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Abstract

In the past decade, advances in electronics technology have made larger imaging sensors
available to the experimental fluid mechanics community. These advancements have enabled
the measurement of 2-component 2-dimensional (2C-2D) velocity fields using particle image
velocimetry (PIV) with much higher spatial resolution than previously possible. However,
due to the large size of the sensor, the lens distortion needs to be taken into account as it
will now have a more significant effect on the measurement quality that must be corrected
to ensure accurate high-fidelity 2C-2D velocity field measurements. In this paper, two de-
warping models, a second-order rational function (R2) and a bicubic polynomial (P3) are
investigated with regards to 2C-2D PIV measurements of a turbulent boundary layer (TBL)
using a large imaging sensor. Two approaches are considered and compared: (i) dewarping
the images prior to the PIV cross-correlation analysis and (ii) undertaking the PIV cross-
correlation analysis using the original recorded distorted images then followed by using the
mapping functions derived for image dewarping to provide the correct spatial location of the
velocity measurement point. The results demonstrate that the use of P3 dewarping model to
correct lens distortion yields better results than the R2 dewarping model. Furthermore, both
approaches for the P3 dewarping model yield results which are statistically indistinguishable.

Keywords: 2C-2D PIV, image dewarping, lens distortion

1. Introduction

The study in turbulent boundary layer flow has been ongoing for more than a century, but
we still lack a fundamental understanding of its detailed structure and dynamics, particularly
at high Reynolds numbers. This is partially due to the lack of experimental data at a suf-
ficiently high Reynolds number with sufficient spatial resolution to resolve and characterise
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flow structures from its largest energy-containing dynamic scales down to the smallest signif-
icant dynamic scales. For example, even for small to medium scale industrial applications,
the ratio of the largest to smallest length scales can reach up to 105. When measuring such
flows, the largest resolvable scale is the size of the imaging array, and the smallest resolvable
scale is the size of O(10) pixels. This suggests that in order to capture the fluid motion of
all dynamically relevant length scales, the ratio between pixel size and array size, i.e. pixel
count, needs to be at least of the same order as this length scale ratio in the flow. At this
time, the resolution required cannot be provided by any single sensor that is available on the
market.

Nevertheless, recent developments of sensor technologies has now produced commonly
available cameras with sensors that have a linear size of over 5,000 pixels, with some recent
sensors reaching a linear size of over 8,000 pixels. While these sensors still do not yield
sufficient spatial resolution to capture all the length scales, utilising such large sensors allows
researchers to capture and study turbulent flow behaviour that was previously not be possible
Wu and Christensen (2010); Sergeev and Kandaurov (2019); Schreyer et al. (2015), unless
multiple cameras are simultaneously used in complex array-type arrangements de Silva et al.
(2014); Cuvier et al. (2017).

Along with all the advantages of using a large sensor, there are also some disadvantages,
the most significant one of these being the lens distortion introduced in the PIV image
recording. Image distortion correction has been mainly investigated in the context of stereo-
PIV and tomographic-PIV, where it has been investigated to correct the perspective error
introduced by the position of the cameras, but is often overlooked in the case of 2C-2D
PIV. Lens distortion alone can produces an error of as large as 10 pixels at the edges of
the images, even when long focal length, high quality lenses are used Prescott and McLean
(1997). Within the currently available imagining technology and in the context of a high
Reynolds number zero-pressure-gradient (ZPG) TBL flow, a 10 pixel deviation from the true
location of the measurement position leads to a measurement position error of the order of
10 viscous units. This will result in serious errors such as the velocity field in the viscous
sublayer will be erroneously interpreted as being in the buffer layer.

Traditionally, lens distortion is modelled by the Brown–Conrady model Brown (1971);
Conrady (1919), where the distortion is separated into radial and tangential components and
corrected independently. However, the radial and tangential components are often coupled in
an optical system, which makes this approach not suitable. Therefore, in this paper two more
general mapping models, i.e. (i) a bicubic polynomial (P3) and (ii) a second-order rational
(R2) mapping model are used to rectify the images. The performance of both these two
mapping models is assessed by application to 2C-2D PIV measurements of a high Reynolds
number ZPG-TBL.

