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Abstract—We consider the problem of broadcasting a single Gaussian
source to two listeners over a Gaussian broadcast channel, with � channel
uses per source sample, where � > 1. A distortion pair (D ;D ) is said
to be achievable if one can simultaneously achieve a mean-squared error
(MSE) D at receiver 1 and D at receiver 2. The main result of this cor-
respondence is an outer bound for the set of all achievable distortion pairs.
That is, we find necessary conditions under which (D ;D ) is achievable.
We then apply this result to the problem of point-to-point transmission over
a Gaussian channel with unknown signal-to-noise ratio (SNR) and � > 1.
We show that if a system must be optimal at a certain SNR , then, asymp-
totically, the system distortion cannot decay faster than O(1=SNR). As for
achievability, we show that a previously reported scheme, due to Mittal and
Phamdo (2002), is optimal at high SNR. We introduce two new schemes
for broadcasting with bandwidth expansion, combining digital and analog
transmissions. We finally show how a system with a partial feedback, re-
turning from the bad receiver to the transmitter and to the good receiver,
achieves a distortion pair that lies on the outer bound derived here.

Index Terms—Distortion region, joint source–channel coding, lossy
broadcasting.

I. INTRODUCTION

The broadcast channel, illustrated in Fig. 1, is a communication
channel in which one sender transmits to two or more receivers [1].
Suppose that we are given an analog source and a fidelity criterion,
and we want to convey the source to both receivers simultaneously.
The problem of joint source–channel coding for the broadcast channel
is to find the distortion region which is the set of all simultaneously
achievable distortion pairs (D1; D2) at the two receivers. For a general
source, broadcast channel, and distortion measure, this problem is still
open [2].

We investigate below an important special case, of transmitting
a band-limited white Gaussian source over a band-limited white
Gaussian broadcast channel with squared-error distortion measure.
Note that a Gaussian broadcast channel is a degraded broadcast
channel [1], and we shall say that receiver 1 is connected to the good
channel and receiver 2 is connected to the bad channel. Also note
that this type of problem can be characterized by the parameter �. In
continuous-time systems, we define �

�
= Wc=Ws, where Wc is the

channel bandwidth and Ws is the source bandwidth. In discrete-time
systems, � is defined as the number of channel uses per source sample.
Since band-limited continuous-time systems can be translated to
discrete-time systems, we shall use the discrete-time representation.
We shall focus on the bandwidth expansion scenario, in which � > 1.
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Fig. 1. Lossy transmission of a source through a broadcast channel.

Following Shannon’s theory, a trivial Cartesian outer bound on the
distortion region is given by D1 � R�1(�C1) and D2 � R�1(�C2),
where

R(x) =
1

2
log

�2

x
(1)

is the rate-distortion function of a Gaussian source with variance �2 (in
bits per source sample) [1], and C1 and C2 are the individual point-to-
point capacities (in bits per channel use) of the good and bad channels,
respectively. In the case of � = 1, the trivial outer bound is achieved
by analog transmission, i.e., by sending the source uncoded [3]. This
means that in this special case, there is no conflict between the needs
of the two receivers, and both of them perform as if the needs of the
other receiver could be ignored.

For the case of � > 1, Mittal and Phamdo [4] suggested a hybrid
digital–analog scheme which achieves the distortion pair

(D1;D2) = (R�1((�� 1)C2 + C1); R
�1(�C2)): (2)

Other schemes were developed for the case of � > 1, providing other
achievable distortion pairs [3], [5], [6]. However, no nontrivial outer
bound (converse) on the distortion region was ever derived. The main
result of this correspondence is such an outer bound. For deriving the
outer bound we use an auxiliary random variable, similar to the one
used by Ozarow [7] for proving the converse for the Gaussian multiple
description problem. It follows from our outer bound that the distortion
pair (2) is optimal in the limit of high signal-to-noise ratio (SNR).

Regarding an inner bound for the distortion region, we develop a
new coding scheme which combines elements from the Mittal–Phamdo
scheme together with a Wyner–Ziv source encoding and a broadcast
channel encoding. In addition, we outline a second scheme, that can
be thought of as a multidimensional extension of Chen and Wornell’s
analog error-correction scheme [3], making further use of analog trans-
mission.

A variant of the problem above is the problem of sending a Gaussian
source over an additive white Gaussian noise (AWGN) channel, where
the SNR is unknown except that SNR � SNRmin, where SNRmin is
known. Using our outer bound on the distortion region for the broad-
cast channel, we prove that for any system, if SNRmin is high, and if
the system is tuned to be optimal at SNRmin, then, as the SNR im-
proves (but the transmitter is held fixed), the distortion cannot decay
faster than 1=SNR for all values of �. For comparison, we recall that
the solution of R(D0) = �C is given by D0 = �2=(1 + SNR)�, and
hence, the mean-squared error (MSE) of a collection of systems, each
optimally designed for a different (high) SNR, decays as 1=SNR�. We
note that for the case where the system is optimal at SNRmin, our result
is stronger than a previous result by Ziv [8], who showed that asymp-
totically, the distortion cannot decay faster than 1=SNR2 for all values
of �.
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The correspondence is organized as follow: In Section II, we intro-
duce the outer bound on the distortion region. In Section III, we prove
the theorem and corollaries of Section II. In Section IV, we apply our
results to the case of point-to-point communication over a channel with
unknown SNR. In Section V, we introduce a coding scheme for broad-
casting with bandwidth expansion. In Section VI, we introduce the
modulo-lattice modulation, which makes further use of analog trans-
mission. In Section VII. we analyze the performance of a system with
a feedback, and in Section VIII, we conclude the correspondence.

II. OUTER BOUND ON THE DISTORTION REGION

In this section, we introduce the outer bound, which is the main re-
sult of the correspondence. Before doing so, we note that in the gen-
eral case of lossy broadcasting the distortion region depends only on
the marginal distributions of the channel (see Appendix I for proof).
We recall that this is also the case for the channel coding problem of
broadcast channels [1, p. 422].

