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Many astrophysical bursts can recur, and their time series structure or pattern could be closely tied to the 
emission and system physics. While analysis of periodic events is well established, some sources, e.g., 
some fast radio bursts and soft gamma-ray emitters, are suspected of more subtle and less explored periodic 
windowed behavior: the bursts themselves are not periodic, but the activity only occurs during periodic 
windows. We focus here on distinguishing periodic windowed behavior from merely clustered events 
through time clustering analysis, using techniques analogous to spatial clustering, demonstrating methods 
for identifying and characterizing the behavior. An important aspect is accounting for the “curious incident 
of the dog in the night time”—lack of bursts carries information. As a worked example, we analyze six
years of data from the soft gamma repeater SGR1935 þ 2154, deriving a window period of 231 days and 
55% duty cycle.

I. INTRODUCTION

The time evolution of energetic astrophysical burst

events carries critical information and clues to their nature.

This can reveal exciting, extreme astrophysics such as

complete stellar disruption, ultrahigh magnetic fields,

accompanying neutrino bursts, etc. and high luminosities

visible to great distances. Notable high luminosity exam-

ples include gamma ray bursts (GRB), fast radio bursts

(FRB), and soft gamma repeaters (SGR). Important puzzles

remain concerning their nature, involving aspects of stellar

structure, accretion, jet production, and the circumobject

medium.

Of particular interest are those events that recur, indicat-

ing that the process is not wholly disruptive, and possibly

involves rotation or orbits; they also offer the possibility of

observing the explosive event multiple times. Furthermore,

if the repetition can be somewhat predicted, so that

observations can be scheduled, this enables enhanced

opportunities for understanding the burst mechanism and

astrophysics. Orbits and rotation naturally impose periodic

modulation on a variety of astrophysical signals, from

occultations of stars by planets to pulsars to accretion disk

phenomena. As a result there is a highly developed set of

mathematical, statistical, and computer code tools to

estimate the statistical likelihood of periodicity in a

noise-limited or nonideal sampling of data, and then

determining the period and its uncertainty. This field has

shown diverse evolution and activity from early Blackman-

Tukey analysis [1] to “pulsar folding” (e.g., [2]) to Lomb-

Scargle periodograms (see, e.g., [3] for a review of the

Lomb-Scargle periodogram and comparison to other

methods).

An example of greater complexity of phenomena and

data came with the discovery and study of quasiperiodic

oscillations—such an X-ray emission phenomenon linked

to accretion appears not as a simple periodic signal but as a

broad bump in frequency space. Our focus here is periodic

windowed behavior (PWB), inspired by the recent discov-

ery of such behavior in repeating FRB sources [4,5]. For

PWB, activity occurs only during periodically occurring

windows—there is no activity in the gaps between the

active windows; however, not all active windows may show

activity. The activity within a window may be random;

there is no requirement or expectation that it will converge

to a uniform profile (like a pulsar profile). Both the period

and the active fraction (e.g., related to duty cycle of the

energetic astrophysical process) are of interest.

Radio telescopes observing repeating FRB sources

report millisecond duration bursts from the same source

that may have time spacings from milliseconds to days

during continuous observations, but intensive monitoring

campaigns may observe no bursts for ∼180 days [4,5].

Initially, it was proposed that the behavior of the best-

known repeating FRB, the source of FRB 121102, may be

modeled as a time-clustered Weibull distribution [6].

However, with a few years of data in hand, an unexpected,

and stunning, result appeared: the bursts were not periodic,

or simply clustered, but were observed only in“periodic

activity windows” [4,5]. Similar behavior was reported for

the source of FRB 180916 [7].
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More recently, PWB was reported in SGR1935þ 2154,

but in soft gamma-ray bursts [8]. This object is particularly

noteworthy as it became the only known source of

FRBs within our Galaxy when two were detected

during the same day in 2020 [9–11]. This object is so

much closer than any other known FRB source that one

could hope it could be some kind of “Rosetta stone” for

understanding FRBs. (Another claim of PWB in soft

gamma bursts was given for SGR1806-20 [12], though

it is less certain.)

Robust identification, and characterization, of PWB

could shed light on astrophysical burst mechanisms and

energetics. For example, a considerable number of theories

have been proposed for the origin of FRBs [13]; docu-

mentation and analysis of PWB in FRBs would be very

important in constraining these models and could be key to

understanding the bursting nature. As we enter an age of

big data time domain surveys, PWB could also be dis-

covered in other astrophysical contexts, showing further

value for improved ways of identifying and measuring this

phenomenon.

In Sec. II we describe a method for identifying PWB, and

in particular distinguishing it from more irregular time

clustering of events. For a burst series suspected of having

PWB, in Sec. III we present methods for determining the

period and active fraction. We apply this to the data from

SGR1935þ 2154 in Sec. IV, and discuss extensions and

conclude in Sec. V.

