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Abstract: Insulin sensitivity (SI) estimation has numerous uses in medical and clinical situations. However, high-

resolution tests that are useful for clinical diagnosis and monitoring are often too intensive, long and costly for regular use. 

Simpler tests that mitigate these issues are not accurate enough for many clinical diagnostic or monitoring scenarios. The 

gap between these tests presents an opportunity for new approaches. 

The quick dynamic insulin sensitivity test (DISTq) utilises the model-based DIST test protocol and a series of population 

estimates to eliminate the need for insulin or C-peptide assays to enable a high resolution, low-intensity, real-time 

evaluation of SI. The method predicts patient specific insulin responses to the DIST test protocol with enough accuracy to 

yield a useful clinical insulin sensitivity metric for monitoring of diabetes therapy. 

The DISTq method replicated the findings of the fully sampled DIST test without the use of insulin or C-peptide assays. 

Correlations of the resulting SI values was R=0.91. The method was also compared to the euglycaemic hyper-

insulinaemic clamp (EIC) in an in-silico Monte-Carlo analysis and showed a good ability to re-evaluate SIEIC (R=0.89), 

compared to the fully sampled DIST (R=0.98) 

Population-derived parameter estimates using a-posteriori population-based functions derived from DIST test data enables 

the simulation of insulin profiles that are sufficiently accurate to estimate SI to a relatively high precision. Thus, costly 

insulin and C-peptide assays are not necessary to obtain an accurate, but inexpensive, real-time estimate of insulin 

sensitivity. This estimate has enough resolution for SI prediction and monitoring of response to therapy. In borderline 

cases, re-evaluation of stored (frozen) blood samples for insulin and C-peptide would enable greater accuracy where 

necessary, enabling a hierarchy of tests in an economical fashion. 

1. INTRODUCTION 

 Insulin resistance (IR) has been widely accepted as a risk 
factor for type 2 diabetes (T2DM) and cardiovascular 
disease. A long-term study has shown those who developed 
T2DM had an average initial IR 60% higher than those who 
remained healthy [1]. An early diagnosis of IR may prompt 
interventions with the potential to delay the onset of the 
disease and therefore reduce long-term complications and 
health costs. However, the high cost and/or low resolution of 
the available insulin sensitivity (SI, SI=1/IR) tests precludes 
widespread screening [2]. Thus many diagnoses are not 
made until later in the disease stage and limit the potential 
gains [3]. 

 It is generally agreed that SI is a measure of the 
efficiency of insulin for the reduction of glucose in the 
blood. However, the many available tests measure this effect 
in different ways [4, 5]. It is therefore necessary for the 
researcher/clinician to decide which test is best for any given  
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situation in terms of intensity, cost, accuracy and 
physiological relevance. This decision thus implicitly states 
that there exists a hierarchy of such tests, each with different 
clinical use, and associated level of accuracy or resolution. 

 The hyper-insulinaemic euglycaemic clamp (EIC) [6] is 
widely accepted as the gold standard for SI testing. However, 
it is not used as a screening tool due to its high cost and 
clinical intensity. Tests such as the oral glucose tolerance test 
(OGTT), intravenous glucose tolerance test (IVGTT), and 
insulin-modified IVGTT (IM-IVGTT) are of lesser intensity, 
but equally lower accuracy and repeatability [7, 8]. The 
homeostatic model assessment (HOMA) or 2hr-OGTT are 
sufficiently inexpensive in cost, clinical time and intensity 
that they are regularly used for screening purposes. 
However, screening is not necessarily effective, because 
these tests have relatively poor resolution in the region of 
clinical significance [7, 9, 10]. They are thus even less 
effective in measuring the impact or change resulting from 
intervention. Table 1 summarises the accuracy and time 
demands of these SI tests. 
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 A real-time and clinically relevant SI metric could be of 
significant value in many diverse clinical situations 
including: glycaemic control and sepsis diagnosis in an 
intensive care setting [19], monitoring the impact of type 2 
diabetes therapy [20], and monitoring the impact of drug 
therapy [21]. Clinical studies also investigated SI as a 
metabolic health marker [22, 23]. Finally, such a knowledge 
of SI could aid glycaemic regulation and the development of 
personalised treatment plans for newly diagnosed diabetic 
individuals. 