We denote the source bySSS = (S1; . . . ; Sm), and the decoders output
by ŜSS111 = (Ŝ1;1; . . . ; Ŝ1;m) and ŜSS222 = (Ŝ2;1; . . . ; Ŝ2;m). We denote
the channel input by XXX = (X1; . . . ; Xn) and the channel outputs by
YYY 1 = (Y1;1; . . . ; Y1;n) and YYY 222 = (Y2;1; . . . ; Y2;n). The bandwidth
expansion ratio � is defined by

� =
n

m
(3)

and we shall focus on the case where � > 1.

Definition 1: A Gaussian broadcast channel with input XXX and out-
puts YYY 111 and YYY 222, satisfies for i = 1; 2

1

n

n

t=1

E X2

t � P;

Yi;t = Xt + Zi;t; Zi;t � N (0; Ni); t = 1; . . . ; n (4)

where ZZZ111 = (Z1;1; . . . ; Z1;n) and ZZZ222 = (Z2;1; . . . ; Z2;n) are memo-
ryless and statistically independent of XXX , and N2 � N1.

The capacities C1 andC2 of the good and bad channel, respectively,
are given by

Ci =
1

2
log 1 +

P

Ni
bits per channel use; i = 1; 2: (5)

We denote the distortion measure by d(SSS; ŜSSiii) for (i = 1; 2), and
define the following.

Definition 2: (D1; D2) is an achievable distortion pair if, for any
�� > 0, there exist integers m and n = �m, an encoding function
XXX = inm(SSS) and reconstruction functions ŜSS111 = gn1m(YYY 111) and ŜSS222 =
gn2m(YYY 222), such that

E(d(SSS; ŜSSiii)) < Di + ��; for i = 1; 2: (6)

The achievable distortion region is defined as the convex closure of the
set of achievable distortion pairs.

Note that it follows from Definition 2 that � is a rational number.
This does not limit the scope of the results in any practical way, since
any nonrational value could be replaced by a rational value which is
arbitrary close to it.

In this correspondence, the source is memoryless with St �

N (0; �2), and the distortion measure is squared-error, that is,

Di=Ed(SSS; ŜSSiii)=
1

m

m

t=1

E(St � Ŝi;t)
2; i = 1; 2; t=1; . . . ;m:

(7)

In summary, we wish to send a memoryless Gaussian source over the
Gaussian broadcast channel, with � > 1, minimizing the squared-error
distortion. Our main result is the following.

Theorem 1 (Outer Bound): Let (D1;D2) be an achievable distortion
pair, and let � � 1 be defined by

D2 = �R�1(�C2) = ��22�2�C : (8)

Then

D1 � sup
�>0

�2

f(�)
(9)

where

f(�)
�
=

1

�

N2

N1

� +
P

N2

+ 1
�

�
1=�

�
N2

N1

� 1 (1 + �)1=�
�

� 1 : (10)

We note that � is in fact an excess distortion ratio, which is the ratio
betweenD2 and the smallest possible distortion in receiver 2. We shall
prove Theorem 1 and its corollaries in Section III. We refer the reader
to Appendix II in which we show graphs of f(�) and outline the prop-
erties of this function.

An important special case is when we make no compromise in re-
ceiver 2 in favor of receiver 1. That is, we require that receiver 2 per-
forms as if it were an optimal point-to-point scenario. In this case, there
is no excess distortion, and � = 1. Corollary 1 addresses this case.

Corollary 1 (Lower Bound on D1 When D2 is Optimal): Let
(D1; D2) be an achievable distortion pair where

D2 = R�1(�C2): (11)

Then

D1 � �2
P +N2

N2

��1
P +N2

N1

�
N2 �N1

N1

�1

: (12)

We shall prove Corollary 1 in Section III. Note that in the matching-
bandwidth case (� = 1), the bound in (12) reduces to the trivial joint
source–channel bound

D1 �
�2N1

P +N1

= R�1(C1) (13)

so at least for this case the bound is tight.
For comparison, Mittal and Phamdo [4] suggested a coding scheme

which achieves the distortion pair

D0

2 = R�1(�C2)

and

D0

1 = R�1((�� 1)C2 + C1) (14)

= �2
P +N2

N2

��1
P +N1

N1

�1

: (15)

Comparing this with (11) and (12), we see that their scheme is asymp-
totically optimal in the limit of high SNR (P=N2 ! 1).
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It can also be shown that in the limit of N2 ! 1, the lower bound
of (12) becomes

D1 � �2 1 +
�P

N1
: (16)

In this case, one can actually achieve this bound by sending the source
uncoded with power �P at 1=� of the time (first m samples of a
length-n block), and sending zeros at the rest of the time (last n �m
samples). Alternatively, if � is an integer, one can achieve this bound
by repeating each source sample � times at a constant power P .

Corollary 2 addresses the special case in which we make no com-
promise in receiver 1 in favor of receiver 2.

Corollary 2 (Lower Bound on D2 When D1 is Optimal): Let
(D1; D2) be an achievable distortion pair where

D1 = R�1(�C1): (17)

Then

D2 � R�1(C2) 1�
N1

N2
+
N1

N2

N1

P +N1

��1

: (18)

We shall prove Corollary 2 in Section III. For comparison, the
scheme of Shamai, Verdú, and Zamir [5] (although not designed
originally for broadcast channels) achieves the distortion pair

D1 = R�1(�C1); D2 = R�1(C2):

Hence, their scheme is optimal in the limit of N1=N2 ! 0.

III. PROOFS OF THEOREM 1, COROLLARY 1 AND COROLLARY 2

Proof of Theorem 1: We introduce an auxiliary random vari-
able UUU , similar to the one used by Ozarow [7]. Specifically, let
UUU = (U1; . . . ; Um) and VVV = (V1; . . . ; Vm) be memoryless vectors
such that

Vt � N (0; ��2) and Ut = St + Vt (t = 1; . . . ;m) (19)

where � > 0. Hence, we have Markov chainsUUU$SSS$XXX$YYY i$ ŜSSi
for i = 1; 2 (see Fig. 2). By the chain rule for mutual information we
have for (i = 1; 2)

I(XXX;YYY 111) = I(XXX;UUU) + I(XXX;YYY 111 jUUU)� I(XXX;UUU jYYY 1) (20)

= I(XXX;UUU) + h(YYY 111 jUUU)� h(ZZZ111)� I(XXX;UUU jYYY 111) (21)

= I(XXX;UUU) + h(YYY 111 jUUU)� h(ZZZ111)� h(UUU jYYY 111)

+ h(UUU jXXX;YYY 111)

= I(XXX;UUU) + h(YYY 111 jUUU)� h(ZZZ111)� h(UUU jYYY 111)

+ h(UUU jXXX) (22)

= h(UUU)� h(UUU jYYY 111) + h(YYY 111 jUUU)� h(ZZZ111) (23)

where (21) follows from (4), and in (22) we used the Markov chain
relation to replace h(UUU jXXX;YYY 111) with h(UUU jXXX).

