ocean mixed layer to produce a 

“red noise” spectrum, in which power is amplified 

at lower frequencies [see Deser et al. (2010a) for a 

review]. Additionally, a number of ocean processes 

(e.g., overturning and gyre circulations, the trigger-

ing of Rossby waves, and advection of temperature/

salinity anomalies by the mean currents) are potential 

candidates that may provide additional predictabil-

ity by influencing atmospheric and thus terrestrial 

variability.
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One example of poten-

tially predictable natural 

climate variability is that 

produced by wind-forced 

extratropical ocean Rossby 

waves that propagate across 

an ocean basin and create 

thermocline anomalies 

near the western boundary. 

These signals in the ocean 

are then communicated 

to the surface through 

wintertime heat fluxes and 

wind stress. Schneider and 

Miller (2001) demonstrate 

that such a process in the 

North Pacif ic can yield 

predictable wintert ime 

SST anomalies in the Kuroshio–Oyashio Extension 

at lead times of up to 3 years. Decadal timescale vari-

ability in patterns of Pacific basin SSTs associated 

with the interdecadal Pacific oscillation (IPO; Power 

et al. 1999) has been connected to wind-forced ocean 

Rossby waves near 25°N and 25°S that are central 

to a mechanism that produces the IPO (White et al. 

2003; Meehl and Hu 2006; McGregor et al. 2007, 

2008). The IPO has subsequently been used as the 

basis for decadal predictions of Pacific SSTs and 

associated precipitation over North America and 

Australia in a perfect model study using a large 

ensemble of climate model simulations (Meehl et al. 

2010). Another example of a source of predictability 

may come from the shallow wind-driven meridional 

overturning ocean circulations called subtropical 

cells (STCs), which connect the subtropical atmo-

sphere to the equatorial region through the ocean in 

both the Atlantic and Pacific basins [see Schott et al. 

(2004) for a review]. STCs have been hypothesized 

to play a role in decadal climate variability by the 

advection of salinity/temperature anomalies along 

STC pathways to the equator (Gu and Philander 

1997; Yeager and Large 2004) or by changes in STC 

strength, which controls the amount of cold water 

that upwells at the equator, both in models (Kleeman 

et al. 1999; Solomon et al. 2003) and observations 

(McPhaden and Zhang 2002).

A potentially large source of predictability of 

natural climate variability on decadal time scales 

may also come from f luctuations in the Atlantic 

meridional overturning circulation (AMOC) (e.g., 

see Delworth and Mann 2000; Knight et al. 2005; 

Dijkstra et al. 2006; Zhang and Delworth 2006). This 

circulation plays a key role in climate by transporting 

warm upper-ocean water northward in the Atlantic 

and releasing that heat to the atmosphere; the cooled 

water sinks and returns southward at depths below 

1000 m. The Atlantic shows evidence of multidecadal 

climate variations generally referred to as the Atlantic 

multidecadal oscillation (AMO; Enfield et al. 2001), 

with a basin-scale signature in SST. It has been hy-

pothesized that the multidecadal fluctuations in SST 

may be related to AMOC fluctuations. AMO-like SST 

fluctuations are found in many coupled models (e.g., 

Latif et al. 2006), and while different models seem to 

produce fluctuations for different reasons and with 

different time scales (see Fig. 1), all seem to involve a 

link to the AMOC. The presence of feedbacks linking 

AMOC, SST, and the atmospheric circulation opens 

up potential for predictability of decadal climate 

variability over land associated with predictability of 

AMOC variations (see Knight et al. 2006).

A principal assertion behind the decadal predic-

tion experiments is that initialization of decadal-

scale ocean processes, such as those mentioned 

above, will provide additional predictability beyond 

that due to the radiative forcing from increasing 

greenhouse gases. The extent to which this is true 

using the current generation of GCMs and data 

assimilation systems has yet to be determined, al-

though hindcast experiments appear promising (e.g., 

Smith et al. 2007). As described in the next section, 

several approaches have been proposed to separate 

natural from externally forced variability in order 

to highlight the added value of ocean initialization 

on predictions of the future or to help better un-

derstand or describe past trends and variability. To 

date, no superior approach exists; all have benefits 

and limitations.

FIG. 1. Strength of the AMOC at 30°N in a variety of 19 AR4 coupled models 

forced with observed greenhouse gas and aerosol forcing until 1999 and the 

Special Report on Emissions Scenarios (SRES) A1B scenario of greenhouse 

gas forcing after 1999. Bars on the left show various observational estimates. 

