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Abstract. The results obtained from finite element analysis are 

significantly affected by the quality of elements. In certain applications 

like shape optimization, crash analysis, metal forming, fluid flow analysis, 

and large displacement analysis, the finite element mesh is systematically 

updated in an iterative process. In such situations, in spite of an ideal 

starting mesh, the quality of elements could deteriorate, causing severly 

distorted elements. In extreme cases, the elements become degenerate and 

further progress of analysis is restricted. An understanding of the methods 

of quantifying element distortion helps in identifying 'bad' geometry and 

in deciding when to remesh. Knowledge about geometric configurations 

which cause degeneracy assists in controlling degeneracy during the 

analysis. This paper contains a survey of available distortion measures 

and degeneracy conditions for various elements in two and three 

dimensions. It is a review of the literature in this field in the last two 

decades. A brief review of rezoning is also included, since it is one of the 

more popularly used methods to correct a distorted mesh. 
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1. Introduction 

Distortion measures are usually functions of the coordinates of the element. Examples 

of distortion measures for four-noded quadrilaterals are aspect ratio, skew and tapers. 

Most of the available literature in defining distortion is for two-dimensional elements. 

These measures either use terms of the Jacobian matrix or simply define measures 

in terms of linear dimensions and angles. These are purely a priori, in the sense that 

they just capture the shape of the element quantitatively. Some authors have also 

studied the relationship between stiffness matrix terms and element shapes. The 

parameters used are condition number and trace of the stiffness matrix. It should be 

noted that the distortion measures only tell the user how distorted the element shape 

is with respect to a standard element. Whether this is good, bad or not relevant 
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depends on the problem at hand. The effect of distortion on errors cannot be assessed 

a priori. However, bad elements are usually sources of trouble especially in regions 

where the gradient of the solution parameter is high. For example, in elasticity 

problems, they are the regions of stress concentration. 

A degenerate element is one for which the coordinate transformation becomes 

mathematically invalid. Our discussion is limited to isoparametric elements which 

use serendipity functions. The element in physical space, x, y, z is mapped to a 

standard element in ¢, ~/, ~ coordinate system. For a one to one mapping, the Jacobian 

of the transformation matrix should not change sign or become zero anywhere in 

the element domain. The term 'Jacobian' denotes the determinant of the Jacobian 

matrix. Thus, J = det [J]. The effect of the Jacobian being zero is discussed later in 

the paper. Degeneracy has to be avoided for a reliable solution. Detecting degeneracy 

mathematically is a problem of finding the zero of a polynomial. Simple thumb rules 

are possible only for linear elements and simplified higher order elements. For practical 

problems in engineering, the Jacobian can be sampled along the boundary and at 

Gauss points to identify degeneracy quickly. Once the mesh is identified to be bad 

for further analysis, it is modified using rezoning or adaptive techniques. Rezoning 

using Laplacian smoothing is the fastest and simplest way of modifying the mesh. 

Hence it is the most widely used rezoning method with different forms of weights in 

the rezoning formula. An adaptive strategy based on rezoning uses error measures 

as weights and iteratively rezones the mesh till convergence. Grid optimization is a 

more rigorous method of obtaining the optimum mesh for a given problem. The idea 

of grid optimization is to seek a minimum potential energy configuration with nodal 

coordinates as design variables along with nodal displacements. 

This paper contains mainly two sections. The first section is a survey of various 

distortion measures proposed in the literature. It also includes the methods of element 

evaluation used to study the behaviour of elements to known displacement fields. 

The second section is a review of mathematical literature on nonvanishing of Jacobian 

in the element. A brief review of rezoning follows this section. 

2. Distortion measures and element evaluation 

The first step towards defining distortion measures is to parametrize the shape of the 

finite element in terms of quantities which are independent of coordinate systems. 

The coordinates of the element itself can constitute a set of parameters, but in that 

case, the distortion measure will be dependent on the coordinate system. In addition, 

it will be very difficult to make any intuitive judgement about the shape of the element 

from its coordinates. Hence in order to capture shape variation, independent of 

coordinate systems, various parameters have been proposed for linear and quadratic 

elements. Of these, the most popular are the ones for the four-noded bilinear 

isoparametric element. There are four shape parameters for this element-aspect ratio, 

skew, and two tapers along each coordinate direction. Using these four parameters, 

it can be shown that all types of shape changes can be independently captured. 

General guidelines are available to limit these values for any analysis. For example, 

most commercial codes recommend an aspect ratio between 1 and 3 (e.g., I-DEAS). 
However, distortion of the element is caused by a combination of all these parameters. 

Hence limits on these quantities independent of each other is not sufficient. This fact 

is another argument for the need to have a distortion measure which is representative 
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of the behaviour of the element. Most of these measures are discussed with 2-D 

examples like bilinear and quadratic elements. Some of the measures like distortion 

metric can be extended to 3-D elements. The literature available for 3-D distortion 

measures is very limited. 

2.1 Shape parameters 

Robinson (1985) expressed shape parameters in terms of simple polynomial coefficients 

with a clear physical meaning. These parameters are evaluated from the elements of 

the Jacobian matrix. This concept is reviewed here. In the finite element analysis of 

general structures, quadrilateral elements can be used on curved surfaces. The plane 

in which the element lies need not necessarily be flat. The stiffness matrix for a warped 

element is usually based on a flat projected plane. It is thus necessary to consider 

warpage as one of the parameters. The warped quadrilateral (figure 1) with straight 

edges is denoted by its corner nodes A, B, C, D. The reference nodes for the projected 

plane are denoted as 1 to 8. This plane contains the midpoints of each side. The 

warpage of a quadrilateral is measured by its deviation from a flat projected plane. 

Each corner node of the warped element will be at a distance h from the corresponding 
- -  m 

corner point of the projected plane (figure 1). The height h is given by h = abs(OA.Z). 
For a flat element h = O. The warpage is measured by the warpage parameter 0 

(degrees) which is defined as 

0 = sin- 1 (h/l) 

where I is half of the smallest side of the element. Shape parameters for four-noded 

flat (projected) quadrilateral elements can be written from the interpolation functions 
found in any text book on finite element analysis (e.g. see Chandrupatla & Belegundu 

1991), 

4 

x(or y)= ~ N, xi(or y~) 
i = l  

where N~ are the standard shape functions for a four-noded quadrilateral element. 

The above equations show that eight parameters are needed to define a quadrilateral. 