In (23), I(XXX;YYY 111) is expressed as a sum of four terms. We shall now
upper-bound I(XXX;YYY 111) by bounding those terms. First, we note that
UUU and ZZZ111 are Gaussian memoryless vectors, where UUU has variance
(�+1)�2 and lengthm, andZZZ111 has varianceN1 and length n. Hence,
their differential entropies [1] are given by

h(UUU) =
m

2
log 2�e(�+ 1)�2 (24)

Fig. 2. The Gaussian broadcast channel with the auxiliary variable UUU .

and

h(ZZZ111) =
n

2
log 2�eN1: (25)

We shall now derive a lower bound the second term in (23), which is
h(UUU jYYY 111). By the conditional form of the entropy power inequality [9],
and since UUU is the independent sum of SSS and VVV we have that

2 h(UUU jYYY ) � 2 h(SSS jYYY ) + 2 h(VVV jYYY ) (26)

= 2 h(SSS jYYY ) + 2 h(VVV ) (27)

= 2 h(SSS jYYY ) + 2�e��2 (28)

where (28) follows sinceVVV is Gaussian [1]. The term h(SSS jYYY 111) in (28)
can be further bounded as follows:

h(SSS jYYY 111) = h(SSS)� I(SSS;YYY 111) (29)

=
m

2
log 2�e�2 � I(SSS;YYY 111) (30)

�
m

2
log 2�e�2 � I(XXX;YYY 111) (31)

where (30) is since SSS is Gaussian and (31) is by the data processing
inequality. Combining (28) and (31) with the fact that � = n=m yields

h(UUU jYYY 111) �
m

2
log 2�e�2 2� I(XXX;YYY ) + � : (32)

We shall now derive an upper bound the third term in (23), which is
h(YYY 111 jUUU). We note that YYY 222 is the sum of YYY 111 and a noise with variance
N2 �N1. Hence, using the conditional form of the entropy power in-
equality [9], we can show (see Appendix III) that

2 h(YYY jUUU) � 2 h(YYY jUUU) + 2log(2�e(N �N )): (33)

(Note that a similar derivation was done in [10].) The left—hand side
of (33) can be expressed as follows:

2 h(YYY jUUU) = 2 (h(YYY )�I(YYY ;UUU))

� 2�e(P +N2)2
� I(YYY ;UUU) (34)

where we used the fact that the variance of YYY 222 is P + N2, and hence
its differential entropy cannot exceed n

2
log(2�e(P +N2)) [1, p.262].

Note that the combination of (33) and (34) can serve as an upper bound
for h(YYY 111 jUUU) in terms of I(YYY 2;UUU). We shall now use rate distortion
theory to derive a lower bound on I(YYY 222;UUU). Using (5), we can rewrite
(8) as

D2 = ��22�2�C =
��2

(1 + P=N2)�
= ��2 N2

P +N2

�

: (35)
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We have

E(d(ŜSS2; UUU))=E
1

m

m

t=1

(Ŝ2;t � Ut)
2 (36)

=E
1

m

m

t=1

(Ŝ2;t � St + St � Ut)
2

(37)

=E
1

m

m

t=1

(Ŝ2;t � St)
2 + E

1

m

m

t=1

(St � Ut)
2

(38)

=D2 + E
1

m

m

t=1

V 2
t (39)

=��2
N2

P +N2

�

+ ��2 (40)

where (38) follows since St � Ut = Vt is independent of Ŝ2;t � St,
(39) follows from (7) and (19), and (40) follows from (19) and (35).
We now have

1

n
I(YYY 2;UUU) �

1

n
I(ŜSS2;UUU) (41)

�
1

n
mR(Ed(ŜSS2;UUU)) (42)

�
1

2�
log

(�+ 1)�2

��2 N
P+N

�

+ ��2
(43)

where (41) is by the data processing inequality, (42) is by rate-distortion
theory, and (43) follows since UUU is Gaussian with variance (�+ 1)�2,
and by (1) and (40). Combining (33), (34), and (43) yields

h(YYY 111 jUUU) �
n

2
log 2�e(P +N2)

�
� N

P+N

�

+ �

�+ 1

1=�

� 2�e(N2 �N1) : (44)

Hence, we have bounded all four terms in (23). Combining these terms,
that is, combining (23), (24), (25), (32), and (44) yields (45) at the
bottom of the page, for all� > 0. Algebraic manipulation of (45) yields

1

n
I(XXX;YYY 111) �

1

2�
log f(�) (46)

for all � > 0, where f(�) is defined in (10).
By rate distortion theory, by the data processing inequality, and by

(46) we have that if (D1; D2) is achievable than

1

�
R(D1) �

1

n
I(XXX;YYY 111) �

1

2�
log f(�) (47)

for all � > 0. Combining this with the rate distortion function (1) and
taking the supermum over all � > 0 proves the theorem.

Proof of Corrolary 1: By Theorem 1 we have thatD1 �
�
f(�)

for
all � > 0, and in particular for � ! 0 (from above). By (11) and (8)

we have that � = 1. Combining this with Property 3 of f(�), which is
described in Appendix II, proves the theorem.