From Meehl et al. (2007).
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APPROACHES TO SEPARATE NATU-

RAL INTERNAL VARIABILITY FROM AN-

THROPOGENICALLY FORCED DECADAL 

VARIATIONS. Analysis of initialized decadal predic-

tion studies. Natural and forced variability may be 

separated to a certain extent by comparing parallel sets 

of initialized and uninitialized hindcast experiments 

made with the same climate model (Smith et al. 2007; 

Keenlyside et al. 2008; Pohlmann et al. 2009). If all 

external forcing (i.e., from anthropogenic greenhouse 

gases and aerosols, solar irradiance, and volcanic 

eruptions) is identical, then differences between the 

two sets of hindcasts arise purely from initialization. 

Since natural internal variability can only be pre-

dicted by starting from its correct phase, improved 

skill in initialized over uninitialized hindcasts may 

indicate skillful prediction of some aspects of natu-

ral variability. However, improved skill in initialized 

hindcasts may also arise from removing biases that ex-

ist in uninitialized climate models forced by observed 

changes in external forcing and that may be smaller 

at the start of initialized decadal predictions. This 

source of additional skill is potentially important for 

improving predictions of climate change commitment 

or short-term response to volcanic eruptions, but it 

would need to be taken into account in any attempt 

to separate natural and forced variability.

There are also other issues to be considered when 

analyzing decadal hindcasts. Climate models cannot be 

initialized perfectly with incomplete observations. This 

usually leads to an initialization shock, during which 

the model rapidly adjusts to imbalances introduced 

by imperfect initialization, causing a degradation of 

forecast skill that could mask any signals from natural 

variability. It is also possible that unrealistic model 

responses to imperfectly estimated initial conditions 

(Acero-Schertzer et al. 1997; Ji et al. 2000; Masina 

et al. 2001) could lead to apparent hindcast skill that 

could be incorrectly attributed to natural variability. 

For example, in initialized hindcasts of the mid-1990s 

warming of the North Atlantic subpolar gyre, J. Robson 

et al. (2009, unpublished manuscript) found that skill 

was due to errors in assimilated density anomalies. 

Furthermore, initializing and assessing decadal 

hindcasts is severely hampered by the sparseness of 

historical subsurface ocean observations. For example, 

natural variations of the Atlantic AMOC are predict-

able in idealized model experiments (Collins et al. 

2006), but our ability to confirm such predictability in 

reality is compromised by the lack of historical ocean 

observations. Ultimately these issues must be overcome 

in order to capitalize on the predictability from the 

natural variability to improve decadal forecasts.

Analysis of model ensemble means and variance. A 

large ensemble of climate simulations can be used 

to separate the model response to external forcing 

from the variations that are internal to the system. 

The former is referred to as external variability, while 

the latter is referred to as internal or the natural 

climate variability. The approach described closely 

follows a similar approach used in seasonal climate 

predictions, where seasonal atmospheric variability 

is decomposed into external variability because of 

SST and internal variability due to atmospheric pro-

cesses alone (e.g. Kumar and Hoerling 1995; Rowell 

et al. 1995).

For coupled general circulation models (CGCMs) 

used in climate change projections, in which the 

ocean has not been initialized, the mean over an 

ensemble of CGCM simulations is the least biased 

estimate of the response of the model to the specified 

time evolution of external forcings (e.g., CO
2
, solar 

variability, volcanic aerosols). The departure in each 

climate simulation from the ensemble mean then pro-

vides an estimate of the model’s internal variability 

due to natural fluctuations. This approach can be ap-

plied to any time average extending from seasonal to 

annual to decadal. However, for longer time averages, 

the removal of weather or climate noise by ensemble 

averaging is more effective.

For large enough ensembles with specified ex-

ternal forcing, this approach also allows for the 

investigation of how external forcing may project 

onto dominant modes of internal variability. In one 

example, a 40-member ensemble of CGCM integra-

tions with changing atmospheric composition and 

ozone recovery for the period 2005–60 was compared 

to a long (10,000 yr) unforced control run of the atmo-

spheric model component with a specified repeating 

annual cycle of sea surface temperatures and sea ice 

conditions (Deser et al. 2011). The ensemble mean at-

mospheric circulation trend, interpreted as the forced 

response, exhibits a statistically significant weaken-

ing of the Southern Hemisphere polar vortex during 

austral summer (positive sea level pressure trends at 

high latitudes and negative ones at middle latitudes; 