This paper demonstrates how lens distortion affects the velocity statistics of a high
Reynolds number turbulent boundary layer measured in a PIV experiment, and how to apply
the P3 and R2 dewarping models to correct for the lens distortion. It also compares two ap-
proaches of dewarping: (i) dewarping the images prior to cross-correlation PIV analysis and
(ii) applying a position correction of the PIV velocity measurement after cross-correlation
PIV analysis of the distorted raw images. Both approaches are discussed after an applica-
tion to the experimental PIV data, followed by a comparison to each other and previously
published results.
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2. PIV Measurements of high Reynolds number ZPG-TBL

A high Reynolds number turbulent boundary layer experiment was performed in the
LMFL High Reynolds Number Boundary Layer Wind Tunnel at the Laboratoire de Mécanique
des Fluides de Lille (LMFL). The tunnel has a streamwise (x-direction) test section length
of 20.6m, and a cross-sectional area of 2m wide by 1m high. The facility is constructed using
a metal frame with high quality 10mm thick glass along the entire test section, providing
complete optical access throughout its test section. The free-stream flow velocity was set to
U∞ = 9m/s at the inlet of the test section, and the measurements were taken 6.8m down-
stream of the tripping point of the boundary layer with no external pressure gradient applied
to the flow. This ZPG-TBL at the measurement location has a Reθ = 8120, δ ≈ 103mm
with a viscous length l+ ≈ 40µm. The PIV experiment used seeding from a water/glycol
smoke generator, which produced seeding particles with a mean diameter dp ≈ 1µm as in
previously reported experimentsCuvier et al. (2017).

High spatial resolution 2C-2D PIV images were acquired in a streamwise - wall-normal
plane along the centreline of the wind tunnel. The field of view (FOV) is a 254mm high
by 152mm wide area, which was illuminated using a dual-cavity Nd:YAG laser with an
output energy of 200mJ per pulse at a wavelength of 532nm. Laser sheet forming lenses,
which consisted of two spherical lenses of focal length −800mm and 500mm, as well as two
cylindrical lenses of focal lengths −60mm and −25mm, narrowed down a 100mm wide light
sheet to a thickness of about 400µm before passing through a 10mm thick glass window
with anti-reflective coating. A result of these focusing lenses is a rapidly diverging laser
sheet, hence the full energy of the laser is used per exposure to ensure sufficient seeding
illumination.

①
②

③

④

Figure 1: Experimental set-up 1: dual pulse laser 2: sheet forming optics 3. laser sheet 4. camera

3



The single-exposed PIV images are acquired by using a CCD camera with 47 megapixels
and a dynamic range of 12 bits (Imprex Tiger T8810). To the best of the authors’ knowledge,
this camera has the largest sensor of its kind currently available in the market. Thus, this
experiment will have the most highly-resolved PIV measurements of the turbulent boundary
layer flow which capture the whole boundary layer using a single CCD camera. This camera’s
sensor has a pixel size of 5.5µm and a total pixel array of 8, 864 x 5, 288, resulting in a 57mm
diagonal array. A telephoto lens (Hasselblad Zeiss Sonnar 250 f/5.6) with a 45mm extension
tube was used to image the near-wall region at a sufficiently large magnification of M = 0.19,
corresponding to a pixel size of 28.9µm in object space. Thus, the measurement area is 2.46δ
x 1.45δ in terms of the boundary layer thickness. The imaging set-up is shown in figure 2.

Figure 2: Imaging setup for the present experiment including a 47 MPixel CCD camera and 250mm telephoto
lens with extension tube.

The synchronisation between the pulses of the Nd:YAG lasers and the camera is provided
by a timing controller (LaVision). To account for the increase in magnification and the
reduction of the light sheet thickness, the seeding rate was increased by a factor of roughly
3 to 4 in comparison to similar PIV experiments reported in Cuvier et al. (2017). This was
done to ensure that there was an optimal amount of seeding particles illuminated in the
images for the subsequent PIV analysis.