II. IDENTIFYING PERIODIC

WINDOWED BEHAVIOR

Strictly periodic behavior can be identified through a

large number of different methods; for astrophysical time

series data one of the most widely used is the Lomb-Scargle

periodogram [3,14,15], which works in frequency space,

where the folding of the time series increases the signal. In

periodic windowed behavior, activity occurs at some times

(not necessarily deterministic) within windows, where it is

the windows that recur at a regular period. Such behavior

may be the result of, e.g., a periodic “shutter” modulating

nonperiodic emission, or the physical conditions necessary

for an outburst may occur only periodically (but not

guarantee a specific time for a burst), or see [16] and

references therein for an FRB precessing beam model. In

this case long-term folding of data will not necessarily

converge to an average profile.

The active windows may be a significant fraction of the

full period, and then often the frequency analysis methods

are diluted, with aliasing of the signal, i.e., signal peaks are

broadened. Moreover, they tend to ignore the “curious

incident of the dog in the night time” [17]: that the dog

didn’t bark (the gaps with no bursts) carries important

information. Therefore we discuss a time domain method

for assessing the burst data.

Working in the time domain, we initially examine the

cumulative distribution function (CDF), since it does

contain information on both events and gaps, and has

useful statistical properties. From an ordered series of

events at times ftig, we look at the distribution of burst

spacings ti − t1 vs observation time. Normalizing both axes

to run from 0 to 1 (at the end we can restore the scaling by

the total observation time, to get answers in days), we

have the cumulative fraction of events, between 0 and

100%, vs the time fraction, normalized by the length of

the observation campaign.
1
Thus we have the CDF of a

variable distributed on [0,1].

Figure 1 illustrates several CDF for various

realized distributions with a mean of 128 events each.

We compare the uniform random distribution to two

clustered distributions—all without actual periodicity—to

a PWB case. The distributions have both similarities

FIG. 1. Cumulative distribution functions are shown for ran-

dom realizations of four different distributions, with a mean of

128 events per distribution. The event fraction, number of events

as a fraction of total number of events, is plotted vs the time

fraction, how far into the total observing duration the event

occurs. The dotted diagonal shows a perfect uniform distribution.

The other distributions exhibit clusters of events with gaps of no

activity interspersed. One can see at least hints of periodic

windowed behavior in the PWB distribution.

1
Some technical details: we take time 0 to be when the first

burst is observed; any gap before this is uninformative since
we have no way of knowing whether the object had ever burst
before—basically we are interested in the repeats. The end time
can be either the end of the observing or when the last burst is
detected; this does not affect the results. We then normalize all
burst time differences ti − t1 by tend − t1 so that the x-axis of time
fraction runs from [0,1].



and differences, and the eye can be fooled by random

excursions into thinking it detects patterns, even peri-

odic ones.

The uniform distribution is realized by generating

event times in a uniform random fashion over the [0,1]

interval. The Weibull distribution is often used in astro-

physics (e.g., [5,6] for FRBs), and more widely to give

events that are clustered together at either early times or

late times (as in failure rapidly or due to aging). We show

an example with scale parameter β ¼ 0.4 and shape

parameter k ¼ 1.5, so the CDF is 1 − expf−ðt=βÞkg.
Events beyond the end of the unit interval are not yet

observed and not selected. The clustering here is due

solely to the distribution. A true clustering is implemented

in the clustered distribution, where events are generated

with a two point correlation function ξðr≡ jtj − tijÞ ∼ r−γ .

We construct this using the Soneira-Peebles approach

[18,19], using a multiplicity parameter η ¼ 4, scale

parameter λ ¼ 8 (thus γ ¼ 0.33), and four levels, giving

256 points, from which we randomly select the desired

number.

For the PWB distribution we take four periods of length

0.25 with active fraction 60%, i.e., an activity length of

0.15 and a gap length of 0.1. Within the active window the

events are uniformly randomly distributed. While by eye

one can discern gaps of no activity in the PWB CDF,

one can as well in the clustered case, as well as lesser ones

in the Weibull and even uniform distributions. As the

data become sparser (and gaps become longer and reali-

zation scatter increases in the active windows), it is harder

to assess visually whether there is actual PWB. Figure 2

illustrates this as we reduce the number of events
2
to

N ¼ 64 and then 32.

Since the eye is suspect in determining PWB, we aim to

quantify the difference in distributions more rigorously.

One common approach to distinguishing between distri-

butions is the relative entropy, or Kullback-Leibler (KL)

divergence [20]. For two distributions pðxÞ and qðxÞ this is
defined as

DKLðpðxÞ; qðxÞÞ ¼
X

i

pðxiÞ ln
pðxiÞ

qðxiÞ
: ð1Þ

Generally one does not compare two realized distributions,

since they may not have events at the same times xi, but
rather a realized distribution pðxiÞ is the data and qðxÞ is the
test or model distribution.

