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Abstract

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T =
{x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The
space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-
neighborhood of the union of the other two sides, for every geodesic triangle T in X.
We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) := inf{δ ≥ 0 :
X is δ-hyperbolic }. The study of hyperbolic graphs is an interesting topic since the
hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph
related to it. One of the main aims of this paper is to obtain quantitative information
about the distortion of the hyperbolicity constant of the graph G \ e obtained from
the graph G by deleting an arbitrary edge e from it. These inequalities allow to
obtain the other main result of this paper, which characterizes in a quantitative way
the hyperbolicity of any graph in terms of local hyperbolicity.

Keywords: Infinite Graphs; Geodesics; Edges; Gromov Hyperbolicity.

1 Introduction

The study of mathematical properties of Gromov hyperbolic spaces and its applications
is a topic of recent and increasing interest in graph theory; see, for instance [1, 2, 3, 4, 6,
7, 8, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34] and the
references therein.
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The theory of Gromov’s spaces was used initially for the study of finitely generated
groups (see [13, 14]), where it was demonstrated to have an enormous practical impor-
tance. This theory was applied principally to the study of automatic groups (see [23]),
which play an import ant role in Sciences of Computation. Another important applica-
tion of this spaces is secure transmission of information by internet (see [15, 16, 17]). In
particular, the hyperbolicity also plays an important role in the spread of viruses through
the network (see [16, 17]). The hyperbolicity is also useful in the study of DNA data (see
[6]).

In recent years several researchers have been interested in showing that metrics used
in geometric function theory are Gromov hyperbolic. In particular, in [26, 28, 31, 33] it
is proved the equivalence of the hyperbolicity of Riemann surfaces (with their Poincaré
metrics) and the hyperbolicity of a simple graph; also, a classical result states that the
hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph
related to it (see [5]), although the graph is not so simple as in the case of Riemann
surfaces; hence, it is useful to know hyperbolicity criteria for graphs.

In our study on hyperbolic graphs we use the notations of [12]. We say that γ is a
geodesic if it is an isometry, i.e. L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every s, t in the
domain of γ, where L denotes length. We say that X is a geodesic metric space if for every
x, y ∈ X there exists a geodesic joining x and y; we denote by [xy]X or [xy] any of such
geodesics (since we do not require uniqueness of geodesics, this notation is ambiguous,
but it is convenient). It is clear that every geodesic metric space is path-connected. If X
is a graph, we use the notation [u, v] for the edge of a graph joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, we must identify any edge
[u, v] ∈ E(G) with the real interval [0, l] (if l := L([u, v])); hence, if we consider the edge
[u, v] as a graph with just one edge, then it is isometric to [0, l]. Therefore, any point in
the interior of any edge is a point of G. A connected graph G is naturally equipped with
a distance defined on its points, induced by taking shortest paths in G. Then, we see G
as a metric graph. Throughout this paper we consider graphs which are connected and
locally finite (i.e., in each ball there are just a finite number of edges); we allow loops and
multiple edges in the graphs; we also allow edges of arbitrary lengths. These conditions
guarantee that the graph is a geodesic space (since we consider that every point in any
edge of a graph G is a point of G, whether or not it is a vertex of G).

IfX is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides Jj ⊆ X,
we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) ≤ δ. We denote by
δ(J) the sharp thin constant of J , i.e. δ(J) := inf{δ ≥ 0 : J is δ-thin } . If x1, x2, x3 ∈ X,
a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and
[x3x1]; it is usual to write also T = {[x1x2], [x2x3], [x3x1]}. The space X is δ-hyperbolic
(or satisfies the Rips condition with constant δ) if every geodesic triangle in X is δ-thin.
We denote by δ(X) the sharp hyperbolicity constant of X, i.e. δ(X) := sup{δ(T ) :
T is a geodesic triangle in X }. We say that X is hyperbolic if X is δ-hyperbolic for some
δ ≥ 0. If we have a triangle with two identical vertices, we call it a “bigon”. Obviously,
every bigon in a δ-hyperbolic space is δ-thin. It is also clear that every geodesic polygon
with n sides (n ≥ 3) in a δ-hyperbolic space is (n− 2)δ-thin.
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The main examples of hyperbolic graphs are the trees. In fact, the hyperbolicity
constant δ(X) of a geodesic metric space can be viewed as a measure of how “tree-like”
the space is, since those spaces with δ(X) = 0 are precisely the metric trees. This is
an interesting subject since, in many applications, one finds that the borderline between
tractable and intractable cases may be the tree-like degree of the structure to be dealt
with (see e.g. [9]).

We would like to point out that deciding whether or not a space is hyperbolic is usually
extraordinarily difficult: Note that, first of all, we have to consider an arbitrary geodesic
triangle T , and calculate the minimum distance from an arbitrary point P of T to the
union of the other two sides of the triangle to which P does not belong to. And then we
have to take supremum over all the possible choices for P and then over all the possible
choices for T . Without disregarding the difficulty of solving this minimax problem, note
that in general the main obstacle is that we do not know the location of geodesics in
the space. Therefore, it is interesting to obtain inequalities involving the hyperbolicity
constant of graphs. Since to obtain a characterization of hyperbolic graphs is a very
ambitious goal, it seems reasonable to obtain criteria that guarantee the hyperbolicity.

One of the important problems in the study of any mathematical property is to deter-
mine its stability under appropriate deformations, in other words, to determine what type
of perturbations preserve this property (with a quantitative control of the distortion). In
the context of graphs, to delete an edge of the graph is a very natural transformation.
One of the main aims of this paper is to obtain quantitative information about the dis-
tortion of the hyperbolicity constant of the graph G \ e obtained from the graph G by
deleting an arbitrary edge e from it. Note that this is a difficult task, since deleting an
edge can change dramatically (or not) the hyperbolicity constant: on the one hand, if C
is a cycle graph and e ∈ E(G), then δ(C) = L(C)/4 and C \ e is a path graph (a tree)
with δ(C \ e) = 0; on the other hand, if G is any graph with a vertex v of degree one and
e ∈ E(G) is the edge starting in v, then δ(G \ e) = δ(G). However, Theorems 3.9 and
3.15 give precise upper bounds, respectively, for δ(G \ e) in terms of δ(G), and for δ(G)
in terms of δ(G \ e).

These bounds allow to obtain the other main result of this paper, Theorem 4.3, which
characterizes in a quantitative way the hyperbolicity of any graph in terms of local hy-
perbolicity. That was the idea that lead us to think of a graph G as the union of some
subgraphs {Gn}n≥1. In order to obtain that, we call S-graph (see Section 4) to the graph
G obtained by “pasting” the subgraphs {Gn}n≥1 “following the combinatorial design given
by a graph G0”; Theorem 4.3 states that G is δ-hyperbolic if and only if Gn is δ′-hyperbolic
for every n ≥ 0, in a simple quantitative way. Note that any graph can be viewed as a
S-graph (see Section 4).

In order to prove Theorem 4.3 we need to introduce a new definition of hyperbolicity
(equivalent to the previous definition) which we think that it is interesting by itself:
quadrilaterals δ-fine (see Section 2).

