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Distortions of images of Schwarzschild lensing∗

K. S. Virbhadra†

Mathematics Department, Drexel University, 33rd and Market Streets, Philadelphia, Pennsylvania 19104, USA

We model the supermassive dark object M87∗ as a Schwarzschild lens and study the variations in
tangential, radial, and total (the product of tangential and radial) magnifications of images (primary,
secondary, and relativistic) against the changes in angular source position and the ratio of lens-source
to the observer-source distance. Further, we study the behavior of partial derivatives (with respect
to the angular source position) of total magnifications of images against the angular source position.
Finally, we model supermassive dark objects at centers of 40 galaxies as Schwarzschild lenses and
study the variations in tangential, radial, and total magnifications of images against the change in the
ratio of mass of the lens to its distance. These studies yield many nonintuitive results which are likely
to be significant for next generation Event Horizon Telescope observations. We hypothesize that
there exists a distortion parameter such that their signed sum of all images of singular gravitational
lensing of a source identically vanishes. We test this with images of Schwarzschild lensing in weak
and strong gravitational fields and find that this esthetically appealing hypothesis succeeds with
flying colors.

PACS numbers: 95.30.sf, 04.20.Dw, 04.70.Bw, 98.62.Sb

.

I. INTRODUCTION

The deflection of light in the gravitational field of a
massive object was discussed even before the discovery of
Einstein’s general theory of relativity, notably by New-
ton, Michell, Cavendish, Laplace, Soldner, and Einstein
himself [1–4]. Later, after the advent of general relativity,
Einstein, using his theory of general relativity, obtained
total light deflection of a light ray tangentially grazing
the surface of the Sun. His result was twice the Newto-
nian value and was supported by observation during the
total solar eclipse in 1919.

The spectacular detectable phenomena resulting from
the deflection of electromagnetic or gravitational ra-
diation by a spacetime is referred to as gravitational
lensing[5]. The basic theory of lensing was developed by
Eddington, Chwolson, Einstein, Liebes, Klimov, Refsdal,
Bourassa and Kantowski, and others (see in [1] and refer-
ences therein.) In 1979, Walsh, Carswell, and Weymann
[6] observed twin images of QSO 0957+561 A, B that
were separated by approximately 5.7 arcsec. Thereafter,
Lynds and Petrosian [7], in 1986, and Soucail et al. [8],
in 1987, observed giant luminous arcs which were unrav-
eled as distorted images of distant galaxies by Paczynski
[9]. Hewitt et al. [10], in 1988, observed the first Ein-
stein ring. These observations made gravitational lensing
one of the hottest research topics in astrophysics and nu-
merous gravitational lensing cases have been observed by
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now. Around two decades before the first GL (gravita-
tional lensing) was observed by Walsh et al., Darwin [11],
in 1959, carried out basic studies of the gravitational lens-
ing due to light deflection in the vicinity of the photon
sphere of an ultracompact Schwarzschild massive object.
He obtained an elegant formula for the Einstein bending
angle:

α̂ (ro) = 2 ln

[

36M(2−
√
3)

ro − 3M

]

− π, (1)

where ro and M are, respectively, the closest distance of
approach of the light ray and the Schwarzschild mass. He
further showed that the images are too demagnified to be
observed and termed those ghosts probably because those
were not observable. Despite the theoretical elegance of
results obtained by Darwin, the research on gravitational
lensing in a strong gravitational field remained almost
abeyant for around 40 years for possibly two reasons:
Images were incredibly demagnified and there was no ad-
equate gravitational lens equation to study GL in a very
strong gravitational field.
Being unaware of Darwin’s work, we [12], in 2000, initi-

ated a research on this topic. We obtained a new gravita-
tional lens equation that allows arbitrary light deflection
angles (very small through very large). We modeled the
Galactic supermassive “black hole” as a Schwarzschild
lens and obtained angular positions of primary-secondary
as well as relativistic images (deflection angle α̂ > 3π/2)
and their magnifications. Like Darwin, we also found
that relativistic images (that he called ghosts) are very
demagnified. However, the new lens equation being ca-
pable of studying GL in a very strong gravitational field
resurrected the strong field gravitational lensing studies.
Perlick [13] called this new lens equation an almost ex-
act lens equation. A large number of research papers
on strong gravitational field lensing due to black holes
[14–27] and exotic objects such as naked singularities,
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wormholes, and boson stars [28–42] have been published
(see also references therein.)