We can now start to see why KL divergence is not ideal

for our purposes: we cannot take qðxÞ, i.e., the model, to be

the PWB distribution, since the important presence of no-

event gaps gives qðxÞ ¼ 0. There are ways of getting

around this using the CDF QðxÞ ¼
R

dxqðxÞ rather than

the probability density qðxÞ itself [21], but the results are

not wholly satisfactory. Briefly, we do find the ability to

FIG. 2. As Fig. 1 but for 64 (left) and 32 (right) mean events in each distribution. Random scatter increases the difficulty of discerning

periodic windowed behavior below N ¼ 64.

2
Due to the random realization, in the PWB case while there

are a mean ofNtotal=4 events in each activity window, this number
varies and so does the total. The three cases for PWB actually
have 127, 63, and 30 events. The Weibull distribution case also
has 125 rather than 128 events; since the Weibull distribution is
well separated from the others, and to enhance clarity, we do not
show it for the Ntotal ¼ 64 and 32 plots.



distinguish each of the distributions from the uniform

random case and from each other. However, the quantifi-

cation of the degree of difference is not easily interpreted,

and the information of the gaps—the dog not barking—is

diluted. [Note that when pðxiÞ ¼ 0 there is no contribution

to the KL divergence, regardless of the model distribu-

tion qðxÞ].
Therefore, we adapt a method used in galaxy spatial

clustering, where the cosmic web of structure—both

connectivity and void regions—carries important informa-

tion. The friends of friends (FOF) method [22,23] defines

clusters of activity where neighbors lie within a linking

length b. For our one dimensional time series, this is trivial

to implement: ti − ti−1 ≤ b. This is fast and easy to apply to
all our distributions. We set the linking length several times

larger than the average uniform separation so that clusters

will not be (rarely at least) falsely identified in uniform

distributions. For example, b ¼ 5=n̄, where n̄ is the

number of events divided by the time interval, i.e., the

mean density or reciprocal of the interevent spacing for a

uniform distribution, roughly corresponds to a signal to

noise S=N ≈ 5 distinction from a uniform distribution.

Empirically, we find this works well.

Friends of friends, like any clustering method, will have

difficulties if there are few data points, but note that even if

there is only one event in a window, FOF will recognize it

as its own cluster unless n̄ is too small. In any case, we will

end up using FOF as a means of identifying windows, and

turn in Sec. III to other statistical techniques for robust

quantification of their characteristics. In the end, we will

employ FOF quantitatively simply as a useful guide to

reasonable priors for a detailed estimation procedure.

An immediate output of applying the FOF method is the

values from each activity cluster found of the length of

activity windows aj, of gaps gj between them, and the

possible periods from summing consecutive active and

inactive times Tj ¼ aj þ gj and the active fractions or duty

cycles fj ¼ aj=Tj. For true PWB we expect consistency

(i.e., a narrow distribution) in aj, gj, etc. while these would

be widely scattered or sparse for event distributions without

some periodic behavior.

Since PWB events occur somewhere in an active

window, not necessarily at the extremes, we expect the

measured values of aj to give lower limits on the true value

a, measured values of gj to give upper limits on the true g,

and the period aj þ gj to have some scatter around the true

period T. All estimates become more accurate with more

events in the time series; Sec. III discusses accurate

characterization of the PWB.

Figure 3 shows the results of the FOF clustering analysis

on the four types of distributions realized. The uniform

random distribution was found to have two, disparate

clusters, one extending from the first event to 34% of

the observing duration, the other extending for the last

60%, showing no clear periodic windowing. The Weibull

distribution has four clusters, with activity window lengths

scattered from below 1% to 64% of the duration, again no

PWB evident. The clustered distribution has five clusters

with three activity windows at 2% length, but others at 7%

FIG. 3. Histograms of the activity window durations (top) and

periods (bottom) are shown for four realized distributions. Peaks,

or narrow distributions, in both indicate periodic windowed

behavior. To compare distributions more evenly we present the

variables as fractions relative to the maximum active window

duration and period for that distribution. (Thus all distributions by

definition have one element for each quantity at the value 1, and

we offset these slightly vertically for visibility; for the uniform

case, e.g., the other instance is at a=amax ¼ 0.34=0.60 ¼ 0.57.)

Only the true PWB distribution shows a narrow distribution

around 1 in the period, as well as in the active window duration.



and 17% length; the related “periods” (sums of consecutive

active and gap states) are more diverse, from 8% to 33%

length, so no PWB is falsely detected. To compare the

different distributions more clearly, we normalize each by

their maximum values of period and activity found, Tmax

and amax, respectively.

