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Abstruct- Intermodulation and harmonic distortion are cal- 
culated for a simple fiber-optic link with a representative set 
of link parameters and a variety of electrooptic modulators: 
simple Mach-Zehnder, linearized dual and triple Mach-Zehnder, 
simple directional coupler (two operating points), and linearized 
directional coupler with one and two dc electrodes. The resulting 
dynamic ranges, gains, and noise figures are compared for these 
modulators. A new definition of dynamic range is proposed to 
accommodate the more complicated variation of intermodula- 
tion with input power exhibited by linearized modulators. The 
effects of noise bandwidth, preamplifier distortion, and errors in 
modulator operating conditions are described. 

I. INTRODUCTION 

LECTROOPTIC modulators, both discrete interference E types such as the Mach-Zehnder modulator and dis- 
tributed interference types such as the directional-coupler 

modulator, have inherently nonlinear transfer curves. As a 
consequence, they may limit the dynamic range of the photonic 

link in which they are embedded by generating harmonics and 

intermodulation products. Various modulator configurations 

have been proposed and demonstrated in the last several 

years zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[1]-[8] to address this problem and increase the link 
dynamic range. All of these schemes depend on generating 
two or more modulation samples with different ratios of signal 

to distortion and then combining the samples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs o  that the 

distortions cancel (to some order) while the signals do not 

cancel. In some cases it is easy to identify where the two 

modulations occur and where the combinations take place, as 

in the dual Mach-Zehnder schemes [ l ] ,  121, 161; in others it 
is not so obvious, such as the directional-coupler modulator 
and its variations [31-[51. 

The various linearized modulator schemes predict, and in 

some cases have demonstrated [ I ] ,  [4]-[7], significant reduc- 
tion in harmonics and intermodulation products, which should 

lead to the realization of photonic links with higher dynamic 
ranges. However, in all cases, the cancellation turns out to 

be critically dependent upon the modulator device parameters, 

so that these parameters will likely have to be controlled by 

active means, especially if the distortion cancellation is to be 
maintained over a large operating bandwidth. In addition, the 
dependence of the harmonic or intermodulation product on 
the signal drive level is no longer a simple constant exponent 
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ps OPTICAL MACH-ZEHNDER 
WAVEGUIDE INTERFEROMETERS A 

OPTICAL DIRECTIONAL COUPLER 
Fig. I. Dual-parallel modulator configured with equal length electrodes and 
one input optical signal. This particular approach requires two photodiodes at 
the optical receiver. An alternative approach would use two lasers and then 
combine the optical signals at the modulators’ outputs into one detector. 

(e.g., a slope 3 line on the dBOut versus dB,, graph for third- 

order intermodulation), and the photonic link dynamic range 

no longer depends on the noise level in a simple way; a clearer 

definition of “dynamic range” is really required. Finally, the 
improved modulator dynamic range can easily be eroded by 
the nonlinear behavior of the electronic amplifiers required by 

the photonic link to realize reasonable gain and noise Fig. [9 ] .  
This paper uses a simple photonic link model to find the 

gain, noise figure, harmonics, intermodulation, and dynamic 

range for a number of the modulator schemes listed above, 

and it uses the model to optimize the modulator parameters. 
The sensitivity of representative Mach-Zehnder modulator 

(MZM) and directional coupler modulator (DCM) schemes 
to modulator and link parameters are calculated and com- 

pared. A refined definition of “dynamic range” is proposed 

to eliminate possible ambiguities resulting from the definition 
based on simple slopes. Finally, the results of adding electronic 
amplifiers to the photonic link are calculated. 

11. DUAL MACH-ZEHNDER MODULATORS 

The Mach-Zehnder modulator is a simple two-channel 

interference device, resulting in a sine-squared dependence of 
light output on drive voltage. The modulator is biased to the 
most linear portion of the transfer curve, which for a perfect 

modulator also assures no even-harmonic generation. 

However, the nonlinearity of the transfer curve is respon- 

sible for the generation of all odd-harmonics and all possible 
intermodulation products. The dual MZM scheme uses two 
MZM’s, driven at different RF levels and fed with different op- 
tical powers, as illustrated in Fig. I .  The RF and optical power 

splitting ratios are chosen so that the modulator receiving the 
larger optical power receives the smaller RF drive power. This 

modulator may be thought of as the “main” modulator, with 
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some distortion created by the finite RF drive power. The other 

modulator receives only a little optical power, but is driven 
relatively much harder, thus yielding a much more distorted 
signal. The two optical outputs are combined incoherently, for 

example, by combining the electrical outputs of two separate 
detectors as shown in Fig. 1 . ’  If the bias points of the two 

modulators are chosen so that the modulations are out of phase, 
and the ratios of both optical and RF powers are properly 
chosen, then the sum of the two distortions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(If.41 j can exactly 
cancel, while the signals (Ps)  do not completely cancel. This 
exact cancellation can only occur for a specific drive level, 

with distortion reappearing at both lower and higher drive 
levels. 

There are various strategies to determine the optimum ratio 
of optical and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARF power splits to maximize the dynamic range. 

One strategy, first proposed and demonstrated by Johnson 

and Rousell [lo], was arrived at by expanding the distorted 

output signal of each modulator in a Fourier series including 
the signal, odd harmonics, and intermodulation products. The 

coefficients in this well-known series are the products of Bessel 

functions. If the input signal consists of equal amplitudes at 

two frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, then the coefficient giving the 
intermodulation a1 frequency 2wl-wz contains the product 
of Bessel functions J1(H)J2(H), where the argument H is 

proportional to the RF drive voltage. Johnson and Rousell then 
approximated this product with the first terms in the power 

series expansions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ l ( 0 )  and J 2 ( 0 ) ,  so that the coefficient is 
proportional to the RF voltage cubed. To cancel this coefficient 

in the summed output of two modulators, they found that the 
optical power split ratio should be the inverse cube of the 

RF drive voltage split ratio. In their particular experiment, the 
RF voltage split was fixed at 1 : 3, so that the optical power 

split was set to 27 : 1.’ Although this particular condition 

cancels the cubic term in the Bessel function expansion, there 
remain 5th3 7th, 911‘, . . .power terms in the RF modulation. 
Thus, the intermodulation at ~ W ~ - - L J ~  is not exactly canceled, 
but exhibits a roughly StiL power dependence on Pi7>. This is 

illustrated in Fig. 2, which shows the intermodulation in a dual 

MZM with the inverse cubic relation prescribed by Johnson 
and Rousell. (The method of calculation and link parameters 
used are discussed in detail in the link model section, and in 
the Appendix.) The resulting dynamic range is 126.2 dB for 

this particular link. which has its component parameters given 

in Table I. An RF voltage split of 2.62 rather than 3 was used 

as discussed later. 
Alternatively, the intermodulation distortion may be exactly 

canceled using a slightly different optical or RF splitting ratio, 
but only for a single power level, as illustrated by the null in 

Fig. 3. Slight adjustments of the splits move the exact position 

of the zero. The slope just to the right of the zero is steeper 

’ Alternately, a YO“ polarization could be added to one output if a single 
detector is desired or the two modulators could be driven by two independent 
lasers with the receiver, comprised of a single detector. 