We want to remark that in the context of hyperbolic graphs it is usually not possible
to obtain precise inequalities with explicit constants like the ones appearing in Theorems
3.9, 3.15 and 4.3.
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2 A new definition of hyperbolicity in geodesic me-

tric spaces

There are several definitions of Gromov hyperbolicity. These different definitions are
equivalent in the sense that if X is δ-hyperbolic with respect to the definition A, then it
is δ′-hyperbolic with respect to the definition B for some δ′ (see, e.g., [5, 12]).

First of all we recall the definition of fine triangles.

Definition 2.1. Given a geodesic triangle T = {x, y, z} in a geodesic metric space X,
let TE be a Euclidean triangle with sides of the same length than T . Since there is no
possible confusion, we will use the same notation for the corresponding points in T and
TE. The maximum inscribed circle in TE meets the side [x, y] (respectively [y, z], [z, x])
in a point z′ (respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′) and
d(z, x′) = d(z, y′). We call the points x′, y′, z′, the internal points of {x, y, z}. There is a
unique isometry f of the triangle {x, y, z} onto a tripod (a star graph with one vertex w of
degree 3, and three vertices x′′, y′′, z′′ of degree one, such that d(x′′, w) = d(x, z′) = d(x, y′),
d(y′′, w) = d(y, x′) = d(y, z′) and d(z′′, w) = d(z, x′) = d(z, y′)). The triangle {x, y, z}
is δ-fine if f(p) = f(q) implies that d(p, q) ≤ δ. The space X is δ-fine if every geodesic
triangle in X is δ-fine.

A basic result is that hyperbolicity is equivalent to be fine:

Theorem 2.2. [12, Proposition 2.21, p.41] Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

Definition 2.3. A quatripod is a double star graph, i.e, a tree with two vertices v1, v2 of
degree 3 which are connected by an edge and four vertices of degree 1 two of them connected
to v1 and the other two connected to v2. We also allow degenerated quatripods, i.e., star
graphs K1,4 (complete bipartite graph).

Remark 2.4. We also allow more degenerated quatripods, as star graphs K1,3 (respec-
tively, K1,2). These situations correspond with quadrilaterals with several vertices repeated.

We introduce now a new definition which will play an important role in the proof of
Theorem 4.3.

Definition 2.5. A geodesic metric space X es τ -fine for quadrilaterals if given any
geodesic quadrilateral Q = {x, y, z, w} in X there exists a quatripod Q with vertices of
degree one, x0, y0, z0, w0, and a map F : Q −→ Q such that:

i) F (x) = x0, F (y) = y0, F (z) = z0, and F (w) = w0.

ii) F is an isometry between [xy] and [x0y0], [yz] and [y0z0], [zw] and [z0w0], and
between [wx] and [w0x0].

iii) If F (p) = F (q) then d(p, q) ≤ τ .
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This new concept of fine quadrilaterals is an equivalent definition of hyperbolicity, as
Theorems 2.2 and 2.6 show.

Theorem 2.6. Let us consider a geodesic metric space X.

• If X is δ-fine for quadrilaterals, then it is δ-fine (for triangles).

• If X is δ-fine (for triangles), then it is 2δ-fine for quadrilaterals.

Proof. The first statement is direct, since a triangle is a degenerated quadrilateral with
two vertices repeated. We prove now the second statement.

Given a geodesic quadrilateral Q = {x, y, z, w}, we are going to find an Euclidean
quadrilateral QE with sides of the same length than the sides of Q. Let us choose, for
example, a geodesic [xz] joining the vertex x with the vertex z. We have divided in this
way the quadrilateral Q into two geodesic triangles T1 = {x, y, z} and T2 = {x, z, w}.
Let us consider two Euclidean triangles T1,E, T2,E with sides of the same length than the
sides of T1 and T2; without loss of generality we can assume that the sides of T1,E and
T2,E corresponding to [xz] are the real interval [0, d(x, z)] in the complex plane, T1,E is
contained in the upper halfplane and T2,E is contained in the lower halfplane. Since there
is no possible confusion, we will use the same notation for the corresponding points in Tj
and Tj,E, j = 1, 2. Then QE is the Euclidean quadrilateral QE = {x, y, z, w}.

Now, the maximum inscribed circle in T1,E meets the side [xy] (respectively [yz], [zx])
in the internal point z′ (respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′)
and d(z, x′) = d(z, y′). Similarly, the maximum inscribed circle in T2,E meets the side
[xz] (respectively [zw], [wx]) in the internal point w′′ (respectively x′′, z′′) such that
d(x, z′′) = d(x,w′′), d(z, w′′) = d(z, x′′) and d(w, x′′) = d(w, z′′).

There is a unique isometry f1 of the triangle T1 = {x, y, z} onto a tripod T1, with
one vertex v1 of degree 3, and three vertices x1, y1, z1 of degree 1, such that d(x1, v1) =
d(x, z′) = d(x, y′), d(y1, v1) = d(y, x′) = d(y, z′) and d(z1, v1) = d(z, x′) = d(z, y′). As X is
δ-fine for triangles, if f1(p) = f1(q) then we have that d(p, q) ≤ δ. Similarly, there is also
a unique isometry f2 of the triangle T2 = {x, z, w} onto a tripod T2 with one vertex v2 of
degree 3, and three vertices x2, z2, w2 of degree 1, such that d(x2, v2) = d(x, z′′) = d(x,w′′),
d(w2, v2) = d(w, x′′) = d(w, z′′) and d(z2, v2) = d(z, w′′) = d(z, x′′). Again as X is δ-fine
for triangles, if f2(p) = f2(q) then we have that d(p, q) ≤ δ.

Let us consider the quatripod Q obtained from T1 and T2 by identifying [x1z1] ⊂ T1

with [x2z2] ⊂ T2: i.e., Q is a tree with two vertices v1, v2 of degree 3 which are connected
by an edge with length equal to d(y′, w′′) and four vertices of degree one x1 = x2, y1, z1 =
z2, w2. Assume that d(x1, v1) < d(x2, v2) (the case d(x1, v1) > d(x2, v2) is similar). Then
the vertices x1, y1 are connected to v1 as in the tripod T1 and the other two z2, w2 are
connected to v2 as in the tripod T2. If d(x1, v1) = d(x2, v2), then Q is a degenerated
quatripod which is a limit case: y′ = w′′, v1 = v2 and Q is a tree with a vertex v1 = v2

with degree 4.
Then there is a unique map F of the quadrilateral Q = {x, y, z, w} onto the quatripod

Q satisfying properties i) and ii) in Definition 2.5.
Assume now that p, q ∈ Q satisfy F (p) = F (q). We have the following cases:
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i) If F (p) = F (q) belongs to [x1z1] = [x2z2], then, a fortiori, it must exists a point
u ∈ [xz] such that f1(p) = f1(u) and f2(q) = f2(u). Therefore, d(p, u) ≤ δ and
d(q, u) ≤ δ and it follows that d(p, q) ≤ 2δ in this case.

ii) If F (p) = F (q) belongs to the edge [v1, y1], then f1(p) = f1(q) and so d(p, q) ≤ δ.

iii) If F (p) = F (q) belongs to the edge [v2, w2], then f2(p) = f2(q) and so d(p, q) ≤ δ.