In this case they are x and y coordinates of the four corner nodes. This form, however 

hides the significance of shape parameters. An alternative form of shape 

t ,  

Figure 1. A warped quadri- 
lateral element and its projec- 
ted plane. 
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Figure 2. Shape parameters for a 4-noded quadrilateral. 

representation is the polynomial form given by 

x = e 1 + e2~  + e3~  + e4~t/ ,  

Y = f l  + f 2 ~  + f 3 r / +  f4~/ ,  (1) 

where e and f are coefficients which can be related to the nodal coordinates by 

substituting the known values of x and y at the comer nodes. For  example, el and 

f l  are given by 

el = (1/4)(x I + x 2 + x3 + x4) and f~ = (1/4)(yt + Y2 + Y3 + Y,,). 

The physical significance of ei and fi  are shown in figure 2, where 1 - 2 - 3 - 4  is the 

quadrilateral element. The rectangle ABCD is drawn through midpoints of the sides 

of the element so that the sides of the rectangle are parallel to the x and y coordinate 

axes. The dotted lines E - F - G - H form the parallelogram through midpoints of 

the element sides with its edges parallel to the ~,~I axes. The coefficients e 1 and f l  

define the coordinates of the geometric centre of the element, e2 and f3 define the 

size of the rectangle A - B - C - D, e3 and f2 give two rotations (skew and rotation 

of the axes) and e4 and f4 give two tapers. If the local axes are defined with the 

origin at the centre of the element so that el =f~ = f2 = O, the required shape para- 

meters can be defined as follows, 

Aspect ratio = Max(e2/f3,f3), Skew = e3/f3, 

Taper along x = f J f 3  and taper along y = eJe2 .  

If the transformation from ~, t / to  x, y axes is regarded as a continuous deformation, 

the aspect ratio represents element stretching and skew is equal to the shearing strain 

at ~ = 0 ,  7 = 0 .  
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The Jacobian matrix for a flat (projected) quadrilateral can also be expressed in 

terms of the shape parameters. Specifically, the following expression for the 

determinant of the Jacobian matrix can be easily derived. 

det[J]  =f2A(1 + T,~ +(Ty-(S/A) Tx)~;), 

where A is the aspect ratio, S is the skew and T. and 7", are the tapers along x and 
y directions, respectively. The parameter ./'3 is a half side length of the basic rectangle 

(see figure 2). The coefficients in the Jacobian are therefore a function of the shape 
parameters. 

2.1a Shape parameters for an eight-noded quadrilateral: For an eight-noded 
quadrilateral, a similar procedure to that for a four-noded quadrilateral can be used, 

but additional parameters come into the picture. These parameters account for the 
curved sides and midside nodes. Similar to (1), shape functions for an eight-node 

quadrilateral can be expressed in polynomial form (Robinson 1988) 

x = e 1 + e2~ 4- e3r / 4- e4~r/+ e5~ 2 4- e6r/2 4- e7 ~2r/4- e8~?/2, 

y = /1  +f2~ +/3~  + / , 0 1  + A ~  2 + /6~  2 + f7~2~ + f g ~  2, 

where the coefficients e~ and f~ can be expressed in terms of the coordinates of the 
element. Referring to figure 3, the shape parameters are defined as given below. In 

figure 3 the local coordinate system is defined in such a way that e~ = f]  = f2 = 0. 
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Shape parameters for an 8-noded quadrilateral. 



316 Raviprakash R Salaoame and Ashok D Belegundu 

J 

( " "  x "t 

X "l  
Figure 4. 
deviations. 

Tangential and normal 

Aspect ratio = e2/f3 , or f3/e2 (larger of the two), Skew = e3/f3 + f4/e2, 

taper along x = f4/e3 and taper along y = e4/e2. 

The other shape parameters describe the curvature of the sides and offset of midnodes. 

The offset of the node on a curved boundary from the midpoint of the associated 

chord is shown in figure 4. The offset measures are defined as the normal and tangential 

deviations. 

Tangential deviation, TD = g/(1/2) L 

where ~ = Vck'Qt is a unit vector along ij. 

Normal deviation, ND = 7/(1/2) L 

where 7 = ~' x ft. The vector p is a unit vector perpendicular to the plane containing 

the nodes i, j and k. The offset parameters are normalized with respect to half the 

chord length. When TD is zero, the node on the curved boundary is in the centre at 

C (see figure 4), and when ND is zero, the actual boundary is straight. A different 

way of defining distortion parameters for eight-noded quadrilaterals can be found in 

Hellen (1984). These are briefly described below. 

Let r denote the position vector of a point in the x ,y  coordinate system and r,~ 

and r.~ be the tangent vectors at any point ~, r/. Let ~ be the angle between the two 

tangent vectors. The distortion parameters are defined as 

Aspect ratio = Ir.¢[ or Ir~l (larger of the two), 
Ir~J IrcJ 

skew = 9 0 ° - 6 .  

Max. chord aspect ratio = (maximum chord length)/(minimum chord length), 

Boundary node offset, R = (length ck)/(length ij). 
These parameters have been implemented in the BERQUAL program (Hellen 1984). 

The effect of these parameters on displacements for some structural problems and 

the discussion of the program can be found in Hellen (1986, 1987). 
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2.2 Shape sensitivity analysis 

The basic idea of shape sensitivity studies is to vary the element shape parameters 

singly and in combination to assess their effect on the accuracy of the results produced, 

in a prescribed loading situation. This type of study have been carried out by Burrows 

(1986) and Robinson (1985, 1990) among others. In Burrows' work, a standard 2-D 

plane stress element is distorted in a predetermined way and subjected to standard 

loading conditions. Two types of loadings are considered- a constant stress and a 

constant moment. Theoretical nodal displacements and nodal forces are compared 

with FI~ nodal displacements and forces. Another method of element evaluation 

introduced by Robinson (1987) called continuum region element (CRE) testing is based 

on the idea that a rectangular continuum is available for which theoretical solutions 

are known for various loading conditions. Then the region is treated as a single 

element or a patch of elements. The applied load is in the form of specified displace- 

ments which are nonzero. The strain energy of the field due to F E  formulation is 

computed and compared with the theoretical value of the strain energy. Examples 

on this approach to element testing can be found in the works of Robinson (1976, 

1987, 1990). An analytical investigation on aspect ratio sensitivity of elements can be 

found in Robinson (1991). The elements studied are taken from commercial finite 

element codes like ABAQUS, MSC/q~ASTRAN, and A]qSYS. 

2.3 Distortion measure based on polynomial order of the element geometry 

The shape parameters defined above for flat elements are easy to evaluate and 

implement in commercial codes. However there is need to understand their effects 

on solution errors. Since the error is a result of the combination of distortion and 

the variation of the unknown solution, a general correlation of the two is impossible. 

However, solution errors can be computed for assumed polynomial strain fields. This 

error can then be related to a known element distortion. Analytical study of distortion 

based on this concept was done by Barlow (1987, 1989). This approach for element 

evaluation is summarized below. 