Proof of Corrolary 2: By Property 4 of f(�), which is described
in Appendix II, we have that

lim
�!1

1

2
log f(�) = �C1: (48)

Hence, the requirement set by (17) can be written as

R(D1) = lim
�!1

1

2
log f(�): (49)

Using (1), we can write (49) as

D1 = lim
�!1

�2

f(�)
: (50)

Combining this with Theorem 1 yield that (D1; D2) may only be
achievable if f(�1) � lim�!1 f(�) for all �1 > 0 (otherwise, there
would be a lower bound on D1 that contradicts (17)). By Properties 7
and 5 this may only happen if � � �th. This means that �th is in fact
a lower bound on the excess distortion ratio which is possible when
receiver 1 is optimal. Combining the definition of �th, (92) with (1),
(5), and (8) proves the corollary.

IV. TRANSMISSION OVER CHANNELS WITH UNKNOWN SNR

We now turn to the issue of lossy transmission over a point-to-point
channel with unknown SNR. Corollary 1 sets a lower bound on the
distortion D1, achieved at SNR of P=N1, given that the transmitter is
optimal at SNR of P=N2. Hence, by defining SNRmin

�
= P=N2 and

SNR
�
= P=N1 and by (12) we prove the following corollary.

Corollary 3: For every � > 1, if a transmitter is designed to be
optimal at signal-to-noise ratio SNRmin and the actual signal-to-noise
ratio is SNR, where SNR > SNRmin, then, the resulting distortion
D( SNR) must satisfy

D(SNR) � � �
�2

SNR
� (1� o(1))

where � is independent of the actual SNR and is given by

� =
1

SNRmin

��1

and o(1) ! 0 as SNRmin ! 1.

Fig. 3 illustrates the results of Corollary 3 in the case of high
SNRmin. The bold dots represent the distortion achieved by systems
which were designed for specific SNRs (e.g., by separating source
coding from channel coding). The dotted line, which connects the bold
points, represents the solution for D of the equation

R(D) = �C(SNR):

The slope of the dotted line (at the limit of high SNR), on a log-log
scale is��. It follows from Corollary 3 that no scheme can achieve the
dotted line for more than one value of SNR. In fact, the solid line, whose
slope (at the limit of high SNR) is �1, represents the lower bound of

1

n
I(XXX;YYY 111) �

1

2
log

(P +N2)
�
�

N
P+N

�

+ 1
1=�

� (N2 �N1)
�+1
�

1=�

N1
1
�
2�2 I(XXX;YYY ) + 1

1=�
(45)
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Fig. 3. MSE versus SNR. Solid line: the lower bound of Corollary 3. Dotted
line: the solution of R(D) = �C(SNR).

Corollary 3. Thus, the MSE (SNR) behavior of any system, must be
worse than what is represented by the solid line.

Note that in Corollary 3 we restricted the analysis to the case where
the system is optimal at SNRmin, that is, when � = 1. We conjecture
that asymptotically, the distortion cannot decay faster than 1=SNR also
when the system is suboptimal at SNRmin, that is, when � > 1.

It is interesting to compare these results to a previous result of Ziv
who analyzed the same problem [8]. In the case where the system is
optimal at SNRmin our result is stronger than Ziv’s result, since we
showed that the distortion cannot decay faster than 1=SNR, while Ziv
showed that it cannot decay faster than 1=SNR2. (Although Ziv’s result
applies even if the system is not optimal at any SNR.) Additionally, we
bounded the performance of any system, while Ziv restricted his result
to a class of systems, which he called “practical.”

V. INNER BOUND ON THE DISTORTION REGION

We shall now describe an encoding scheme for lossy transmission
of a Gaussian source over a Gaussian broadcast channel with � > 1.
We shall show that one of the Mittal–Phamdo schemes [4], as well as
the scheme of Shamai, Verdú, and Zamir [5], are special cases of the
scheme which we shall now describe. The encoder, and the two de-
coders are illustrated in Fig. 4. The transmission block XXX of length
n = �m is generated by concatenating (i.e., multiplexing in time) a
“digital” blockXXXD of length (�� 1)m, and an “analog” blockXXXAAA of
length m. The digital block is generated by a broadcast channel trans-
mitter [1], such that a common message W2 is losslessly sent to both
receivers, and a private messageW1 is sent only to receiver 1. To allow
lossless decoding, we set the rates R1 and R2 of W1 and W2, respec-
tively (measured in bits per channel use), such that for some 0 � � � 1
and some � > 0 (see [1, p. 380])

R1 =
1

2
log 1 +

(1� �)P

N1
� � (51)

and

R2 =
1

2
log 1 +

�P

N2 + (1� �)P
� �: (52)

Since we transmit (W1;W2) over a channel with � � 1 channel uses
per source sample, the rates in the source domain are ((� � 1)R1;
(� � 1)R2) bits per source sample.

We shall now describe the content of the messages and the analog
signal, referring to Fig. 4. The source is quantized by a k-dimensional
vector quantizerQ( � ), with 2k(��1)R quantization points and average
distortion DQ. We fix �1 > 0, choose k sufficiently large, and design
the vector quantizer (VQ) such that it achieves

(�� 1)R2 = R(DQ) + �1 (53)

Fig. 4. A coding scheme for lossy transmission with bandwidth expansion.

where R(DQ) is measured in bits per source sample. We denote the
VQ output by SSSQQQ = (SQ1; . . . ; SQm). That is,

Sjk
Q(j�1)k+1 = Q(Sjk(j�1)k+1)

where

Sjk
Q(j�1)k+1 = (SQ(j�1)k+1; . . . ; SQjk)

and

Sjk(j�1)k+1 = (S(j�1)k+1; . . . ; Sjk):

(We assume that m=k is an integer). The quantization error EEE =
(E1; . . . ; Em) is defined as Et = SQt � St. Each sample in EEE is
scaled by a scalar K to produce XXXAAA.

The message W2 is an integer which uniquely describes the vector
SSSQQQ. Since the length of SSSQQQ is m, and its rate is (� � 1)R2 bits per
source sample, we have that W2 2 (1; . . . ; 2m(��1)R ).

Using broadcast channel decoders, both receivers will decode the
message W2 losslessly, and hence will be able to regenerate SSSQQQ loss-
lessly. Hence, the problem reduces to that of lossy transmission of EEE,
whose variance is DQ.