The single-exposed PIV image pairs were processed using an in-house multigrid/multipass
2C-2D cross-correlation PIV analysis algorithm Soria (1996); Willert and Gharib (1991). And
the PIV acquisition parameters are summarized in table 1

3. Image rectification procedure

The dewarping process of the data is performed in three steps. The first step is to select a
suitable image distortion model and compute the parameters in the mapping function based
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Table 1: The PIV acquisition parameters for ZPG-TBL measurements

Property Symbol Units Value

Free stream velocity U∞ ms−1 9.64
Friction Reynolds
number

Reτ 2386

Number of samples N 34535
Field of View FOV mm 254.6 × 151.9

FOV δ99 2.5 × 1.5
PIV final window size IWx pixel 32
in streamwise direc-
tion

IWx µm 926.5

IW+
x l+ 21.7

PIV final window size IWy pixel 8
in wall-normal direc-
tion

IWy µm 231.6

IW+
y l+ 5.42

PIV measurement vol-
ume

IWz µm 400

in spanwise direction IW+
z l+ 4.68

Uncertainty in mean
velocity

ǫU 0.825%

Uncertainty in
Reynolds normal
stresses

ǫuu, ǫvv 0.381%

Uncertainty in
Reynolds shear stress

ǫuv 0.695%

on a calibration target image. The calibration target image used in this experiment is shown
in figure 3. In the second step, the shape and position of a reference geometry obtained from
PIV is used to correct the misalignment between the calibration target and the flow. Finally,
the distortion correction is applied to the PIV measurement. Each of these steps is described
in detail in the following three subsections.

3.1. Dewarping model selection and mapping function parameter estimation

In order to correct the distortion in PIV images, a suitable mapping function needs to
be chosen based on the distortion characteristics in the image. The free parameters in this
mapping function are estimated from the object points in the object space and the image
points in the image space. A first order rational (R1) mapping function Willert (1997) which
maps the object points to the image points is given as:
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Figure 3: The refined and inverted form of the calibration target image.

x̂ij =
a11x̂oj + a12ŷoj + a13

a31x̂oj + a32x̂oj + a33
,

ŷij =
a21x̂oj + a22ŷoj + a23

a31x̂oj + a32ŷoj + a33
,

a33 = 1

(1)

where (x̂o, ŷo) are the normalised coordinates of the object points and (x̂i, ŷi) are those of
the image points. The eight unknown best fit coefficients are estimated using a nonlinear
least-squares method such as the Levenberg-Marquardt method Levenberg (1944). While it
is easier to compute and use R1, it only allows a perspective projection of a rectangle onto
any four-sided polygon and preserves the line-straightness. Hence, the R1 mapping function
used for dewarping does not correct any radial or tangential distortion in the PIV images,
which is often the case when those images are recorded with large sensor arrays. Therefore,
to correct the radial distortion, a second-order rational function R2 Willert (1997) is more
suitable. R2 is simply an extension of the first-order polynomials in R1 to the second-order,
as given below.

x̂ij =
a11x̂oj + a12ŷoj + a13 + a14x̂

2
oj
+ a15x̂oj ŷoj + a16ŷ

2
oj

a31x̂oj + a32ŷoj + a33 + a34x̂2
oj
+ a35x̂oj ŷoj + a36ŷ2oj

,

ŷij =
a21x̂oj + a22ŷoj + a23 + a24ŷ

2
oj
+ a25x̂oj ŷoj + a26ŷ

2
oj

a31x̂oj + a32ŷoj + a33 + a34x̂2
oj
+ a35x̂oj ŷoj + a36ŷ2oj

,

a33 = 1

(2)
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A third-order polynomial function (P3) has also been suggested Tang et al. (2017) for
image dewarping as it can correct distortion that are not radially symmetric. Although third
and higher degree polynomial functions miss physical interpretations, they provide a better
fit to the measured distortion field and are less prone to numerical errors. The P3 function
is given below.

x̂ij = a01 + a02x̂oj + a03ŷoj + a04x̂
2
oj
+ a05x̂oj ŷoj + a06ŷ

2
oj

+a07x̂
3
oj
+ a08x̂

2
oj
ŷoj + a09x̂oj ŷ

2
oj
+ a10ŷ

3
oj
,

ŷij = a11 + a12x̂oj + a13ŷoj + a14x̂
2
oj
+ a15x̂oj ŷoj + a16ŷ

2
oj

+a17x̂
3
oj
+ a18x̂

2
oj
ŷoj + a19x̂oj ŷ

2
oj
+ a20ŷ

3
oj

(3)

The P3 and R2 mapping functions require 20 and 18 coefficients, respectively. The
calibration image contains 91 markers and hence both of the functions will not over-fit the
dataset.