The basis of distortion measure is the polynomial order of the element geometry. 

Here, an example of this measure is presented with 8-noded isoparametric elements. 

The geometry of the element in an x, y coordinate system is written in a form which 

incorporates the distortion parameters. The form is, 

[ x  y ]  = l [~  r/] + IF[~. ~y], 
where 

Fro- r1,~,1~,~2,~,~2,~2,~21~,~2], (2) 

is a (1 x 8) vector of polynomial terms in N, 4 l  2 : area of the element (a scalar which 

makes the problem nondimensional.) and ex and ~, are (8 x 1) vectors of the distortion 

parameters given by 

= [~xi,8~2 . . . . .  ~ s ] ,  

~T 
y = [~yl, ~y2 .... , ~ys]" 

The first right-hand side term in (2) is the undistorted parent element and the remaining 

terms are the distortions of that element. These can be grouped into polynomial 

orders of distortion as given below. 
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The terms e~l and ey 1 represent just an offset from the origin. The terms ex2, ey2, 

ex3 and ey3 represent linear geometric distortions. They are similar to aspect ratio 

and skew parameters. The next three terms e~4, ey4, exs, 8y5, ex6 and ey 6 are the 

quadratic distortions. These can be interpreted as anti-symmetric edge curvature, 

taper and symmetric midside node offset. The last two terms exT, ey7, e~s and eya are 

the cubic distortions. They represent symmetric edge curvature and anti-symmetric 

midside node offset. The values of the distortion parameters may be extracted from 

the nodal geometry by substituting nodal coordinates in (2) and solving for e~ 

and ey. A local coordinate system must be defined at the geometric centre of the 

element to avoid 'pseudo' distortion measures due to the orientation of the element. 

This ensures that the distortions are the same for a given shape independent of the 

element orientation. For graphical description of this measure, see Barlow (1989). 

2.3a Element evaluation: For assumed distortion, the element is evaluated based 

on two considerations- its ability to reproduce the required strain fields and the 

accuracy of integration of the strains to produce the element stiffness, i.e. numerical 

integration used to compute K. It is assumed that the nodal loads produce an 

equilibrium stress field of a given polynomial order. For a constant stress strain 

relationship, this would mean a similar strain field. Now if the elements are capable 

of reproducing the individual strain terms, it would also be capable of reproducing 

any linear combination, including those which represent the equilibrium strain field. 

Thus the following procedure is used in the evaluation. 

A polynomial displacement field is assumed and the exact strains are obtained 

by differentiation. The same polynomial displacements are applied to the finite 

element and the strains are determined from the element displacement functions. The 

difference between two strain fields, the exact and the element representation, provides 

a measure of the error in the element strain representation. The coefficients of the 

polynomial terms in the applied displacement field will depend on element orientation. 

Hence the order of magnitude of the error is taken as the maximum which occurs 

in any individual polynomial term of a given degree. An example is given below. 

Consider the effect of distortion ex3 (skew) on a cubic displacement field. Let u = x a. 

Let the element have only skew parameter i.e. exa and other parameters be zero. 

The x - y  coordinate system is defined at the element centre with x-axis along the 

axis. The applied strain field in terms of ~, r/is given by, 

2 2 
e . . . .  t = 3 4 2  + 6ex3~rl + 3 e x 3 r /  , 

while the finite element strain is given by, 

ere = 1 + 6ex3~ / + 3e23r/2. 

The error in this case would be e = 3~ 2 - 1. This evaluation procedure can be used 

for any element. In fact, Barlow (1989) has demonstrated this method for 20-noded 

brick elements in addition to quadrilateral elements. Based on this study, points at 

which minimum error occurs in the element domain can be obtained. In the above 

example, e is zero at Gauss points (~, n) = (+  l/x//~, --- 1/x/~). These points are called 

optimal stress points. The procedure to analytically determine optimal points for 

assumed strain fields can be found in the works of Barlow (1976) and Budkowska 

(1991). For linear displacement fields the optimal points lie at ~ = 0, r/--- 0. 
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2.4 Distortion measures based on the Jacobian matrix 

The multiple distortion parameters described above are obtained from the geometry 
of the element. Although simple to evaluate, their effect on the accuracy of the solution 

are interdependent. Thus, if a decision about element quality has to be made based 

on some numerical measure of the element geometry, a combination of all the shape 

parameters has to be used. In the previous sections, it was shown that the Jacobian 

can be expressed in terms of these shape parameters. Hence the value of the Jacobian in 

the element domain reveals very useful information about the element distortion. In 

this section some measures based on elements of the Jacobian matrix are described. 

2.4a Distortion parameter: Distortion parameter (DP) was introduced by Nicolas & 

Citipitioglu (1977). For a general quadrilateral element it is defined as 

DP = (4 det [J]min/A) and for three dimensional elements it is defined as 

D P  = (8 det [J]min/V) 

where A and V are respectively the area and the volume of the element. They are 

used to nondimensionalize the parameter. Above, det [J]min refers to the minimum 
value of the Jacobian determinant in the element. For a parallelogram shaped 

four-noded quadrilateral element, DP is 1.0. For a four-noded element which 
degenerates to a triangle, DP is 0-0. The value of DP becomes negative at some point 

if the four-noded element becomes concave. Similar interpretations for 3-D and 

general higher order elements are not as obvious. One of the major disadvantages 

of this parameter is that it cannot detect extremely degenerate parallelograms. A 

rectangle, with extremely high aspect ratio would still have a DP = 1"0 and so does 

a highly skewed parallelogram. Distortion of elements to such shapes are quite 

common in applications involving large changes in finite element mesh, like crash 

analysis, large displacement analysis or metal forming. A variation of DP, which is 

defined as the ratio of maximum value of Jacobian to its minimum value in the 

domain is sometimes used. This parameter also has all the above mentioned problems. 

2.5 Decomposition of the Jacobian matrix 

Separate measures of dement orthogonality, aspect ratio, orientation and volume 

are computed by algebraic decomposition of the Jacobian matrix in this measure 

(Kerlick & Klopfer 1982). The decomposition is first done by splitting off that part 

of the matrix which gives relative orientation of the computational coordinate axes 

with respect to the physical axes. For example, for a 2-D element, the direction cosines 

of the ~ axis with respect to the x-axis is given by 

cos( ) = (x + 

The components of J are expressed in terms of metric tensors, go = xixs + r yj. The 

parameters orthogonality, volume, orientation and aspect ratios are now expressed 

in terms of the components go" This method is described for finite difference analysis 

in Kerlick's work (Kerlick & Klopfer 1982). These separate measures cannot describe 

combination of stretching and shearing. 
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2.6 Distortion metric 

The distortion metric proposed by Oddy et al (1988) is based on the observation 

that an analogy can be drawn between element distortion and strain. If a body with 

the shape of the element in the computational space ~, ~/, ~ were deformed until it 

had the shape of the element in physical space, x, y, z, then the elements with large 

distortions would experience the analogue of large strains. Hence for this "pseudo 

deformation", Green's strain is measured. If Jo are the elements of Jacobian matrix, 

in n-dimensional space (n = 2 or 3), the elements of J are first normalized to neutralize 

the effect of size. Thus 

J;j = Jo/IJI TM. 