’Johnson and Rourell’s “dual MZM” was actually a single MZM on x- 
cut LiNb0:j with the light polarized before entering the modulator such that 
27 times as much opiical power was in the TM polari7ation as in the TE 
polarization. A single set of electrodes modulate both optical polarizations. 
but the TE state is thrcc times as sensitive to the drive voltage, as fixed by 
the clcctruoptic propcr-tics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof lithium niobate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2. Output RF +pal power and third-order intermodulation power as a 
function of the input 3ignal power for a fiber-optic link, with the parameters 

in Table 1. The dual-parallel modulator is arranged for the “optimum” split 
so that the rmall-signal cubic intermodulation terms cancel, leaving a residual 
intermodul:ition at L 1 - d ~  that varies as the fifth power of the input signal 
level. 

TABLE I 
FIBER-OPTIC LINK COMMON PARAMETERS 

Laser Power PL 0.1 W 

Laser Noise m -165 dB 

Total Optical Loss r, -10.0 dB 

Modulatorhpedance RM 50 n 

DetectorRespansivity slD 0.7 AIW 

DekctorLoad RD 50 n 

Noise Bandwidth BW 1 HZ 

than 5, while the ultimate slope to the left of the auxiliary 
maximum is 3. Note that it is now possible for the IMD 

curve to have three intersections with the noise level line. 

We must specify which intersection to use to define “dynamic 
range.” There will be no ambiguity if we define the spurious- 

free dynamic range as that distance in dB from the signal 
to the intermodulation level where the intermodulation level 
equals the noise level NI the smallest input level. With this 
definition, we see that the dynamic range wit1 now depend 

discontinuously on the noise level. The maximum dynamic 

range occurs when the auxiliary maximum to the left of the 
minimum is just below the noise level, and the dynamic range 
will drop discontinuously when that maximum increases above 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Same modulator as Fig. 2 but the splitting ratio is adjusted for 
maximum dynamic range, which results in complete cancellation of the 
large-signal 261 “ ‘ 2  interinodulation term at one particular signal level. 

the noise level. The maximum dynamic range of this link is 
now 129.7 dB, compared to 126.2 dB for the “cubic” condition 

in Fig. 2. One important consequence of the more complicated 

behavior of the IMD and harmonics is that we must now treat 

the whole photonic link rather than analyze just the modulator 
to detennine the dynamic range, since the dynamic range 
depends on the relationship of the noise level to the kinks and 
bends in the harmonic and IMD curves. The best adjustment 

of the modulator parameters will depend on the actual values 

of the other link parameters. 

There is an additional degree of freedom in the true dual 
MZM. The condition discussed by Johnson and Rouse11 spec- 
ifies the ratio of optical split in terms of the RF split to cancel 

the cubic contribution to the intermodulation. But the RF split 

ratio can be specified independently if a true dual MZM is 

used as in Fig. I instead of the two polarization states of a 

single modulator, where the equivalent voltage ratio is fixed 
at 3. The true optimum in the voltage ratio is about 2.62, but 
only one dB in dynamic range is sacrificed in the example 
given in Fig. 2 if the ratio is 1.8 or 4.8. However, as shown 

later, the dynamic range is very rapidly degraded if  the voltage 

and optical power are not near the inverse cube relation. 

111. LINEARIZED DIRECTIONAL COUPLER MODULATORS 

Integrated-optic directional couplers made on electrooptic 
substrates can also be used as optical modulators [ I  I ] .  If 
the guides are physically identical, then complete transfer of 
the optical input from guide 1 to guide 2 is possible in one 

coupling length, which is dctermined by the optical waveguide 
dimensions and refractive indices of the guide and substrate. 
Modulating electrodes are applied to the two waveguide chan- 

nels so that the propagation constants of the guides are changed 
incrementally in opposite directions when a voltage is applied. 

The differential change in the propagation constants, A@, 
depends upon the electrode configuration and the electrooptic 

coefficient of‘ the modulator material. By applying sufficient 
voltage, the optical signal may be transferred from guide 2 
back to guide 1 .  The voltage required to do this is termed 
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Fig. 4. Transfer curves of simple directional coupler and Mach-Zehnder 
modulators from zero voltage to twice the switching voltage applied to the 
electrodes. 

the transjer voltage (V?), and is analogous to the half-wave 
voltage of the MZM. Fig. 4 shows the theoretical modulation 

transfer functions for a directional coupler modulator (DCM); 
there are two complementary transfer functions YsR(V) and 

Yss(1’) since the DCM has two output channels for an input 
into one arm. The MZM transfer curve Yh{z(V) with a half 

wave voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, equal to the DCM transfer voltage V, is also 
shown for comparison. The two modulator transfer curves are 

very much alike from zero up to one switching voltage, but 
beyond that they depart; the MZM is periodic in 2V,, while 

increasing A/j further spoils the transfer from one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm back to 
the other. The mathematical form of the DCM transfer function 

[I21 is 

The transfer voltage Vs is defined by 

where 1 is the length of the coupling region and K is the 

coupling constant. When = 0 and 61 = ~ / 2 ,  the signal is 
transferred completely from one guide to the other. The other 

variables in  (2) are 7b0 the optical index of refraction for the 
guide, r the relevant electrooptic coefficient, g the electrode 

gap spacing. C the overlap integral between the optical and 
electrical fields, and X the free space optical wavelength. Vs 
is usually determined experimentally. Unfortunately, a Fourier 
seriej for the output from a modulator with this transfer 

function ic not available in closed from. One must use a power 
series expansion, as in [3], or input the transfer function with 

a two-tone time variation and find the Fourier components 
numerically-as in [4] and the present work. 

The intermodulation distortion produced by a simple DCM 
is usually very much like that of an MZM driven to produce 
the same rnodulation percentage, as pointed out by Halemane 
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Fig. 5. 
followed by two biased passive sections. The angle 0 is shorthand for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ l .  

Linearized directional coupler modulator with a modulator section 

and Korotky 1121. However, there are subtle differences. For 

example, biasing to the zero second-harmonic point does not 

eliminate higher-order even harmonics. More interesting, a 

zero in the third derivative curve, which is primarily responsi- 

ble for both third harmonic and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2w1-u2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI M D ,  occurs where 

the signal is not zero, at about 0.7954 Vs. This is unlike the 
MZM. where zeros in all odd derivatives occur at the same 

value of 1~>/2. We shall return to this point later. 

Attempts to linearize the transfer function given in ( I )  by 

adding elements to a basic DCM have been made by several 

workers [3 ] - [5 ] .  Farwell et a/. [4] have analyzed and built the 
configuration illustrated in Fig, 5,  a directional coupler that 

has three sets of electrodes. The first set is used to apply the 

modulation signal plus a dc bias voltage. The second and third 

(passive) electrodes have only dc bias voltages applied. The 

two “extra” degrees of freedom introduced by these sections 

are used to linearize the modulation transfer function. 