3 Deleting an edge

In this section we deal with one of the main problems in the paper: to obtain quantitative
relations between δ(G \ e) and δ(G), where e is any edge of G. As usual, we define the
graph G \ e as the graph with V (G \ e) = V (G) and E(G \ e) = E(G) \ {e}.

Since the proofs of these inequalities are long and technical, in order to make the
arguments more transparent, we collect some results we need along the proof in technical
lemmas.

Lemma 3.1. Let G be any graph, e ∈ E(G) with G \ e connected and x, y ∈ G \ e. If
a geodesic ΓG = [xy]G ⊂ G contains e, then there exists a point z ∈ ΓG\e = [xy]G\e ⊂
G \ e such that the subcurve γxz (respectively, γzy) contained in ΓG\e and joining x and z
(respectively, z and y) is a geodesic in G.

Proof. Consider the points A,B ∈ ΓG\e such that dG\e(x,A) = dG(x, e) and dG\e(y,B) =
dG(y, e), and choose z as the midpoint of [A,B] ⊂ ΓG\e. (The points A and B always
exist since L(ΓG) ≤ L(ΓG\e).) From the fact that γxz ⊂ ΓG\e and γzy ⊂ ΓG\e are geodesics
in G \ e, we obtain dG(z, e) ≥ L([A,B])/2; hence, γxz and γzy are geodesics in G.

Lemma 3.2. Let G be any graph and e ∈ E(G) with G\e connected. For all x, y ∈ G\e,
if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic in G \ e,
then

∀ u ∈ ΓG\e, ∃ u′ ∈ ΓG \ e : dG\e(u, u
′) ≤ 2δ(G). (3.1)

Remark 3.3. In ΓG \ e we include the vertices connected by e.

Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise
the inequality is direct. By Lemma 3.1 we have a point z ∈ ΓG\e such that T =
{ΓG, [yz]G\e, [zx]G\e} is a geodesic triangle in G. Without loss of generality we can as-
sume that u ∈ [yz]G\e. If L([yz]G\e) ≤ δ(G), then there exists u′ = y ∈ ΓG such that
dG\e(u, u

′) ≤ δ(G). If L([yz]G\e) > δ(G), then we can take a point C ∈ [yz]G\e such
that dG\e(C, z) = δ(G); therefore, if u ∈ [Cy] \ {C}, then the hyperbolicity of G im-
plies dG(u,ΓG ∪ [zx]G\e) ≤ δ(G); note that if dG(u, [zx]G\e) ≤ δ(G) then the geodesic
γ joining u and [zx]G\e is not contained in G \ e; in fact, e ⊂ γ, and since e ⊂ ΓG

we have dG(u,ΓG) ≤ L(γ) ≤ δ(G); otherwise, dG(u,ΓG) ≤ δ(G); in both cases, since
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e ⊂ ΓG, we deduce dG\e(u,ΓG) = dG(u,ΓG) ≤ δ(G). Assume now that u ∈ [Cz]G\e
(i.e., u ∈ [yz]G\e with dG\e(u, z) ≤ δ(G)); for every ε > 0 there exists uε ∈ [yz]G\e such
that dG\e(u, uε) ≤ δ(G) + ε and dG\e(uε, z) > δ(G). Then there exists u′ε ∈ ΓG with
dG\e(u

′
ε, uε) ≤ δ(G) and dG\e(u, u

′
ε) ≤ 2δ(G) + ε. Since ε > 0 is arbitrary, by compactness

of ΓG there exists u′ ∈ ΓG with dG\e(u
′, u) ≤ 2δ(G).

In order to finish the proof it suffices to note that if u′ belongs to the interior of e, we
can replace u′ by one of the vertices joined by e.

We also obtain this similar result.

Lemma 3.4. Let G be any graph and e ∈ E(G) with G\e connected. For all x, y ∈ G\e,
if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic in G \ e,
then

∀ u′ ∈ ΓG, ∃ u ∈ ΓG\e : dG(u′, u) ≤ δ(G). (3.2)

Furthermore,
∀ u′ ∈ ΓG \ e, ∃ u ∈ ΓG\e : dG\e(u

′, u) ≤ 2δ(G). (3.3)

Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise
the inequalities are direct. By Lemma 3.1 we have a point z ∈ ΓG\e such that T =
{ΓG, [yz]G\e, [zx]G\e} is a geodesic triangle in G; so (3.2) follows directly since G is hyper-
bolic. We prove now (3.3).

Let A and B be the vertices of e, such that [xA]G ⊂ ΓG and [By]G ⊂ ΓG are geodesics
in G with [xA]G ∩ [By]G = ∅. Without loss of generality we can assume that u′ ∈
[xA]G. If L([xA]G) ≤ δ(G), then there exists u ∈ ΓG\e such that dG\e(u

′, u) ≤ δ(G). If
L([Ax]G) > δ(G), then let us consider the point A′ ∈ [Ax]G such that dG\e(A

′, A) = δ(G);
if u′ ∈ [A′x]G, then we have dG(u′, e) ≥ δ(G) and therefore dG\e(u

′, u) ≤ δ(G). Finally, if
u′ ∈ [AA′]G, then there exits u′′ ∈ [A′x]G such that dG\e(u

′, u′′) ≤ δ(G); hence, there exits
u ∈ ΓG\e such that dG\e(u

′, u) ≤ dG\e(u
′, u′′) + dG\e(u

′′, u) ≤ 2δ(G).

The argument in the proof of Lemma 3.4 also gives the following result.

Corollary 3.5. Let G be any graph, e ∈ E(G) with G \ e connected, and x, y, z ∈ G \ e;
let T = {[xy], [yz], [zx]} be a geodesic triangle in G such that [xy] contains e and [yz],
[zx] do not contain e. Then

∀ u′ ∈ [xy] \ e, ∃ u ∈ [yz] ∪ [zx] : dG\e(u
′, u) ≤ 2δ(G). (3.4)

Lemma 3.6. Let G be any graph and e ∈ E(G) with G \ e connected. Let TG =
{[xy]G, [yz]G, [zx]G} be a geodesic triangle in G with x, y, z ∈ G \ e. Then e is contained
at most in two of the three sides of TG.

Proof. Without loss of generality we can assume that e = [A,B] is contained in [xy]G and
[xz]G. Since [xy]G = [xA]G\e ∪ [A,B] ∪ [By]G\e, we have L([xB]G\e) ≥ L([xA]G\e) + L(e)
and L([Ay]G\e) ≥ L(e) + L([By]G\e); since [xz]G = [xA]G\e ∪ [A,B] ∪ [Bz]G\e, we have
L([Az]G\e) ≥ L(e) + L([zB]G\e). Hence, min{L(γ) : γ is a path in G between y and z
with e ⊂ γ} ≥ L(e) + dG\e(y,B) + dG\e(B, z); since dG(y, z) ≤ dG\e(y,B) + dG\e(B, z),
then e is not contained in [yz]G.
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Definition 3.7. We say that a subgraph Γ of G is isometric if dΓ(x, y) = dG(x, y) for
every x, y ∈ Γ.