In 2009, we [43] came back to this subject and car-
ried out a comprehensive study of Schwarzschild lensing
in a weak as well as the strong gravitational field in the
vicinity of the photon sphere. We obtained important re-
sults not only for relativistic images but also for primary-
secondary images which were thought to be completely
understood. We list a few of those results in brief: (i)
We obtained a formula for computing masses of compact
objects with astounding accuracy. Distances and angu-
lar source position play no (extremely insignificant) role
in this formula. [See Eq. (19) in [43].] (ii) The angular
separations between any two relativistic images are ex-
tremely insensitive to changes in the lens-source distance
and angular source position. Thus, having the mass of
the compact object and separation between angular posi-
tions between two relativistic images, we can compute a
very accurate value for the distance of the compact mas-
sive object. (iii) The dependence of (absolute) magnifica-
tion ratios of relativistic images of the same order on the
potential (the ratio of the mass of the lens to the lens-
observer distance) is insignificantly small. Therefore, the
measurements of the flux ratio would give a very accurate
value of the lens-source distance. (iv) We showed that the
time delays of primary images are always (for any angular
source position) smaller for nearer sources for the other-
wise same situation. This is obviously a counterintuitive
result. We also explained the reason for this long prevail-
ing misconception. Usually, differential time delays are
measured. However, this conceptually fascinating coun-
terintuitive result is also measurable. Rafikov and Lai
[44] gave a method to measure time delay as well. For
recent papers on the gravitational lensing in strong grav-
itational fields, see [45–51] and references therein.

Despite the wonderful implications of relativistic im-
ages for astrophysics (as these could bestow a powerful
means to unveil the secrets of the universe with astound-
ing accuracy), these are not observed. To this end, after
a long period of technical and theoretical developments,
the event horizon telescope (EHT) — an international
collaboration from many countries and institutions was
launched in 2009. The EHT was composed of radio tele-
scopes around the world to produce a giant high sensi-
tivity and resolution virtual telescope. In 2017 the EHT
carried out observations of M87∗ over 4 days (April 5-
11) at approximately 1.3 mm with unprecedented an-
gular resolution. They surprised the world by releasing
the first image on April 10, 2019 and published their
landmark results in a series of six papers[52–57]. The
bright region around the silhouette seems to be of sec-
ondary, relativistic, and orphaned images. (The images
due to gravitational mirroring, also called retrolensing,
of a source do not have primary-secondary images as
their “parents” and due to this reason we called those
orphaned images, or simply orphans [43].) The relativis-
tic images are easy to be differentiated from orphans be-
cause these appear along with the primary and secondary

images. The present EHT is not capable of resolving
relativistic images from secondary as well as orphaned
images and therefore we are not sure whether the EHT
observed relativistic images. However, the next genera-
tion Event Horizon Telescope (ngEHT)[58] is very likely
to resolve secondary, relativistic, and orphaned images
and also take necessary measurements.
In order to observe and analyze relativistic images, we

need to study characteristics of these images in detail.
This is the main aim of this paper. We first model
the M87∗ as the Schwarzschild lens and study varia-
tions in tangential, radial, and total magnifications of
images with respect to the change in the angular source
positions (keeping lens-source distance fixed). Then, we
study derivatives of total magnifications (with respect to
angular source position) as the angular source position
increases. We further study variations in magnifications
with respect to the change in distance parameter (the
ratio of lens-source to observer-source distances) keep-
ing the angular source position fixed. Last, we model
the supermassive compact objects of 40 galaxies as the
Schwarzschild lenses and study the variations of mag-
nifications with respect to the ratio of the mass to the
distance of the lens, keeping the ratio of lens-source to
the observer-source distances and angular source posi-
tion fixed. Last, but not least important, we define a
novel distortion parameter of images such that the sum
of signed (not absolute) distortions of all images is zero.
With numerical computations, we demonstrate that the
distortion parameter has this characteristic with high ac-
curacy. The inclusion of this distortion parameter in the
theory of gravitational lensing could be very helpful in
identifying images of the same source and the order as
well as searching for missing image(s).
This paper is arranged as follows. In Sec. II, we give

lens equation, magnifications, and definition of distortion
parameter. In Sec. III, we carry out computations and
present results. In Sec. IV, we give a summary and dis-
cuss the results. We use geometrized units (the universal
gravitational constant G = 1 and the speed of light in
vacuum c = 1) and therefore the mass M ≡ MG/c2. We
use Mathematica [59] for computations.

II. LENS EQUATION, MAGNIFICATION, AND

DISTORTION

In order to study gravitational lensing due to light de-
flection in weak as well as strong gravitational fields (such
as in the vicinity of photon surfaces of compact massive
objects), we obtained a novel lens equation which is ex-
pressed as [12]

tanβ = tan θ − α, (2)

where

α = D [tan θ + tan (α̂− θ)] (3)
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with

D =
Dds

Ds
. (4)

Symbols β and θ, respectively, stand for the angular po-
sitions of the unlensed source and image. α̂ represents
the Einstein bending angle of the light ray. The impact
parameter

J = Dd sin θ. (5)

The symbols Dd, Dds, and Ds denote, respectively, the
observer-lens, lens-source, and observer-source angular
diameter distances. The subscript d stands for the de-
flector (lens). The values of the dimensionless distance
parameter, D, lie in the interval (0, 1). However, its val-
ues should not be chosen too close to zero (sources not
too close to photon surfaces) in order for the lens equa-
tion to work well.
The magnification of an image is defined as the ratio of

the flux of the image to the flux of the unlensed source.
However, according to Liouville’s theorem, the surface
brightness is conserved in light deflection and therefore
this ratio turns out to be the ratio of solid angles of the
image and of the unlensed source. Thus, the total mag-
nification of an image of a circularly symmetric gravita-
tional lensing is