Before treating the modulator with three electrodes, it is 

instructive to look at a simpler modulator, namely a DCM with 
only one extra set of bias electrodes as described by Lam and 

Tangonan [3 ] .  The reader may think of this as the modulator 

of Fig. 5 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv~ = V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE I/r and HP 
d . 4 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOB z t d ~  and thus f j p  G P G ( ~ A  + l ~ ) ] .  We can illustrate 

the development of a “more linear” region by plotting the 

transmission YSS versus the voltage on the first section with 

the normalized voltage on the second section Vp/Vs as a 

parameter. The result is shown in Fig. 6 for the particular 

case where both the modulator section and. the biased sections 

are electrically T / Z  radians long: that is, Bitf = 6’p = n/2. 
The figures give the modulation transfer curves for -2 < 
V l ~ ~ / ~ ~  < 2 )  or a range of four transfer voltages. Thus, with 
zero voltage applied to all sections the optical input on branch 

1 is completely transferred to branch 2 in 6 ’ ~  and then back to 

branch 1 in 0-4 +OB. If VI\I /V~ = 1 is applied to the modulator 

section with Vp/l/:s = 0. the transfer is complete from branch 

1 to branch 2. With c;P/I/s = 0, we would bias the modulator 

section to ~ ~ , ~ / ~ c ;  = O.zL394 to obtain the minimum second 

harmonic output. We note that with V p / C i  = 0.7 applied 

to the second section, the region about the modulator bias 

point C:lf/V, !z 0.5 begins to look much more linear. As the 

voltage is increased further, Vp/& = 0.8, this added linearity 
disappears. and at Vp/& = 1, the transfer curve is identical to 

V p / C S  = 0. but it is inverted. Further increase in the voltage 
applied to the second section continues to change the shape of 

the transfer curves but never yields such an improvement in 

linearity over Vp/Vs z 0. At Vp/Vs = &. the modulation 
transfer curve is exactly the same as that at zero voltage, and 
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Fig, 6.  Evolution of the transfer function of a directional coupler modulator 
with a passive bias section as the normalized voltage Vp/ l . s  is increased 
from 0 to 0.8. Note the “linearized” region on the 0.7 curve. 

very little change occurs above that voltage. In the limit of 
very high voltage applied to the second section, AB becomes 

so large that there is little coupling between the two guides, 
and the second section effectively becomes two independent 
guides (with equal and opposite phase shifts that still depend 

on the applied voltage). 
It is interesting to look at the shape of the derivatives of 

the modulation transfer function as the bias on the second 

section is varied. Fig. 7 repeats the transfer function from 

0 < V;$[/Vs < 1 and adds the first three derivatives with 
Vp/V,  = 0. The first derivative produces most of the signal, 
the second derivative produces most of the second harmonic, 

and the third derivative produces most of the third harmonic 
and the Ewl-t4 intermodulation (and a very small amount of 

signal). etc. Clearly, biasing for a zero in the second derivative 

will nearly maximize the third derivative, an undesirable 
situation. What we really wish to do to is make the second and 
third derivatives simultanecrusly zero, and this can be realized 

if Vp/1’5 is changed to 0.73193; the resulting transfer function 
and its derivatives are shown in Fig. 8. This condition is near 
the “0.7” curve in Fig. 6. By making the second derivative 
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Fig. 7. The transfer curve and its first three derivatives for a directional cou- 
pler modulator ofelectrical length 6'11 = ?r/2 followed by an identical passive 
section of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH p  = 7r/2- with normalized bias voltage L > ~ / \ : S  = 0.0. 
The proper bias for minimum second harmonic, = 0.4394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 
shown by the arrow: the star indicates a possihle bias that would make the 
intermodulation distortion zero, but would result in a large second harmonic. 

just touch the to zero line at its maximum, we make both 

second and third derivatives zero simultaneously, assuring that 
the second harmonic, third harmonic, and ~ w - - L L ) ~  outputs are 
nearly minimized. There will be small remainders at these 

frequencies produced by the nonzero higher derivatives, which 

may be canceled by a slight adjustment of the second bias 
voltage away from 0.73 193 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV s  at a single value of modulation 
drive voltage, just as in the dual MZM previously discussed. 

We can apply this same strategy to the three section modu- 
lator shown in Fig. 5 in order to find optimum values of V A  
and Vo. Fig. 9 shows the transfer function and its first three 

derivatives for the particular case that BJtf~o = x / 2 , B A ~  = 
OB = ~ / 4 ,  v4/& = 0.73805 and lb/\Ts = 0.77002. For 

these values (found by trial and error), second, third, and fourth 
derivatives are all zero at a modulator bias of ~ ~ ~ / l ( ~  = 0.509. 

Thus, the fourth harmonic will be greatly reduced, the second 

harmonic will be reduced somewhat from the case of the two- 

section modulator, and the third harmonic and the 2w1-w2 

intermodulation will be of'the same order. 
It is tempting to speculate that adding further biased sections 

will add still more degrees of freedom that could be used 

to set additional derivatives to zero and improve the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2wl-w2 
intermodulation. In a study by Sheehy [ 191 it appears that the 

fifth derivative may be set to zero, not by adding an additional 
section, but by moving the second biased section to precede 
the modulator, and adding phase-shifting lengths between the 

modulator section and the biased sections. Sheehy also shows 
that adding further biased electrodes or phase shift sections to 
the DCM can do no better than this. 
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Fig. 8. 
simultaneously zero the second and third derivatives. 

Same modulator as Fig. 7, hut biased to \>/VS = 0.73193 to 
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Fig. 9. Transfer function and first three derivatives for the directional coupler 
modulator of length H,\f = ~ / 2  followed by two passive sections of lengths 

H A  = 7 r / 4 , H ~  = ?r/4 as shown in Fig. 5 .  The biases b : ~  and \,b shown 
were found by trial and error to the maximum dynamic range. The optimum 
modulator bias is \:!,/I-S = 0.509. 

IV. LINK MODEL 

We now introduce a model for a complete optical link illus- 
trated in Fig. 10. containing a laser source with power PL [W], 
and a relative intensity noise RIN [dB/Hz]. The laser feeds a 
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Fig. IO. Schematic of the model that was zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused in the analysis of high fidelity 
fiber-optic links. The pre- and post-amplifiers were omitted for most of the 
calculations. 

traveling-wave modulator, which we will describe in terms of 
its transfer function and its characteristic impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[n]. 
The transfer function will contain a sensitivity characterized 

by V, in the case of MZM’s or V .  in the case of DCM’s, 
along with bias voltages, optical splits, and other parameters 

as necessary. The modulator output is attenuated by some loss 
Lo [dB], which is the total optical loss in the modulator, 

the optical fiber, and optical connections ( L M  + L F ) .  The 

optical detector is characterized by its responsivity 71 [A/W] 
and its terminating load Ru [O] (which would also be the 

input impedance of a post amplifier if one were used). The 
system noise bandwidth is BW [Hz]. 

The modulator is driven by an RF power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPin [dBm], 

which consists of two equal amplitude sinusoidal modulations 
at frequencies 1.0 and 0.9 Hz. This modulation is applied 

to the transfer function to calculate the output signal. The 
Fourier components at I ,  2, and 1.1 Hz, corresponding to 
signal, second harmonic, and intermodulation at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZwli~z, are 
calculated by direct numerical integration over the complete 
period for this signal: 1.0/(1.0-0.9) = 10 sec. (The other inter- 

modulation product 2w2 - w1 at 0.8 Hz has the same amplitude 
as that at I .1 Hz.) We found direct calculation to be much 

more satisfactory than taking a numerical FFT, since we are 
only interested in certain frequency components rather than a 
complete spectrum; calculating only these components allowed 
us to program the link model in the user-friendly language 
M a t h C A e  on personal computers (486 and Macintosh 11). 
Further details of the calculations are given in the Appendix. 