Finally, analysis of the actual PWB distribution case has

three activity windows of 15% length and one of 11%

length, with periods grouped from 23% to 27%. Recall that

the input for generating the random realization was activity

0.15 and period 0.25, so FOF successfully reconstructs the

truth. One can quantify this by computing the mean and

standard deviation of the activity window length, for

example, to assess the peaked nature of the estimation

distribution.
3

We go into characterization of PWB properties in more

detail in the next section, going beyond FOF. Here we have

motivated that PWB can be recognized, and that other

distributions, even those that have innate clustering

(Weibull or the correlation function clustered cases) do

not lead to false PWB identification.

III. MEASURING PERIODIC

WINDOW PROPERTIES

Now that we have some confidence that PWB can be

identified accurately, we turn to robust characterization of

PWB properties such as the period and activity fraction.

A. Quick look

We begin with a quick look estimate that we will find is

surprisingly accurate, and useful to set a prior range for the

more robust determination in the next subsection. As

mentioned, measurements aj of the active window length

give lower bounds for a, and those of gaps gj give upper

bounds for g. A zeroth order estimate of the true quantities

could then be simply the highest and lowest values,

respectively. However, we would like to do better since

we know the true a ≥ max aj, plus we would like some

indication of the uncertainty range.

We improve the estimation by looking at the difference

between the highest aj, call it ahi and the next two closest

values, call them Δa1 and Δa2. If Δa2 > 2Δa1 we take

Δa ¼ Δa2, otherwiseΔa ¼ Δa1. For the gap length, this is
more subject to overestimation (i.e., it is easier to not have a

burst, even in an active window) so we start from the lowest

gj and go down by Δg ¼ 2Δg1 always. Then our estimate

of the activity window length is a ¼ ½ahi; ahi þ Δa� and the
gap length is g ¼ ½glo − Δg; glo�. The estimate of the period

is T ¼ ½ahi þ glo − Δg; ahi þ Δaþ glo�. Again, we note

that we will employ these FOF estimates simply as a

useful guide to reasonable priors for a detailed estimation

procedure. Nevertheless, we find below that they work

quite well in the tests made.

For our PWB with four windows, we find a ¼
½0.1486; 0.1509�, g ¼ ½0.07367; 0.1019�, T ¼ ½0.2222;
0.2528�, where the truth values are 0.15, 0.1, 0.25. Note

that for the PWB cases with N ¼ 63 and N ¼ 30 realized

events, the active window lengths and periods are still

determined, but in the N ¼ 63 case the true period lies

slightly outside the estimated range (at 1.6 times the mean

uncertainty from the central value), and in the N ¼ 30 case

the period has a 25% uncertainty. Thus, estimation

becomes more robust with ≳100 events (at least for

observations limited to four windows).

As a blind test, one of the authors generated a distribu-

tion with 128 events and another fit it, obtaining

a ¼ ½0.0362; 0.0398�, g ¼ ½0.0854; 0.0885�, T ¼ ½0.1216;
0.1283�, and deducing correctly there were eight activity

windows. The truths were revealed to be 0.0375, 0.0875,

0.125. A more difficult blind test used a distribution where

some of the activity windows were empty, i.e., appeared

as gaps rather than active times. Here the fits gave

a ¼ ½0.0374; 0.0394�, g ¼ ½0.0856; 0.0968�, T ¼ ½0.1230;
0.1362�, and deduced correctly that while there were eight

activity windows during the observing time range, only six

exhibited bursts and one of those had only a single burst.

The truths were 0.0375, 0.0875, 0.125.

Thus, in all cases we correctly reconstruct the PWB

characteristics. We would, however, like to reduce the

uncertainties further (the blind tests obtained the periods

with 2.7% and 5.1% uncertainty, respectively). This can be

done with more data, of course, e.g., more bursts within an

active window, a larger activity fraction (the blind cases had

only 30% duty cycle), or a longer observing duration giving

more windows. Since we cannot control the first two,

astrophysical properties, and we do not always want to wait

for the last one, we instead use the first round of results as

input to a more rigorous likelihood optimization routine.

The initial estimates serve to guide priors that increase the

speed and efficiency of the likelihood code.

B. Robust estimation

For more robust determination of the period and activity

window fraction, we carry out a likelihood analysis through

a direct parameter grid search. The grid search is the most

accurate approach, and tractable due to the low dimension-

ality of the parameter space. Other sampling methods are

less efficient due to the posterior surface actually being a

broad plateau, not an isolated peak. For example, for any

given period, a 100% active window fraction means that the

3
We use a weighted mean,

ā ¼

P

jNjaj
P

jNj

; ð2Þ

where Nj is the number of events within the activity window of

duration aj. To the extent the scatter goes as 1=
ffiffiffiffiffiffi

Nj

p

, this is

inverse variance weighting. Using this mean, we calculate the
standard deviation.



entire observational duration is treated as active and this

will fit the data as well (though much less efficiently) as

isolated windows.