µ = µtµr, (6)

where the tangential µt and radial µr magnifications are,
respectively, given by

µr =

(

dβ

dθ

)−1

and µt =

(

sinβ

sin θ

)−1

. (7)

The sign of the magnification of an image determines par-
ity of the image: positive parity for µ > 0, negative parity
for µ < 0, and zero parity for the images formed when
the angular source position β = 0. However, β = 0 does
not always give images [28–30]. If the tangential magnifi-
cation µt of an image is negative, then we define absolute
tangential magnification (but may be simply called tan-
gential magnification) |µt| for plotting and analysis of
results. The same convention applies to radial and total
magnifications.
In this paper, we study gravitational lensing by

static spherically symmetric compact objects. The ex-
terior gravitational field of such objects is given by the

Schwarzschild spacetime described by the following line
element:

ds2 =

(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2

− r2
(

dϑ2 + sin2 ϑdφ2
)

, (8)

where the real constant parameter M is the
Schwarzschild mass. The deflection angle α̂ and
the impact parameter J of a light ray with the closest
distance of approach ro are given, respectively, by [60]

α̂ (ro) = 2

∫

ro

∞ dr

r

√

(

r
ro

)2 (

1− 2M
ro

)

−
(

1− 2M
r

)

− π

(9)
and

J (ro) = ro

(

1− 2M

ro

)−1/2

. (10)

Like in our previous papers [12, 28], we introduce radial
distance in terms of the Schwarzschild radius 2M ,

ρ =
r

2M
, ρo =

ro
2M

, (11)

and write

α̂ (ρo) = 2

∫

ρo

∞ dρ

ρ

√

(

ρ
ρo

)2 (

1− 1

ρo

)

−
(

1− 1

ρ

)

− π

(12)
and

J (ρo) = 2Mρo

(

1− 1

ρo

)−1/2

. (13)

In order to compute magnifications of images, we need
derivative of the deflection angle α̂ with respect to the
angular position of the image which is given by [see Eq.
(32) in [28]]

dα̂

dθ
= α̂′ (ρo)

dρo
dθ

, (14)

α̂′ (ρo) =
3− 2ρo

ρo2
(

1− 1

ρo

)

∫

ρo

∞ (4ρ− 3)dρ

(3− 2ρ)
2
ρ

√

(

ρ
ρo

)2 (

1− 1

ρo

)

−
(

1− 1

ρ

)

(15)

and

dρo
dθ

=
ρo

(

1− 1

ρo

)3/2
√

1−
(

2M
Dd

)2

ρo2
(

1− 1

ρo

)−1

M
Dd

(2ρo − 3)
.

(16)

Different images of the same source are usually identified
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by the similar spectra, same flux ratio in the optical as
well as radio wave band, and knots in the different im-
ages. However, there is no way to know if there is/are
any missing image(s) of the same source for whatever
reasons. Inspired by this problem, we hypothesize the
following: There exists a distortion parameter such that
the signed (not absolute) sum of distortions of all im-
ages of a realistic and singular gravitational lensing of
a source is identically zero. (We assume that no image
is occulted.) In order to find a parameter like this, we
define a distortion parameter as

∆ =
µt

µr
. (17)

The signed sum of distortions of all images of a given
source

∆sum =

k
∑

i=1

∆i, (18)

where k is the total number of images. We also define a
logarithmic distortion parameter of an image

δ = log
10

∣

∣

µt

µr

∣

∣ (19)

for the convenience in plotting. We use the subscripts
p and s for the primary and secondary images and sub-
scripts p1 and p2 for the relativistic images of the first and
second orders respectively, on the primary image side.
Similarly, we use subscripts s1 and s2 for relativistic im-
ages on the secondary image side. We defined a (signed)
distortion parameter ∆ with the aim that sum of dis-
tortions of all images be zero. In order to test whether
images of the same order have the same absolute distor-
tions, we now define percentage difference in distortions
of images of the same order as follows:

Pps =
∆p +∆s

∆p
× 100,

P1p1s =
∆1p +∆1s

∆1p
× 100,

P2p2s =
∆2p +∆2s

∆2p
× 100, (20)

where the subscript ps stands for the primary-secondary
pair, and 1p1s and 2p2s, respectively, for the first- and
second-order relativistic images pairs. As the primary
image and relativistic images on the primary image side
have positive parity in Schwarzschild lensing, the distor-
tions of these images (i.e., ∆p, ∆1p, and ∆2p) are also
positive. Similarly, distortions of secondary image and
relativistic images on the secondary image side (i.e., ∆s,
∆1s, and ∆2s) are negative and due to this reason these
appear with a positive sign in the numerators of the ab-
solute percentage difference formulae given above.