The calculations were made for a consistent set of physical 

parameters representative (except for the bandwidth) of a 
typical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshort fiber-optic link used at microwave modulation 
frequencies; these are given in Table I. Of the first eight 
parameters listed in the table, three always occur in the 
model as the product 11 = P L L ~ ~ D ,  which is simply the 

photodetector current when the modulator transmission is 
unity; this product is 7 mA for the values given in the table, 
and any other values that give the same product will yield the 
same results. The output Fourier components were calculated 
for input signal levels from -160 dBm to +40 dBm. The 
noise level was calculated over this same range and includes 
laser R I N ,  shot noise due to the photodiode direct current 
(assumed to be completely signal-generated; dark current was 
assumed to be zero), and thermal noise in the input source 
and output terminating resistors. 

The loss Lo was taken to be 10 dB, a reasonable value for 

the fiber, connector, and excess modulator loss (at zero bias) 
in a short link. For long links, L,, will be greater, and an 

additional noise term accounting for Rayleigh scattering noise 

should be added. 
In addition to plots of the signal, noise, harmonics, and 

intermodulation as functions of input power, the dynamic 

range was found by solving numerically for the input RF drive 

level at which the intermodulation curve intersects the noise 
level using M a t h C A P ’ s  root finding routine. The dynamic 
range was calculated as the difference (in dB) between the 

intermodulation and the signal at this power level. Since the 
intermodulation curve crossed the noise level multiple times in 

some cases, the initial guess for the root finding routine was 
always set to low RF drive levels. The link model program 
was used in a trial-and-error fashion to adjust the various 
biases, splits, etc. on the linearized modulators to maximize 

the dynamic range. The maximum dynamic range as we 

have defined it above occurs when a subsidiary maximum 

in intermodulation just “kisses” the noise level, as shown 

in Fig. 3. Unfortunately, this is just the kind of intersection 
for which a root-finding routine will have trouble converging. 

When the root finder failed to converge, a highly magnified 

plot of the subsidiary maximum and the noise level was 

generated to decide if the curves kissed or crossed. 
The small-signal gain and noise figure were calculated 

numerically by evaluating the signal at a very small input 

value, selected typically as P,, = -100 dBm. Since the 
intrinsic links contain no electronic amplification, their “gains” 

were actually losses of several tens of dB and their noise 
figures were also several tens of dB. Both gain and noise 

figure is improved by using higher laser power or developing 

a more sensitive modulator, but it is doubtful that either could 
be improved sufficiently at microwave frequencies to realize 
the greater-than-unity gain and good noise figure reported by 

Cox et al. [ 141 for low frequency modulators with passive 

impedance transformations. In almost all applications, elec- 
tronic amplification would have to be added to a microwave 

link, and this will introduce an additional source of noise and 
distortion as discussed later. 

V. LINK PERFORMANCE RESULTS: 
MACH-ZEHNDER MODULATORS 

For reference we consider first a simple MZM biased 

properly at OSVs to eliminate all even harmonics. Fig. 11 
shows the results with the parameters given in Table I. The 

dynamic range is 109.9 dB for a 1 Hz bandwidth, the gain is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-25.2 dB, and the noise figure is 38.0 dB. Since the slope of 

the intermodulation is closely 3 in the log-log plot, it would 

be easy to define a third order intercept of 3 dBm (output) 
or 28.2 dBm (input) for this modulator, and use that value to 
calculate the dynamic range DY for any other noise level as 

DI’ = f ( D I , ~ l  - P,,, - B )  (dBm) (3 )  

where DI,I,~ is the third-order intercept point in dBm, Pno is 
the noise power in dBm, and B is the bandwidth in (dB)/Hz. 
The third harmonic is about 9.5 dB below the intermodulation 
for most of the range. 

The results for the dual MZM with the optimum RF drive 
voltage split of 2.62 : 1 and the “inverse cube” optical split of 
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Fig. 1 1 ,  Signal, intermodulation. and noise for a photonic link (Table I 
parameters) using a simple Mach-Zehnder modulator biased at V.hr = 1.’,/2. 
The resulting dynamic range is 109.9 dB. The curve labeled “2H’ is the 
component at the second harmonic frequency due to the high-order odd 

intermodulation products coincidentally at that frequency, since all even order 
products arc identically zero. This curve does depend on the numerical choice 

of frequencies used. 

1 : 17.9847 were already presented in Fig. 2 for the condition 
that cancels the cubic term in the intermodulation, and results 

in a simple slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 curve. The resulting dynamic range is 

126.2 dB for a 1 Hz bandwidth, the gain is -36.0 dB, and 

the noise figure is 48.8 dB. The gain is lower than the single 

MZM because there is a partial cancellation of the signal in 
the process of canceling the intermodulation. And, since the 

noise level is similar (the noise was split in an uncorrelated 

fashion between the two detectors) the noise figure is also 

degraded. (Note also that if the two-polarization scheme were 

used the detector shot noise would have to be treated slightly 

differently.) 
If either the optical splitting ratio or the RF splitting ratio 

is adjusted to be slightly off the exact inverse-cube relation, 

then a small improvement i n  dynamic range is obtained. Fig. 3 

shows the result of making the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARF split 2.62 : 1, but the optical 

split 1 : 17.9136 versus 1 : 17.9847 for the “inverse cubic” 
relationship, determined by trial and error to produce the 

maximum dynamic range of 129.7 dB, a 3.5 dB improvement, 

with a resulting link gain and a noise figure essentially the 

same. The dynamic range depends very critically on the RF 
and optical splitting ratios. Fig. 12 shows the sensitivity of 
dynamic range to a change in the optical power splitting ratio 

: O2 (expressed as the difference 01-01>c:un1c) when 

the RF voltage is the “inverse cubic” optimum split 2.62 : 1. 

The sensitivity to change of the RF power ratio \VI : W, 
for the “inverse cubic” optimum optical ratio (expressed as 

14Tl-Wl, CUBIC) is very similar to Fig. 12. We see that we 

can gain an improvement in dynamic range above the simple 

inverse-cubic relation for these splits. But the improvement 
only comes with very close control of these ratios, a control 
that likely could be achieved only with active feedback driven 
by the intermodulation distortion or harmonics from a pilot 

tone, for example. In fact, to obtain uny improvement over a 
single MZM, not just the “extra” 3.5 dB, active control will 

likely be necessary. 

109.9 dB 

I I 

’OB.02 -0lOl 0 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.02 

0 1  - 01,CUBIC 

Fig. 12. Tolerance of the dynamic range of the dual-parallel MZ modulator 
to changes in the optical power split with the R F  split held constant at its 
“optimum” cubic value. The abscissa is the deviation of 01 from its “cubic” 
value. Total optical power is conserved, so 0 1  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  = 1.  

0.93361 0.939165 0.944412 0.946841 0.947435 

0 

-2 

F 
0 

p ‘  
0 g *  

I + ’ +  + + +  

- 8 -  

-10 I 
0.93 0.94 0.95 

0 1  [FRACTION] 

Fig. 13. Change in dynamic range from its maximum value versus the 
fraction of optical power fed to modulator I for a dual Mach-Zehnder 

linearization scheme. System noise bandwidth is the parameter from 1 Hz-l 
GHz. 