Let C~j = J'kiJ'~j. Using standard tensor notations, the deviatoric strains can be written 
a s  

eo=(1/2)(Cij-:C, ,r i j ) .  

The second invariant of this tensor in 2-D or 3-D can be written as 

J2 = ( 1/8) I-C~j C~j - (1/n)(C~,)2 ] 

Since the factor 8 serves to just scale the above quantity, the distortion metric simply 

defined as the expression within the brackets. This distortion metric is a function of 

the fourth power of the elements of a Jacobian matrix. It is also a function of position 

and not a constant over the entire domain. The authors use the largest value of the 

metric at Gauss points as the measure of distortion. However there is no basis for 

this selection. The comparison of various values of distortion metric with errors for 

selected examples with known theoretical solutions are also discussed in the above 

reference. A direct relation of a known value of distortion to some level of error a 

priori is not possible since the error in any analysis is highly dependent on the 

problem itself. The measures discussed here should therefore be used only as a 

guideline to detect excessive distortion of the element which is in general not desirable. 

The transformation of the element from the parent to a local coordinate system 

can be thought of as a continuous deformation process in which the final deformed 

shape is the shape of the element in the physical x, y, z coordinate system. By expressing 

this "pseudo" deformations as functions of coordinates in the ~, ~/, ~ system, and 

assuming large strains, it can be shown that the above measure is directly related to 

the strain energy density of this pseudo deformation. 

2.7 Other indicators of element quality 

So far we have discussed distortion measures which are solely dependent on element 

geometry. There are some indicators, like condition number of stiffness matrix, studied 

by some authors as an overall indication of the quality of discretization. Distortion 

is just one of the factors which is reflected in these indicators along with interpolation 

function used, order of the element, etc.. Notable work in this area has been done 

(Melosh 1963; Khanna 1965; Fried 1971-73). In Fried (1972), the condition number of 

the stiffness matrix due to nonuniform meshes is studied. Bounds are derived on the 
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condition number and expressed in terms of the extremal eigenvalues of stiffness and 

mass matrices and discretization parameters of the mesh. The condition number is 

related to the size of the elements, h. Similar to condition number, trace of the element 

stiffness matrix has been used by Rigby & McNeice (1972) for evaluating their 

performance. It is suggested that elements with lower trace are likely to be better for 

general loading cases. Strain energy of the element has also been used instead of 

stiffness for comparison of two elements (Melosh 1963; Khanna 1965). Khanna's 

method compares two element stiffness matrices by calculating the difference in strain 

energies. A modification of this method and comparison of hexahedron elements 

based on strain energy can be found in the reference by Rigby & McNeice (1972). 

The performance of the element for a given loading situation can be directly studied 

by using elements with known distortion values and comparing quantities like stress 

errors, strain errors, strain energies, energy norm of the error etc.. For example, in 

Sahnon & Abel (1989), shape distortion effects on nine-noded quadrilateral membrane 

elements is studied. The shape parameters described above, aspect ratio, skew, and 

tapers are used to define distortion. Stress and strain errors are plotted for each type 

of shape distortion. A similar study on quadrilateral elements can be found in a more 

recent reference (Liu & Elmaraghy 1992). The exact energy error is used as a basis 

of comparison of meshes with distorted elements of varying degree of distortion. A 

generalized finite element evaluation procedure for evaluating two- and three- 

dimensional elements is described (Dow et al 1985). This procedure compares the 

strain energy content and the strain distribution of the finite element model to that 

of the continuum region it represents for well-defined strain states. Triangular and 

quadrilateral elements undergoing a series of progressive initial distortions are used 

for evaluation. From the results of this evaluation, the authors suggest an algorithm 

to predict maximum strain energy error as a function of initial geometry. 

3. Element degeneracy conditions for isoparametric elements 

In this section, the determinant of the Jacobian matrix is studied in detail. For different 

elements, the mathematical conditions which dictate zero of the Jacobian are explored. 

The term 'Jacobian' denotes the determinant of the Jacobian matrix. Thus, J = det [J].  

Using the strain displacement relationship ~ =lkl,  where q is a vector of nodal 

displacements, the strain can be expressed in the local ~, r/, ~ coordinate system as 

= (1/J)G(~,,1, ¢)q 

where the elements of the vector G are functions of ~, ~/, ~. The matrix B relates strains 

to nodal displacements. It can be seen from the above equation that if J is zero at 

some point within the element, it implies that the strains are infinite or that we have 
an indeterminate formula. If such points occur at Gauss points used for numerical 

integration, the calculations cannot be continued. Even otherwise, we can expect the 

accuracy to deteriorate as such a point is approached (Jordan 1970). Mathematically 

this condition represents a nonunique mapping between the computational space 

(~, 7) and the physical space (x, y) in a local region around the point where J is zero. 

This follows from the inverse function theorem (see appendix A). Since J is a 
continuous function, the above requirement implies that J should not change sign 

anywhere in the domain. We note the condition when J is zero at some point in the 
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element as degeneracy. In this section, the conditions which cause degeneracy are 

reviewed for various elements. 

3.1 Triangular element 

For a three-noded linear triangular (CST) element, the magnitude of J is equal to 

twice the area of the triangle. Thus degeneracy for this element occurs when the 

triangle collapses to a straight line. 

Next consider a 6-noded higher order triangular element. In general, all three sides 

can be curved. A general relationship which describes degeneracy is too complicated 

to obtain and hence special cases are considered. A triangle with all three straight 

sides and one with two straight sides cover the majority of the applications. For such a 

triangle the "quarter-point" rule was first derived by Mitchell et al (1971). 

(1) J > 0 for all points in the triangular element if (1/4) < kl, k2, k3 < (3/4) 

(2) J = 0 at some point in the triangular element if ki takes a value in either of the 

intervals (0, 1/4) or (3/4, 1) for any value of i where i = 1, 2, 3. 

Similar rules are also derived by Jordan (1970) using vector analysis. In addition, 

if the triangle has at least two straight edges and one curved side, as shown in figure 

5, it is shown that the node 5 on the curved side should be in the shaded region so 

that J > 0. This region is formed by the two lines which are parallel to the straight 

sides and pass through their quarter points. 