III. COMPUTATIONS AND RESULTS

In our paper [43], we studied variations of total abso-
lute magnifications of primary, secondary, and first- and
second-order relativistic images (on the primary image
side) against the angular source position β as well as the
lens mass to lens-observer distance M/Dd only for three
values of lens-source to the observer-source distances ra-
tio D. However, in order to have a better knowledge of
shapes of images of Schwarzschild lensing, we now study
variations of tangential and radial magnifications along
with total magnifications of the primary, secondary, and
first- and second-order relativistic images (on both sides
of the optic axis) against β, D, and M/Dd. These stud-
ies are at present mostly of theoretical interest; however,
these could later be useful to reveal important informa-
tion about the lenses as well as sources.

We first model the M87∗ (mass M = 6.5×109M⊙ and
distance Dd = 16.8 Mpc [57]) as a Schwarzschild lens
and study point-source gravitational lensing. In [43] we
showed that, as opposed to cases for the primary and sec-
ondary images, total magnifications of relativistic images
of sources with smaller values of D are higher, i.e., rela-
tivistic images of sources closer to lens have higher mag-
nifications. Therefore, as the central thread of this paper
is relativistic images, we take a small value of D = 0.005
for computations. For the M87∗ Schwarzschild lens with
D = 0.005, M/Dds ≈ 3.68052 × 10−9. As the gravita-
tional field due to the lens at the source location is weak,
the lens equation holds good.

We solve the gravitational lens equation (2) for a large
number of values of the angular source position β and
obtain positions of primary, secondary, and relativistic
images of orders 1 and 2 on both sides of the optic axis.
(We do not present image positions in this paper be-
cause variations of images positions with β are studied
in [43].) Then we obtain their tangential, radial, and total
magnifications. In Fig. 1, we plot these magnifications
vs the angular source position. The figures in the top
row show that the tangential magnifications of both pri-
mary and secondary images, represented by µpt and |µst|,
decrease with an increase in the value of β. The radial
magnifications of primary and secondary images, respec-
tively, increase and decrease with an increase in β. The
total magnifications µp and |µs| of both images however
decrease with an increase in β. The second and third
rows in Fig. 1, respectively, show the variations of these
magnifications with respect to β for relativistic images of
orders 1 and 2. The graphs are qualitatively similar (but
quantitatively a lot different) to the primary-secondary
images pair. The plots for relativistic images on the pri-
mary image side are qualitatively similar to those for the
primary image and those on the secondary image side are
similar to those for the secondary image. The tangential
magnifications for all images decrease with an increase
in the value of β. The radial magnifications of the pri-
mary as well as relativistic images on the primary image
side increase with β; however, for secondary as well as
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FIG. 1: First row: the tangential magnification of the primary image µpt (red dashed), the absolute tangential magnifica-
tion of the secondary image |µst| (green dotted), the radial magnification of the primary image µpr (red dashed), the radial
magnification of the secondary image µsr (green dotted), the total magnification of the primary image µp (red dashed), and
the absolute total magnification of the secondary image |µs| (green dotted) are plotted against the angular source position β.
Second and third rows: the same three magnifications are plotted against β for the first (see the second row) and the second (see
the third row) order relativistic images. The subscripts 1p and 2p stand for the first- and second-order relativistic images on
the side of the primary image whereas subscripts 1s and 2s for the first- and second-order relativistic images on the secondary
image side. The colors of symbols and corresponding graphs are kept the same for graphs to be identified. The supermassive
dark object (SMDO) at the galactic center of M87 is modeled as the Schwarzschild lens, which has mass M = 6.5 × 109M⊙

and is situated at the distance Dd = 16.8 Mpc so that M/Dd ≈ 1.84951 × 10−11. The dimensionless parameter D = 0.005.

relativistic images on the secondary image side decrease
with an increase in β. The total magnifications of all
images decrease with an increase in β. All three magnifi-
cations of images are smaller for images of higher order.
However, the radial magnifications of relativistic images

decrease hugely faster (compared to their tangential mag-
nifications) as the order of images increases.

We now numerically obtain partial derivatives of to-
tal magnifications of three sets of images (two images in
each set) with respect to the angular source position β at



6

0 0.00002 0.00005 0.00008

-6× 1010

-5× 1010

-4× 1010

-3× 1010

-2× 1010

-1× 1010

0

β (arcsec)

∂
β
μ
p
&

∂
β

μ
s

0 0.00002 0.00005 0.00008

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

β (arcsec)

∂
β
μ
1
p
&

∂
β

μ
1
s

0 0.00002 0.00005 0.00008

-8.× 10-7

-6.× 10-7

-4.× 10-7

-2.× 10-7

0

β (arcsec)

∂
β
μ
2
p
&
∂
β

μ
2
s

FIG. 2: Left: the partial derivatives of total magnifications of primary and secondary images, denoted respectively, by ∂βµp

(red dashed) and ∂β |µs| (green dotted) are plotted against the angular source position β. Middle: the partial derivatives
of total magnifications of the first order relativistic images on primary and secondary sides, denoted respectively, by ∂βµ1p

(magenta dashed) and ∂β |µ1s| (blue dotted) are plotted against β. Right: the partial derivatives of total magnifications of the
second-order relativistic images on primary and secondary sides, denoted, respectively, by ∂βµ2p (brown dashed) and ∂β |µ2s|
(black dotted) are plotted against the angular source position β. The gravitational lens, as well as the parameter D, are the
same as for Fig. 1. Angular source positions are expressed in arcsec.