The situation is not quite as grim as Fig. 12 implies when 
we use more realistic values of system noise bandwidth. The 
intersection of the intermodulation curve with the noise level 
determines the dynamic range, so that an increased noise level 
will change the parameters that yield the maximum dynamic 
range and also the sensitivity to deviations in the parameters. 
Fig. 12 was calculated for a 1 Hz bandwidth. Fig. 13 shows 
the change in dynamic range from its maximum value as a 
function of the optical fraction used in modulator 1 (the same 

abscissa as Fig. 12, but shifted by 01, CUBIC) with system 
noise bandwidth as a parameter from 1 Hz to 1 GHz. If 
we measure the “tolerance” to deviations as the width of 
these curves at some dynamic range degradation, say -3 dB, 

then we lind the tolerance varies roughly as (BW)1/5 .  A 
perturbation analysis by Hayes 1201 that neglects the higher 
order terms in the intermodulation also predicts a fifth-root 

variation. Even for 1 GHz bandwidth, Fig. 13 indicates 1% 
control will be required on 01 to stay within &l  dB of a high 
dynamic range. It is also true that the higher the noise level, 
the smaller the improvement that can be gained by using a 

linearized modulator-that is, the ratio of dynamic ranges of 
the dual MZ to the single MZ. Hayes’ perturbation analysis 

predicts this ratio varies as (BW)-z/15. 
As in the simple MZM, the true second harmonic is iden- 

tically zero in the dual MZ because of the symmetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
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Fig. 14. Output RF signal power and third-order intermodulation power as 
a function of the input signal power for a fiber-optic link using parameters of 
Table I and a simple directional coupler modulator. The “standard’ bias point 

of 0.439412 was used. In this case the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2H curve arises form all orders of 
nonlinearity, including even tetms. 

the sine-squared transfer function. However, the behavior of 
the third harmonic in the dual MZM is somewhat more 
complicated than in the simple MZM. If plotted in Fig. 3, 
the third harmonic curve would lie below the TMD curve for 
most of the region to the right of the null in IMD, although by 
less than the - 9.5 dB of the simple MZM. For the operating 
conditions of Fig. 3, a null occurs just to the left of the IMD 
null, so that the third harmonic is actually greater than the IMD 
in a very small range of input powers near the value where 

both third harmonic and IMD enter the noise level. Thus, if 
third harmonic components fall within the frequency range of 
interest, the “dynamic range” should be defined by the third 
harmonic intersection with the noise, rather than the IMD. 

It may have occurred to the reader that one might use three 

identical MZM’s and attempt to cancel the 5th order term 

in the J1(H).J2(H) Bessel expansion as well as the 3‘d order 

term. This can also be done. The optimum splits for “cubic- 

quintic” cancellation, analogous to the “cubic” condition for 

the dual MZM are, for RF power, JVl : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW‘z : W;< = 0.0394 : 

0.3136 : 0.6470 and for optical power, 0 1  : 0 2  : 0 3  = 

0.914480 : 0.074218 : 0.011302. Using these RF and optical 

splits, the intermodulation at 2wl-w2 exhibits a smooth slope 

7 dependence on the input power. The resulting dynamic 

range, for the link parameters in Table I, is 132.96 dB, with a 

small-signal gain of -41.7 dB and a noise figure of 54.6 dB. 

The “second harmonic” at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2wl (resulting from coincidental 

differences between high odd-order terms) is about 2 dB below 

the 2wl-w2 intermodulation. 

Also analogous to the DMZ, a slightly better dynamic 

range may be obtained by operating a little off the exact 
“cubic-quintic” condition, for example, with the same ratio 
of T4’1 : W2 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw~ but with 0 1  : 0 2  : Q1 = 0.914484 : 

0.074218 : 0.011298, we obtain a dynamic range of 134.85 

dB. The gain and noise figure are unchanged. The sensitivity 

of the splits are similar to those shown in Fig. 12. The three 

MZM scheme is likely only of academic interest; the dual 
MZM is hard enough to realize in practice! 
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Fig. 15. Output RF signal power, third-order intermodulation power, and 
second harmonic power as a function of the input signal power for a fiber-optic 
link (Table I parameters) with a simple directional coupler modulator. The bias 
point was set to 0.7955071.S for maximum dynamic range. The large second 
harmonic arises from the large quadratic curvature of the transfer function at 
this bias point. 

We conclude that by using a dual MZM and the link 

parameters given in Table I we can obtain about 20 dB of 
improvement in dynamic range at a sacrifice of about 10 dB 
in gain and 10 dB in noise figure, and at a cost of controlling 

the modulator parameters precisely. 

VI. LINK PERFORMANCE RESULTS: 
DIRECTIONAL COUPLER MODULATORS 

We now apply the link model calculations to DCM’s. 

Fig. 14 shows the calculated signal, second harmonic, and 

intermodulation for a simple DCM with the parameters given 

in Table I. The length of the modulator is chosen to give 
complete crossover at zero bias. Since there is no bias point 

that eliminates all even harmonics simultaneously as in the 
MZM, we have to choose a compromise bias point. For 
Fig. 14, we have chosen the bias point that minimizes the 
second harmonic, very near the point that makes the second 

derivative of the transfer function zero. The residual second 

harmonic then arises from the nonzero higher even derivatives 
and shows up as a curve of slope about 4. The signal, 
odd harmonics, and 2 ~ 1 1 ~ 2  intermodulation are relatively 
insensitive to the exact choice of bias in this range. The third 

harmonic is about 9.5 dB below the intermodulation, exactly 

like the MZM. For this link the dynamic range is 109.4 dB, 
the gain is -24.8 dB and the noise figure is 38.0 dB, very 
close to those values for the simple MZM. 

We noted previously (in the caption to Fig. 7) that there is 
another interesting bias possibility in the simple DCM, at about 

0.8Vs. At this bias the third derivative is zero but the signal is 
not (the “star” in Fig. 7). And, of course, the second derivative 

is near its maximum value. Fig. 15 shows the resulting signal, 
second harmonic and IMD for a bias of 0.795507Vs, which 
maximizes the dynamic range to 135.4 dB. The gain is -31.9 
dB and the noise figure is 36.7 dB. The second harmonic would 
likely be unacceptably large for this link if it fell within the 
desired pass band-71 dB below the signal where the second 
harmonic equals the noise level. This bias point may be of 
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interest for narrow band links where only the IMD falls within 

the passband. 
Next, we consider the DCM followed by a single set of 

electrodes of the same length as the modulator as described 

by Lam and Tangonan 131. Both lengths are chosen to produce 
complete crossover at zero bias, the same as those used in 

Figs. 7 and 8. Adjusting both the modulator bias voltage and 

the passive section voltage by trial and error to  maximize 

the dynamic range produced the signal, second harmonic. and 
intermodulation curves shown in Fig. 16. The optimum biases 

were 0.333719Vs for the modulator and 0.73152Vs for the 

dc-biased section when operated in the “cross” state, Le., the 
laser input on the I?-guide and output on the S-guide. For 
these values, the dynamic range was 127.05 dB, the gain was 
-3 1.7 dB, the noise figure was 45.9 dB, and the average light 

transmission was 64%. It is interesting to consider the output 

characteristic of the “bar” state, Le., laser input on the R-guide 

and output on the R-guide. The average light transmission on 
the R-guide is 36%, which results in lower shot noise. If the 

same bias settings iire used, however, the signal and IMD 
will be exactly the same on this arm, which means that the 