If all the three sides are curved, a general rule to detect degeneracy is not available. 

But some specific rules can be obtained. Jordan (1970) provides a simple geometric 

check. Refer to figure 5. Draw the line from node 1 to node 6 and extend it by 1/3 

of its length to point 6'. Similarly with 2 to 5 to get 5'. Rotate c c w  around node 3 

from 6' to 5'. If the rotation angle is 180 ° or more, J will vanish somewhere (the 

converse need not hold). This geometric interpretation is simply a statement of a 

scalar triple product formula for J obtained from vector analysis. For details see 
(Jordan 1970). 

3 

6 5 

2 Figure 5. Valid region for midside node. 
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3 

T 3 

T 1 

1 
2 Figure 6. 4-noded quadrilateral element. 

3.2 Four-noded quadrilateral element 

The four-noded quadrilateral element is shown in figure 6. The shape functions are 

the serendipity functions most commonly used for this element (see Chandrupatla & 

Belegundu 1991). Using these functions, the Jacobian J can be expressed as 

J = a + b~ + ctl, 

where a, b, c are functions of the nodal coordinates. Thus, J is a bilinear function of 

~,r /and attains its minimum at the comers. The determinant of Jacobian has an 

interesting geometric interpretation for four-noded quadrilaterals (Okabe 1981). Refer 

to figure 6. Let T~ be the area of the partial triangle formed by the vertex i and two 

adjacent nodes. Then the Jacobian at node i can be written as 

Ki = IS(~i, ~h)l = (1/2) T,, i = 1, 2, 3, 4 and Ko = IS(0, 0)l = (1/4)A, 

where A is the area of the original quadrilateral. The coefficients a, b, c can be expressed 

in terms of K, as 

a = Ko, 

b = ½(K2 - K1), 

c = ½(2K o - K1 - K2). 

Since J at the comers represent the area of the triangle described above, J = 0 indicates 

that the quadrilateral degenerates to a triangle with the node at which J = 0 being 

on the line joining its adjacent nodes. Hence a 4-noded quadrilateral element, which 

is not convex, has J = 0 somewhere in its domain. The converse is also true. Thus, 

a four-noded quadrilateral element which has J = 0 somewhere in the domain is 

nonconvex in shape. 

3.3 Eight-noded quadrilateral 

Detecting degeneracy and conditions that cause degeneracy in higher order elements 

is more complex. The most commonly used higher order quadrilateral element is an 

8-noded quadrilateral (see figure 7). 

The simplest form of this element is when its sides are straight lines. For  this 

element, the restrictions on midside nodes were studied by Steinmueller (1974). The 
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Y 4 
7 

3 

5 2 

X 

Figure 7. 8-noded quadrilateral element. 

rules for positioning midside nodes is derived below. The approach given here is 

slightly simplified. In figure 7, assume that the origin of the coordinate system is at 

node 1 and the x-axis is along 1-2. Thus coordinates of 2 are (x2,0). Let (a, 0) be the 

position of midside node 5. The x-coordinate of a point on 1-2 can be written as 

x = N2x  2 + Nsa  = ½(1 + ~)~X 2 + (1 - ~2)a. 

For invertible mapping i.e. J > 0, we need that J = (dx/d~)> 0 from which we can 

show that 

(1/4)x 2 < a < (3/4)x 2. 

When the midside node is at any of these limiting positions, the Jacobian is zero at 

that point. Such elements are called 'quarter point elements'. They are widely used 

in fracture mechanics, since it was discovered that they possess the appropriate r 1/2 

singularity required in those problems. Numerical difficulties that may arise in 3-D 

quarter point elements due to negative Jacobian and aspect ratio are discussed by 

Peono and others (Peano 1987; Peano & Pasini 1982). 

A geometrical check similar to the one described for a 6-noded triangle can also 

be used for 8-noded quadrilateral elements (Jordan 1970). However, for an element 

with all four curved sides, simple rules like quarter point rule, are not easily derived. 

A comprehensive mathematical analysis of a general 8-noded quadrilateral is 

presented (Field 1983). In this reference, algorithms have been developed to determine 

invertible transformations. The outline of the approach is given below. 

Let U be the master element domain. The coordinates of any point (x, y) can be 

expressed using the shape function N~ as 

8 8 

x =  ~ , N i x  ~ and y =  ~ Niy  ~. 
i=1 i=1 

The Jacobian of the transformation matrix can be obtained from the above equation. 

The general form of the Jacobian can be written as 

J(~, r/)= k0173 + a(~)/'/2 "t- B(~)r/+ C(~), 

where k o is a constant which depends on the element geometry, A, B and C are the 

polynomials in ~. A and B are quadratic and C is cubic. Thus, for a known value of 

~, J is a cubic polynomial in r/. Parallel expression can be written expressing J as a 
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cubic polynomial in ~ with variable coefficients in q, 

s(~,,1) = Vo~ 3 + ~(,r)~ 2 +/~(,I)~ + ~(,1). 

Since J is a continuous function on U, it must have a minimum and maximum value 

on U. The idea is to establish the sign of these values wherever they occur in the 

interior of U. The critical points of J(~, t/) satisfy 

OJ/O~=OJ/&l=O, at (~*,q*). 

Thus 

0J/0~ = F(~, 7) = A'(0~ 2 + a'(0~ + C'(0 = 0, 

OJ/O~ = G(~, p/) = 3koq 2 + 2A(0q + B(0  = 0. (3) 

The theory of resultant polynomials is used to identify critical points in U. A 

resultant of two polynomials is a polynomial whose coefficients depend upon the 

coefficients of the two given polynomials. The construction of resultants of two 

polynomials is described by Householder (1968). The ordinary resultant is a 

polynomial which has only the constant term. For the above two polynomials, the 

ordinary resultant is given by, 

D(O = 
a ! o  B'(O c'(o 0 1 

A'(O ~ ( 0  C'(O 
3ko 2,4(0 B(O " 

[_ 3ko 2A(O B(O 0 

From the theorem on resultants (Householder 1968), the necessary and sufficient 

condition for the two polynomials F and G above to have a common divisor of some 

degree greater than zero, is that the ordinary resultant D(0  = 0. A similar polynomial 

601) can be constructed by writing the polynomial equations in ~. If both D and 

are not identically zero, then the critical points of 3(~, r/) on U are isolated. In such 

a case, the equation D(0 = 0 will have at most 7 real roots. For each of these roots, 

from the theorem of resultants, there will be atleast one 7" such that equation (3) is 

satisfied. The idea is to find these roots if they lie in U. Sturm sequence can be used 

to find the number of roots of D(O that lie in [0,1]. 