a large number of values for β and plot those in Fig. 2.
All graphs are qualitatively similar. The partial deriva-
tives of magnifications being negative for all images at
all values of β show, as expected, that the total magni-
fications decrease with an increase in β. However, rates
of fall decrease with an increase in the value of β. The
rates of fall in total magnifications decrease with the in-
crease in the order of images. For a given value of β, the
rate of fall is maximum for the images of zero order (i.e,
primary-secondary images) and least for the second-order
relativistic images. The rates of fall in total magnifica-
tions for a pair of images of the same order are very close
to each other. We will explain this in the last section.

We now again model the same SMDO (i.e., M87∗)
as a Schwarzschild lens with the angular source position
β = 1mas. We study the behavior of tangential, radial,
and total magnifications of primary, secondary, and rel-
ativistic images of orders 1 and 2 (on both sides of the
optic axis) as the values of D increases from 0.001 to
0.5. All graphs are plotted in Fig. 3. The tangential
magnifications for the primary as well as the secondary
images increase with the increase in the value of D and
both curves are concave down at all points. However,
the behavior of tangential magnifications vs D graphs
for relativistic images are quite different. The tangential
magnifications of relativistic images on the primary side
decrease whereas those on the secondary side increase
with the increase in the value of D. The µ1pt and µ2pt vs
D graphs are concave up whereas |µ1st| and |µ2st| vs D
graphs are concave down everywhere. The radial magni-
fications of primary and secondary images, respectively,
decrease and increase with the increase in the value of
D. The µpr vs D curve is concave up whereas |µsr| vs D
curve is concave down. However, radial magnification
of relativistic images of orders 1 and 2 on the primary
as well as a secondary side all decrease with an increase

in the value D and all curves are concave up. The total
magnifications of the primary and secondary images in-
crease with an increase in the value of D whereas those
for relativistic images decrease with an increase in D.
The graphs for the total magnifications (for primary and
secondary images) vs D are concave down, whereas those
for relativistic images are concave up.

We now consider SMDOs at galactic centers of 40
galaxies. The masses and distances of these SMDOs are
listed in Table IV on page 14 in [43] (see references therein
for the source of data.) For SgrA∗ and M87∗, we how-
ever consider the recently known values of masses and
distances [57, 61]. As the main thread of this paper is to
study relativistic images we consider small values of the
angular source position β = 1mas and D = 0.005 so that
magnifications of these images are not extremely low. We
compute the same magnifications (tangential, radial, and
total) of the primary, secondary, and relativistic images
of orders 1 and 2 on both sides of the optic axis for all 40
SMDOs as Schwarzschild lenses. In Fig. 4, we plot the
magnifications vs M/Dd. All magnifications of these im-
ages (excluding the radial magnification of the primary
image) increase with the increase in the value of M/Dd.
The radial magnification of the primary image decreases
with the increase in the value of M/Dd.

We now proceed to test the distortion hypothesis for
the simplest gravitational lensing, i.e., the weak field
Schwarzschild lensing. Under the weak gravitational field
limit with small angular source position, our lens equa-
tion reduces to the well-known lens equation[1, 2]:

β = θ − α̂D, (21)

where the Einstein bending angle α̂ = 4M/r0 (r0 is the
closest distance of approach.) Solving the above lens
equation gives the angular positions of the primary and



7

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

1200



μ
p
t
&
|μ
s
t|

0.0 0.1 0.2 0.3 0.4 0.5

0.496

0.498

0.500

0.502



μ
p
r
&

μ
s
r

0.0 0.1 0.2 0.3 0.4 0.5

0

100

200

300

400

500

600



μ
p
&
|μ
s
|

0.0 0.1 0.2 0.3 0.4 0.5

0�������	
��

�������������

����� !"#$%&'

)*+,-./123456

789:;<=>?@ABC

DEFGHIJKLMNOP

QRSTUVWXYZ[\]



μ
1

p
^

&
|μ
1
s
t|

0.0 0.1 0.2 0.3 0.4 _`a
0

bc×10-12

1.×10-11

def×10-11

2.×10-11

ghi×10-11

3.×10-11



μ
1

j
k

&
μ
1
s
r

0.0 0.1 0.2 0.3 0.4 lmn
0

1.×10-13

2.×10-13

3.×10-13

4.×10-13

oq ×10-13

6.×10-13



μ
1
p
&
|μ
1
s
|

0.0 0.1 0.2 0.3 0.4 rst

uvwxyz{|}~������

����������������

����������� ¡¢£¤

¥¦§¨©ª«¬®¯°±²³´

µ¶·¸¹º»¼½¾¿ÀÁÂÃÄ



μ
2

Å
Æ

&
|μ
2
s
t|

0.0 0.1 0.2 0.3 0.4 ÇÈÉ
0

1.×10-14

2.×10-14

3.×10-14

4.×10-14

ÊË×10-14



μ
2

Ì
Í

&
μ
2
s
r

0.0 0.1 0.2 0.3 0.4 ÎÏÐ
0

2.×10-16

4.×10-16

6.×10-16

8.×10-16

1.×10-ÑÒ



μ
2
p
&
|μ
2
s
|

FIG. 3: First row: the tangential magnification of the primary image µpt (red dashed), the absolute tangential magnification
of the secondary image |µst| (green dotted), the radial magnification of the primary image µpr (red dashed), the radial mag-
nification of the secondary image µsr (green dotted), the total magnification of the primary image µp (red dashed), and the
absolute total magnification of the secondary image |µs| (green dotted) are plotted against the parameter D. Second and third