IMD “sidelobe” will now protrude above the noise and yield 

an inferior dynamic range (about 124 dB) compared to the 
cross arm. However, if a very slight adjustment to the bias 

is made, e.g., changing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVp/L,2 to 0.731552 from 0.731520, 
then the IMD sidelobe falls below the noise and the dynamic 

range increases to 129.5 dB, the noise tigurc falls to 42.9 

dB, but the gain remains exactly the same. This would be the 

preferred mode of operation and suggests a general theorem: 

If the signal and IMD are the same, then the lower the average 
light transmission the better will be the link dynamic range and 

noise figure. This theorem is also illustrated by comparing the 
simple DCM biased at its maximum dynamic range (Fig. IS). 
The noise figure of the simple DCM is actually better by 

6-9 dB, and the dynamic range is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-8 dB better than 

the DCM plus one bias section. This results from a still 
lower average light transmission of the simple I X M  at the 

0.79Us bias point, about 7‘% compared to 64 or 36% for the 
DCM plus secondary section at its optimum bias. The largest 

contribution to the noise in alldhree situations is signal shot 
noise, so minimizing the average light transmission actually 

helps the noise-dependent link parameters. (Such a strategy 

was proposed and demonstrated for a simple Mach-Zehnder 

modulator by Ackerman et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 I 1 to increase dynamic range 
and noise figure by biasing near extinction. Of course, a very 
large second harmonic results there, too.) 

The signal at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2wl in thc DCM plus one dc section from 

all intermodulation and harmonic terms is greatly improved 
from the simple DCM biased for maximum dynamic range, 

Fig. 15, but not as small as that in the simple DCM at its 
usual bias point, Fig. 14. The second harmonic curve for this 

modulator could undoubtedly be improved still further if a 
better “optimization” algorithm had been employed for the 
second harmonic. as described in the Appendix. Instead, only 

the value of the second harmonic at the specific input power 
that made the IMD equal to the noise was used as a measure. 
While that measure is very low (more than 130 dB below the 
signal), the satellite “bump” in 2H at lower inpuls was missed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 16. Output RF signal power, third-order intermodulation power, and 
second harmonic power as a function of input signal power for a fiber-optic 
link using the parameters of Table 1 and a directional coupler modulator 
with a modulation section of length = ~ / 2  followed by a dc bias 
section of length f l p  = ~ / 2 .  The bias values I,& = 0.340V7 and I)> = 
0.7324171~1. were determined by trial and error to maximize the dynamic 
range and minimize the second harmonic at the specific input where the IMD 
equaled the noise level. The second harmonic could be improved with a better 
optimization algorithm; see the Appendix. 

Thus a broadband (greater than an octave) dynamic range 

for this modulator would be 105 dB, limited by the second 
harmonic. By relocating the null in the second harmonic using 
the dynamic range algorithm described in the Appendix we 

believe the broadband dynamic range could be increased to 

127 dB. 

Finally, consider the DCM followed by two sets of elec- 

trodes, as shown in Fig. 5 and studied by Fanvell et al. [4]. 
The modulator is one transfer length long at zero bias as above, 
but the two dc-biased sections are each half that length. Thus, 

if the biases applied to the two sections were forced to be 

equal, this modulator reduces exactly to the previous case. 

However, allowing the two regions to be biased separately 
allows a substantially larger linear range, as shown in Fig. 9. 

Starting with the values scaled from Fig. 9, Vjt3 VA,  and V, 
were varied by trial-and-error to find the maximum dynamic 

range and a second harmonic that was everywhere less than 

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2w1-w~ IMD. The results for the optimum values are 

shown in Fig. 17. For this graph, the optimum values were 

0.509Vs modulator bias, 0.738045Vs second section bias, and 

0.770017\:~ third section bias. For these values, the dynamic 
range is 129.4 dB, the gain is -30.5 dB, and the noise figure 

is 43.3 dB, compared to the best DMZ values of 129.7 dB, 
-36.0 dB. and 48.8 dB, respectively. Again, the slightly poorer 

dynamic range and noise figure compared to the simple DCM 
at 0.79Vs bias (Fig. 15) result from the much higher average 
light transmission (49.8%) and resulting higher shot noise. 

Since the light transmission is so close to 5096, both “cross” 

and “bar” state operation will be the same. 
The second harmonic lies significantly below the IMD, and 

exhibits two nulls, as shown in Fig. 17. The third harmonic 
curve (not shown) lies below the IMD curve by about 5 dB 

over almost the entire range to the right of the IMD null, but 
remains slightly above the noise level at the IMD null, since 
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Fig. 17. Output signal, intermodulation and second harmonic for a direc- 

tional coupler modulator with two passive bias sections each one-half the 
length of the modulator. Bias points of I h r  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.SOYIC:. 1 ~ 4  = 0.738045\,;. 
and 1 . ~  = 0.770017T7< were found to be optimum by trial and error. 
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Fig. 18. Dynamic range (left scale) and signal-to-second harmonic ratio at 

the input power where the 2 ~ 1 - 1 2  intermodulation intersects the noise level 
(right scale) as a function of modulator bias point for a photonic link with 
parameters given in Table I and a linearized directional coupler modulator 
with two passive bias sections at 1 - 1  = 0.7700171;. 

the third harmonic null  lies just to the left of the IMD null. 

This is similar to thc situation for the dual MZM. 
It is important to consider the sensitivity of the above 

results to the errors in the three bias settings, analogous to 

errors in optical and RF power splits for the dual MZM. 

Fig. 18 shows the sensitivity of the IMD and a measure of 

the second harmonic (see Appendix for definition) and IMD 

to the modulator bias setting; not surprisingly, the results are 
relatively insensitive to this bias, since what we have set out to 

do is make a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlineur curve for the modulator transfer function. 
Errors of a few percent in setting the modulator section bias 

would not change the modulator performance significantly. By 
contrast, Fig. 19 shows the sensitivity of the second harmonic 

and IMD to variation in the second section bias. Here, changes 
of *0.01% would reduce the dynamic range by 5 dB. Of 

course, Fig. 19 is for a I Hz bandwidth, and we expect a 

similar decrease in sensitivity by BUr1f5. Thus we would 

expect f O .  16% for I MHz and & O h %  for I GHz bandwidths, 
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Fig. 20. Locus of the maximum dynamic range (“cliff’) for the DCM of 
Figs. 17-19. Also shown are the minimum second and third harmonic null 
loci in the - \& plane for an applied pilot tone of -4 dBm. 

although we have not made the calculations. The variation with 

third section bias voltage VB/VS is very similar to Fig. 19. 

Fig. 20 plots the position of the “cliff’ or discontinuity in 
dynamic range as a function of the two biases. Pairs of biases 

along the “cliff’ line will all produce dynamic ranges of the 

order of 129.4 dB, while east-west motion will produce the 

curve of Fig. 19. Also shown in this figure are the loci of biases 

that will produce a null in second and third harmonics for an 

applied pilot tone power of -4 dBm. At the intersection of the 
second and third harmonic null loci (open circle), the dynamic 
range is 129.0 dB, only 0.4 dB less than the optimum value 

of the edge of the “cliff.” Thus only a little dynamic range 
would be lost in an active bias stabilization scheme based 

on nulling the second and third harmonics of a pilot tone, as 
suggested by Hayes [ 151. The pilot tone amplitude also needs 
to be stabilized since the third harmonic curve moves relative 
to the “cliff” as the amplitude varies. A pilot tone of -6 dBm 

moves the third harmonic null curve farther to the right, thus 
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selecting an operating point still in the “highlands,” but with a 
smaller dynamic range; a pilot tone of 0 dBm moves the third 

harmonic null curve to the left, into the “lowlands,” selecting 

an operating point with several dB smaller dynamic range. 