The process to calculate the coefficients of the mapping functions x̂ij = fx
(

x̂oj , ŷoj
)

and

ŷij = fy
(

x̂oj , ŷoj
)

is as follows: Firstly, the positions of the 91 markers {PI = (xij , yij)} in
the image space of the calibration image are determined by cross-correlating the image with
a custom marker template and then finding the peak locations to sub-pixel accuracy using
a 2D Gaussian fit Soria (1996). The uncertainty in the marker positions in image space is
estimated as the ensemble average of the uncertainties of a 2D Gaussian curve fit to the peak
locations in the correlated image, which are estimated from the covariance matrices of the
fit as (σxi

, σyi) = (0.057, 0.057) px.
In object space, the distances (∆xo,∆yo)j between M markers on the calibration grid

are determined, from which the mean (∆xo,∆yo) and standard deviation (σxo
, σyo) of these

distance are calculated. The latter is an estimate of the uncertainty in locating the markers
in object space. For the present case, these values are: ∆xo = ∆yo = 19.510 ± 0.020 [mm]
(i.e. standard error).

The magnification is estimated from the distance between the center marker and adjacent
four markers around it in the image space, because the distortion is minimum at the centre
of the image. The magnification in the horizontal x and vertical y direction for the present
case is: Mx = My = M = 34.538± 0.5 [px/mm]. Hence, the uncertainty in the object space
in pixels is: σxo,px

= 0.380 px.
Using the mean distances between the markers in image space, the positions of the markers

in the object space {PO = (xoj , yoj)} are determined. Then, the image space {PI} and the

object space {PO} are referenced to the marker in the centre of the image, which is defined
as the origin of both the object and image Cartesian coordinate systems (i.e. Poc and Pic,
respectively). The Cartesian coordinate systems for image and object space are further
normalized as follows:

{P̂I} =
{PI} − Pic

xomax

(4)

{P̂O} =
{PO} − Poc

xomax

(5)
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where Poc and Pic define the location of the object point and corresponding image point
of the marker in the middle of the image and object space with xomax

representing a reference
scale, conveniently taken as the maximum of xoj . The centralization of the image space
and the object space is done to shift their origins from the top-left corner to the middle
of the image space where there is minimum (or ideally zero) distortion. Normalization of
the both spaces is performed to minimize the numerical error during the computation of
the coefficients in the mapping functions. Figure 4 shows the centralized and normalized
object point coordinates along with arrows pointing towards the corresponding image point
coordinates. The arrows have been enlarged by a factor of 20 for ease in visualization. It
can be seen that there is very little distortion in the middle of the image as compared to the
edges and corners, where there is considerable pincushion distortion.

Lastly, the coefficients of the R2 and P3 mapping functions (xij = fx(xoj , yoj), yij =
fy(xoj , yoj)) are determined using the Levenberg-Marquardt method for nonlinear least squares
curve-fitting Levenberg (1944). The characteristic parameters determined from the calibra-
tion image and used to estimate the free parameters in the mapping functions are summarized
in table 2.

The maximum distortion is found to be 0.33% which is at the top right corner of the
sensor. This distortion value is slightly lower than the 0.4% which is reported in the data
sheet of the lens.

ï��� ï��� � ��� ���

ï���

ï���

�

���

���

Figure 4: Object points (the red markers) with arrows pointing towards the corresponding image points. To
help visualize, the arrows have been enlarged by a factor of 20.
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Table 2: The characteristic parameters to compute the dewarping coefficients of the equations 2 and 3.

Property Symbol Units Measurements

Pitch of object points ∆xo,∆yo (mm) 19.510± 0.020
Resolution M (px/mm) 34.538 ± 0.5
Center point of the
image space

Pic (px) (4380.356, 2555.753)

Center point of the ob-
ject space

Poc (px) (4380.906, 2559.182)

Maximum x coordi-
nate of the object
space

xomax
(px) 8423.924

The bottom-left point
in the image space

P̂imin
(px) (−0.479879, −0.239565)

The top-right point in
the image space

P̂imax
(px) (0.481752, 0.241688)

The bottom-left point
in the object space

P̂omin
(px) (−0.479945, −0.239972)

The top-right point in
the object space

P̂omax
(px) (0.479945, 0.239972)

The maximum abso-
lute error in curve fit
(R2/P3)

[

PI −
(

fx(PO), fy(PO)
)

]

max

(px) (1.577, 1.517)/(1.742, 1.290)