Once the PWB nature of a burst time series is indicated,

we employ the range derived in the FOF analysis as an

efficient guide for the grid search, placing top hat priors on

the period T and active length a. We introduce a phase

parameter τ as well to describe the difference between the

starting time of the first active window and the first burst

observed, with a range ½−a; 0� (so the prior on a fixes the

prior on τ as well; note that FOF does not use phase

information.) We check that the final results are not affected

by these priors, they merely serve to make the grid search

more efficient.

The log likelihood function compares the model

fT; a=T; τ=ag and the data, having two terms,

logL ¼ Aþ E: ð3Þ

The acceptance term A is a step function, assigning zero if

the data indeed falls within the activity windows of the

model, i.e., the model describes the data. All models that fit

the data, i.e., where burst events fall within an active

window, have equal likelihood. However, if bursts fall into

model gaps, where no events were predicted, a step to a

large, constant negative penalty is assigned, preventing

acceptance of the model (the exact size of the penalty does

not matter if it is large enough, e.g., <−1). As mentioned

above, this gives a broad plateau in the likelihood that

allows trivially inefficient models, e.g., with a ¼ T and so

having negligible or no window gaps. To break this

degeneracy we add an efficiency term E to the log like-

lihood that penalizes values of a=T larger than necessary.

For any given T there will be a minimum (optimum) a=T,
and the minimum a=T across all T defines the global

optimum model fT; a=Tg. The E term serves to “tilt” the

plateau so the optimization traces out its boundary. We use

the form

E ¼ −
a=T

amax=Tmin

: ð4Þ

The numerator imposes a penalty for a=T larger than

strictly necessary, and the denominator is simply a constant

normalizing factor not affecting the shape of the log

likelihood, where amax and Tmin are the upper and lower

prior bounds, respectively, so that −1 < E < 0. We test this

approach against the two mock datasets of the previous

subsection: each contains 128 events distributed over eight

windows of activity, with varying numbers of bursts in each

window. The first dataset, denoted as “full”, has all eight

activity windows with events: (17,13,7,15,15,21,23,17)

uniform randomly distributed in the respective windows.

The “sporadic” dataset contains the same number of bursts,

however, two activity windows are empty and another one

contains a single burst—(11,3,36,0,1,52,0,25)—to mimic a

different possible observational scenario (and one that we

will see in the next section is closer to a particular actual

dataset). Recall that the FOF analysis was able to discern

correctly the number of active windows in each case and

obtain estimates for T and a.
Figure 4 shows the minimum active fractions ða=TÞmin

found for each T and the global minimum picking out the

optimal Topt. From our likelihood analysis we obtain the

best fit parameters to be T ¼ 0.1248 and a ¼ 0.0362 for

the full, and T ¼ 0.1251 and a ¼ 0.0374 for sporadic mock

cases, respectively (compared to the truth, T ¼ 0.125,

a ¼ 0.0375). Any model lying above the curve is a valid

fit to the data, but less efficient than the optima. We see that

the global optimum is quite close to the truth. Note that this

method gives a best fit, but not an uncertainty per se.

We can define an uncertainty by choosing to consider

models with a bound on inefficiency such that the optimum

behavior would not appear much less frequently than in

68.3% of simulated datasets. For example, a model with a

larger than needed active window, hence a=T, would be

consistent with the data, but only rarely would its realiza-

tions be as restricted as the data, i.e., falling in narrower

windows. “Efficient” models lie in the region above the

minimization curve but below the dotted, nearly diagonal

FIG. 4. Likelihood optimization gives both local minima in

active window fractions a=T as a function of period T and the

global minimum. We show the cases for the two mock data

samples, when all windows are active (“full”; solid blue curve)

and when data is sporadic enough that some windows are empty

of events (“sporadic”; dashed black curve). The global minimum

is the best estimate; all points above the curves are consistent with

the data, but past the dotted diagonal curves the models are

inefficient (only a few are as restrictive as the data). We can use

this region to define an uncertainty on T, shown by the projection
to the T axis. The input value is shown by the bold red x.



inefficiency curve (see Appendix A for its expression).

Projecting to the T axis defines the range in the period. For

the full case this gives a range of T ∈ ½0.1241; 0.1256�, or
½−0.5%;þ0.7%� uncertainty on the period. For the sporadic
case the range is T ∈ ½0.1243; 0.1256�, or ½−0.6%;þ0.4%�
uncertainty (the tighter precision relative to the full case is

due to the higher density, though fewer, windows; recall

they both have the same total number of events, just

distributed differently).

Figure 5 shows the phase parameter τ=a. It is tightly

constrained when a=T is at the minimum, but has a modest

range when a=T ¼ ða=TÞmin þ 0.01, for a given T. Finally,
we note that we crosschecked against two other optimiza-

tion approaches, specifically simulated annealing by

employing the dual_annealing routine from the

SciPy optimization package and a Markov chain Monte

Carlo (MCMC) sampler, and found the results are com-

patible (see Appendix B).