Of course, this stability requirement should be relaxed with 
system noise bandwidths greater than 1 Hz. 

v11. LINK PERFORMANCE WITH A PREAMPLIFIER 

We have addressed tile effects of electronic amplifiers on 

optical link performance in a previous paper [9], an extension 
of still older work for cascaded electronic amplifiers [16]. 

Clearly, the intrinsic optical links (Le., without electronic pre- 
or post-amplification) described above will require the addition 
of’ electronic amplifiers to produce acceptable overall link 

gain and noise figure. And the distortions produced in such 

amplifiers will add to those produced in the modulator. We 

also modified our numerical programs to include preamplifiers 
with given small-signal gain, noise figure, third-order intercept 
(TOI), and second-order intercept (SOI). Gain saturation in 

the preamplifier is ignored. The IMD and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2H outputs of the 
preamplifier are calculated and then passed through the mod- 

ulator using the numerically calculated slope of the transfer 
curve. The preamplifier distortion and modulator distortion are 

added in quadrature at the photodetector, since they arise from 
physically independent sources and are thus uncorrelated. 

We can illustrate the effect of adding a preamplifier to a 

linearized DCM, one with two added bias sections as described 

in  Figs. 17-20. We chose a range of preamplifier parameters 

that encompass those of the best obtainable microwave ampli- 
fiers, but also include values that are better than realizable 
at the present. Fig. 21 shows how the dynamic range and 

noise figure of the intrinsic link are changed as a function 

of preamplifier gain from 0-50 dB. The preamplifier noise 

figure is 3 dB and its third-order intercept varies from 40 
dBm (off-the-shelf item) to 60 dBm. As expected from the 

Friis formula [17], for amplifier gains of the order of the link 
loss, the overall noise figure approaches the preamplifier noise 
figure. The link dynamic range, however, depends little on the 

preamplifier gain up to 30-40 dB, but depends critically on the 

TO1 of the preamplifier. A preamplifier TO1 greater than 60 
dBm would be required to keep the link dynamic range from 
degrading by 3 dB. At gains in the 40-50 dB range, further 

degradation in dynamic range takes place as the modulator 
begins to contribute to the distortion. The conclusion here, as 

it was in 191, is that it makes no sense to use a highly linearized 
modulator unless the driving preamplifier has a high TOI. 

Similarly, distortion introduced by the nonideal behavior of 

the optical detector could be included in the overall link behav- 
ior. The high optical powers encountered in short microwave 
links likely will produce such nonideal behavior. Both the 

very small area photodetectors that are required for microwave 

output and the dependence of the link gain and noise figure 
on the laser power yield designs with high optical power 
densities on the photodetector. Hayes and Persechini [ 181 
have measured the distortion produced in typical microwave 
photodetectors, and it is significant enough that degrades the 
link dynamic range even further. 
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Fig. 2 I .  Dynamic range and noise figure for an optical link with a preampli- 
fier as a function of preamplifier gain with preamplifier third-order intercept as 
a parameter. The modulator is the DCM with two added bias regions, Figs. 5 
and 17-20, and the preamplifier noise figure is 7 dB. 

VIII. CONCLUSION 

We have developed a simple link model that calculates har- 

monic and intermodulation distortion by Fourier-analyzing the 
link output when a two-tone input signal is applied. We have 

applied the model to selected linearized modulator schemes, 

particularly the dual and triple Mach-Zehnder, and directional 
coupler modulators with zero, one or two additional dc-biased 
regions to enhance linearity. We find that the harmonics and 
intermodulation produced no longer exhibit a simple constant- 

exponent power law behavior with the input signal, and we 

propose a new, unambiguous definition of dynamic range 
to cope with this added complexity. For a sample set of 
parameters, we calculate that improvements of about 20 dB 
in dynamic range are obtainable, at a sacrifice of 10 dB in 

gain and noise figure, but that the modulator parameters must 

be tightly controlled to realize such an improvement. Table I1 
summarizes the link performances for a 1 Hz noise bandwidth. 

We also demonstrate that the addition of low noise electronic 
amplifier\ with even the best obtainable third-order intercepts 
will significantly degrade the dynamic range. 

APPENDIX 

A. Link Model Calculations 

The M a t h C A e  program inputs the link parameters listed 

in Table I plus the parameters that enter into the particular 
modulator transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY (V),  described later in this 

appendix. The transfer function gives the fractional optical 
transmission through the modulator when a normalized voltage 
V/Vs or b7/VT) is applied (Vs is the DCM transfer voltage and 
V, is the MZM half-wave voltage). The independent variable 

used in the link model is the input power P,, (dBm). This 

value in dBm is converted to power in Watts, Si,(Pznl. 
The normalized voltage applied to the modulator is then 

given by 
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TABLE I1 
F’ERFORMANCE O F  FIRER-OP~~C LINKS WITH PARAMETERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF, TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

ModulatorType DynamicRMge 

(dBin1HZ) 
109.9 
126.2 
129.7 
132.96 
134.85 
109.4 
135.4* 
127.05 
129.47 
129.4 

Gain 
(a) 
-25.2 
-36.0 
-36.0 
-4 1.7 
-41.7 
-24.8 
-31.9 
-31.7 
-31.7 
-30.5 

Noise Figure 
(dB1 
38.0 
48.8 
48.8 
54.6 
54.6 
38.0 
36.7 

45.9 
42.9 
43.3 

where Vj,! is the bias voltage, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,$f is the modulator char- 

acteristic impedance, and y( t )  is the (dimensionless) applied 
two-tone signal at frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sin ( k a t )  + sir1 (27rbt). 64-2) 

In all calculations u and b are taken as I and 0.9 Hz, 
respectively, so the intermodulation products 2a, - b and 2b - a 
occur at 1.1 and 0.8 Hz, respectively. We calculate only the 

former. Second and third harmonics are taken as 2a = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Hz 
and 3a = 3 Hz. The results are, of course. independent of the 

absolute frequency value except for the chance coincidence 
in high order intermodulation products that happen to fall at 

critical frequencies, e.g., l l a  - 10b = 2 Hz. 
The waveform as distorted by the modulator transmission 

function Y ( V )  is then obtained from Y [V( t ,  E‘,,, )]. To avoid 

“saturating” the Fourier transform integrals numerically, the dc 
component of transmission, Y[v l~ /Vs .  is subtracted from 

Y to yield the time-varying component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ( t .  PlTL) .  
The Fourier components of this RF waveform are then 

calculated directly using M a t h C A P  ’s numerical integration 

routine. The integrands are scaled inversely with the input 

voltage by multiplying by [STn( I ‘7n) ] -1 /z ,  again, to keep the 

integrands from becoming too small and suffering from round- 
off errors. In some cases additional fixed scaling factors were 
used over different ranges of P,,, to speed computation time 
in evaluating these integralf3 