We will need the following result (see [30, Lemma 5]).

Lemma 3.8. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

We can prove now the following Theorem.

Theorem 3.9. Let G be any graph and e ∈ E(G) with G \ e connected. The following
inequality holds

δ(G \ e) ≤ 5δ(G). (3.5)

Proof. Without loss of generality we can assume that G is hyperbolic, since otherwise
the inequality is direct. If e = [A,B] and L(e) ≥ dG\e(A,B), then G \ e is an isometric
subgraph of G and Lemma 3.8 gives δ(G\e) ≤ δ(G). Assume now that L(e) < dG\e(A,B).

Let us consider an arbitrary geodesic triangle TG\e = {[xy]G\e, [yz]G\e, [zx]G\e} in
G \ e. Let TG be a geodesic triangle of G with the same vertices of TG\e, i.e., TG =
{[xy]G, [yz]G, [zx]G}, satisfying the following property: if a and b are vertices of TG\e with
dG\e(a, b) = dG(a, b), then we choose [ab]G as [ab]G\e. If n is the number of the geodesic
sides of TG containing e, then by Lemma 3.6 n is either 0, 1 or 2.

Case n = 0. In this case we have TG = TG\e. Let us consider any α ∈ TG\e; without loss
of generality we can assume that α ∈ [xy]G\e.

Since G is hyperbolic, there exists β ∈ [xz]G\e ∪ [yz]G\e such that dG(α, β) ≤ δ(G).
If dG\e(α, β) = dG(α, β) ≤ δ(G), then dG\e(α, [xz]G\e ∪ [yz]G\e) ≤ δ(G). Hence,
we can assume that dG\e(α, β) > dG(α, β); then the geodesic in G joining α and β
contains e. Let γ1 be the geodesic contained in [xy]G\e joining α and x, and let γ2

be the geodesic contained in [xy]G\e joining α and y; then γ1 ∪ γ2 = [xy]G\e.

If L(γ1) ≤ 2δ(G) or L(γ2) ≤ 2δ(G), then there exists β ∈ {x, y} ⊂ [xz]G\e ∪ [yz]G\e
such that dG\e(α, β) ≤ 2δ(G).

If L(γ1) > 2δ(G), then consider the point α′ ∈ γ1 such that dG\e(α, α
′) = 2δ(G).

Since G is hyperbolic, there exists β′ ∈ [xz]G\e∪ [yz]G\e such that dG(α′, β′) ≤ δ(G).
If dG\e(α

′, β′) = dG(α′, β′) ≤ δ(G), then we conclude dG\e(α, [xz]G\e ∪ [yz]G\e) ≤
3δ(G). If dG\e(α

′, β′) > dG(α′, β′), then the geodesic in G joining α′ and β′ contains
e; recall that the geodesic in G joining α and β contains e; hence, there exists a path
in G joining α and α′ with length less than 2δ(G), and therefore [xy]G\e is not a
geodesic in G. This is a contradiction, and we conclude dG\e(α, [xz]G\e ∪ [yz]G\e) ≤
3δ(G).

Therefore, δ(TG\e) ≤ 3δ(G) in the case n = 0.

Case n = 1. In this case, without loss of generality we can assume that [xz]G = [xz]G\e
and [yz]G = [yz]G\e.
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By Lemma 3.2, for any α1 ∈ [xy]G\e there is α′ ∈ [xy]G \ e such that dG\e(α1, α
′) ≤

2δ(G). Furthermore, by Corollary 3.5 there exists β1 ∈ [xz]G ∪ [yz]G such that
dG\e(α

′, β1) ≤ 2δ(G). Hence, we have dG\e(α1, β1) ≤ 4δ(G).

Let us consider now any α2 ∈ [xz]G\e ∪ [yz]G\e; without loss of generality we can
assume that α2 ∈ [yz]G\e. Since T ′ = {[xy]G, [yz]G\e, [zx]G\e} is a geodesic triangle
in G, there exists α′ ∈ [xy]G ∪ [xz]G\e such that dG(α2, α

′) ≤ δ(G). Hence, there
exists α′′ ∈ ([xy]G \ e)∪ [xz]G such that dG\e(α2, α

′′) ≤ δ(G) (if the geodesic joining
α2 and α′ contains e = [A,B], then A,B ∈ [xy]G). If α′′ ∈ [xz]G\e, then we obtain
dG\e(α2, α

′′) ≤ δ(G). Assume now that α′′ ∈ [xy]G \ e. By Lemma 3.4 there exists
β2 ∈ [xy]G\e such that dG\e(α

′′, β2) ≤ 2δ(G), and we have dG\e(α2, β2) ≤ 3 d(G).

Therefore, we obtain δ(TG\e) ≤ 4δ(G) in the case n = 1.

Case n = 2. Without loss of generality we can assume that [yz]G\e = [yz]G.

Let us consider α ∈ [xy]G\e ∪ [xz]G\e; without loss of generality we can assume that
α ∈ [xy]G\e and that dG(x,A) < dG(x,B). By Lemma 3.2, for any α ∈ [xy]G\e
there exists α′ ∈ [xy]G \ e such that dG\e(α, α

′) ≤ 2δ(G). If α′ ∈ [yB]G, then
since T ′ = {[yB]G, [Bz]G, [zy]G\e} is δ(G)-thin in G there exists β′0 ∈ [yz]G ∪ [Bz]G
such that dG(α′, β′0) ≤ δ(G); hence, there exists β′ ∈ [yz]G ∪ ([xz]G \ e) such that
dG\e(α

′, β′) ≤ δ(G), since if the geodesic joining α′ and β′0 contains e, then we can
take α′ ∈ {A,B}. Moreover, if β′ ∈ [yz]G, then dG\e(α, β

′) ≤ 3δ(G). If β′ ∈ [xz]G\e,
then by Lemma 3.4, there exists β ∈ [xz]G\e such that dG\e(β

′, β) ≤ 2δ(G). Hence,
we have dG\e(α, β) ≤ 5δ(G). If α′ ∈ [xA]G, then we also obtain dG\e(α, β) ≤ 5δ(G)
with a similar argument.

Consider now α ∈ [yz]G\e; since T ′ = {[yB]G, [Bz]G, [zy]G\e} is δ(G)-thin in G,
there exists α′0 ∈ [yB]G ∪ [Bz]G such that dG(α, α′0) ≤ δ(G). Thus, there exists
α′ ∈ ([xy]G ∪ [xz]G) \ e such that dG\e(α, α

′) ≤ δ(G), since if the geodesic joining α
and α′0 contains e, then we can take α′ ∈ {A,B}. Hence, without loss of generality
we can suppose that α′ ∈ [xy]G \ e; then by Lemma 3.4 there exists β ∈ [xy]G\e such
that dG\e(α

′, β) ≤ 2δ(G). Therefore, we have dG\e(α, β) ≤ 3δ(G).