IV. APPLICATION TO SGR1935 + 2154

Real observational data can be more difficult, and

scientifically rewarding. We apply our methods to actual

measurements of the source SGR1935þ 2154, testing

whether it exhibits PWB, and giving robust estimates of

its period and active window fraction. These characteristics

can constrain models of the origin of the emission and

properties of the system.

SGR1935þ 2154, a magnetar within our Galaxy, was

identified as the source of two FRBs occurring UT

(Universal Time) 2020 April 28 [9,10]. The local nature

makes measurements of the object and its environment

much easier and with much greater detail. In fact, a

linkage between the production of soft gamma bursts in

this source and FRBs is naturally suggested: the same two

events as the FRBs, with the appropriate delay due to

dispersion by interstellar electrons, were detected by γ-

ray instruments [24–28] (though some authors suggest

that different source types may be responsible for these vs

extragalactic FRBs [29]).

As an example of the constraining power of these

measurements, in [8] the SGR1935þ 2154 soft gamma

burst PWB period was found to be 231 days, but the binary

comb model for FRB [30] is limited to periods ≲100 days

[31]. Such a model may perhaps be eliminated for

SGR1935þ 2154 or other PWB long-period magnetars

[8], pointing to other models such as isolated neutron star

precession (e.g., [32]) as the source of periodicity, coupled

with a nonperiodic emission mechanism. More generally,

given an excellent knowledge of the PWB parameters,

correlating additional observational properties with these

parameters may shed further light on the physical mech-

anisms at play. For example, with robust knowledge of the

phase of the window boundaries, one could look not only

for correlations with the modulation period, but also for

effects at the window boundaries in SGR burst intensity,

fluence, and spectral characteristics. Comparison of the

variation in soft gamma burst polarization measurements

(coming from the next generation of instruments) with the

PWB period and the window boundaries could shed light

on the role of the magnetic field in these modulations, as

well as in the role of magnetic field orientation in the

emission mechanism.

Long term monitoring of SGR1935þ 2154 has pro-

vided several years of data from a number of γ-ray

instruments. In [8], for some range of periods the data

were folded at various trial periods, and the activity

fraction—the fraction of a period that would be consistent

with all event data, was calculated, and the period with the

minimum activity fraction was taken to be the “best”

period. That analysis did not provide an examination of

the uncertainty in the period or active fraction. Its

conclusion that there was actually a periodic windowed

behavior arose from comparison to uniform random

events. Here we use different methods and quantification,

and a clustering analysis.

We apply our methods to burst data from the Third

Interplanetary Network (IPN3 [33]). IPN3 includes numer-

ous spacecraft with X-ray and gamma-ray sensitive instru-

ments, but notably the Konus instrument on the Wind

spacecraft. This instrument is in orbit around the sun at

Lagrange point 1, far from Earth, and so provides a nearly

continuous, unobstructed view of the entire sky, and a more

FIG. 5. Likelihood optimization provides the phase fraction of

the first observation, τ=a, as a function of period T. For the

minimum a=T (the curves in Fig. 4), the phases are tightly

constrained ð∼pointlikeÞ, but have more freedom for larger

allowed a=T; the vertical solid and dashed lines indicate the

allowed phase range for a=T ¼ ða=TÞmin þ 0.01.



constant background than for low-earth orbit instruments.

These are ideal properties for time series monitoring.
4

Carrying out our procedure for identifying and character-

izing PWB, we first examine the CDF, as in Fig. 1, but

here applied to SGR1935þ 2154 data (159 events iden-

tified in the IPN3 SGR list for SGR1935þ 2154 as of 2021

February 1 [33]). Figure 6 shows the resulting CDF. While

there are clearly episodes of activity and gaps of inactivity,

it is difficult to tell by eye if there is PWB.

Applying the FOF method, we carry out the period

analysis in Fig. 7. While the activity window lengths and

gaps scatter greatly, the pseudoperiods (sum of consecutive

active window lengths and gap lengths) show an interesting

pattern. We exhibit T=Tmax, and see a concentration around

T=Tmax ∼ 0.2, or T ∼ 0.1.

The FOF method gives the estimate for the period (not

pseudoperiod ratio) of T ¼ ½0.056; 0.129�. While a broad

estimation, due to some empty activity windows increasing

the uncertainty, it still provides a useful prior for the more

incisive likelihood analysis. In addition we find the activity

window length a ¼ ½0.049; 0.077� and six active windows.