 The dynamic insulin sensitivity test (DIST) is a recently 
developed low-dose, short-protocol test similar to the IM-
IVGTT [17, 24]. The subject’s response to a relatively low 
dose (5-20g) IV glucose bolus followed by a low dose (0.5-
2U) IV insulin bolus is monitored with samples assayed for 
glucose, insulin and C-peptide. These concentrations are 
used to identify model-based parameters for SI, endogenous 
insulin secretion (Uen) and liver clearance (nL) by solving the 
physiological model shown in Fig. (1). The model is a 
compartmental pharmaco-kinetic (PK) and pharmaco-
dynamic (PD) model representing the physiological 
pathways and interactions between insulin, C-peptide and 
glucose in the human body [25]. Prior modelling studies 
have shown the SI value from the model can be highly 
correlated to the insulin sensitivity metric (ISI) from the EIC 
(R=0.99) [17], and a clinical validation study is ongoing with 

initial correlations of R 0.78. Note that the DIST differs 
from the IM-IVGTT by measuring every 5-10 minutes and 
using significantly lower insulin and glucose doses. 

 This research presents and evaluates the quick DIST 
method (DISTq) which incorporates a novel method, 
assumptions and mathematical process to identify SI. The 
method only requires the glucose measurements from the 
previously presented DIST protocol [17, 24], and anatomical 
and demographic data available at the time of testing (height, 
weight, sex and age). Hence, relatively costly insulin and C-
peptide samples that take 1-3 days to process in a separate 
lab are not needed and effectively real-time estimation is 
enabled. The method uses the DIST protocol and population-
based parameter values to estimate the subject’s insulin 
concentrations during testing to replace these missing assays. 
This ability to estimate insulin concentrations in the subject 
is unique to the DISTq and in direct contrast to other 
surrogate SI tests that do not measure (or estimate) insulin 
and are therefore poorer predictors of SI and its changes due 
to an intervention. 

2. METHOD 

 The DISTq solver method is based on model parameter 
and concentration estimates in an individual. These estimates 
are functions of the relationship between SI and various 

Table 1. Overview of the Most Frequently Used Insulin Sensitivity Tests 

 

Accuracy Time Demand (Hours) 

 Intra- 

Subject CV 

Correlation to 

Gold Standard 
Clinician Participant 

Notes References 

EIC 4 to 10% Gold standard 10 4 Results is not guaranteed with an inexperienced clinician [5, 6, 11] 

IVGTT 21% 0.44 to 0.89 3-5 3-5 Result generally requires a complex computerised solver [8, 12, 13] 

OGTT 7 to 15% 0.6 to 0.8 3-4 3-4 
Rate of appearance of glucose in plasma is relatively 

unknown  
[5, 14, 15] 

2hr-OGTT 15 to 40% 0.45 to 0.74 0.5 2.5 Poor repeatability in terms of re-classification rate [7, 14, 16] 

HOMA 10 to 40% -0.6 to -0.9 0.25 0.25 Low resolution in region of clinical significance [5, 17, 18] 

Shown are the assessed accuracies in coefficient of variation (CV=SD/mean) and correlation to the gold standard EIC; and the time demand in hours for the clinician and the 

participant. 

 

Fig. (1). The physiological compartmental model used to match the DIST test data (symbols are fully defined in the Methods section). 
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anatomical and/or physiological factors, and are used to 
approximate the subject’s insulin concentrations in the 
absence of direct insulin and C-peptide measurements. The 
DISTq is thus a subset of the fully sampled DIST [17, 24]. 

2.1. DIST Model 

 The DISTq method utilises the model developed in the 
pilot study of the fully sampled DIST test [17, 24]. The 
model is shown in Fig. (1) and is mathematically expressed: 

C-Peptide Pharmaco-Kinetics 
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+ k
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Glucose-Insulin Pharmaco-Dynamics 

 

G = pgu (G Ge ) SI(GQ GeQb ) +
P

Vg
         (5) 

where: k1, k2, k3, nK, nL, and nC are rate parameters [min
-1

]; nI is 

the transport rate between plasma and interstitium [L·min
-1

]; 

I
 is the saturation coefficient of liver clearance [L·mU

-1
]; C 

and Y are plasma and interstitial compartment C-peptide 

concentrations [pmol·L
-1

]; Uen is the rate of endogenous 

insulin and (equimolar) C-peptide production [mU·min
-1

]; I 

and Q are plasma and interstitial compartment insulin 

concentrations [mU·L
-1

]; Uex and P are the insulin and 

glucose bolus inputs [mU and mmol]; Vp and Vq are 

volumes of distribution of plasma and interstitium, 

respectively [L]; xL is the fractional first pass liver extraction 

[mU·mU
-1

]; G is the glucose concentration in plasma 

[mmol·L
-1

]; Ge and Qb are equilibrium or basal levels of the 

respective analytes [mmol·L
-1

 and mU·L
-1

]; Vg is the volume 

of distribution of glucose [L]; and pgu is the non-insulin 

mediated glucose disposal rate [min
-1

]. 