rows: the same three magnifications are plotted against the parameter D for the first (see the second row) and the second (see
the third row) order relativistic images. The subscripts 1p and 2p stand for the first- and second-order relativistic images on
the side of the primary image whereas subscripts 1s and 2s for the first- and second-order relativistic images on the secondary
image side. The colors of symbols and graphs are kept the same for graphs to be identified. The gravitational lens is the same
as for Figs. 1 and 2. The angular source position β = 1mas.

secondary images of the Schwarzschild lensing, respec-
tively, by [1]:

θp =
1

2

(

β +
√

β2 + 4θ2E

)

and

θs =
1

2

(

β −
√

β2 + 4θ2E

)

, (22)

where the angular radius of the Einstein ring θE =
√

4DM/Dd. Using (22) with (7) in (17), we calculate
distortions of the primary image ∆p and the secondary
image ∆s:

∆p = −∆s =

√

β2 + 16D M
Dd

β
. (23)
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FIG. 4: First row: the tangential magnification of the primary image µpt (red dashed), the absolute tangential magnifica-
tion of the secondary image |µst| (green dotted), the radial magnification of the primary image µpr (red dashed), the radial
magnification of the secondary image µsr (green dotted), the total magnification of the primary image µp (red dashed), and
the absolute total magnification of the secondary image |µs| (green dotted) are plotted against M/Dd (the ratio of the mass
of the lens to the lens-observer distance). Second and third rows: the same three magnifications are plotted against M/Dd for
the first (see the second row) and the second (see the third row) order relativistic images. The subscripts 1p and 2p stand for
the first- and second-order relativistic images on the side of the primary image whereas subscripts 1s and 2s for the first- and
second- order relativistic images on the secondary image side. The colors of symbols and corresponding graphs are kept the
same for graphs to be identified. The angular source position β = 1mas and D = 0.005.
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FIG. 5: Left: the logarithmic distortions of the primary image δp (red dashed), secondary image δs (green dotted), the first
order relativistic image on primary side δ1p (magenta dashed), the first order relativistic image on secondary side δ1s (blue
dotted), the second order relativistic image on primary side δ2p (brown dashed), and the second order relativistic image on
secondary side δ2s (black dotted) are plotted against the angular source position β. The SMDO at the galactic center of M87
is modeled as the Schwarzschild lens, which has mass M = 6.5× 109M⊙ and is situated at the distance Dd = 16.8 Mpc so that
M/Dd ≈ 1.84951 × 10−11. The dimensionless parameter D = 0.005. Middle: the same six quantities (as for the figure on the
left) are plotted against the parameter D. The lens is also the same and the angular source position β = 1mas. Right: the
same six quantities (as for the figure on the left) are plotted against M/Dd (the ratio of the mass of lens to the lens-observer
distance). SMDOs at the centers of 40 galaxies are modeled as Schwarzschild lenses. The angular source position β = 1mas
and D = 0.005. The colors of symbols and graphs are kept the same for graphs to be identified.

Therefore, the signed sum of these distortions ∆sum =
∆p + ∆s identically vanishes. This supports our distor-
tion hypothesis for weak gravitational field lensing where
the higher order terms in the bending angle have been
neglected. Therefore, it is imperative to test our hypoth-
esis when no such approximation is taken and relativistic
images are also included. We carry out numerical compu-
tations with a very high accuracy. Our computations are
exact in the sense that we neither take weak nor strong
field approximation.
In order to obtain Fig. 1, we modeledM87∗ (M/Dd ≈

1.85×10−11) as a Schwarzschild lens with the lens-source
to observe-distances ratio D = 0.005. We obtained tan-
gential, radial, and total magnifications of the primary-
secondary and relativistic images of the first and second
orders of both sides of the optic axis for a large num-
ber of angular source positions β. Using tangential and
radial magnifications of images, we now use Eq. (19)
to compute logarithmic distortions of all these images.
We then plot logarithmic distortions δ of six images (pri-
mary, secondary, and relativistic images of order 1 and
2 on both sides of the optic axis) against β. The log-
arithmic distortions of images of the same order are so
close to each other that their graphs are not resolved on
plots. The logarithmic distortion of all images decreases
fast near β = 0 and then slowly with an increase in the
value of β. For a given value of β, the logarithmic dis-
tortion of images increases with the order of images, i.e.,
the primary-secondary images are least distorted. Now
to study the variation of logarithmic distortion of im-