Finally, we obtain δ(TG\e) ≤ 5δ(G) in this case.

We will prove now a kind of converse of Theorem 3.9. First of all, note that it is not
possible to have the inequality δ(G) ≤ c δ(G \ e) for some fixed constant c, since if G is
the cycle graph with n vertices and edges with length 1, and e is any edge of G, then
δ(G) = n/4 and δ(G \ e) = 0.

We prove first some previous results.

Lemma 3.10. Let G be any graph and e ∈ E(G) with G \ e connected. Let TG be a
geodesic triangle in G contained in G \ e. Then TG is δ(G \ e)-thin in G, i.e.,

δ(TG) ≤ δ(G \ e). (3.6)
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Proof. This result is straightforward since TG is a geodesic triangle in G \ e also, and
dG(x, y) ≤ dG\e(x, y) for every x, y ∈ G \ e.

Lemma 3.11. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. For all
x, y ∈ G\e, if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic
in G \ e, then

∀ u ∈ ΓG\e, ∃ u′ ∈ ΓG \ e : dG(u, u′) ≤ 2δ(G \ e) +
1

2
dG\e(A,B). (3.7)

Proof. Without loss of generality we can assume that G \ e is hyperbolic, since otherwise
the inequality is direct. We can assume also that ΓG = [xy]G = [xA] ∪ e ∪ [By]. Let us
consider the geodesic quadrilateral P4 = {[xy]G\e, [xA], [AB]G\e, [By]} in G \ e. Since P4

is 2δ(G \ e) -thin in G \ e, then

∀ u ∈ ΓG\e, dG\e(u, [xA] ∪ [AB]G\e ∪ [By]) ≤ 2δ(G \ e),

and inequality (3.7) follows.

Lemma 3.12. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. For all
x, y ∈ G\e, if ΓG = [xy]G is a geodesic in G containing e and ΓG\e = [xy]G\e is a geodesic
in G \ e, then

∀ u′ ∈ ΓG, ∃ u ∈ ΓG\e : dG(u′, u) ≤ 5δ(G \ e) + dG\e(A,B). (3.8)

Proof. Without loss of generality we can assume that G \ e is hyperbolic, since otherwise
the inequality is direct. We can assume also that ΓG = [xy]G = [xA] ∪ e ∪ [By]. Denoted
by P the middle point of [AB]G\e. Note that the condition e ⊆ ΓG = [xy]G, implies
dG\e(A,B) ≥ L(e).

Note also that

∀ u′ ∈ ΓG, ∃ u∗ ∈ [xA] ∪ [By] : dG(u, u∗) ≤ 1

2
L(e).

Without loss of generality we can assume that u∗ ∈ [xA]. Since T = {[xA], [AP ]G\e,
[xP ]G\e} is a geodesic triangle in G \ e, there exists α ∈ [AP ]G\e ∪ [xP ]G\e such that
dG(u∗, α) ≤ dG\e(u

∗, α) ≤ δ(G \ e), and so

∀ u∗ ∈ [xA], ∃ β ∈ [xP ]G\e : dG(u∗, β) ≤ δ(G \ e) +
1

2
dG\e(A,B).

Now, T = {[xy]G\e, [xP ]G\e, [Py]G\e} is a geodesic triangle inG\e and T is 4δ(G\e)-fine
by Theorem 2.2. Let us denote by r, s and t the internal points in the geodesics [xy]G\e,
[xP ]G\e and [Py]G\e, respectively. Since L([sP ]G\e) = L([Pt]G\e) = 1

2
(L([xP ]G\e) +

L([Py]G\e)− L([xy]G\e)), we have

∀ β ∈ [xP ]G\e ∪ [Py]G\e, ∃ u ∈ [xy]G\e :

dG(β, u) ≤ 4δ(G \ e) +
1

2

(
L([xP ]G\e) + L([Py]G\e)− L([xy]G\e)

)
.
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The triangle inequality gives

L([xP ]G\e) + L([Py]G\e) ≤ L([xA]G\e) + L([AP ]G\e) + L([PB]G\e) + L([By]G\e)

= L([xy]G) + dG\e(A,B)− L(e).

Since L([xy]G\e) ≥ L([xy]G), we deduce

1

2

(
L([xP ]G\e) + L([Py]G\e)− L([xy]G\e)

)
≤ 1

2

(
dG\e(A,B)− L(e)

)
.

Finally, if we consider the path [u′u∗] ∪ [u∗β] ∪ [βu], then we obtain

dG(u′, u) ≤ 1

2
L(e) + δ(G \ e) +

1

2
dG\e(A,B) + 4δ(G \ e) +

1

2

(
dG\e(A,B)− L(e)

)
= 5δ(G \ e) + dG\e(A,B).

Lemma 3.13. Let G be any graph and e = [A,B] ∈ E(G) with G\e connected. Let TG =
{[xy]G, [yz]G, [zx]G} be a geodesic triangle in G, such that e ⊆ [xy]G and [yz]G, [zx]G ⊂
G \ e. Then

δ(TG) ≤ 6δ(G \ e) + dG\e(A,B). (3.9)

Proof. Without loss of generality we can assume that G \ e is hyperbolic, since otherwise
the inequality is direct. Let [xy]G\e be a geodesic in G\e; then T = {[xy]G\e, [yz]G, [zx]G}
is a geodesic triangle in G \ e. Hence, for any α ∈ [yz]G we have

dG(α, [zx]G ∪ [xy]G\e) ≤ dG\e(α, [zx]G ∪ [xy]G\e) ≤ δ(G \ e).

By Lemma 3.11, for any β ∈ [xy]G\e, we have dG(β, [xy]G) ≤ 2δ(G \ e) + 1
2
dG\e(A,B).

Then we obtain

dG(α, [zx]G ∪ [xy]G) ≤ 3δ(G \ e) +
1

2
dG\e(A,B).

If α ∈ [zx]G, then the same argument gives the last inequality.
By Lemma 3.12, for any α ∈ [xy]G, there exists β ∈ [xy]G\e such that dG(α, β) ≤

5δ(G\ e) +dG\e(A,B). If we consider again the geodesic triangle T in G\ e, then we have

dG(β, [yz]G ∪ [zx]G) ≤ dG\e(β, [yz]G ∪ [zx]G) ≤ δ(G \ e),

Therefore, for any α ∈ [xy]G, we obtain

dG(α, [yz]G ∪ [zx]G) ≤ 6δ(G \ e) + dG\e(A,B).

Lemma 3.14. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Let
TG = {[xy]G, [yz]G, [zx]G} be a geodesic triangle in G, such that {x, y, z} ∩ e 6= ∅. Then

δ(TG) ≤ max
{

2δ(G \ e) + dG\e(A,B), L(e)
}
. (3.10)
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Proof. Without loss of generality we can assume that G \ e is hyperbolic, since otherwise
the inequality is direct. If every vertex of TG belongs to e, then we have TG ⊆ e∪ [AB]G\e;
hence, δ(TG) ≤ 1

4
L(TG) = 1

4
(L(e) + dG\e(A,B)).