2.2. DIST Pilot Protocol 

 Sixteen subjects were recruited and underwent a total of 
46 DIST tests in the DIST pilot study [24]. Subjects reported 
to the place of testing in the morning, having fasted 
overnight. All tests were completed in a seated position with 
a cannula inserted into the antecubital fossa, through which 
glucose (50% dextrose) and insulin (actrapid) boluses were 
administered and blood samples taken. Subjects had blood 
samples taken at 0, 10, 15, 20, 25, 30, 35, 40, 50, 60 minutes. 
The glucose and insulin injections immediately followed the 
10 and 20 minute samples, respectively. Timing of samples 
and boluses were kept to the closest minute. Three dosing 
protocols were used in this pilot study: 

� Low - 5g glucose, 0.5U insulin 

� Medium – 10g glucose, 1U insulin 

� High – 20g glucose, 2U insulin. 

 All samples were assayed for glucose (Enzymatic 
glucose hexokinase assay, Abbot Labs, Illinois USA), insulin 
and C-peptide (ELISA Immunoassay, Roche, Mannheim, 
Germany). Further details of the participant attributes, 
protocol and results can be found in [24]. 

2.3. Requirements for DISTq Profile Estimation 

 The DISTq method was developed to provide an accurate 
estimation of SI in clinical real-time, meaning a diagnostic 
outcome can be generated within 5 minutes of test 
completion. Insulin and C-peptide assays need to be 
performed in a laboratory and thus do not provide immediate 
results. However, precise estimation of SI is not possible 
without an accurate indication of insulin concentrations. 

 DISTq overcomes this lack of information by utilising 
population-based assumptions to estimate insulin 
concentrations in an individual. Fig. (2) shows a typical 
subject-specific simulated response to the DIST protocol. 
Shown are endogenous insulin secretion rate Uen(t), and 
plasma and interstitial insulin concentrations, I(t) and Q(t). 
The qualitative shape of the kinetics shown are relatively 
consistent between subjects. However, the magnitude of the 
kinetics varies with dosing and (diagnosed) diabetic or 
metabolic status. 

 Comprehensive and unique endogenous insulin 
production and insulin concentration profiles can be 
simulated with knowledge of the 10 kinetic features shown 
in Fig. (2). Five of these 10 characteristics can be isolated by 
the protocol, or the physiological assumptions used in the 
full DIST test. These five characteristics are listed below 
with numbering in accordance to the corresponding features 
shown in Fig. (2) and an explanation of how they are 
determined: 

2. The first phase Uen response (initial secretion peak) is 
assumed to begin immediately or within 1 minute of 
the glucose bolus with known timing [26]. 

6. The first phase Uen will be visibly manifested in I(t). 

7. The administration time of the insulin bolus is 
recorded during the trial. 

8. The concentration of insulin in plasma immediately 
following the insulin bolus is readily defined by the 
mass of the bolus divided by the plasma distribution 
volume (Vp). 

10. The rate of insulin diffusion and transport between 
plasma and interstitial compartments has been defined 
by [27]. Thus, Q(t) can be defined solely as a function 
of transport rates, a steady state concentration ratio 
( ), and the measured or calculated I(t) profile. 

 The five remaining kinetic features shown in Fig. (2) 
cannot be readily inferred by the structure of the protocol, 
the model used, or the specific measurements, and must be 
derived using other methods. These features are listed below 
with numbering in accordance to Fig. (2): 

1. The basal Uen production rate (Ub) 
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3. The maximal first phase response to the glucose bolus 
(Umax) 

4. The degree to which the second phase response will 
be suppressed by elevated insulin concentrations after 
the exogenous insulin bolus (Uave) 

5. The basal insulin concentration in plasma (Ib) 

9. The rate of liver disposal of insulin from plasma (nL) 

 Mathematical or a-priori relationships between these 
parameters are not evident or reported elsewhere. However, 
relationships were apparent between these parameters and SI 
derived from the full test data. After the parameters of 
interest and SI were solved using data from the fully sampled 
DIST tests, the parameters were plotted against SI and trends 
became apparent. These trends can be seen in Fig. (3). The 
DISTq method utilises these trends to enable a-posteriori 
parameter estimation and unique simulations of endogenous 
and overall insulin kinetics responses to the test protocol. 