We proceed with our likelihood analysis and parameter

determination of the SGR1935þ 2154 data in the same

manner as the simulated cases of Sec. III. The final results

determine a global optimal period T ¼ 0.1074 and active

fraction a=T ¼ 0.554 (i.e., a ¼ 0.0595). Converting back

to days by rescaling to the duration of observations, this

implies the PWB has period T ¼ 230.6 days, with an active

fraction of 55.4%. Figure 8 shows the results, along with

FIG. 6. Cumulative distribution function for the SGR1935þ
2154 data, similar to Fig. 1. By eye it is difficult to confirm or

deny periodic windowed behavior, requiring statistical analysis.

FIG. 7. Histogram of the (pseudo)period, relative to the

maximum instance, for the SGR1935þ 2154 data. The peak

at 0.23 is suggestive, and the cluster of four just below may

indicate the true period lies in between the two clusters, with

some having sparse activity in the active window (hence

apparently shorter periods) and some having long gaps (hence

apparently longer periods). Quantitative analysis confirms this.

FIG. 8. As Figure 4, but for the actual SGR1935þ 2154

data. The global optimum gives T ¼ 0.1074, a=T ¼ 0.554. This

corresponds to T ¼ 230.6 days, a ¼ 127.8 days.

4
While there is some heterogeneity in instruments and cover-

age, the main instruments other than Konus are in low earth orbit,
without any long-term changing viewing zones and hence no bias
for or against periods in the hundreds of days range. An analysis
for particular sets of instruments was carried out in [8] and found
results consistent with each other and the results here.



the local optima boundary. Using the efficiency criterion,

analysis of the SGR1935þ 2154 data yields a range of

T ∈ ½0.1066; 0.1109�, or ½−0.7%;þ3.2%� uncertainty on

the period.

Figure 9 presents the estimation of the phase parameter,

with a best estimate of τ=a ¼ −0.101, i.e., the first detected

burst of the time series occurred 10% of the way through

the activity window. The estimation of this is very tight

ð−0.2%;þ0.9%Þ at ða=TÞmin, broadening as shown in the

figure as one moves away from the local optima (here we

show a shift by 0.02 from the minimum a=T, the same

fractional difference as the 0.01 shift used in Fig. 5).

Finally, we note that the FOF estimations for the period

T and active window length a do include the likelihood

optimization results of T ¼ 0.1074, a=T ¼ 0.554 (i.e.,

a ¼ 0.0595), and the optimization results lie well inside

the prior information from the FOF analysis. Our results

agree as well with those from [8].

V. CONCLUSIONS

Astrophysical bursts occur in observations throughout

the electromagnetic spectrum, from the radio to optical to

gamma ray. Repeated outbursts indicate the source is not

totally disrupted, and periodic bursting points at some

physics connected with, e.g., rotation or an orbital

companion. An intriguing middle ground that is becoming

more recognized with further data is periodic windowed

behavior, where activity windows, rather than the burst

events themselves, have periodicity. This can also provide

important clues to the astrophysical mechanism of the burst

and system characteristics.

Analysis methods for strict periodicity often fall short

when dealing with PWB, as the duty cycle is important,

activity windows can be empty of events, and the time

series of events can be distributed in a complicated manner.

We have emphasized that the lack of bursts carries critical

information that must fold into the analysis, and we develop

a time domain method that takes this into account.

The cumulative distribution function of event intervals

works well at identifying whether or not PWB is a

reasonable possibility. We test this technique for four

distributions: uniform random, Weibull, PWB, and a

special distribution with correlated clustering. Given rea-

sonable indications identifying PWB from the CDF analy-

sis, we then draw on the friends of friends technique from

galaxy clustering to characterize the PWB. This FOF

analysis delivers quantitative estimates of the period T,
active window length a (and hence duty cycle a=T), and
observing phase τ. For our test cases of mock data, the

estimates accurately reconstruct the input and have ∼3–5%

precision for data with at least 100 events and≳4 populated

windows. However, we view the FOF analysis as a guide

toward carrying out a full likelihood analysis (where the

FOF can serve in setting reasonable priors).

For the likelihood analysis we use an optimization grid

approach, due to the low dimensionality of the parameter

space, increased accuracy, and that the posterior surface is

actually a broad plateau, not an isolated peak. However we

do find consistent results with both a simulated annealing

approach and a Markov Chain Monte Carlo approach. We

minimize the duty cycle that agrees with the data, and find

accurate estimates of the period to ≲1% uncertainty on the

mock data. Analyzing real observational data on the source

SGR1935þ 2154 we first identify that PWB is reasonable

for the data, and then characterize it as having period

T ¼ 230.6 days, with ∼1.9% uncertainty, and duty cycle

a=T ¼ 55.4%.