Assume now that there are exactly two vertices of TG in e; without loss of generality we
can assume that x, y ∈ e, z /∈ e, A ∈ [xz]G and B ∈ [yz]G. In order to bound δ(TG), let us
choose any α ∈ TG. If α ∈ [xy]G, then we have dG(α, [xz]G∪[yz]G) = dG(α, {x, y}) ≤ L(e).
If α ∈ [xz]G ∪ [yz]G, then without loss of generality we can assume that α ∈ [xz]G. If
α ∈ [xA]G ⊂ [xz]G, then we have dG(α, [xy]G ∪ [yz]G) ≤ dG(α, x) ≤ L(e). If α ∈ [Az]G ⊂
[xz]G, then let us consider the geodesic triangle T ∗ = {[Az]G, [zB]G, [AB]G\e} in G \ e;
then there exists β ∈ [Bz]G ∪ [AB]G\e such that dG(α, β) ≤ dG\e(α, β) ≤ δ(G \ e), and we
obtain dG(α, [yz]G ∪ [xy]G) ≤ δ(G \ e) + dG\e(A,B). Hence,

δ(TG) ≤ max
{
δ(G \ e) + d\e(A,B), L(e)

}
.

Finally, assume that there is exactly one vertex of TG in e; without loss of generality
we can assume that x ∈ e, z, y /∈ e, A ∈ [xy]G and B ∈ [xz]G. In order to bound δ(TG),
let us choose any α ∈ TG. If α ∈ [yz]G, then T ∗4 = {[Ay]G, [yz]G, [zB]G, [AB]G\e} is a
geodesic quadrilateral in G \ e and there exists β ∈ [yA]G ∪ [AB]G\e ∪ [Bz]G such that
dG(α, β) ≤ dG\e(α, β) ≤ 2δ(G \ e); hence, we obtain dG(α, [yx]G ∪ [xz]G) ≤ 2δ(G \ e) +
1
2
dG\e(A,B). If α ∈ [xy]G ∪ [xz]G, then without loss of generality we can assume that
α ∈ [xy]G. If α ∈ [xA]G ⊂ [xy]G, then we have dG(α, [xz]G ∪ [yz]G) ≤ dG(α, x) ≤ L(e). If
α ∈ [Ay]G ⊂ [xy]G, then let us consider again the geodesic quadrilateral T ∗4 ; hence, there
exists β ∈ [AB]G\e ∪ [Bz]G ∪ [zy]G such that dG(α, β) ≤ dG\e(α, β) ≤ 2δ(G \ e), and we
obtain dG(α, [yz]G ∪ [zx]G) ≤ 2δ(G \ e) + dG\e(A,B). Hence,

δ(TG) ≤ max
{

2δ(G \ e) + dG\e(A,B), L(e)
}
.

Finally, we can prove a kind of converse of Theorem 3.9.

Theorem 3.15. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Then

max
{1

5
δ(G \ e), 1

4
dG\e(A,B),

1

4
L(e)

}
≤ δ(G) ≤ max

{
6δ(G \ e) + dG\e(A,B), L(e)

}
.

(3.11)

Proof. Theorem 3.9 gives δ(G \ e)/5 ≤ δ(G). If dG\e(A,B) ≤ L(e), then let C1 be the
midpoint of e and w1 the midpoint of [AC1]G; since T1 = {A,B,C1} is a geodesic triangle in
G, we have δ(G) ≥ δ(T1) ≥ dG(w1, [AB]G∪ [BC1]G) = L(e)/4. If dG\e(A,B) ≥ L(e), then
let C2 be the midpoint of a geodesic [AB]G\e and w2 the midpoint of [AC2]G\e ⊂ [AB]G\e
(note that [AC2]G\e is a geodesic in G also); since T2 = {A,B,C2} is a geodesic triangle
in G, we have δ(G) ≥ δ(T2) ≥ dG(w2, e ∪ [BC2]G) = dG\e(A,B)/4. These facts prove the
lower bound for δ(G).

In order to prove the second inequality, let us consider a geodesic triangle TG in G.
By Lemma 3.14 we can assume that every vertex of TG is contained in G \ e. By Lemma
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3.6 at most two geodesics sides of TG contain e. If TG ⊆ G\ e, then Lemma 3.10 gives the
result. If just one geodesic side of TG contains e, then it suffices to apply Lemma 3.13.
If two geodesics sides of TG contain e, then we can split TG in the union of e, a geodesic
bigon in G \ e and a geodesic triangle in G \ e, and Lemma 3.10 finishes the proof.

We have the following direct consequences.

Corollary 3.16. Let G be any graph and e = [A,B] ∈ E(G) with G \ e connected. Then

1

5
max

{
δ(G \ e), dG\e(A,B), L(e)

}
≤ δ(G) ≤ 12 max

{
δ(G \ e), dG\e(A,B), L(e)

}
.

Corollary 3.17. Let G be any graph and e = [A,B] ∈ E(G) such that G \ e is connected
and L(e) ≤ dG\e(A,B). Then

δ(G) ≤ 6δ(G \ e) + dG\e(A,B). (3.12)

4 Hyperbolic S-graphs

Using the previous results, we prove in this section that local hyperbolicity guarantees
the hyperbolicity of any graph, in a quantitative way. In order to do that we need to
introduce the concept of S-graph.

Definition 4.1. Let us consider a graph G0 with E(G0) = {[an, bn]}n≥1, and a family of
graphs {Gn}n≥1 such that for all n ≥ 1 there exist a′n, b

′
n ∈ V (Gn) such that dGn(a′n, b

′
n) =

LG0([an, bn]). We define the S-graph G associated to {Gn}n≥0 as follows; we replace
each edge [an, bn] ∈ E(G0) by the whole graph Gn in the following way: an and bn are
substituted, respectively, by a′n and b′n, for each n ≥ 1.

A very simple example of S-graph is the following: Let G be any graph with at least two
connection vertices v, w (recall that a connection vertex is a vertex whose removal renders
G disconnected). We denote by G1, G2, G3, the closures in G of the connected components
of the metric graph G minus the points {v, w}. Without loss of generality we can assume
that v ∈ G1, v, w ∈ G2 and w ∈ G3. If α 6= v is a vertex of G1 and β 6= w is a vertex of G3,
we define G0 as the graph with V (G0) = {α, v, w, β}, E(G0) = {[α, v], [v, w], [w, β]} and
L([α, v]) = dG(α, v), L([v, w]) = dG(v, w), L([w, β]) = dG(w, β). Then G is the S-graph
associated to {G0, G1, G2, G3}.

The previous example shows that we can view the graphs as S-graphs.

As usual, by cycle in a graph we mean a simple closed curve, i.e., a path with different
vertices, unless the last vertex, which is equal to the first one.

In [31, Lemma 2.1] or [3, Corollary 4] we found the following result. Recall that a
triangle is a cycle if and only if it has no self-intersection.