Let (D0

1; D
0

2) be the distortion pair which is achievable by our
scheme. Referring again to Fig. 4, we denote by YYY DDD111 and YYY DDD222 the
noisy outputs of the broadcast channel, in response to the input XXXDDD ,
and by YYY AAA111 and YYY AAA222 the noisy outputs of the broadcast channel, in
response to the input XXXAAA. Receiver 2 estimates EEE by multiplying the
input YYY A2 by a gain factor K2. By setting

K =
P

DQ

and K2 =
PDQ

P +N2
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and taking the limit as � ! 0 and �1 ! 0 we have

D
0
2 =

DQ

1 + P
N

(54)

=
N2

P +N2
R
�1((�� 1)R2) (55)

=
�2N2

P +N2
2�2(��1)R (56)

=
�2N2

P +N2
1 +

�P

N2 + (1� �)P

�(��1)

(57)

where (54) follows from standard MSE calculations (since the esti-
mator of Et is scalaric and linear, its performance depends only on
the average of the variances of Et), (55) is by (53), (56) is by (1), and
(57) is by (52).

As for the good receiver, we note that we can make use of the private
message W1 to further reduce the distortion. However, as a temporary
stage, suppose that receiver 1 would estimate the source while com-
pletely ignoring the private message. We shall denote this estimate by
ŜSS
�

111 . LetD�
1 be the average distortion between SSS and ŜSS

�

111 . Repeating the
steps that led to (57) one can verify that

D
�
1 =

�2N1

P +N1
1 +

�P

N2 + (1� �)P

�(��1)

: (58)

Our problem with respect to decoder 1 reduces now to the following:
the encoder needs to send a message W1, (at rate (� � 1)R1 bits per
source sample) to the decoder, describing the source SSS, taking into ac-
count that the decoder already has side information ŜSS

�

111 . This is in fact
the Wyner–Ziv problem [11][12]. In Appendix IV, we prove a gen-
eral upper bound on the quadratic Wyner–Ziv rate-distortion function
in terms of the MSE between the source and the side information. In
our case this bound asserts

R
WZ
SSS j ŜSS

(x) �
1

2
log

1
m

m
t=1 E(St � Ŝ�

1;t)
2

x

=
1

2
log

D�
1

x
(59)

where RWZ
SSS j ŜSS

( � ) is the Wyner–Ziv rate-distortion function of SSS given
side information SSS�

111 . Therefore, it is possible to design Wyner–Ziv en-
coder and decoder with rate (� � 1)R1 bits per source sample that
achieves (as � ! 0)

D
0
1 = D

�
1 � 2

�2(��1)R

=
�2N1

P +N1
1+

�P

N2+(1� �)P
1+

(1� �)P

N1

�(��1)

(60)

where (60) follows from (51) and (58).
Note that in the special case of � = 1 (R1 = 0), this scheme is the

same as one of the Mittal–Phamdo schemes [4]. On the other extreme,
setting � = 0; (R2 = 0) reduces this scheme to the one of Shamai,
Verdú, and Zamir [5]. Rewriting (60) and (57) in terms of � of (8),
leads to the following theorem.

Theorem 2 (Inner Bound): For sending a Gaussian source with
variance �2 over the Gaussian broadcast channel, any distortion pair
(D0

1; D
0
2) of the form

D
0
2 = �R

�1(�C2) = ��
2 N2

P +N2

�

(61)

and

D
0
1 � ��

2 N2

P +N2

��1
N1

P +N1

� 1 +
N2

N1
�
1=(��1)

� 1
�(��1)

(62)

for some � > 1, is achievable.

Fig. 5 shows the inner bound of Theorem 2 with the outer bound
of Theorem 1. The graphs are shown for the case of � = 2; �2 =
1; P = 1; N1 = 0:001 and N2 = 0:01. For the outer bound we used a
computer program to find the maximum of

�2

f(�)

over all � > 0. It can be seen from the graphs that the gap between
the bounds is small. In [13], we compare the performance of the above
scheme to the performance of the scheme of Mittal and Phamdo. The
comparison is limited due to some mathematical difficulties.

VI. INNER BOUND BY MODULO-LATTICE MODULATION

In this section, we introduce the modulo-lattice modulation scheme.
The scheme is designed for the case of � = 2 and � = 1 (minimal
D2), although it could be generalized to other values of �. We shall
only outline the concept of the scheme. A more detailed description
and analysis can be found in [13].

Before proceeding, we refer back to Fig. 4 and point out that in the
case of � = 1, we have that R2 = C2 and R1 = 0. Hence, the
Wyner–Ziv encoder could be omitted, and the broadcast channel en-
coder reduces to a point-to-point channel encoder.

The new transmitter that we suggest is depicted in Fig. 6(a). It is
similar to the one of Fig. 4 (with � = 2 and � = 1), except that the
messageW2 is not transmitted at all. Instead, we transmit the source SSS
uncoded. (We denote XXX 0

AAA = ~K2SSS.) In addition, the vector quantizer
is a lattice vector quantizer. Therefore, EEE can be expressed as EEE =
SSSmod�, where� is the lattice. For this reason, we call this scheme the
modulo-lattice modulation scheme. EEE is sent uncoded and we denote
XXXAAA = ~K1EEE.

Receiver 1 and receiver 2, depicted in Fig. 6(b) are identical, ex-
cept for different gain factors. The quantization-level decoder employs
a modified nearest-neighbor algorithm which losslessly decodes ŜSSQQQi.
Hence, with high probability, ŜSSQQQiii = SSSQQQ for i = 1; 2. We then add a
scaled version of YYY AAAiii (a noisy version ofXXXAAA) to ŜSSQQQiii and generate an
estimate ŜSS

0

iii of SSS. The final estimate ŜSSiii is then generated by weighted
averaging of YYY 0

AAAiii (a noisy version of XXX 0
AAA) and ŜSS

0

iii.
In [13], we show that the modulo-lattice has the same performance

as the hybrid digital–analog scheme described in Section V. Yet, we
described it here because of the following reasons.

1. The modulo-lattice scheme is interesting since it allows correct
“hard decision” in the receiver, although the transmitted signals
are “soft.” “Soft” transmission has a potential for improved per-
formance in broadcast scenarios, although we were not able to
exploit this potential.