Fig. 2, left panel). The spread of the response among 

the individual ensemble members, or intraensemble 

noise, is also characterized by an annular pattern 

reminiscent of the forced response (Fig. 2, middle 

panel). Further, the pattern of the noise closely resem-

bles the leading EOF from the unforced atmospheric 

model control run (Fig. 2, right panel). This study 

illustrates that the pattern of the forced response may 

have similar structure to the natural variability in the 

model, as also noted by Meehl et al. (2009b) for the 
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climate shift that occurred 

in the Pacific in the mid-

1970s. These results further 

demonstrate that externally 

forced multidecadal trends 

of some variables can be 

subject to large uncertain-

ties owing to noise, thus 

requiring analysis of very 

large ensembles.

This approach to sep-

arating the natural and 

externally forced variabil-

ity, based on ensembles of 

climate simulations, is a 

conceptually simple meth-

odology in its formulation. 

The approach, however, 

also has some limitations, 

including the fact that es-

timates of internal and ex-

ternally forced variability 

are model dependent. On 

the other hand, based on 

an analysis of simulations 

from multiple CGCMs and 

a comparison of total vari-

ability against the observed estimates, some confi-

dence in the model-based estimates can be gained. 

However, the approach, by construction, requires a 

large ensemble of simulations and can be computa-

tionally taxing. For example, existing model archives 

used in the third phase of the Coupled Model Inter-

comparison Project (CMIP3) generally do not have 

large enough ensembles from individual models for 

this approach to be viable.

Signal-to-noise maximizing EOFs. The signal-to-noise 

(S/N) maximizing EOF analysis is an effective meth-

od to distinguish between externally forced climate 

responses, which are common to all ensemble mem-

bers, and natural internal climate variability. This 

approach can be used with small ensembles and can 

be used when the signal due to external forcing is on 

the order of, or weaker than, the internal variability 

in the model.

In signal-to-noise maximizing EOFs, the predict-

able patterns in ensemble prediction experiments are 

sought by calculating the dominant patterns (EOFs) 

of the covariance matrix of the ensemble-average 

output (e.g., Seager at al. 2008). In large ensembles, 

internal variability of each ensemble member 

largely cancels out in the ensemble mean, leaving the 

externally forced signal. In a small ensemble, say, of 

the size envisioned in the Fifth Assessment Report 

(AR5) decadal prediction experiments, the intra-

ensemble noise due to energetic internal variability 

with coherent spatial structure will impact the EOFs 

of the ensemble mean and may make it difficult to 

distinguish between the patterns of signal and noise. 

To overcome this problem, a spatial prewhitening 

transformation is applied to the ensemble mean data 

to remove the spatial correlations from the noise 

structures and thus remove the impact of the climate 

noise on the ensemble mean (see Allen and Smith 

1997; Venzke et al. 1999; Chang et al. 2000). This 

analysis is equivalent to identifying the predictable 

components that maximize the average signal-to-

noise ratio (see DelSole and Tippett 2008).

Ting et al. (2009) applied S/N maximizing EOFs 

to twentieth-century SST variability over the North 

Atlantic basin to distinguish natural variability [in 

particular, Atlantic multidecadal variability (AMV)] 

from the externally forced signal in six small CMIP3 

ensembles performed with several different CGCMs. 

The results exhibited a cleaner and better between-

model agreement of the global forced signal than 

using a simple ensemble mean temperature. The 

estimate of the forced signal can then be subtracted 

FIG. 2. Projected November–February sea level pressure trends during 

2005–60 over the Southern Hemisphere. (top left) Forced 40-member 

coupled model ensemble mean. (top middle) Leading EOF of the deviation 

of each coupled model ensemble member’s trend from the coupled model 

ensemble mean trend. (top right) Leading EOF of a 178-member ensemble of 

56-yr trends from a 10,000-yr atmospheric model control integration. (bottom 

left) PDF of the trends in the index of the southern annular mode from each 

coupled model ensemble member (red bars) and from each atmospheric 

control member (gray). (bottom right) As at bottom left, but the coupled 

model ensemble mean trend has been removed from each individual coupled 

model ensemble member. From Deser et al. (2011).
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to determine the pattern of internal interdecadal 

variability in the observed (and modeled) North 

Atlantic SST (see Fig. 3). This yields a much different 

impression of the magnitude of the AMV in the early 

twenty-first century than more subjective estimates 

of AMV [e.g., the departure from a linear trend, or 

from the global mean; see Enfield and Cid-Serrano 

(2010) or Ting et al. (2009) for a discussion].