Lemma 4.2. In any graph G,

δ(G) = sup
{
δ(T ) : T is a geodesic triangle that is a cycle

}
.
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Theorem 4.3. Let G be the S-graph associated to {Gn}n≥0. Then, G is hyperbolic if and
only if {Gn}n≥0 are hyperbolic with the same hyperbolicity constant. Furthermore,

1

5
sup
n≥0

δ(Gn) ≤ δ(G) ≤ 11 sup
n≥0

δ(Gn).

Proof. Assume first that G is hyperbolic. For each n ≥ 1, let us denote by [a′nb
′
n]Gn a

geodesic in Gn, and define G∗ as the subgraph of G given by G∗ = ∪n≥1[a′nb
′
n]Gn . Note

that G∗ and G0 are isometric. We have that G∗ is an isometric subgraph of G and Lemma
3.8 gives δ(G0) = δ(G∗) ≤ δ(G). In what follows we identify G∗ and G0. For each n ≥ 1,
if G\Gn is connected, let us consider a geodesic αn in G\Gn joining a′n and b′n; if G\Gn is
not connected, we define αn = ∅; then Gn ∪αn is an isometric subgraph of G. Therefore,
by Theorem 3.9 and Lemma 3.8, we have that δ(Gn) ≤ 5δ(Gn ∪ αn) ≤ 5δ(G). Hence, Gn

is 5δ(G)-hyperbolic for every n ≥ 0.
Assume now that Gn is δ-hyperbolic for every n ≥ 0. Let us consider any fixed geodesic

triangle T = {x, y, z} in G; by Lemma 4.2 we can assume that T is a cycle.
If x, y, z belong to different subgraphs Gs, Gr, Gt, respectively, then let us consider the

three geodesic triangles Ts = {x, a′s, b′s}, Tr = {y, a′r, b′r} and Tt = {z, a′t, b′t} in Gs, Gr and
Gt, respectively, and their tripods (see Definition 2.1). Let Px (respectively, Py, Pz) be
the internal point of Ts in [a′sb

′
s] (respectively, Tr in [a′rb

′
r], Tt in [a′tb

′
t]).

Since T is a cycle and we are identifying G∗ and G0, without loss of generality we can
assume that

[xy] = [xbs]Gs ∪ [bsar]G0 ∪ [ary]Gr ,

[yz] = [ybr]Gr ∪ [brat]G0 ∪ [atz]Gt

and
[zx] = [zbt]Gt ∪ [btas]G0 ∪ [asx]Gs .

We are going to prove that [Pxbs]G0 ∪ [bsar]G0 ∪ [arPy]G0 is a geodesic in G0. Let
[PxPy]G0 = [Pxcs]G0 ∪ [cscr]G0 ∪ [crPy]G0 be a geodesic in G0 joining Px and Py, where
cs ∈ {as, bs} and cr ∈ {ar, br}. Seeking for a contradiction, assume that L([PxPy]G0) <
L([Pxbs]G0)+L([bsar]G0)+L([arPy]G0). Denote by Pas and Pbs the internal points of Ts in
[xa′s]Gs and [xb′s]Gs , respectively; denote by Par and Pbr the internal points of Tr in [ya′r]Gs

and [yb′r]Gs , respectively. Then

L([Pxcs]Gs) + L([cscr]G0) + L([crPy]Gr) < L([Pxbs]Gs) + L([bsar]G0) + L([arPy]Gr),

L([Pcscs]Gs) + L([cscr]G0) + L([crPcr ]Gr) < L([Pbsbs]Gs) + L([bsar]G0) + L([arPar ]Gr),

dG(x, y) ≤ L([xPcs ]Gs) + L([Pcscs]Gs) + L([cscr]G0) + L([crPcr ]Gr) + L([Pcry]Gr)

< L([xPbs ]Gs) + L([Pbsbs]Gs) + L([bsar]G0) + L([arPar ]Gr) + L([Pary]Gr)

= L([xy]) = dG(x, y),

which is a contradiction. Then, we have that [Pxbs]G0 ∪ [bsar]G0 ∪ [arPy]G0 is a geodesic in
G0 joining Px and Py. A similar argument proves that [Pybr]G0 ∪ [brat]G0 ∪ [atPz]G0 and
[Pzbt]G0 ∪ [btas]G0 ∪ [asPx]G0 are also geodesics in G0. Now, let us consider the geodesic
triangle T0 = {Px, Py, Pz} in G0 with these geodesics.
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Let us consider any α ∈ T . Without loss of generality we can assume that α ∈ [xy].
If α ∈ [xbs]Gs , then since Ts is δ-thin there exists α′ ∈ [xas]Gs ∪ [asbs]Gs such that
dGs(α, α

′) ≤ δ. If α′ ∈ [xas]Gs , then α′ ∈ [xz]. Assume now that α′ ∈ [asbs]Gs . If α′ ∈
[asPx]Gs , then there exists β ∈ [xas]Gs ⊂ [xz] such that dGs(α

′, β) ≤ 4δ and dG(α, β) ≤ 5δ.
If α′ ∈ [Pxbs]Gs ⊂ [PxPy]G0 since T0 is δ-thin, there exists β′ ∈ [PyPz]G0 ∪ [PzPx]G0 such
that dG0(α

′, β′) ≤ δ. Then, β′ belongs to [brat]G0 ∪ [btas]G0 ⊂ [yz]G ∪ [zx]G or to one
of the subgraphs Ts, Tr or Tt (if β′ belongs to [Pybr]Gr , [atPz]Gt , [Pzbt]Gt , [asPx]Gs) and
there exists β ∈ [yz]G ∪ [zx]G such that dG(β′, β) ≤ 4δ. Then, we obtain dG(α, β) ≤
dGs(α, α

′) + dG0(α
′, β′) + dG(β′, β) ≤ 6δ. Note that, by symmetry, if α ∈ [ary]Gr we have

the same result. If α ∈ [bsar]G0 , then since T0 is δ-thin there exists β′ ∈ [PyPz]G0∪[PzPx]G0

such that dG0(α, β
′) ≤ δ. Then, β′ belongs to [brat]G0 ∪ [btas]G0 ⊂ [yz]G ∪ [zx]G or to one

of the subgraphs Ts, Tr or Tt (if β′ belongs to [Pybr]Gr , [atPz]Gt , [Pzbt]Gt , [asPx]Gs) and
there exists β ∈ [yz]G ∪ [zx]G such that dG(β′, β) ≤ 4δ. Then, we obtain dG(α, β) ≤
dG0(α, β

′) + dG(β′, β) ≤ 5δ. Consequently, if x, y, z belong to different subgraphs, then

δ(T ) ≤ 6δ.