ages with respect to the change in the value of D, we use
the results obtained for plotting Fig. 3. We compute
logarithmic distortions of all six images and plot against
D. The logarithmic distortion of all images increases fast
near a very small value of D and then increases slowly
as D increases. At last, we use results obtained for Fig.
4 to obtain logarithmic distortions of six images for 40
different SMDOs modeled as Schwarzschild lenses. We
plot the logarithmic distortion vs M/Dd. The distor-
tions of all images increase with the increase in the value
of M/Dd. The graphs in Fig. 5 show that the logarith-
mic distortions of higher-order images are higher; how-
ever, distortions of the same-order images are too close
to appear resolved. Results in Fig. 5 show that images of
the same order have incredibly close values for distortions
with of course opposite signs that make the sum of signed
distortions close to zero. Equation (23) shows that the
absolute distortions of the primary as well as secondary
images increase with the increase in the values of M/Dd

and D; however, these decrease with the increase in the
value of β. These effects reflect in Fig. 5 not only for the
primary and secondary images, but also for relativistic
images. Moreover, distortion increases with the increase
in the order of images.
Now in order to analyze how close distortions of images

of the same order are, we use the distortions of images
and compute absolute values of the percentage difference
in distortions of images of the same order. That is, us-
ing Eq. (20), we compute |Pps|, |P1p1s|, and |P2p2s| for
all three cases: (1) the lens is M87∗, D = 0.005, and
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FIG. 6: Left: the absolute percentage difference in distortions for the primary-secondary images pair |Pps|, the first order
relativistic images pair |P1p1s|, and the second order relativistic images pair |P2p2s| are plotted against the angular source
position β. The MDO at the galactic center of M87 is modeled as the Schwarzschild lens, which has mass M = 6.5 × 109M⊙

and is situated at the distance Dd = 16.8 Mpc so that M/Dd ≈ 1.84951 × 10−11. The dimensionless parameter D = 0.005.
Middle: the same three quantities (as for the figure on the left) are plotted against the parameter D. The lens is also the same
and the angular source position β = 1mas. Right: the same three quantities (as for the figure on the left) are plotted against
M/Dd. SMDOs at centers of 40 galaxies are modeled as Schwarzschild lenses. The angular source position β = 1mas and
D = 0.005.

the angular source position is changing, (2) the lens is
M87∗, β = 1mas, and D is changing, and (3) D = 0.005
and β = 1mas, and M/Dd is changing. These three
families of curves are plotted separately in Fig. 6. The
graphs show that the absolute percentage differences in
distortions of the images of the same order are incredibly
small supporting the hypothesis that the sum of signed
distortions of all images in gravitational lensing is zero.
But, why are these not more close to zero? This appears
to be due to the approximate lens equation (as the per-
centage difference is higher for larger β and smaller D
where lens approximation is not good for computing P).
Even if the chosen distortion parameter does not work
great with the hypothesis, the parameter is likely to be
very useful to study and analyze images of GL.

IV. DISCUSSION AND SUMMARY

We modeled the supermassive dark object M87∗ as
a Schwarzschild lens and first studied the variations of
three magnifications (tangential |µt|, radial µr, and the
total |µ|) of images of orders 0, 1, and 2 against the angu-
lar source position β. The variations of the tangential as
well as the total magnifications for all images are qualita-
tively similar; these decrease with increase in the angular
source position. However, the most spectacular graphs
are for radial magnifications. The radial magnifications
of the primary as well as the relativistic images on the
primary image side increase with increase in the value of
β. However, those of the secondary image as well as rela-

tivistic images on the secondary image side decrease with
increase in the value of β. We plotted these results in Fig.
1. The relativistic images are usually very demagnified
(compared to primary and secondary images) and there-
fore it is important to investigate whether their mag-
nifications decrease very fast as the source moves away
from the optic axis (i.e., β increases). In view of this, we
computed partial derivatives of total magnifications with
respect to β of six images (primary, secondary, and rela-
tivistic images of orders 1 and 2 on both sides of the optic
axis) for a large number of values of β. To a great sur-
prise, magnifications of relativistic images are much more
stable (compared to primary and secondary images) with
respect to change in β. The computations show that im-
ages of higher orders are less unstable with change in β.
These are shown in Fig. 2. Then, we studied the behavior
of the three magnifications of six images as the distance
parameter D increases, keeping the angular source posi-
tion β fixed. Among 18 graphs in Fig. 3, more fascinat-
ing and nonintuitive ones are radial magnifications of the
primary-secondary pair and tangential magnifications of
relativistic images. The radial magnifications of primary
images and tangential magnification of relativistic images
(on the primary image side) decrease with increase in D
where the radial magnifications of secondary images as
well as tangential magnifications of relativistic images on
the secondary image side increase with increase in D.