While S/N EOF analysis can be useful for iden-

tifying a common signal in small ensembles of 

forced CGCM integrations, even in the presence of 

significant levels of climate noise, the method does 

have limitations in the context of decadal predictions. 

In particular, S/N maximizing EOFs would need an 

additional set of model simulations to separate infor-

mation on the patterns of externally forced variability 

from any predictable or persistent patterns related to 

the initial conditions, as the initialized signal would 

also be part of the output common to all ensemble 

members.

Linear inverse models. Linear inverse modeling (LIM) 

is an empirical technique to fit a multivariate red-

noise model to observations or model output. These 

models have been very successful in simulating ENSO 

variability and can reproduce the observed power 

spectrum on seasonal-to-interannual time scales 

of the dominant pattern of tropical SST variability 

(see Newman et al. 2009). Since LIM 

determines empirical, potentially 

nonorthogonal, dynamical modes, 

it is useful for identifying how these 

modes contribute to a physical phe-

nomenon. For example, LIM has been 

used to show that the Pacific decadal 

oscillation (PDO; Mantua et al. 1997) 

may not be a single physical mode but 

a superposition of a number of pro-

cesses with different dynamical ori-

gins (Newman et al. 2003; Schneider 

and Cornuelle 2005; Newman 2007). 

For example, LIM of Pacific basin 

SSTs finds that the “decadal ENSO” 

pattern with PDO signature in the 

North Pacific (Fig. 4c; e.g., Zhang 

et al. 1997; Deser et al. 2004) has a 

decay time that is far shorter than its 

period. As a result, little long-range 

forecast skill is associated with this 

eigenmode. Instead, predictability in 

this system on greater than interan-

nual time scales comes from the two 

leading stationary eigenmodes: a 

leading eigenmode with a 100-yr trend 

(Fig. 4a) and a second eigenmode 

(Fig. 4b) that has a pattern somewhat 

similar to the multidecadal signal 

found by Deser et al. (2004) (see also 

D’Arrigo et al. 2005). The combined 

effects of these two eigenmodes alone 

dominate the patterns of Pacific SST 

trend in this dataset over both the 

entire century and the last 50 years. In 

addition, LIM is useful for identifying 

optimal initial conditions that pro-

duce the largest variability in a linearly 

stable stochastically forced system. 

FIG. 3. (a) Projection of SST averaged in the North Atlantic basin 

onto the leading S/N maximizing principal component (PC) in each 

of the participating models [see list in figure and information in Ting 

et al. (2009)]. Each model PC is depicted by a different color, and the 

dashed line is the ensemble average. The observed SST average, sug-

gesting a superposition of a forced trend and internal, multidecadal 

variability, is shown with the solid black line. (b) The observed AMO 

index constructed by subtracting from the observed North Atlantic 

SST average the model estimates of the forced North Atlantic SST 

shown in (a). The black dashed line shows the forced response average 

across all six participating models. From Ting et al. (2009).
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Such initial conditions that 

would portend potential 

predictability have been 

identified for the North 

Atlantic (see Tziperman 

et al. 2008; Hawkins and 

Sutton 2009) and the tropi-

cal Pacific (see Penland and 

Sardeshmukh 1995).

As a consequence, the es-

timates of observed empiri-

cal modes from LIM can be 

used to assess the proper-

ties of empirical modes cal-

culated from model output. 

Also, by comparing LIM 

simulations with exter-

nal forcing to their corre-

sponding control runs, one 

can gain some insight into 

how dynamical modes may 

be impacted by external 

forcing. For example, com-

paring empirical modes 

estimated from the out-

put of twentieth-century 

simulations to empirical 

modes determined from 

both the corresponding 

control simulations and 

from observations indi-

cates that external forc-

ing substantially impacts 

the leading eigenmode 

(Fig. 5a). Moreover, the 

climate models might be underestimating the po-

tential predictability of natural variability since in 

virtually all of the twentieth-century simulations, the 

second eigenmode is not only poorly captured but is 

also much less persistent than in the observed LIM, 

for reasons that are presently not understood (e.g., 

Newman 2007) (Fig. 5b).