The mean error in
curve fit (R2/P3)

PI −
(

fx(PO), fy(PO)
)

(px) (0.0, 0.0)/(0.0, 0.0)

The root-mean-
squared error in curve
fit (R2/P3)

σ
[PI−

(

fx(PO),fy(PO)
)

]
(px) (0.836, 0.681)/(0.868, 0.508)

9
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Figure 5: Sample image taken in the experiment, with analysis domain for wall position marked

3.2. Aligning the flow with the calibration target

Since the mapping parameters are determined from the calibration image and not the
PIV images themselves, some error may be introduced due to the misalignment between the
flow direction and the calibration target. A minor rotation or translation in the out-of-plane
direction will not significantly change the mapping function parameters, as the distortion
of the lens will not change greatly over a small displacement in the out-of-plane direction.
However, since the sensor size is large, any rotation of the calibration target in the in-plane
direction will create a significant error in the dewarped image, especially near the corners. To
correct for the in-plane rotation of the calibration target relative to the flow, the orientation of
a reference geometry, for example, the wall in the boundary layer flow, needs to be determined
from the PIV images. To perform the necessary correction, part of the tunnel wall, as well
as the reflection of the particles from the plate surface are recorded in the PIV images, as
shown in figure 5:

A cross-correlation PIV analysis near the plate yields a mean streamwise velocity profile
that is symmetric at the plate due to the plate surface refection of the seed particles as shown
in figure 6. This yields a precise measurement of the location of the plate in the horizontal
streamwise direction. The shift between the velocity profile with the flipped profile is defined
as d and can be estimated within sub-pixel accuracy by cross-correlation and then fitting a
Gaussian profile to the peak. Then the wall position at this x position can be calculated as:

Wall position(x) =
h− d(x)

2
(6)

This process is repeated for every streamwise position to calculate the wall position and
subsequently, the shape of the wall along the streamwise direction is determined, as shown in
figure 7. This figure 7 shows that the wall shape before dewarping appears to have a parabolic
shape, and that after dewarping the shape of the wall is nearly a straight line. However, even
after dewarping, the wall is still not parallel with the x-axis but rotated clockwise at an angle
of 0.04 degrees. As mentioned before, this is due to a small angular misalignment between the
calibration target and the wind tunnel floor (i.e. the flat plate of the ZPG-TBL). Therefore,
an additional rotation correction step is necessary as part of the dewarping of the PIV images.
The final mapping function, which includes the rotation, as well as dewarping is presented
as equation 7, where the mapping function can be either R2 or P3.
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Figure 6: Streamwise velocity profile near the wall at one streamwise location, the line of symmetry in the
velocity profile indicates the position of the wall at that streamwise location.
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[

x̂i

ŷi

]

=

[

cos (θ) − sin (θ)
sin (θ) cos (θ)

]

×

[

x̂i(mapping function)

ŷi(mapping function)

]

(7)

Note that as this equation maps from object space to image space, the negative value of
the angle found in figure 7 should be used for the rotation angle θ. The maximum deviation of
the measured wall profile from the straight and horizontal position before and after dewarping
is summarised in table 3.

Table 3: The maximum deviation of the measured wall profile from straight and horizontal position before
and after dewarping

Condition Maximum devi-
ation from the
horizontal position
(px)

Distorted 9.00
Dewarped by R2 5.42
Dewarped by R2 and rotated 1.90
Dewarped by P3 3.98
Dewarped by P3 and rotated 0.62

3.3. Dewarping of PIV Images

The appropriate mapping function and rotation angle can now be applied to all of the
PIV images prior to the cross-correlation PIV analysis. For each pixel coordinate in the
object space, the corresponding coordinate in the image space is calculated using equation
7. Because the corresponding coordinate might not be at exact pixel position, its value is
bicubicly interpolated using the nearest sixteen pixels. If the calculated image coordinate is
outside of the image, a zero intensity value is used to fill those pixels.