After the completion of magnification studies with
M87∗ as a Schwarzschild lens, we modeled SMDOs at
the centers of 40 galaxies (including M87 and the Milky
Way) as Schwarzschild lenses. We computed tangential,
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radial, and total magnifications for six images (primary,
secondary, and relativistic images of order 1 and 2 on
both sides of the optic axis). We kept the angular source
position β and the dimensionless distance parameter D
fixed. These results are shown in Fig. 4. Excluding the
radial magnification of the primary image, the variations
of magnifications with increase in the value of M/Dd are
reasonably intuitive. All these magnifications increase
with the increase in the value of M/Dd. However, the
behavior of the radial magnifications of the primary im-
age with respect to the increase in the value of M/Dd

is counterintuitive and indeed magnificent. The radial
magnifications of the primary and secondary images, re-
spectively, decrease and increase with an increase in the
value of M/Dd and the separation between the graphs
decreases as M/Dd increases.

We hypothesized that there must exist a distortion pa-
rameter such that the signed sum of all images of realistic
and singular gravitational lensing of a source identically
vanishes. We proposed such a distortion parameter [see
Eq. (17)] and, as a first step to support the hypothesis,
we demonstrated that our hypothesis holds good for im-
ages of Schwarzschild lensing in weak gravitational field.
However, as the weak field lensing example is not enough
to say that the hypothesis is correct, we carried out nu-
merical computations (without either weak or strong field
approximations) for the images formed due to light de-
flections in weak as well as strong gravitational fields. In
order to conveniently plot, we first defined a logarithmic
distortion parameter δ in Eq. (19) and plotted it against
the angular source position β, the dimensionless distance
parameter D, and the ratio of the mass to the distance
of the lens M/Dd for the six images (primary, secondary,
relativistic images of orders 1 and 2 on both sides of the
optic axis). We found that, for all images, the logarith-
mic distortion parameter decreases with an increase in β,
and a decrease in D as well as M/Dd. The graphs for
logarithmic distortion of the images of the same order ap-
pear unresolved (see in Fig. 5) because their values are
too close to each other. The sum of signed distortions of
all images is extremely close to zero. Now, in order to see
how close are the values of distortions of images of the
same order, we defined and computed the absolute per-
centage differences of images of the same order and found
these to be extremely small, and therefore these results
very strongly support the distortion hypothesis. This pa-
rameter increases with an increase in β and a decrease in
D, and remains almost constant with an increase in the
value of M/Dd. These results suggest that the nonva-
nishing (though extremely small) values of the absolute
percentage difference in distortions are very likely to be
due to approximations involved in the lens equation and
numerical computations. Thus, our hypothesis passes
the Schwarzschild lensing with flying colors. However,
this still remains to be tested with many other realistic
gravitational lensing.

Our hypothesis does not insist that there has to be
a unique distortion parameter supporting our hypothe-

sis. After the completion of this work, we found another
distortion parameter

∆∗ = µt − µr. (24)

With this, we obtain distortions of the primary image ∆∗
p

and the secondary image ∆∗
s:

∆∗
p = −∆∗

s =
8D M

Dd

β
√

16D M
Dd

+ β2

. (25)

Thus, their signed sum ∆∗
p+∆∗

s identically vanishes. This
supports our hypothesis. However, it still remains to be
tested if we include relativistic images which are formed
due to light deflections in very strong gravitational fields.
It is possible that our hypothesis works well only for cer-
tain types of realistic lensing. If so, the examples and
counterexamples could be useful for classifying types of
gravitational lensing. The theory behind the measure-
ments of any distortion parameter satisfying our hypoth-
esis is still to be developed. During these studies, we
found some interesting relationship which are though not
much related to the present topic, is worth putting here:
µtp + µts = µrp + µrs = 1 for weak field Schwarzschild
lensing. Around two decades ago, we (the present au-
thor) noticed, based on numerical computations, a rela-
tion: the signed sum of (total) magnifications of images
of the same order is approximately 1. This explains why
the curves in Fig. 2 are too close to appear separately. It
seems that the weak field part of the result, µp +µs = 1,
is known in the literature.
Despite many industrious efforts there is neither a

proof nor a disproof of the weak cosmic censorship hy-
pothesis which basically states that, generically, space-
time singularities of physically realistic gravitational col-
lapse are hidden within event horizons (see details in [62–
64] and references therein.) Spacetime singularities not
covered inside an event horizon are called naked singu-
larities. We studied gravitational lensing due to naked
singularities and found that these serve as better cosmic
telescopes than regular massive objects as well as black
holes of the same ADM (Arnowitt-Deser-Misner) mass
due to the following reasons: Naked singularity lenses
give rise to (i) higher value for the sum of absolute to-
tal magnifications of all images, (ii) smaller time delays,
and (iii) smaller magnification centroid shift that enables
us locate the source position better. Thus, naked (visi-
ble) singularities are not just visible to observers, these
make our universe more visible to us. We also showed
that strongly naked singularities (i.e., those not covered
inside any photon sphere) can give rise to images of nega-
tive time delays. Naked singularities (excluding strongly
naked ones) are one of the best mimickers of black holes
and therefore, studies in this paper should be extended to
those naked singularities. As SMDOs have rotation, it is
extremely important to thoroughly study magnifications
and distortions of images of the Kerr lensing (including
retrolensing).
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