Application of detection/attribution studies. Climate 

change detection and attribution studies aim to 

isolate the anthropogenically forced component 

of the evolving climate. They generally use infor-

mation about the shape of the expected climate 

response to forcing (the “fingerprint”) and are 

targeted to isolating the role of these fingerprints 

in observed climate change as clearly as possible 

from internal climate variability. Often, this is done 

using signal separation techniques, such as “optimal 

fingerprints” or best linear unbiased estimators (see 

review in Hegerl et al. 2007b). For detection and at-

tribution, all relevant external influences on climate 

must be considered. The attribution methods then 

attempt, with uncertainty estimates, to identify the 

contribution of each external forcing factor to the 

observed change. The shape of the fingerprints is 

assumed known, and their magnitude is estimated, 

allowing the results to account for uncertainties, 

such as errors in a model’s sensitivity to a particular 

forcing or in the magnitude of external forcings in 

general.

The results from detection and attribution 

methods, however, go further. The best-guess and 

uncertainty ranges of the greenhouse gas contribu-

tion in the observed temperature changes can be 

used directly to predict future changes (Stott and 

Kettleborough 2002) and have been used, among 

FIG. 4. (left) Leading empirical eigenmodes and (right) their corresponding 

time series from the LIM of annual-mean HadISST SST anomalies. The LIM 

is constructed as in Newman (2007), except that the EOF basis is determined 

over the entire Pacific domain (20°S–60°N); the leading 12 PCs are retained, 

explaining 92% of the variance in both the tropics and in the North Pacific, 

unlike in Newman (2007), where less than two-thirds of the North Pacific 

variance was retained. Contour interval is the same in all panels but is arbi-

trary. Red (blue) shading indicates positive (negative) values; zero contour 

is removed for clarity. (a) Leading eigenmode, stationary with decay time of 

13 yr. (b) Second eigenmode, stationary with decay time of 6.4 yr. (c) Most 

energetic phase of third (“decadal ENSO”) eigenmode, propagating with a 

period of 16 yr and decay time of 2.1 yr.
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other methods, to provide uncertainty ranges for 

future climate change in the IPCC assessment (Knutti 

et al. 2008). Lee et al. (2006) demonstrated that over 

a large part of the twentieth century, the forced 

component, determined by optimal fingerprints, can 

produce skillful hindcasts of decadal global tempera-

ture variability.

The success of fingerprint methods in separating 

different factors influencing climate suggests that 

they may also be useful in separating the influence 

of initial conditions from those of external forcing, 

thus allowing us to trace where the initial conditions 

have made significant differences in hindcasts and 

how long this influence has lasted. The fifth phase of 

the CMIP (CMIP5) simulations will provide a useful 

test bed for such an extension of the detection and 

attribution method.

However, when it comes to applying such ap-

proaches on regional scales and to variables other 

than temperature, a number of difficulties loom. 

One important shortcoming is that on smaller than 

continental scales, the uncertainty in forcings other 

than greenhouse gases is large; the exact time–space 

pattern of aerosols, land use change, and other forc-

ings is often poorly known and poorly represented 

in models. This would hamper the ability to reliably 

attribute successes and failures in regional hindcasts 

to particular causes. When applying this approach 

to variables other than temperature, the difficulties 

increase. Only recently, for example, has the effect 

of anthropogenic forcing on precipitation been 

formally detected (Zhang et al. 2007). However, the 

multimodel fingerprint produces smaller changes 

in zonally averaged precipitation than observed, 

indicating that the understanding and simulation of 

precipitation variability is still limited.

CHALLENGES. Interaction between natural and 

externally forced variability. As discussed earlier, the 

response to external forcing may resemble the natu-

ral modes of variability on regional and hemispheric 

scales. This was seen to be the case in the modeling 

study of Meehl et al. (2009b), where natural and 

externally forced patterns of variability with similar 

structure contributed to the mid-1970s climate shift 

over the Pacific basin, from relatively cool to relatively 

warm conditions along the equator. Indeed, they 

argued that an anthropogenically forced shift would 

have occurred in the 1960s if it were not for the 

presence of large-amplitude natural variations that 

delayed the shift into the 1970s.