2.4. Full DIST Test Data Analysis 

 The results from the fully sampled DIST tests are used to 
develop the population equations characterising the trends in 
insulin kinetic parameters. Equations (1) to (5) are the 
pharmacokinetic, multi-compartmental equations used to 
derive the model parameters from the DIST data [17, 24]. 

 Equations (1) and (2) can be solved directly to find Uen(t) 
using a linear interpolation (evaluated at 1 minute intervals) 
of the C-peptide data C(t), and a Picard iteration to find Y(t). 
A Picard iteration is capable of solving non-linear systems 
using discretised transforms of the governing ODEs [28, 29]. 
In this case, the iteration uses updating predictions of the Y(t) 
profile to converge to a highly accurate Y(t). 

 
Y (t) = k

1
C(t) k

2
Y (t)

therefore
Y (t)dt = k

1
C(t)dt k

2
Y (t)dt     (6) 

Y (t) = Y
0
+ k

1
C(t)

0

t

dt k
2
Y (t)

0

t

dt           (7) 

 Therefore, Uen(t) can be obtained directly using Equation 
(7) for Y(t) and C-peptide assay data, as defined: 

 
Uen (t) = C(t) + (k1 + k3 )C(t) k

2
Y (t)Vp           (8) 

where 
 
C(t)  is evaluated plasma C-peptide concentration 

change at one minute intervals using the interpolated minute-

wise C(t) profile. 

 The insulin data can be used to obtain a value for the liver 
clearance parameter (nL). To identify nL, an integral formulation 
of Equations (3) and (4) similar to [30] is used. The first step is 
to define Q(t). The iterative integral method is sufficiently 
robust that interpolated initial guesses allow later iterations to 
produce highly accurate re-simulations of insulin concentration. 
Thus, the initial I(t) estimate is simply a linear interpolation of 
the measured insulin data and the initial Q(t) is equal to half I(t) 
as defined by the steady state ratio of insulin concentration 
between the plasma and interstitium ( ): 

Q
ss

I
ss

= =
Q(t)

int

I(t)
int

            (9) 

 Integrating Equation (3) from 0 to t for the given estimate 
Qint(t) of Equation (9), and assuming I(t) is a linear 
interpolation of the measured data yields: 

nL
I

1+ I I
dt

0

i

= Imeas (t) Ib + (nK +
nI

Vp
) I
0

i

dt

nI

Vp
Q
int

0

i

dt
(Uex + (1 xL )Uen )

Vp
0

i

dt

      (10) 

where: Ib= Imeas(0) and I=Iint(t). 

 

Fig. (2). A typical endogenous insulin production and resulting insulin concentration response to the DIST protocol. Shown are the 

endogenous insulin secretion rate profile Uen(t) (left), and the plasma and interstial insulin concentrations, I(t), Q(t), (right). The kinetic 

features required to describe the profiles in the absence of insulin and C-peptide data are shown by numbers 1-10. 
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 Choosing N time points in Equation (10), corresponding 
to the number of data points, gives N equations with one 
unknown, nL. These equations can be readily solved by linear 
least squares to give an initial estimate for the value of nL. 
For this given value of nL, Equations (3) and (4) are then 
numerically solved using a Picard iteration [28, 29] to 
determine a new I(t) and Q(t) (Inew(t) and Qnew(t)). Depending 
on the accuracy of the first estimate, I(t) and Q(t) may not 
yet give an optimal match to the data. The reason for this 
error is that the initial linear interpolation to the measured 
I(t) may not capture the true peaks, introducing error into the 
integral terms of Equation (10). A solution to this problem is 
to replace Iint(t) and Qint(t) in Equation (10) with Inew(t) and 
Qnew(t), then determine a new nL by a similar linear least 
square approach. This process can be continued until 
convergence is reached. In contrast to the methods presented 
for the fully sampled DIST test pilot study [24] the first pass 
extraction parameter xL is fixed at a population average value 
of 0.7 [31-33]. 