The method described above is for a general case. Simplifications are possible for 

certain cases. The general algorithm for detecting invertible transformation can be 
summarized as below. 

Step 1: Check if J > 0 on the boundary. This is numerically straightforward since 

• /(0,7), J(1,rl), J(~i,O) and J(~, 1) are at most cubic polynomials in one variable. To 
show that any cubic polynomial P(r) > 0, show that P(0)P(1) > 0 and that P'(r) has 

no roots in [0, 1]. IfP(0)P(1) > 0 and P'(c) = 0 for c = [0,11 then show that P(c) > O. 

Step 2: If J > 0 on the boundary and if the element is a semiquadrilateral, i.e. one 

which has three straight edges and one curved side, then J is positive everywhere in 

[0, 1]. Stop. Otherwise go to step 3. 

Step 3: If J > 0  on the boundary of U, and if the function J reduces to 

J(~, 7) = a0 + al ~ + a2q + a3~/then J is nonzero everywhere. Stop. Otherwise go to 
step 4. 
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Step 4: If J > 0, and ko = 0, evaluate F(~, - B(~)/2A(O). If F ~- 0, then J is nonzero 

everywhere. Else use Sturm sequence to find if the roots lie in [0, 1] and if they do, 

check if J at those points is positive and stop. If k0 # 0, go to step 5. 

Step 5: I f J  > 0 on the boundary, and ifko # 0, then use the method described above, 

i.e. solve D and then (6) to find the roots. 

The above algorithm gives necessary conditions for evaluating the sign of J on U. 

The following are the sufficiency conditions for the nonvanishing of J. For proof of 

these conditions see (Field 1983). 

If J > 0 on the boundary of U, 

(A) if 3 k o + A ( ~ ) ~ < 0 , 0 < 0 , 0 <  ~ < 1, then J(~,~/) > 0 on U, 

(B) 3 k o + A ( ~ ) > 0  and 3ko+2A(¢)+B(O<O, 0 < ~ <  1, then J(~,r/) > 0  on U, 

(C) if k o ~< 0, then each of the following conditions imply J > 0 on U. 

B(~) + C(~) > 0, 0 < ~ < 1 ,  

~b = {3ko + 2A(~) + B(~) > 0} c~ {B(O + C(~) < 0}. 

(D) if k o > 0, then each of the following imply J > 0 on U, 

A(~) > 0, B(~) > 0, 0 < ~ < 1 ,  

A(~)~O,B(~)<~O,B(~)+C(O>~O, 0 < ~ < 1 .  

Global inversion of bilinear and quadratic isoparametric mapping is also studied in 

detail by Frey et al (1978). 

3.4 Other higher order quadrilateral elements 

A general algorithm similar to the one derived for quadrilateral element is too 

unwieldy for higher order quadrilateral elements. Even for simple cases of these 

elements, the solution becomes very complex. Sometimes, graphical methods are used 
to find the conditions of degeneracy. For example, consider a 12-noded quadrilateral 

element (cubic) with all straight sides as shown in figure 8. For invertible mapping, 

I1  

12, 

10 9 3 

v 

1 (0,0) 5~a,0) 6 (b,0) 

7 

X 
W 

2 (1,0) Figure 8. 12-noded quadrilateral element. 
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it can be shown that the following condition has to be satisfied. 

(9/2)(2 -- 10G - 9{2)a + (9/2)(- 1 + 8~ - 9{2)b + (1/2)(2 - 18~ + 27{ 2) > O. 

This inequality represents a region bounded by the envelope of an infinite number 

of straight lines, represented by the parameter, ~, 0 ~< ~ ~< 1. By using various values 

of ~ and drawing these straight lines, we get a closed curve. Admissible values of a 

and b can be obtained from the interior of this curve. 
Similar analysis for cubic isoparametric transformation of a nine-noded triangle 

is discussed in Mitchell (1979) and Woodford et al (1978). A triangle with two straight 

sides and one cubic side is chosen for this analysis. The effect of certain interpolating 

polynomials of degree four and five on triangular elements with one curved side is 

studied in Stephenson & Manohar  (1979). 

3.5 Isoparametric solids - tetrahedral elements 

For a 4-noded tetrahedral element, which is the simplest solid element, determinant 

of Jacobian, J, is a constant and proportional to the volume of the element. The 

relationship is given by, IJI = 6Ve, where Ve is the elemental volume. Hence a zero- 

Jacobian would imply degeneration of tetrahedra to a triangle. For a higher order 

tetrahedral element, the Jacobian check algorithm described for 8-noded quadri- 

laterals can be extended easily (Field 1981). Consider a 10-noded tetrahedron element 

as an example. The Jacobian is of the form 

J(~,,1, 0 = k~ ~3 + ~(~, 0~2 + B(n, O~ + c(~, O, 

where kl is a constant and A, B and C are given by 

and 

A(~/, 0 = Axo~/+ Aol ( + Aoo, 

B(r/, 0 = B2or] 2 Jr Bt 1~/( + Bo2~ 2 + Btor/+ Bot ( + Boo, 

C(~,() = C301] 3 -~- C21~2( -~- C12~( 2 Jr C03( 3 Jr C20~ 2 "~- C11 ?] 

Jr C02( 2 Jr Clo}~ Jr COl ( Jr Coo. 

The constants in the above equation are found from nodal coordinates. The first step 

is to verify that J is positive on the boundary of the element. Since J is a function 

of two variables on each face of the element, the algorithm described for two variable 

functions under quadratic elements can be used. The next step is to check the sign 

of J on the interior of the element. Similar to results of 2-D, simplified results can 

be obtained under certain conditions. The following is an example. Let 

L1(~,7,0 = 3k1~ + Aloe/+ Aol ( + Aoo, 

L2(~, ~, 0 -- B2o~ -t- 3Cao~ + C21( a t- C20, 

L 3 -- (~, r/, ~) = B02 ~ + C12 ~ -~- Co3 ( Jr C02. 

If 3 > 0 on the boundary of the element and if one of the following conditions is 

satisfied, then J > 0 everywhere. 

(1)L~(O,O,O)<~O, Lt(O,O, 1)<~O, Lt(0,1,0)<~0 and L~(1,0,0)~<0 
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o r  

(2) L2(0,0,0)~<0 , L2(0,0,1)~<0 , L2(0,1,0)~<0 and L2(1,0,0)~<0 

o r  

(3) L3 (0, 0, 0) ~< 0 , L3(0,0,1)~<0 , L3(0 ,1 ,0)~0  and L3(1,0,0)~<0 

For a 10-noded tetrahedron with three straight edges, each straight edge having 

a bisecting midside node and all three straight edges intersecting at (0,0,0), the 

Jacobian check algorithm has been described by Field (1981). 