Just how external forcing interacts with natural 

modes of variability remains an important but un-

resolved issue. The process may be fundamentally 

linear with external forcing selecting certain natural 

internal modes because of their inherent time scales 

and spatial structures, or nonlinear where the impact 

of the external forcing on the modes of variability 

has a net effect on the long-term trend signal (e.g., 

see Branstator and Selten 2009). In the linear case, 

the forcing and the response may not have similar 

patterns because of the nonnormal growth of natural 

modes. In the nonlinear case, the external forcing 

may cause changes in the frequency of occurrence of 

climate modes with or without changing the spatial 

structure of the leading modes of variability (see 

Corti et al. 1999; Hsu and Zwiers 2001; Brandefelt 

FIG. 5. Comparison of the (a) leading and (b) second 

observed eigenmodes with the corresponding eigen-

modes based on each 100-yr ensemble member from 

the twentieth-century AR4 coupled GCMs (blue) and 

the associated control runs (green). Both plots show 

the decay time scale of each modeled eigenmode vs. its 

pattern correlation with the corresponding observed 

eigenmode. The red circle in each panel indicates the 

observed eigenmode.

148 FEBRUARY 2011|



2006; Branstator and Selten 

2009).

Observational uncertainties. 

Verification of the forced 

component of twentieth-

century cl imate trends 

simulated in model ex-

periments depends on the 

existence of accurate es-

timates of these trends in 

observations. Given the 

limited sampling in both 

space and time of the ob-

servations and proxy re-

cords, these verifications 

must be handled carefully. 

In particular, knowledge 

of the spatial patterns and 

magnitudes of cl imate 

trends over the oceans is 

hampered by the uneven 

and changing distribution 

of commercial shipping 

routes (Fig. 6) and other 

observational inputs as well 

as different approaches to 

merging analyses of the 

observations (Rayner et al. 

2011).

An example of the im-

pact of observational un-

certainties on the interpre-

tation of twentieth-century 

SST trends is shown in Fig. 7 based on an uninter-

polated dataset [version 2 of the Hadley Centre SST 

dataset (HadSST2); Rayner et al. 2006] and two 

optimally interpolated reconstructions [the Hadley 

Centre Sea Ice and SST dataset (HadISST; Rayner 

et al. 2003) and version three of the National Oce-

anic and Atmospheric Administration’s (NOAA’s) 

extended reconstructed SST (ERSSTv3; Smith et al. 

2008)]. Although trends from the three datasets share 

many features in common, such as a strengthening 

of the equatorial Pacific zonal temperature gradient 

(Karnauskas et al. 2009), there are also differences. 

Most notably, the eastern equatorial Pacific shows 

cooling in HadISST and warming in HadSST2 and 

ERSSTv3 (see also Vecchi et al. 2008). However, in-

dependently measured but related variables, such as 

nighttime marine air temperatures, provide some 

evidence that the eastern Pacific trends represented in 

the HadSST2 and ERSSTv3 datasets may be the more 

realistic ones (Deser et al. 2010b). These observational 

sampling issues underscore the challenge of providing 

a robust target for model validation of twentieth-cen-

tury surface marine climate trends and perhaps the 

need to consider a suite of complementary measures 

for poorly sampled variables and/or regions.

A limitation of the instrumental record is that it 

spans at most a few realizations of decadal variability. 

Paleoclimate records—derived from tree rings, cor-

als, lake sediments, or other “proxies”—have been 

used to extend this record to hundreds of years or 

more and are generally believed to be free of anthro-

pogenic influence prior to the industrial age (Brook 

2009; Jansen et al. 2007), thus constituting a poten-

tial means of model verification. Particular proxy 

types are generally restricted to specific ecological 

domains and spatial coverage can be patchy, but there 

has been a recent emphasis on the reconstruction of 

complete climate fields (Luterbacher et al. 2001; Cook 

FIG. 6. Distribution of surface marine observations from the International 

Comprehensive Ocean–Atmosphere Data Set (ICOADS), shown as the 

percent of months with at least one observation per 2° lat × 2° lon grid box 

during the 20-yr period indicated. Adapted from Deser et al. (2010a).
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and Krusic 2004; Mann et al. 2007; Riedwyl et al. 

2009; Cook et al. 2010; Neukom et al. 2011). Because 

paleodata constitute the sole records of Earth’s pre-

instrumental climate, such reconstructions merit 

attention as a potential means of model verification 

with respect to both unforced and naturally forced 

climate fluctuations (Jansen et al. 2007; Hegerl et al. 

2007b).