2. In light of the result of Section VII, we conjecture that small mod-
ification to the modulo-lattice scheme can result in optimal perfor-
mance that meets the outer bound of Corollary 1.

3. The structure of the modulo-lattice scheme resembles the
nested-lattice Wyner–Ziv encoding scheme of [14], if we view
the channel noise as “quantization noise.” Hence, modulo-lattice
modulation can also be interpreted as analog communication
with side information, or as a joint Wyner–Ziv channel-coding
scheme. This aspect will be explored in future work.
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Fig. 5. Numerical analysis of the inner and outer bounds.

Fig. 6. Modulo-lattice modulation for lossy transmission with bandwidth expansion. (a) Transmitter. (b) Receivers (i = 1; 2).

Note that this scheme is similar in concept to the analog error-cor-
recting scheme suggested by Chen and Wornell [3]. The main differ-
ence is that in their scheme the lattice is one-dimensional, and their
“tent-map” takes here the form of “sawtooth-map.”

VII. THE EFFECT OF FEEDBACK

We shall show how a partial feedback can improve the performance
relative to the schemes that were presented so far (and did not require
a feedback). Moreover, we shall see that the resulting distortion pair
meets the lower bound of Corollary 1 for � = 2. Although this does
not imply optimality, the fact that the distortion pair achieved with feed-
back meets the lower bound is significant. This is since in many other
communication problems, there exist schemes without feedback, that
achieves the best possible performance of systems with feedback. We

conjecture that this is also the case here. That is, we conjecture that
there exist a system without feedback, that achieves the same perfor-
mance as the system with feedback, and therefore we conjecture that
the lower bound of Corollary 1 is tight for � = 2.

We recall that the distortion region of a stochastically degraded
broadcast channel is the same as that of the corresponding physi-
cally degraded channel (see Appendix I). We shall now focus on the
physically degraded channel and, as in Section VI, we shall only
consider the case where the bad receiver is kept optimal and there
are two channel uses per source sample (� = 2). The encoder, the
channel, the feedback, and the decoders are illustrated in Fig. 7. We
concentrate on physically degraded channels since in all other cases,
the feedback would give the good receiver an “unfair” advantage.
This is since, in these cases, the feedback actually serves as a new
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Fig. 7. Broadcasting with feedback.

observation of the source which is given to the good receiver. On the
other hand, in physically degraded channels, the feedback conveys no
new information about the source (only new information about the
reception at the bad receiver).

The encoder output block XXX of length n = 2m is a concatenation
of two length-m blocks XXXaaa and XXXbbb, where XXXaaa = K�

1SSS and K�

1 =
P=�2. Alternatively, we can write

Xa;t = K�

1St; t = 1; 2; . . . ;m: (63)

The channel is a physically degraded channel and therefore [1]

Ya1;t = Xa;t + Za1;t (64)

Ya2;t = Xa;t + Za1;t + Z 0

a;t; t = 1; 2; . . . ;m (65)

where Za1;t � N (0; N1) and Z 0

a;t � N (0;N2 � N1) and ZZZa1 and
ZZZ 0

a are memoryless and independent of each other and of XXX .
The noisy signal Ya2;t returns as a feedback to the transmitter and to

receiver 1. The transmitter generates Xb;t by

Xb;t = K�

3 (S �K�

2Ya2;t); t = 1; 2; . . . ;m (66)

where K�

2 = P�

P+N
is the Wiener gain for receiver 2, and

K�

3 =
(P +N2)P

N2�2

is a gain factor that scales Xb;t to have a power of P . As before, we
have

Yb1;t = Xb;t + Zb1;t (67)

Yb2;t = Xb;t + Zb1;t + Z 0

b;t; t = 1; 2; . . . ;m (68)

where Zb1;t � N (0;N1) and Z 0

b;t � N (0;N2 � N1) and ZZZb1 and
ZZZ 0

b are memoryless and independent of each other and of XXX .
We shall now describe the operation of the two receivers. Let

YYY 222;ttt
�
=

Ya2;t
Yb2;t

and

YYY 111;ttt
�
=

Ya1;t
Ya2;t
Yb1;t

; t = 1; . . . ;m: (69)

(Recall that Ya2;t is the feedback.) The two receivers employ the fol-
lowing optimal linear estimation of Ŝt. Let

RRRyyy;iii = E YYY t
iii;ttt � YYY iii;ttt

and

rrrsssy;iii = E(StYYY iii;ttt): (70)

Combining (63)–(70) yields

RRRyyy;222 =
P +N2 0

0 P +N2

rrrsssy;222 =

p
P�2

N P�

P+N

(71)

RRRyyy;111 =

P +N1 P +N1
P (N �N )p
N (P+N )

P +N1 P +N2 0
P (N �N )p
N (P+N )

0 P +N1

(72)

and

rrrsssy;111 =

p
P�2p
P�2

N P�

P+N

: (73)

The linear estimation is given by

Ŝi;t = aaatiii � YYY i;t; (74)

where

aaaiii = RRR�1
yyy;iiirrrsssy;iii: (75)

The resulting distortion is then given by

Di = �2 � aaatiii � rrrsy;i: (76)

Combining (71)–(76) yields

D1 =
�2N1N2

P 2 + 2PN2 +N1N2

and

D2 =
�2N2

2

(P +N2)2
: (77)
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Using the rate distortion function of a Gaussian source (1) and the ca-
pacity of a Gaussian channel (5), one can verify that the distortion pair
of (77) meets the lower bound of Corollary 1 for � = 2. We clarify that
this does not imply optimality since the scheme assumed the existence
of a feedback, whereas the lower bound did not assume any feedback.
Yet, we shall now explain the potential we see.

Shannon showed that feedback does not improve the capacity of a
point-to-point channel. There are other communication scenarios in
which a feedback cannot improve the performance. We conjecture that
in our case as well, there exists a scheme that does not require a feed-
back, and yields the same distortion pair as the one achieved with feed-
back. This conjecture, combined with the result above leads us to con-
jecture that the bound of Corollary 1 is tight for � = 2.