3.6 lsoparametric solid elements - 8-noded brick element 

For the 4-noded quadrilateral element, a positive J at the comers is an indication of 

convexity and positive d in the interior of the element. However a 8-noded brick 

need not be convex to have a positive Jacobian. Neither is a positive Jacobian at its 

corner nodes, a sufficient condition to assure that the associated transformation has 

positive Jacobian. For example, consider an element with coordinates (0, 1/4, 1), (1, 0, 1), 

(1, 1/4, 1), (0,0, 0), (0, 3/4, 1), (1, 1, i), (1, 3/4, 0) and (0, 1, 0). The element is not convex, 

but its Jacobian is positive. Similarly an element with coordinates (0, 0, 1), (4, 0, - 1), 

(1,0,0), (0,0,0), (0, 1, 1), (I, 1,0), (1, - 1, - 1) and (0, 1,0) has positive d at its comers, 

but J(1/2, 0 ,0)= 0. The conditions to ensure positive J for the element whenever J 

is positive on its boundary has been derived (Field 1981). The procedure is exactly 

similar to the one above for tetrahedral elements. First, the non-negativity of the 

Jacobian has to be ensured on the boundary of the element. On each face the Jacobian 

is a polynomial in two variables and on each edge it is a quadratic in one variable. 

After verifying that it does not vanish somewhere on the edges of a face, verifying 

that it does not vanish on the interior of a face requires solution of 

OJ ~J ~J 

a¢ an a~ 

Each of these derivatives is linear in the corresponding variable and on each face, 

one of the three variables is zero. The condition which implies a positive J throughout 

the element for a positive J on the entire boundary can be obtained using a similar 

approach as the tetrahedron. For details, see Field (1981). Degeneracy of 8-noded 
brick elements is also discussed by Peano (1987). 

Alternatives to isoparametric transformation have also been considered. For 

example, Mitchell et at (1971) proposed a technique whereby interpolating functions 

are obtained directly in terms of x and y for the triangle and quadrilateral with 

arbitrary midside points. Wachspress (1971) developed a basis of wedge functions for 
convex polygon boundaries. Other notable efforts in this direction can be found in 

the works by, Gordon & Hall (1973), McLeod (1976, 1978) and McLeod & Mitchell 

(1975). In spite of other alternatives, isoparametric transformations are the most 

widely used in displacement formulation of finite element analysis. 

4. Rezoning and grid optimization methods 

Rezoning, by definition, is simply relocation of the nodes based on some criteria. The 

criteria used could be as simple as improving the geometry of the element so that 
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they are less distorted or it could be based on the feedback from the finite element 

solution. In general, the process of rezoning involves two questions - when to rezone 

and how to rezone. The first question is generally answered by using well known 

measures of element quality which are purely geometrical in nature. These measures 

have been discussed in the previous chapter. The error measures based on stress 

jumps, or energy norms can also be used to decide when to rezone. The algorithm 

to rezone the mesh is usually based on some kind of nodal averaging which is a variation 

of the "Laplacian smoothing". 

The problem of obtaining an adequate finite element mesh for a given problem 

can also be formulated and solved as an optimization problem. An optimized mesh 

has been shown to be twice as efficient as an evenly divided mesh in terms of the 

number of degrees of freedom to produce the same accuracy (McNiece & Marcal 

1973; Turcke & McNiece 1974~ Details on grid optimization and other methods are 

reviewed in this section. This review of rezoning methods is by no means complete. 

However key references have been discussed as a guideline. 

4.1 Laplacian smoothin 0 

This is the most popular method of grid smoothing, originally conceived by Winslow 

(1967). If a node n is shared by dements el, e2, e3 ..... en, then its coordinates (xm, Ym) 

are modified by 

x ,= xc, wi ]~ w, and y,= ~ y,~w, ~ w,, 
i = l  i = l  1=:1 i = l  

where xci and yci are the coordinates of the centroid of the element e~ and w~ can be 

considered as weights appropriately defined for averaging. If refined elements are 

needed in a certain region of the mesh, large weights have to be given in those regions 

in the corresponding elements. The solution to the above equation is a rough 
approximation of the discrete Laplacian. Thus the above formula is strictly valid for 

orthogonal meshes. Since the solution of Laplace's equation is known to have an 

averaging property, the above formula is used for rezoning any arbitrary mesh which 

is distorted. Instead of the nodal coordinates, as described above, the coordinates of 

the geometric centre of the element which is connected to the node are used. The 

weights are chosen as some parameter which is to be averaged over the domain. In 

the simplest form, we can use w~ = 1~. The distortion measure is another choice, but 

its usefulness in reducing solution error has to be explored. Note that the above 
formula is used iteratively. Successive use of the formula over a number of iterations 

converges it to a more uniform mesh. 

4.2 Grid optimization methods 

Grid optimization is a systematic way of obtaining t'mite element meshes that yield 

the required accuracy for the minimum effort. During early investigation of this 

problem (Fdippa 1977), nodal coordinates were used as design variables in the 

appropriate energy functional. The resulting equations are highly nonlinear and need 

lot of computational effort. Hence attempts to find true optima are not very practical. 

Methods to obtain near-optimum grids based on the application of a solution-based 

criterion were proposed by Shephard et al (1980) and Turcke & McNeice (1974). 
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There are two key issues to be addressed in the application of these criteria 

methods - the criteria to be used, and the method of grid enrichment to be employed. 

The method of grid enrichment used might increase the degrees of freedom in the 

structure or just redistribute the nodes. 

The requirements for optimum grids were studied by Turcke & McNeice (1974). 

These are based on the optimum grids obtained for various two dimensional problems 

by direct optimization using nodal coordinates as design variables along with nodal 

displacements. The optimization problem is described below. 

The total potential energy obtained from finite element formulation can be written 

as 

H = ½arKa - arF, 

where a is a column vector of unknown nodal displacements, K is the stiffness matrix 

and F is the column vector of nodal point forces. If we consider nodal coordinates 

x~ as design variables along with displacements, then minimum potential energy 

implies that 

(Ka - F) = O, 

! a r ~ K a _ ~ F a r = O .  
2 ~X i dX  i 

Thus the feasible set of nodal co-ordinates and nodal displacements in the above 

system of nonlinear equations is one that ensures that the potential energy functional 

is stationary. A sufficient condition for the solution of the above equation to be a 

minimum is that the Hessian of H be positive definite. Using the above relations, 

the best possible approximate solution for the given finite element mesh is obtained. 

The above optimization problem is solved using Rosenbrock's direct search technique. 