Finding PWB for what is truly a random distribution is

highly unlikely: if we consider the probability that a

uniform distribution realization would avoid all the 10

spans of time that PWB predicts no activity (let alone

have the active windows in a periodic pattern), this is

P ¼ ð1 − 0.554Þ10 ≈ 3 × 10−4. For a truly uniformly ran-

dom distribution one could take into account not just the

number of windows but the total number of events, so the

probability would be P≈ð1−aÞN≈2−159≪1. Nevertheless,

the ultimate proof will be predictivity: if the values for the

period and active fraction derived above are correct, the

next two active windows (which admittedly are not

guaranteed to have activity) are from June 1–October 7,

2021, and January 18–May 26, 2022, and we predict no

activity outside of our active windows.

Numerous next generation time domain surveys in a

wide range of wavelength bands (e.g., LSST [34] in the

FIG. 9. As Fig. 5, but for the actual SGR1935þ 2154 data.

Here black vertical lines indicate the allowed phase range

for ða=TÞmin þ 0.02.



optical, DSA-2000 [35] and CMB-S4 [36] in the radio and

submillimeter, wide-field instruments such as STROBE-X

WFM [37] and SVOM ECLAIRs [38] in the X-ray/gamma

ray bands) will greatly increase the database and diversity

of repeating sources with possible PWB. The efficient

methods presented here give a straightforward path for

analysis, identification as PWB (vs, e.g., simply clustering),

and its characterization. Accurate estimations of PWB, and

the period, duty cycle, and phase, offer the potential for

significant advances in understanding the physics of

energetic bursts and the properties of the repeating outburst

systems, in a wide variety of astrophysical contexts.
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APPENDIX A: ESTIMATING INEFFICIENCY

Many models, i.e., combinations of periods T and active

fractions a=T, can fit the data. Trivially, a model that is

always active, a=T ¼ 1, will fit the burst data but be

inefficient at doing so. That is, it allows bursts at any time

but they seem to appear only within periodic windows.

Such a formal fit is not informative. We therefore seek the

most efficient fit as the most informative: the model with

ða=TÞmin and its associated Tbest. However, models close to

this are only a little inefficient, that is many realizations of

such models would generate data still falling within the

optimal window structure. Conversely, for models further

away, such as all-active a=T ¼ 1 models, Monte Carlo

simulations of such a model would show many instances

that, while including the data, would also have predicted

many bursts where none were seen. Hence it is inefficient

(or, if you like, complete but not pure).

We seek a measure of the inefficiency, so that the region

of efficient models can translate to a range, or uncertainty,

of the period and active fraction. Consider a single

window. If it is a little wider than optimal, then that model

will fit the more restrictive data, but be somewhat ineffi-

cient at doing so. Suppose we want 68.3% of simulations of

a model to not only match the data but also not give

bursts outside the optimal windows. For one window,

and one burst within the window, this means that mod-

els with a0=T 0 > ða=TÞmin=0.683 are likely to be ineffi-

cient. For N independent windows the inefficiencies

ða0=T 0Þ=ða=TÞmin multiply, so to obtain an efficiency

0.683 < 1=½ða0=T 0Þ=ða=TÞmin�
N each window can only

contribute a factor 0.683−1=N. If we consider more than

one burst within a window, we have to understand the

coherence between bursts before we can quantitatively

evaluate this, but 0.683−1=N gives an upper limit to the

inefficiency so we stay with this.

Similarly, if the period is taken to be longer than optimal,

this can also be inefficient. For a constant a=T, a longer T
means a longer active window width a. Again this adds

inefficiency to each window, giving a factor T 0=T for each

window. There are further effects from the shift of the far

and near sides of the windows, and the phase, but these

contribute less when T 0 − T ≪ a, a0 − a ≪ a. Under those
conditions we simply multiply the two inefficiency factors

to get to first order

ða=TÞeff ¼ ða=TÞminðT
0=TÞ−10.683−1=N: ðA1Þ

We use this to define the diagonal inefficiency curves in

Figs. 4 and 8. We have checked this gives a reasonable

approximation under the conditions stated by running a

suite of 1000 Monte Carlo realizations.

APPENDIX B: COMPARISON TO

DIRECT OPTIMIZATION

As mentioned in Sec. III, we have crosschecked our

direct grid search optimization routine with a standard

MCMC and a simulated annealing optimization. The direct

grid search is innately more exact, and sufficiently efficient

due to low dimensionality of our parameter space that we

use it throughout the paper. We exhibit some results of the

other two methods here.

Figure 10 shows the MCMC samples generated using the

Stan software [39] to find the global optimum model and

explore the distribution of other combinations of param-

eters fT; a=T; τ=ag consistent with SGR1935þ 2154 data.

It agrees well with our direct optimization. We also used the

dual simulated annealing optimization routine dual_

annealing [40] as a complementary approach to the

grid search optimization to quickly find the best estimates

of the global minimum. We randomly chose 25 initial

points and found the dual annealing provided good

estimates of the global minimum as well, as seen in Fig. 11.
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