There is an alternative approach that avoids the computationally expensive dewarping
process of the acquired PIV images. As already pointed out, the maximum distortion present
in the acquired PIV images is of the O(10)px over a domain of 4000px. However, the
distortion within a PIV interrogation window is relatively small compared to the distortion
over the whole FOV. This distortion can be estimated to introduce a bias error of 0.08px
for a 32px PIV measurement displacement, which can be considered as a relatively large
PIV measurement displacement. This level of bias error is within the resolving power and
uncertainty of cross-correlation PIV analysis Soria (1996) and would not be detectable in the
measurement. Thus, it is possible to determine a high-fidelity velocity measurement using
cross-correlation PIV analysis of the distorted PIV images, but the location of the velocity
measurement would be inaccurate. Therefore, in this alternative approach the correct object
positions for the PIV analysis are mapped to the distorted image positions where the cross-
correlation PIV analysis is undertaken using the distorted acquired PIV images. The two
methods of dewarping process are described as flow charts in figure 8 with the former labelled
as Method I and defined as dewarping the images prior to PIV analysis, while the latter is

12
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the images

Method II: Dewarping
the velocity fields

Figure 8: Flowcharts describing the two methods implemented for image dewarping: Method I - dewarping
the images before performing PIV analysis and Method II - dewarping the velocity field after PIV analysis
of the distorted images.

labelled Method II and defined as dewarping the velocity field after PIV analysis on the
distorted images. The results of these two approaches are compared in the section 5.

4. Sensitivity analysis of the mapping functions

Monte Carlo simulations are used to investigate the uncertainty in the mapping functions
and their sensitivity to the change in object and image spaces within their corresponding un-
certainties. The uncertainty in the coefficients is a result of the mapping function parameter
estimation. The procedure of the Monte Carlo simulations is as follows:

1. Generate sample spaces {PI}n and {PO}n of size N using the uncertainties in locating
the markers in image space σxi

= 0.057px (section 3.1) and in object space σxo
=

0.380px (section 3.1) respectively, while keeping {P̂ic}n = (0, 0) and {P̂oc}n = (0, 0).

2. Compute the sample mapping functions (fx, fy)n
3. Compute ǫjn = {PI}n −

(

fx({PO}), fy({PO})
)

n

4. Repeat steps (1) to (3) to generate an error sample space of size N .
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Table 4: Turbulent boundary layer characteristics compared with EuHIT experiment Cuvier et al. (2017)

U∞ (m/s) δ99 (mm) uτ (m/s) Reτ

Current experiment 9.64 103 0.348 2386
EuHIT 9.64 104 0.346 2360

5. Using the error sample space of size N from step (4), compute and the joint probability
distribution functions (JPDFs), ǫj for the M markers.

The JPDFs of ǫj(px) using a sample size N = 500, 000 for the 91 markers are shown
in Figure 9 for the R2 and P3 mapping functions. These results show that there is 99%
confidence that the residual error using R2 at all marker locations are within two pixels
which is less that 0.024% over the length of the sensor. The uncertainty of the mapping
using P3 is slightly better than that for R2, as its residual error is less for most marker
locations. Hence, the computed mapping function can be safely applied to PIV images to
correct distortion.

5. Results

In order to assess how lens distortion affects 2C-2D PIV measurement, ascertain the
appropriateness of the two image dewarping models, as well as the two approaches to correct
for lens distortion during PIV image acquisition using a large sensor array, the first- and
second-order statistics of the velocity field of a ZPG-TBL at Reτ = 2, 386 are presented
and compared with the profiles measured in the same facility under similar flow condition
using 2C-2D PIV with smaller imaging sensors Cuvier et al. (2017) (EuHIT experiment),
as well as the profile produced from a DNS data with Reθ = 6500 Sillero et al. (2014).
The PIV data provided throught the EuHIT data base was processed with an interrogation
window size of 20+ × 5+ in the streamwise and wall-normal directions near the wall, thus
the spatial resolution is similar to the data presented in this paper. A single camera with
a larger sensor is used in the present experiment to capture the velocity field of the entire
boundary layer. This differs from the EuHIT experiment in which the profile from 2C-2D
PIV near the wall measured with high spatial resolution using a smaller sensor is combined
with the profile determined with less spatial resolution using PIV further away from the
wall in order to capture the entire boundary layer. The smaller imaging sensors used in the
EuHIT experiment led to a smaller lens distortion error in those measurements.

The boundary layer characteristics calculated from the dewarped mean profile, which
are presented in table 4, show a favourable comparison with the boundary layer statistics
measured from the EuHIT experiment. The mean streamwise velocity profiles are shown
and compared in figure 10. These results show that, in the wall region, the mean streamwise
velocity profile measured from the uncorrected distorted images deviates the EuHIT data,
and the maximum difference can be as much as 80%. Thus, the lens distortion leads to
significant errors in the measurements, which must be corrected.