In addition, it is necessary to calculate both in-phase and 

quadrature components of each quantity to account for possible 

phase shifts introduced by the transfer function. Thus, the 

31t would likely be better to use different scale factors for IMD and second 
harmonic, say S,3’2 for IMD and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi’ for second harmonic. However, in 
the linearized modulators, the dependence on input power is not so simple, and 
it was not immediately obvious how to choose the proper integrand scaling 
in advance. 

l 2  
+ [; .IT [ s z n ( M - 1 1 2  

. Y ( t ,  pXrL) sin (27rat) d t  

. Y ( t ,  PLrL) cos (27rnt) dt ] ’} 1/2. (A-3) 

The integrals are taken over an exact period T of the input 

waveform, T = l / ( b  - a) = 10 sec. for a = 1 Hz and 
b = 0.9 Hz. The third-order intermodulation IMD(P,,) is 

calculated in the same fashion by substituting 2n - b for a in 

equation (A-5), and the second and third harmonic 2H(P,,) 
and 3 H (  P,n) by substituting (2a)  and (3a),  respectively. 
These quantities are actually the Fourier components of the 
time-varying modulator transmission. They are converted to 

detector current by multiplying by the unity transmission 

detector current H = P L L o r / D ,  where PL is the laser power in 
Watts, Lo is the total optical insertion loss ratio from the laser 

to the detector, and r/D is the detector responsivity (A/”). 
Signal, intermodulation, and harmonics are further converted 

to average RF powers in dBm at the output resistor RD of the 

intrinsic link: PSIG dBm (P,,,), PIMD dBm (Pz, ) ,  P2H 
dBm (F‘z,z). and P3H dBm (Pen). 

The small signal gain of the link, G. is obtained by 

evaluating the output at a very small value of input power, 
Ptn = - 100 dBm. For the intrinsic link, G is typically 

much less than unity, say 10-3-10-4. The noise output power 

[W/Hz-ll in RD is given by 

N = GkT + RIN . I&.RD + 2 e I ~ c R o  + kT (A-4) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARIN is the relative intensity noise of the laser (ex- 

pressed as a ratio), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ID^ is the average photocurrent 

H . Y[Vh[/r/,: T I .  Note that both the thermal noise GkT 
from the modulator driving source (assumed to be matched to 
Rnr) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk T  from the detector terminating resistor RD are 

included even though the former is negligible compared to the 
latter for typical G’s less than unity. The noise figure is then 

F dBm = N dBm - [GkT]asm. If a post amplifier is added, 

the kT from RD should be deleted before calculating the link 
noise figure so that it may be correctly cascaded with the post 
amplifier via the Friis formula [ 181. 

The link dynamic range is calculated by first finding Xinr 
the particular value of input power Pi,, that makes the inter- 

modulation equal to the noise. MathCAm’s rootfinder is used 

to solve the equation P I M  dBm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Pi,) - N dBm = 0 for the 
root Xi,. The dynamic range in dB is then D Y  = PSIG dBm 

(Xi,t)-LV dBm. When MathCAfi’s  root-finding program has 
difficulty converging, which usually happens when the solution 

is near the “kissing” point of a subsidiary maximum with the 
noise level, then a program that plots both intermodulation and 

noise is used to find the desired solution by successive trials. 
A measure of the signal-to-second harmonic ratio, DY2,  is 

found by evaluating this ratio at Xhn ;  D Y 2  = P S I G  dBm 

( X i n )  - P 2 H  dBm ( X i n ) .  Depending on the complexity of 
the P I M  dBm and P2H dBm curves, DY2 can be used 

to estimate whether the second harmonic is significant or not 

compared to the IMD. But note that the measure DY2 is not a 
true dynamic range for the second harmonic. Such a true value 

would be found by solving the equation P2H dBm (Pin) - N 
dBm = 0 for the lowest-valued root in input power, X2in ,  
and then evaluating TrueDY2 = PSIG dBm ( X 2 i l L )  - P2H 
dBm ( X 2 i , ) .  The true broadband dynamic range would then 
be determined by the smaller of DY and TrueDY 2 (assuming 

that the third harmonic is always less than IMD). We did not 

use this procedure in optimizing the modulator parameters, 
and Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 is an unfortunate less-than-optimum result as a 
consequence of looking only at D Y 2  and not TrueDY2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Transfer Functions 

simply 

For the Mach-Zehnder modulator, the transfer function is 

where br is the voltage normalized to V,, as in (A-2). 

For the dual MZM, the additional parameters required are 

the lossless FW power splitting ratio F : (1 - F ) ,  the lossless 

optical power splitting ratio f : (1 - f ). and the two modulator 
bias voltages ‘vv~ and 2 V k ~  (denoting the two modulators by 

pre-superscript “1” and “2’). The RF and optical powers fed 
to the two modulators are thus 

The transfer function is thus 

(A-IO) 

To obtain cancellation of intermodulation and odd harmonics, 

the two modulators must be biased to opposite slopes. In all 

calculations, we took lVht/VT = 1/2 and ’vv/VT = -1/2. 
The simple directional coupler modulator is usually defined 

by its physical length I, coupling coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,, and the 

difference in the propagation coefficients of the two arms, AD. 
We chose to express these as the coupling angle O M  = K Z  
and the transfer voltage Vs, that is, the voltage applied to the 

electrodes that causes the full output to switch from one arm 

to the other arm when Bil l  is n7r/2 (71 an integer). Thus a 

DCM with On1 = 7r /2  and an optical input into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm R only 

would have an optical output only from arm S at zero applied 

voltage, and output only from arm R with Vs applied. The 

transfer function for arm R to arm S is then 

where V is the applied voltage normalized to Vs. We have 

assumed the two arms are identical, so that Ai3 = 0 with zero 

applied voltage; the formula is easily modified to include a 

static AD. The transfer function from input to output in arm 
R is YRR(V) = I - YRS(V) and YSR = YES, Yss = YRR. 

The transfer function for the DCM with additional sets of 

electrodes is somewhat more complicated to define. We must 

work with optical amplitudes rather than powers, since we 

must keep track of the modulation phase as the signals pass 

from section to section. It is convenient to consider the transfer 

matrix from input arms R and S to output arms R and S 

Note that there are only two independent elements 

and 

(A-14) 

We note that YRS(V) is simply I k f ~ s M i ,  in (A-28). 
If additional passive sections of length 0~ and O B  are added, 

with normalized bias voltage V 4  and VB, then they can be 

described by additional matrices A, B with elements A,, , B,, , 
obtained by appropriate substitutions in (A-30)-(A-32). The 

overall amplitude transmission matrix T may be obtained by 

’H =(1 - f ) H .  (A-9) matrix multiplication, T = BAM.  with elements TL,. The 
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crossover amplitude is found to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TRS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- j  { Bis  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ A  RR MRR ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) - A R S  M,*, s ( I r ) ]  

+ B k , [ A k , M R R ( V )  + A>~Mi3(V)]) (A-15) 

and the desired optical intensity transfer functions is then 
YRs(V) = TRs(V)T&.(V). If only one passive section is 
used, set VA = VB = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr/, and O A  = 0, = O p / 2 .  And, of 
course, the simple DCM is obtained with @, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHB = 0. albeit 
with a longer-running program. 
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