Additional challenges are faced in the assessment 

of ocean processes below the surface, even for the 

recent past. The available analyses of ocean observa-

tions span a wide range of products aimed at climate 

studies as well as ocean “nowcasting” and short-term 

forecasting applications. The ocean analysis prod-

ucts differ in the underlying models and estimation 

methods, as well as the suite of observations that 

are assimilated. Many of the analysis products span 

multiple decades from the 1980s to the present, with 

some also reaching back to the 1950s, and provide a 

convenient means for retrospective studies of climate 

variability; however, the relative accuracy and fidelity 

of the analyses depend in part on the specific vari-

ables used and are active areas of study. While many 

of the ocean syntheses employ estimation methods 

based on those first developed in weather forecasting, 

some employ so-called smoothing methods that esti-

mate the source of the model inaccuracies corrected 

by combining with data [see review by Balmaseda 

et al. (2010)]. The assimilation of Argo data in these 

analyses may remove biases in the upper ocean and 

allow for the initialization of ocean circulations and 

transports (e.g., see Forget et al. 2007); however, such 

records are limited to after 2000.

Modeling uncertainties. The spatial structure and 

dominant time scales of natural variations differ 

across models (see discussion of Fig. 5). Additionally, 

coupled climate models produce a range of responses, 

in space and time, to anthropogenic radiative forcing 

(Fig. 8). Such differences in model estimates of inter-

nal variability and response to external forcing limit 

our understanding for the potential of the decadal 

climate predictions.

As an example, the historical changes and future 

response of the tropical Pacific mean state have been 

subjects of debate. Different proposed mechanisms 

disagree on the expected sign of change in the zonal 

SST gradient in the tropical Pacific (Knutson and 

Manabe 1995; Meehl and Washington 1996; Cane 

et al. 1997; Clement and Seager 1999) in response to 

anthropogenic forcing. The observational record does 

little to clarify the situation, as trends in different 

observed SST records differ in even their sign (see 

Fig. 7). Models that simulate the largest El Niño–like 

response have the least realistic simulations of ENSO 

variability, while models with the most realistic simu-

lations of ENSO project little change in the Pacific 

zonal SST gradient (Collins 2005). These differences 

in tropical Pacific interannual variability and change 

have implications for Pacific decadal variability 

through their impact on large-scale changes in the 

atmospheric circulation (e.g., Alexander et al. 2002; 

Vimont 2005).

Different climate model responses to radiative 

forcing may lead to differences in the slowly varying 

base state of the oceans. Differences in the ocean 

base state, in turn, may alter the character of natural 

variability by changing the advective time scale of 

FIG. 7. Twentieth-century SST trends [°C (100 yr) –1] 

from the (top) uninterpolated HadSST2, (middle) 

reconstructed HadISST, and (bottom) reconstructed 

ERSSTv3 datasets, based on monthly anomalies during 

1900–2008. A minimum of 3 months per decade in 

each decade was required to compute a trend from 

the HadSST2 dataset. Adapted from Deser et al. 

(2010b).
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density/salinity anomalies and pathways between the 

extratropics and tropics. Thus, the ability of models 

to reproduce the observed spatial patterns of forced 

variability is important to realizing the full benefits 

of ocean initialization of natural variability; however, 

validation of the forced patterns of variability is not 

straightforward, given the observational uncertainty 

present in identifying even the natural, internal pat-

terns of low-frequency variability.

DEVELOPING A FRAMEWORK TO ASSESS 

DECADAL PREDICTIONS. Given that over 

the course of the next 10–30 years the magnitude of 

natural decadal variations may rival that of anthro-

pogenically forced climate change on regional scales, 

initialized decadal predictions have the potential to 

provide important information for climate-related 

management and adaptation decisions. Such predic-

tions are presently one of the grand challenges for 

the climate community. Long experience in weather 

and climate forecasting has shown that forecasts are 

of little utility without a priori assessment of forecast 

skill and reliability. This will be no less true for dec-

adal forecasts if they are to be useful. However, even 

crudely estimating skill for a forecast system requires 

some understanding of the sources for potential 

skill, especially when expected skill depends upon 

the initial conditions themselves, and the expected 

evolution of forecast spread, which is one measure 

of uncertainty.

For decadal predictions, understanding of the 

sources for potential skill requires identifying those 

physical phenomena—and their model equiva-

lents or lack thereof—that may provide additional 

predictability on decadal time scales. This includes an 

assessment of the physical processes through which 

FIG . 8. First EOF and 

associated pr incipa l 

component ( PC ) o f 

annual-mean sea sur-

face temperature from 

observations and three 

twentieth-century simu-

lations for years 1890–

1999: (a),(b) HadISST 

dataset (Rayner et al. 

2003); (c),(d) National 

Center for Atmospheric 

Research (NCAR)– U.S. 