The profile determined from cross-correlation PIV analysis of the dewarped image set
using the R2 mapping function starts to deviate from the EuHIT data below y+ = 7; how-
ever, the maximum difference compared to the EuHIT measurements remains similar to that
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Figure 9: Sensitivity analysis of the dewarping error in (a) R2, (b) P3, using the Monte Carlo simulation
with a sample size of N=500,000 within the uncertainty of 0.057px and 0.380px for image points and object
points respectively. The two gradual grey square boxes in each subplot show the uncertainty of 1 and 2 pixels
respectively.
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determined using the uncorrected distorted images. Using the P3 mapping function yields a
mean streamwise velocity profile which is in agreement with both the EuHIT measurements
as well as the more highly resolved DNS data. This clearly indicates that most of the lens
distortion can be corrected by utilising a suitable mapping function. Furthermore, there
is also no significant difference between the mean velocity profiles produced by two distor-
tion correction methods, dewarping the images and mapping velocity vectors to the correct
position.
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Distorted
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Corrected images using P3 model
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Figure 10: Mean streamwise velocity profile in wall units. The profile is compared with an experimental data
taken in similar flow conditions Cuvier et al. (2017) (EuHIT) as well as DNS simulation with Reθ = 500
Sillero et al. (2014)

The measured Reynolds stress profiles are presented in figure 11 and compared with the
profiles from the EuHIT experiment as well as the DNS simulation. These results show that
the dewarping does not affect the uv and vv profiles as much as the uu profile. However,
the profiles determined from the distorted PIV images are slightly lower than the profiles
from the dewarped images. For uu, the profile determined using the uncorrected distorted
images is up to 12% lower than the profile from the EuHIT experiment and the peak is
slightly shifted to a higher y+ value. This difference in the profile is largely corrected by the
R2 mapping function. The profile determined using the P3 dewarping model to correct the
distorted PIV images corrects all the lens distortion with the results agreeing well with the
previous measurements. Once again, the profiles of the second order statistics produced by
Method I and Method II of dewarping as described in figure 8 agree with each other within
the experimental uncertainty.

The results show that Method I and Method II of correcting lens distortions provide
similar accuracy as far as the first and second order velocity statistics are concerned. However,
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Method II is more efficient in terms of computational time when compared to Method I, so
Method II is the recommended approach when correcting lens distortions.

6. Conclusion

This paper investigates the lens distortion problem associated with 2C-2D PIV when
large sensor arrays are employed to acquire the PIV images of a turbulent flow. In order
to correct the lens distortion, a classical image dewarping method is implemented, which
consists of three steps. First, a dewarping model suitable for the type of lens distortion
is selected, and the free model parameters are found from the calibration image. In this
paper, the results of using a second-order rational function (R2) and a bicubic polynominal
(P3) have been investigated and mutually compared. Then, a PIV analysis near a reference
geometry, which in this case is a flat plate used in the ZPG-TBL experiment, is performed
to align the calibration target with the flow. Finally, the mapping function is applied to the
distorted images prior to cross-correlation PIV analysis to determine the 2C-2D velocity fields.
This paper also presented a sensitivity analysis to determine the accuracy of the dewarping
function. The image dewarping method is then applied to a turbulent boundary layer flow
experiment using 47MegaPixel camera with a 57mm diameter sensor. The first and second-
order statistics of the velocity fields measured are presented and compared with experimental
data produced in similar flow conditions, as well as a DNS dataset at comparable Reynolds
number. The results show that the P3 distortion model has better accuracy in comparison
to R2 in this particular case. Another finding was that Method I, dewarping the images, and
Method II, dewarping the velocity fields, produces the same results within the experimental
uncertainty. However, Method II is recommended as it is computationally more efficient and
faster
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Figure 11: (a) Streamwise Reynolds stress profile (uu+) (b) Wall-normal Reynolds stress profile (vv+) (c)
Reynolds shear stress profile (−uv+) The profiles are compared with an experimental data taken in similar
flow conditions Cuvier et al. (2017) (EuHIT) as well as DNS simulation with Reθ = 6500 Sillero et al. (2014)
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