 A similar method is applied to the glucose model, 
Equation (5), with two variable parameters to be identified, 
SI and Vg. Integrating Equation (5) from 0 to t yields: 

Gmeas (t) G
0
= pgu (G

int
(t) Ge )

0

t

dt SI (G
int
(t)Q(t) GeQb )

0

t

dt +

1

Vg
P

0

t

(t)dt

  (11) 

 Choosing N values of time t= t1,…,tN in Equation (11) 
gives a matrix system defined: 

A �
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 Solving Equation (12) by linear least squares provides an 
initial estimate to SI and Vg, as was done with nL in Equation 
(10). Gint(t) is re-simulated using the estimated values for SI 
and Vg and substituted into the integrals of Equation (12) to 
determine a new matrix A and vector b in Equation (13). 

Equation (12) is solved again by linear least squares and this 
process is continued until convergence. 

 The DISTq process utilises parameter estimations to 
predict the insulin concentration profile of a subject during a 
DIST test. Using the methods described above, the 
parameters required for this process have been defined for 
the full DIST data set. The goal is to estimate these 
parameters based on population relationships between their 
values resulting from the DIST as defined above. The 
paramters to be identified are: 

� Ub: the first value of Uen(t) - (deconvolution of 
Equation (8)) 

� Umax: the maximum value of Uen(t) - (deconvolution 
of Equation (8)) 

� Uave: the average value of Uen(t) - (deconvolution of 
Equation (8)) 

� Ib: the basal insulin measurement - (direct 
measurement) 

� nL: the liver clearance rate - (identification of 
Equation (10)) 

� SI: insulin sensitivity - (identification of Equation 
(12)) 

2.5. Population Based Parameter Estimation 

 The population-based parameters (Ub, Umax, Uave, Ib and 
nL) are compared to SI from the full DIST [17, 24] and 
anatomical parameters (height, weight, BMI, BSA) obtained 
from the individuals. The population based parameters show 
a stronger relationship to SI in Fig. (3) than to any a-priori 
patient-specific information that would be available at the 
time of testing. In particular, Ub, Uave and Ib all have a power 
relationship with SI. Umax does not have a strong relationship 
to SI, but is also estimated with a power relationship. In 
contrast, nL is predicted using a log relationship to SI. 
Equations (14) to (18) define the mathematical relationships 
between the parameters (shown as the blue lines in Fig. 3). 
Note that no dispensation has been made to adjust any 
parameters for different dosing, which adds to some of the 
spread seen in Fig. (3), and thus providing a conservative 
trend. 

U
b
= 122.49 * (SI )

0.7236
         (14) 

U
max

= 168.32 * (SI )
0.1821

         (15) 

U
ave

= 177.87 * (SI )
0.6932

         (16) 

I
b
= 63.18 * (SI )

1.1347
         (17) 

n
L
= 0.0491* ln(SI ) + 0.0447         (18) 

2.6. DISTq Method 

 DISTq is an iterative method that uses an initial 

population average SI value (SI= 10
4
L min

1
mU

1
) in 

Equations (14) to (18) to provide an initial estimate for the 

unknown parameters needed to generate an interstitial 

insulin profile Q(t). This Q(t) profile can then be used with 

just the glucose data and Equation (12) to generate a new, 
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more accurate prediction of SI. This new SI is then used in 

Equations (14) to (18) to redefine the unknown parameters: 

Ub, Umax, Uave, Ib and nL. In turn, these redefined parameter 

values are used to re-simulate a new Q(t) profile. Equation 

(12) can then be solved again with the glucose data for a 

new, updated prediction of SI. This process is iterated up to 

five times or until SI stabilises to within 0.01% change 

between iterations. Fig. (4) shows this process schematically, 

denoted as the first iterative loop in the process. 

 A second, subsequent iterative cycle can be used to 
further increase the accuracy of the derived SI. If the glucose 
data following the insulin bolus is of sufficient resolution, an 
inference can be made into the shape of the insulin decay 
curve. Once the initial iterative process has converged to a 
value for SI, the value of nL is allowed to vary up to ±20% 
and SI is then further refined. The nL value that minimises 
the least-square error in the re-simulated glucose 
concentrations is used to define the new (second iteration) 
value for SI. This second cycle is also shown in Fig. (4). 