Department of Energy 

Parallel Climate Model, 

version 1 (PCM1; www.

cgd.ucar.edu /pcm / ) ; 

(e),(f) The Geophysical 

Fluid Dynamics Labo-

ratory (GFDL) climate 

m o d e l ,  ve r s i o n  2 .1 

(CM2.1; Delworth et al. 

2006); (g),(h) The NCAR 

Community Climate 

System Model, version 

3.0 (CCSM3.0 ; www.

ccsm.ucar.edu/models/

ccsm3.0). All data have 

been smoothed with a 

10-yr low-pass Lanczos 

filter using 21 weights. 

EOF patterns are nor-

malized. PCs are in units 

of degrees Celsius. The 

percent in the upper right 

of each figure indicates 

the amount of variance explained by each pattern. Note that the PC time series from the climate model simula-

tions show fluctuations with larger amplitude than observations, all of which fluctuate on different time scales.
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anthropogenic forcing interacts with or projects 

upon natural variability. However, it is important to 

note that the rate at which forecast experience will 

accumulate on the decadal time scale is necessarily 

much slower than the rate at which it accumulates for 

weather forecasting. Given this, a physical framework 

is necessary to provide a consistent assessment of the 

different decadal prediction experiments planned 

for the AR5.

The main conclusion drawn from the body of 

work reviewed in this paper is that distinguishing 

between natural and externally forced variations is 

a difficult problem that is nevertheless key to any 

assessment of decadal predictability and decadal 

prediction skill. Note that all the techniques are lim-

ited by some assumption intrinsic to their analysis, 

such as the spatial characteristics of the anthropo-

genic signal, independence of noise from signal, 

or statistical stationarity. Benefits and limitations 

of techniques described in this paper are listed in 

Table 1. Also, all the techniques utilize either short 

and potentially inaccurate observational datasets 

and/or potentially biased but lengthier CGCM 

datasets. The analysis techniques discussed in the 

paper should be applied to the long control CGCM 

runs and both the twentieth-century simulations and 

twenty-first-century projections, which will serve as 

a critical test bed for analysis of the relationship be-

tween natural and anthropogenic variability. These 

strategies can also be applied to existing decadal 

prediction experiments and climate change projec-

tions in order to develop a series of metrics that can 

be used to assess the predictions to be done for the 

AR5. These metrics could help identify, to the extent 

possible with limited ensemble sizes, the impact of 

different initialization strategies, model biases, and 

errors in model physics on the response to external 

forcing and the predictable and unpredictable natu-

ral variations.

A reasonable starting point for these metrics is to 

focus on decadal variability due to ocean processes, 

as discussed earlier. This requires analyses that as-

sess the spatial patterns and associated time scales 

of natural variations, and their potential change in 

structure and frequency due to external forcing. A 

starting point for such analyses could be to compare 

the existing climate change projections against their 

companion control runs. In addition, since externally 

forced SSTs play an important role in climate varia-

tions over land through atmospheric teleconnections, 

it is necessary to develop metrics that assess the spa-

tial pattern of externally forced SST variability, as well 

as upper-ocean structure and variability. To quantify 

signal-to-noise ratios, it is necessary to develop met-

rics that can properly validate ensemble simulations 

and predictions. The development of these metrics 

will help guide the assessment of decadal forecasts 

and will provide a framework for identifying poten-

tial directions to improve our ability to make decadal 

predictions.

TABLE 1. Comparison of methods to separate natural and forced decadal variability described in the paper. 

Note that all methods are still subject to conflation of natural and forced patterns.

Property method

Requires large 

ensembles

Distinguishes natural 

and externally forced 

trends

Isolates dynamical 

modes of natural 

variability

Identifies skill due 

to initialization

Analysis of ensemble 

means and variance 

(ANOVA)

Yes

Identifies change in statistics 

due to external forcing 

by comparing forced and 

unforced runs 

No

Can identify skill due 

to initialization and 

external forcing

Optimal fingerprinting

Yes, to identify fingerprints 

of response to external 

forcing

No No Potentially 

S/N maximizing

EOF

Less sensitive to number 

of ensemble members than 

ANOVA 

Identifies change in statistics 

due to external forcing 

by comparing forced and 

unforced runs

No No

Linear inverse models No

Identifies change in statistics 

due to external forcing 

by comparing forced and 

unforced runs

Identifies empirical 

modes 
Yes

Initialized hindcasts Potentially Potentially Yes
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