The authors (Turcke & McNiece 1974) provide specific guidelines for obtaining 

optimum grids. They suggest that the element edges have to be aligned along 

isoenergetics i.e. along contours of constant strain energy density. These contours 

can be obtained from the initial analysis on a course grid. 

Furthermore, Shephard et al (1980) developed an interactive approach to synthesis 

of near-optimal meshes. The criteria used is variation of strain energy density in the 

element based on an argument that the best finite element solution is the one that 

best approximates the total strain energy. Hence this solution is associated with the 

best possible approximation to the integrand of the strain energy, i.e. SED. Key nodes 

are placed on the boundary of the mesh using above criteria and the new mesh is 

generated. 

A variation of strain energy density has been used in Melosh & Marcal (1977) for 

mesh enrichment. The authors study the effect of gradual introduction of an additional 

degree of freedom on the potential energy. This effect is measured by 'specific energy 

difference', which is estimated by taking the difference between the SED at any point 

and that at the centroid of the element. A criteria based on a measure of the inter- 

polation error associated with the finite element model is used by Kikuchi (1986). In 

this reference, the nodes are redistributed by an iterative scheme. More details on this 

method can be found from Diaz et al (1983). Mesh modification based on minimization 

of an interpolation error estimate is presented by Demcowicz & Oden (1986). The 

examples in this reference are taken from fluid flow problems. A more recent reference 

on mesh optimization problem (Martinez & Samartin 1991) presents closed form 
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solutions to determine optimal mesh for 1-D problems. Some practical examples of 

the use of rezoning and adaptive remeshing can be found in the works of Jung-Ho 

Cheng & Kikuchi (1986), Jung-Ho Cheng (1988), Liefooghe & Fleury (1990), Yon & 

Yang (1990) and Yang et al (1989). 

4.3 General method for adaptive grid design 

The optimal grid-design problem is defined by Kikuchi (1986) 

Minimize (Maximum Ee), 

where Ee is an error measure of eth finite element. The necessary condition for the 

above optimization problem is that (Babuska et al 1983), 

Ee = constant, e = 1 to no. of elements. 

For stationary heat conduction problems and elastostatic problems, the smoothing 

scheme based on the Laplacian smoothing works well by taking the weights as E,/Ae 
where Ae are element areas (Kikuchi 1986). For one-dimensional problems, the 

necessary condition is satisfied by repeated application. For two-dimensional 

problems, repeated application may not yield the necessary optimum, but it always 

reduces the maximum value of error at the beginning and converges to a fixed grid 

which is very close to the optimal one. If the initial mesh has only rectangular elements 

and if the necessary condition is satisfied, the application of Laplacian smoothing 

does not alter the mesh topology. If the mesh has elements of irregular shape, the 

smoothing scheme moves the grids even if the necessary condition is satisfied. 

4.4 Other approaches 

Some authors have approached the problem purely from geometric considerations, 

i.e. optimization to minimize mesh distortion. For example, in a recent reference on 

mesh smoothing (Parthasarathy & Kodiyalam 1990), a constrained optimization 

problem is solved starting from a valid initial mesh. The objective function is chosen 

to be the RMS value of the aspect ratio of the elements. Kennon & Dulckravich (1986) 

use a linear combination of orthogonality and mesh smoothness measures as cost 

functions for optimization. Smoothness measure at any node is defined as the sum of 

the squares of the differences in area between adjacent elements connected to that 

node. The orthogonality measure at node i is defined as the sum of the squares of 

the dot products of the adjacent vectors which emanate from the node i. Minimizing 

the weighted sum of these measures ensures a smooth and orthogonal grid. This 

approach has been used in 3-D problems using volumes as measures in Carcaillet 

et al (1986). Similar work can also be found in Hayes et al (1986). 

The problem of rezoning and grid optimization has been a subject of study for 

more than two decades now. A comprehensive review of the subject can be found in 

Shephard (1979). More recent papers have concentrated on applications of these 

methods to practical problems in engineering like flow analysis, metal forming, shape 

optimization etc. For iterative solution methods like large displacement analysis, the 

variables like displacement and stresses have to be transferred to the new positions 

of nodal points. A method to do this by inversion of isoparametric mapping is 

described in Crawford et al (1989). 
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5. Conc lus ions  

It should be noted that solution errors are a result of the combination of factors - 

element distortion, the nature of the problem, degree of polynomial used for 

interpolation, and boundary conditions. Hence, a priori knowledge of the way 

distortion affects accuracy of analysis is impossible to predict. However, large 

distortions in general cause large errors. The distortion measures described in this 

review can be used to detect such distortions. Empirical rules for acceptable levels 

of distortion are quite common, though these are merely heuristic. Quantifying 

distortion using a reasonably good measure is very useful especially for rezoning or 

redefining the nodes to improve mesh quality. 

Through the analysis of isoparametric elements for a nonvanishing Jacobian, it was 

observed that certain shapes of elements are 'forbidden' to maintain positive Jacobian 

in the element. The methods described here can be used to identify degeneracy. 
For rezoning, weighted averaging at the nodes is the most popular method because 

of simplicity and ease of implementation. This scheme has certain disadvantages. The 

smoothness and uniformity of the rezoned mesh depends on the weighing factor used. 

With simple averaging, invalid geometry might result near boundaries for some 

problems. Though optimization seems to be a better approach, the computational 

effort can be very large for complex problems. Hence developing better rezoning 

techniques which yield less distorted and more accurate elements with computational 

ease is a subject of research, 

Appendix A 

Theorem on inverse transformation 

Let x = f (u, v), y = g(u, v) define a continuously differentiable transformation for all 

pairs (u, v) in some neighbourhood of a point (u o, Vo). Let Xo = f(uo, Vo), Yo = g(Uo, Vo), 
and suppose that the Jacobian is not zero at (u o, v o). Then there exist positive numbers 

a, b, ~, fl and functions F(x, y), G(x, y) defined when Ix - X o l <  a, lY-  Yol < b such that 
the following assertions are true: 

Let R be the rectangular region in the xy-plane defined by the inequalities 

I ; ~ -  Xo] < a, ] y -  Yol < b and let S be the rectangular region in the uv-plane defined 

by the inequalities [u - uof < ~, [v - vo[ < ft. Then 

(1) To any (x, y) in R corresponds a unique (u, v) in S such that x = f (u ,  v), y = g(u, v), 
and this unique pair is given by 

u = F(x,  y), v = G(x, y). 

(2) The functions F and G are continuous and have continuous partial derivatives 

given by 

aF 100 OF l Of OG_ 10g and OG 10f  

Ox JOy'  Oy JOy'  Ox J Ou Oy J Ou" 

where J = - -  
o(f,o) 
O(u,v) 

and u, v are expressed in terms of x, y. 
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