2.7. Analyses 

2.7.1. Part one: Clinical Equivalence of the DIST and 

DISTq Solver Methods 

 It is important to determine whether accurate SI 
estimation is possible when insulin and C-peptide data are 
not used. To assess this, SIDISTq is compared to the fully 
sampled SIDIST using a Pearson correlation coefficient. 
Results for both the basic DISTq method (1

st
 iteration) and 

the additional nL variation (2
nd

 iteration) are compared to the 
full DIST test value. 

 Furthermore, the DISTq method’s dependence on their 
initial SI estimations is evaluated by comparing estimated 
SIDISTq values obtained using initial SI estimations from 
differing ends of the expected range (2 to 30 L·mU

-1
·min

-1
). 

If the DISTq method is independent of the initial SI estimate, 
the resulting SIDISTq values for any trial data should be 
identical. 

2.7.2. Part Two: Separating the Derivation Set from the 

Validation Set 

 If the DISTq is to be used exclusively in a clinical study, 
the population characteristics will not necessarily be known. 
To address this issue, the validation data set is isolated from 
the derivation data set. In particular, the parameter 
relationships of Equations (14) to (18) are generated from 
the results of 37 (of 46) randomly-selected full DIST trials. 
The remaining 9 trials are used as an independent validation 
set to compare the DISTq result to the fully sampled DIST 
results. This random selection and analysis is repeated 25 
times. The derived SI values from the 25 validation sets are 
then correlated to the full DIST SI results for the matching 
test sets to assess any significant loss of correlation when the 
randomly selected derivation set is isolated from the 
validation set. 

2.7.3. Part three: Monte Carlo Analysis of the DISTq 

Method 

 Finally, a comparison can be made between the 
coefficient of variation (CV= standard deviation divided by 
the mean SI) of SIDISTq and the fully sampled SIDIST, to obtain 
an indication of the expected robustness and error of the 
DISTq relative to the DIST and the euglycaemic clamp as 

 

Fig. (3). Trends between insulin sensitivity and the five population-based parameters that cannot be defined with a-priori identification 

methods. The blue lines are representative of the approximation equations that are used to identify the parameters (Equations 14-18). 
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reported in [17]. A Monte-Carlo analysis of the fully 
sampled DIST has been previously completed [17], and the 
procedure of this study is repeated for both the fully sampled 
DIST and DISTq. 

 The data used to generate simulation results was taken 
from 146 euglycaemic clamp tests performed during a 
lifestyle intervention study on 73 individuals [20]. Virtual C-
peptide, insulin and glucose data for a DIST test can be 
simulated using the physiological model defined by 
Equations (1) to (5) and an SI value identified from the 
euglycaemic clamp test results [17]. Virtual discrete 
“samples” are taken per the DIST protocol definition by 
isolating the derived concentrations at the appropriate time 
points. The Monte Carlo simulation adds noise to these 
virtual samples in accordance with published assay and 
dosing errors. Further details of the simulation protocol can 
be found in [17]. Finally, differing random levels of 
endogenous glucose suppression are also included. Each test 
is run with random errors 250 times for each trial creating 
36500 analyses, which are use to calculate the CV. 

 The computationally expensive added nL variation 
method was not applied to minimise computational time. 
Hence, the results will be conservative in the estimation of 
the overall DISTq error, without added refinement. 

3. RESULTS 

3.1. Part one: Clinical Equivalence of the DIST and 

DISTq Methods 

 The basic DISTq method showed a strong correlation to 
the fully sampled DIST test SI (R=0.86), which improved to 
R=0.91 using the nL parameter variation method. Fig. (5) 

shows the relationship between the SIDIST solved with the full 
data set and the iterative-integral method, and the SIDISTq 
using limited data and the DISTq method. 

 The correlation between DISTq SI values obtained using 
initial SI estimates from distant ends of the expected range 
was perfect (R=1.00), showing that the SI values generated 
with the DISTq method are independent of the initial SI 
estimation. Thus, the DISTq method is convex and robust 
with respect to SI starting value, as it generated identical 
results, regardless of starting point. 

3.2. Part two: Separating the Derivation Set from the 
Validation Set 

 Fig. (6) shows the relationship between the fully sampled 
SIDIST and SIDISTq when the validation test set is isolated from 
the set used to derive Equations (14) to (18). Although there 
is a marginal decrease in the correlation from Fig. (5), a 
strong correlation is maintained (R=0.83 and R=0.88 for the 
fixed and variable nL methods respectively). As the 
simulation method randomly selected different sub-sets of 
tests to generate population parameters and to validate these, 
some tests were selected more frequently in the parameter 
generation than others. However, each trial was part of the 
validation set at least once. 