VIII. CONCLUSION

For lossy transmission of a Gaussian source over a Gaussian broad-
cast channel with bandwidth expansion, we have derived inner and
outer bounds on the set of all achievable distortion pairs (D1; D2), and
showed that one of the Mittal–Phamdo schemes is optimal at high SNR.
The inner bound generalizes both the Mittal–Phamdo scheme and the
Shamai–Verdú–Zamir scheme.

Although the distortion in point-to-point communications is given
by D = �2=(1+ SNR)�, we showed that if a system must be optimal
at a certain SNRmin, then asymptotically the distortion cannot decay
faster than 1=SNR.

APPENDIX I
THE DISTORTION DEPENDS ONLY ON THE CHANNEL’S MARGINALS

We shall now describe a general property of lossy broadcasting. We
recall that in the channel coding problem for broadcast channels, the ca-
pacity region depends only on the marginal distributions of the channel
[1, p. 422]. We shall show here that the same is true for the distortion
region in lossy broadcasting. We start with a definition.

Definition 3: A broadcast channel consists of an input alphabet X
and two output alphabets Y1 and Y2 and a probability transition func-
tion fy ;y jx(yyy111; yyy222 jxxx), where xxx; YYY 111, and YYY 222 are of length n.

Now, suppose that we are given a source, a distortion measure, and
two broadcast channels (with the same input and output alphabets), one
with probability transition function fy ;y jx(yyy111; yyy222 jxxx) and one with
probability transition function f�y ;y jx(yyy111; yyy222 jxxx), such that

fy jx(yyy111 jxxx) = f�y jx(yyy111 jxxx); for all YYY 111 2 Y1
n and xxx 2 Xn

(78)

fy jx(yyy222 jxxx) = f�y jx(yyy222 jxxx); for all YYY 222 2 Y2
n and xxx 2 Xn

(79)

but

fy ;y jx(yyy111; yyy222 jxxx) 6= f�y ;y jx(yyy111; yyy222 jxxx); for some (xxx; yyy
111
; yyy

222
):

(80)

Now, using the notations of Definition 2, suppose that we arbitrarily
choose an encoder im(SSS) and decoders g1m(YYY 111) and g2m(YYY 222), and
we calculate the average distortion that result from the use of these de-
coders. We denote by Df

i (i = 1; 2) the distortions in the case where
the channel probability transition function is fy ;y jx(yyy111; yyy222 jxxx) and

by Df
i (i = 1; 2) the distortions in the case where the channel prob-

ability transition function is f�y ;y jx(yyy111; yyy222 jxxx). Then, the distortions
can be written for i = 1; 2 as follow:

Df
i =

SSS YYY

f(SSS) � fy jx(YYY iii j im(SSS))d(SSS; gim(YYY iii))dYYY iiidSSS

(81)

and

Df
i =

SSS YYY

f(SSS) � f�y jx(YYY iii j im(SSS))d(SSS; gim(YYY iii))dYYY iiidSSS:

(82)

Combining (78), (79), (81), and (82) yields

Df
1
; Df

2
= Df

1
; Df

2
: (83)

It follows that any distortion pair that is achievable on
fy ;y jx(yyy111; yyy222 jxxx) is also achievable on f�y ;y jx(yyy111; yyy222 jxxx) and
vice versa. We therefore proved the following lemma.

Lemma 1: The distortion region depends on the broadcast channel
probability transition function fy ;y jx(yyy111; yyy222 jxxx) only through the
marginal distributions fy jx(yyy111 jxxx) and fy jx(yyy222 jxxx).

An immediate conclusion from Lemma 1 is that the distortion region
of a stochastically degraded broadcast channel is the same as that of the
corresponding physically degraded broadcast channel.

APPENDIX II
PROPERTIES OF THE FUNCTION f(�)

We shall now outline the properties of the function f(�) (note that
� > 0 by definition). Examples of f(�) are illustrated in Fig. 8.

Property 1: The function f(�) is continuous in �.

Property 2: If � > 1 then

lim
�!0

f(�) =1: (84)

Property 3: If � = 1 then

lim
�!0

f(�) =
P +N2

N2

��1
P +N2

N1

�
N2 �N1

N1

: (85)

Property 4: In the limit of�!1, the function f(�) is independent
of � and is given by

lim
�!1

f(�) = 1 +
P

N1

�

= 22�C : (86)

Property 5: The derivative of f(�) with respect to � is given by

@f(�)

@�
=

g(�)

�2
(87)

where

g(�) =
h1(�)h2(�)

N�
1

+ 1 (88)
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Fig. 8. f(�) for different values of �. Solid line: � = 1, dashed line: 1 < � < � (� = 2), dash-dot line: � > � (� = 6). The dotted line represents the
limit of f(�) as �!1, which is independent of �. (Parameters: P = 0:15; N = 0:01;N = 0:1; � = 3, and, therefore, � = 5:63).

where

h1(�) = N2
�

�
+ 1 +

P

N2

� 1=�

�(N2 �N1)
1

�
+ 1

1=� ��1

(89)

and

h2(�) = N2(��)
�

�
+ 1 +

P

N2

� 1=��1

+ (N2 �N1)
1

�
+ 1

1=��1

: (90)

Property 6: If follows from Property 5 that

lim
�!1

@f(�)

@�
= 0: (91)

Property 7: lim�!1 g(�) < 0 if and only if

� > �th
�
= 1 +

P

N2

��1
N1

N2

N1

P +N1

��1

+
N2 �N1

N2

(92)

where g(�) was defined in (88).

In the proof of Corollary 2 we show that �th is in fact a lower bound
on the excess distortion ratio in receiver 2 in the case that receiver 1 is
optimal.