If x, y belong to the same subgraph Gs and z ∈ Gr with s 6= r, then consider two
geodesic polygons Fs = {x, y, as, bs} and Tr = {z, ar, br} in Gs and Gr, respectively.
Consider the tripod of Tr and a quatripod of Fs respectively, into the definition of fine.
Let P ′x, P

′
y, P

′
z be the vertices with degree 3 in the quatripod and the tripod, respectively;

let Pz be the point in [arbr] related with P ′z (the internal point), and Px, Py ∈ [asbs] related
with P ′x, P

′
y (note that it is possible to have Px = Py, in particular, if P ′x or P ′y is neighbor

of the two vertices corresponding to as and bs).
Without loss of generality we can assume that

[yz] = [ybs]Gs ∪ [bsar]G0 ∪ [arz]Gr ,

[xz] = [xas]Gs ∪ [asbr]G0 ∪ [brz]Gr

and
[asbs]Gs = [asPx]Gs ∪ [PxPy]Gs ∪ [Pybs]Gs .

As in the previous case, it is possible to check that [Pxas]G0 ∪ [asbr]G0 ∪ [brPz]G0 ,
[Pzar]G0∪ [arbs]G0∪ [bsPy]G0 and [PxPy]G0 are geodesics in G0. Let us consider the geodesic
triangle T0 = {Px, Py, Pz} in G0 with these geodesics.

Let us fix any α ∈ [xy]; there exists α′ ∈ [xas]Gs ∪ [asbs]Gs ∪ [bsy]Gs such that
dGs(α, α

′) ≤ 2δ. If α′ ∈ [xas]Gs ∪ [bsy]Gs , then α′ ∈ [xz] ∪ [zy]. If α′ ∈ [asPx]Gs ∪ [Pybs]Gs ,
then by definition of fine quatripod there exists β′ ∈ [xas]Gs ∪ [bsy]Gs ⊂ [xz] ∪ [zy] such
that dGs(α

′, β′) ≤ 8δ. If Px 6= Py and α′ ∈ [PxPy]Gs , then since T0 is δ-thin there ex-
ists β′ ∈ [PyPz]G0 ∪ [PzPx]G0 such that dG0(α

′, β′) ≤ δ; then, β′ ∈ [bsar]G0 ∪ [bras]G0 ⊂
[yz]G ∪ [zx]G or since Fs is 8δ-fine and Tr is 4δ-fine there exists β ∈ [yz]G ∪ [zx]G such
that dGi

(β′, β) ≤ 8δ with i ∈ {r, s}. Therefore, we conclude dG(α, β) ≤ 11δ.
Let us fix now any α ∈ [xz] ∪ [yz]; without loss of generality we can assume that

α ∈ [yz].
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Assume first that α ∈ [ybs]Gs ; then since Fs is 2δ-thin there exists α′ ∈ [xy]G ∪
[xas]Gs ∪ [asbs]Gs such that dGs(α, α

′) ≤ 2δ. If α′ ∈ [xy] ∪ [xas]Gs , then α′ ∈ [xy] ∪ [xz].
Assume now that α′ ∈ [asbs]Gs . If α′ ∈ [asPx]Gs , then since Fs is 8δ-fine there exists
β′ ∈ [xas]Gs ⊂ [xz] such that dGs(α

′, β′) ≤ 8δ and dG(α, β′) ≤ 10δ. If Px 6= Py and
α′ ∈ [PxPy]Gs , then there exists β′ ∈ [xy]G such that dGs(α

′, β′) ≤ 8δ and dG(α, β′) ≤ 10δ.
If α′ ∈ [Pybs]Gs ⊂ [PyPz]G0 , then since T0 is δ-thin, there exists β′ ∈ [PzPx]G0 ∪ [PxPy]G0

such that dG0(α
′, β′) ≤ δ. If β′ ∈ [PxPy]Gs , then since Fs is 8δ-fine there exists β ∈ [xy]G

such that dGs(β
′, β) ≤ 8δ and dG(α, β) ≤ 11δ. Assume that β′ ∈ [PzPx]G0 ; if β′ ∈

[Pzbr]Gr ∪ [Pxas]Gs , then since Fs is 8δ-fine and Tr is 4δ-fine there exists β ∈ [zx] such that
dGi

(β′, β) ≤ 8δ with i ∈ {r, s} and therefore dG(α, β) ≤ 11δ; otherwise, β′ ∈ [bras]G0 ⊂
[zx] and dG(α, β′) ≤ 3δ.

Assume that α ∈ [bsar]G0 ⊂ [PyPz]G0 . Since T0 is δ-thin there exists α′ ∈ [PzPx]G0 ∪
[PxPy]G0 such that dG0(α, α

′) ≤ δ; using the previous arguments for α′ ∈ [Pybs]Gs , we
obtain that there exists β ∈ [xy] ∪ [xz] such that dG(α, β) ≤ 9δ.

Assume that α ∈ [arz]Gr ; then since Tr is δ-thin there exists α′ ∈ [zbr]Gr ∪ [brar]Gr

such that dGr(α, α
′) ≤ δ. If α′ ∈ [zbr]Gr , then α′ ∈ [zx]. If α′ ∈ [brPz]Gr , then since Tr

is 4δ-fine there exists β′ ∈ [zbr]Gr ⊂ [zx] such that dGr(α
′, β′) ≤ 4δ and dG(α, β′) ≤ 5δ.

If α′ ∈ [Pzar]Gr , then since T0 is δ-thin there exists β′ ∈ [PzPx]G0 ∪ [PxPy]G0 such that
dG0(α

′, β) ≤ δ; using the previous arguments for α′ ∈ [Pybs]Gs , we obtain that there exists
β ∈ [xy] ∪ [xz] such that dG(α, β) ≤ 10δ.

Consequently, if x, y belong to the same subgraph Gs and z ∈ Gr with s 6= r, then

δ(T ) ≤ 11δ.

Finally, assume that x, y, z belong to the same subgraph Gs. If T is contained in Gs,
then δ(T ) ≤ δ(Gs) ≤ δ. Assume that T is not contained in Gs; then e = [as, bs] ∈ E(G0),
G0 \ e is connected and L(e) ≤ dGs(a

′
s, b
′
s). Hence, T is contained in Gs ∪ αs, where αs is

a geodesic in G0 \ e joining as and bs. Corollary 3.17 gives

δ(T ) ≤ δ(Gs ∪ αs) ≤ 6δ(Gs) + dGs(a
′
s, b
′
s) ≤ 6δ + dGs(a

′
s, b
′
s).

Note that [as, bs] ∪ αs is an isometric cycle in G0; therefore,

1

4
dGs(a

′
s, b
′
s) =

1

4
L([as, bs]) ≤

1

4
L([as, bs] ∪ αs) ≤ δ([as, bs] ∪ αs) ≤ δ(G0) ≤ δ.

Consequently, if x, y, z belong to the same subgraph, then δ(T ) ≤ 10δ.
Finally, we obtain that G is hyperbolic with δ(G) ≤ 11δ.
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[21] Michel, J., Rodŕıguez, J. M., Sigarreta, J. M. and Villeta, M., Hyperbolicity and
parameters of graphs, Ars Comb. Volume C (2011), 43-63.
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[31] Rodŕıguez, J. M. and Touŕıs, E., Gromov hyperbolicity through decomposition of
metric spaces, Acta Math. Hung. 103 (2004), 53-84.
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