APPENDIX III
PROOF OF EQUATION (33)

We shall now prove (33). Let

YYY
0
222
�
= YYY 111 +ZZZ

0 (93)

where ZZZ 0 = Z 01; . . . ; Z
0
n is memoryless with Z 0t � N (0;N2 � N1),

andZZZ 0 is independent ofUUU;XXX , andZZZ111. DefineZZZ 0 = ZZZ111+ZZZ
0. Hence,

YYY
0
222 = XXX + ZZZ

0 where ZZZ 0 is memoryless, zero mean, Gaussian, with
variance N2, and independent of XXX . Additionally we have that

YYY 222 = XXX +ZZZ222 (94)

whereZZZ222 is also memoryless, zero mean, Gaussian, with variance N2,
and independent ofXXX . Now, since we have Markov chainsUUU�XXX�YYY 222

and UUU � XXX � YYY
0
222, we conclude that f(yyy0222 juuu) = f(yyy222 juuu) for all

(uuu; yyy222; yyy
0
222) and therefore,

h(YYY 222 jUUU) = h(YYY 0222 jUUU): (95)

Now, by the conditional entropy power inequality [9], and since YYY 0222 is
an independent sum of YYY 111 and ZZZ 0, and ZZZ 0 is Gaussian with variance
N2 � N1, we have

2 h(YYY jUUU) � 2 h(YYY jUUU) + 2log(2�e(N �N ))
: (96)

Combining (95) and (96) leads to (33).

APPENDIX IV
ON THE QUADRATIC WYNER–ZIV RATE DISTORTION FUNCTION OF

NON-GAUSSIAN VECTORS

We shall now prove a general upper bound on the quadratic
Wyner–Ziv rate-distortion function in terms of the MSE between the
source and the side information. Consider a source–side information
vector pair (SSS0; UUU 0) of length m, where SSS0 and UUU 0 are not necessarily
Gaussian and not necessarily memoryless. The quadratic distortion
between SSS0 and UUU 0 is defined as

d(SSS0; UUU 0)
�
=

1

m

m

t=1

E(S0t � U
0
t)
2
:
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We shall now show that for any such source–side information vector
pair (SSS0; UUU 0) the quadratic Wyner–Ziv rate-distortion function satisfies

RWZ

SSS jUUU (D) �
1

2
log

d(SSS0; UUU 0)

D
(97)

where D is the allowed distortion.
Proof: Let the pair (SSS�; UUU�) be Gaussian with the same

first- and second-order statistics as (SSS0; UUU 0), i.e., (SSS�; UUU�) �
N (E(SSS0; UUU 0);Cov(SSS0; UUU 0)). Let ZZZ� be an independently distributed
Gaussian vector satisfying for every t

Var(S0
t jS

0
t + Zt ; U

0
t) = D: (98)

We have

1

2
log

d(SSS0; UUU 0)

D
�

1

2m

m

t=1

log
E(S0

t � U 0
t)
2

D
(99)

� min
a

1

2m

m

t=1

log
E(S0

t � aU 0
t)
2

D
(100)

= min
a

1

2m

m

t=1

log
E(S�

t � aU�
t )

2

D
(101)

=
1

2m

m

t=1

log
Var(St jUt )

D
(102)

=
1

2m

m

t=1

log
Var(St jUt )

Var(S0
t jS

0
t + Zt ; U 0

t)
(103)

�
1

2m

m

t=1

log
Var(St jUt )

Var(S�
t jS

�
t + Zt ; U�

t )
(104)

=
1

m

m

t=1

I(St ;S�
t + Z�

t jU
�
t ) (105)

�
1

m

m

t=1

I(S0
t;S

0
t + Z�

t jU
0
t) (106)

�
1

m
I(SSS0;SSS0 +ZZZ� jUUU 0) (107)

� RWZ

SSS jUUU (D): (108)

The preceding sequence of inequalities and equalities is now explained.
Equation (99) follows by Jensen’s inequality, (100) follows as a = 1
gives a larger value than the minimal a, (101) and (102) follow since
the optimal square error in linear estimation is the same for Gaussian
and non-Gaussian variables with the same second moments and equals
to the conditional variance, and (103) follows by the definition of ZZZ�.
As for (104), it follows since Var(S�

t jS
�
t + Zt ; U

�
t ), the Gaussian

conditional variance, equals the MSE of the best linear estimator of S0
t

given S0
t + Zt and U 0

t , which is larger than the optimal MSE of any
estimator given by the conditional variance of S0

t given S0
t + Zt and

U 0
t . Equation (105) follows directly from the expression of the mutual

information of Gaussian variables. To see (106), we have I(S0
t ;St +

Zt jUt ) = h(St + Zt jUt )� h(Zt ), but

h(St + Zt jUt )

=
1

2
log [2�e(Var(St jUt ) + Var(Zt ))] (109)

�
1

2
log 2�e(Var(S0

t jU
0
t) + Var(Zt )) (110)

�
1

2
E log 2�e(Var(S0

t jU
0
t = u0) + Var(Zt )) (111)

= h(S0
t + Zt jU

0
t) (112)

where (109) follows from the definition of conditional entropy and the
fact that Zt is independent of St ; Ut , (110) follows, as above, since

the non-Gaussian conditional variance is smaller than the Gaussian
conditional variance, (111) is by Jensen’s inequality, and (112) comes
from the definition of the conditional entropy, using the fact that Zt is
independent of S0

t; U
0
t . As for (107) we have

I(S0
t;S

0
t + Zt jU

0
t) = h(S0

t + Zt jU
0
t)� h(Zt )

but since conditioning reduces entropy we have

h(S0
t+Zt jU

0
t)�h(S

0
t+Zt jS

0
1; . . . ; S

0
t�1; U

0
1; . . . ; U

0
t ; . . . ; U

0
m)

and so

m

t=1

h(S0
t + Zt jU

0
t) � h(SSS0 +ZZZ� jUUU 0)

while m

t=1
h(Zt ) = h(ZZZ�). Finally, (108) follows since (107) rep-

resents the mutual information of a specific test channel that satisfies
the distortion constrains, while RWZ

SSS jUUU (D) is the minimal mutual in-
formation over all possible tests channels.

Note that we can show by a straightforward extension of the proof of
the direct part of the Wyner–Ziv coding theorem, that for any stationary
and ergodic source, the vector form of the Wyner–Ziv function can be
arbitrarily approached by a coding system operating on “super source
symbols.” Hence, it is possible to design an encoder–decoder pair with
rate 1=2 log d(SSS0; UUU 0)=D and distortion D.
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