 For those data sets in the validation set several times, the 
vertical clusters of SIDISTq in Fig. (6) show the DISTq 
variability at different levels of SIDISTq induced by the 
differences in development data set. Fig. (6) shows that most 
such results are robust, especially at the clinically more 
important lower SIDIST levels. However, it is also clear that a 
larger derivation data set would provide a potentially more 

 

Fig. (4). A schematic of the DISTq iterative solver cycles (Including optional second cycle to optimise liver clearance rate). The first cycle is 

iterated five times to identify SI. The second cycle can be used to further refine the resultant SI by varying the nL parameter. 
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robust test. Overall, Fig. (6) does show that the estimates of 
Equations (14) to (18) are generally stable and effective. 

3.3. Part Three: Monte Carlo Analysis of the DISTq 

Method 

 The Monte Carlo analysis of the fully sampled DIST test 
confirmed the results of the initial investigation [17]. These 

simulations showed a strong correlation between SIDIST and 
the sensitivity metric of the euglycaemic clamp (ISI) 
(R=0.92). The correlation is improved when ISI is 
normalised by the steady state glycaemic concentration 
achieved during the euglycaemic clamp (ISIG) (R=0.98). 
This result is very similar to the findings in [17], which 
found R=0.93 and R=0.99 respectively. 

 

Fig. (5). Relationships between SIDIST from the fully sampled DIST tests and SIDISTq for the basic DISTq method (left), and with the 

additional variation of liver clearance cycle (right). 

 

Fig. (6). A comparison between the fully sampled SIDIST and the SIDISTq from the DISTq method when the population-based equations 

(Equations 14-18) are derived using data from a subset of trials which are isolated from the validation set (N=225; 25 iterations with a 

randomly selected 37 trial equation derivation set, and 9 solved trials per iteration). 
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 The virtual SIDISTq correlated well to ISI (R=0.81), which 
again improved when compared to ISIG (R=0.89). The 
HOMA (homeostatic model assessment) [18] correlation was 
much poorer when compared to ISI and ISIG (ISI: R=-0.37 
and ISIG: R=-0.37). SIDISTq correlated better to SIDIST in this 
in-silico analysis than the clinical results (R=0.96 compared 
to R=0.83-0.91). 

 The potentially most important component of an SI test is 
the ability to define changes in SI accurately over time, to 
monitor intervention or treatment. As expected, the DIST 
test showed a stronger ability to capture the insulin 
sensitivity shift seen in the euglycaemic clamp tests 
(R=0.97) than the DISTq (R=0.92). Both DIST methods 

performed significantly better than HOMA (R=-0.22). Fig. 
(7) shows the SI shift over four tests, sorted by increasing SI 
shift according to the clinically measured change in 
euglycaemic clamp results for the 73 subjects of the lifestyle 
intervention trial used in the Monte Carlo analysis [20]. It is 
visually clear that the DIST and DISTq both capture the 
clinically relevant changes, and that the HOMA metric is not 
clinically effective for tracking these changes due to 
intervention or any equivalently modest but clinically 
significant changes over time. 

 This Monte Carlo simulation found a slightly higher 
average CV for the fully sampled DIST (CV=6.6%) than the 
value found in [17] (CV=4.5%). The average CV for DISTq 

 

Fig. (8). Coefficients of variation from the Monte Carlo analysis of the DIST and DISTq methods. 

 

Fig. (7). The SI shift measured in-silico by the DIST and DISTq methods compared to the clinically measured euglycaemic clamp and 

HOMA derived SI shift. The SI values are sorted increasing from left to right by the SI shift observed between euglycaemic clamp tests. The 

red line shows the clamp derived SI shift overlaid on the results from the other tests. 
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was significantly higher (CV=21.2%). Fig. (8) shows that the 
CV was higher for the more insulin resistant subjects, toward 
a maximum of 30% for the most insulin resistant subject. 
The average HOMA CV was significantly lower than the 
DISTq (CV=10%) but does not capture changes in SI well as 
seen in Fig. (7). 

4. DISCUSSION 

4.1. Correlations and Potential Limitations 

 A strong correlation between SIDIST and SIDISTq (R=0.91 
in Fig. 5) implies that accurate low-cost estimation of SI is 
possible in clinical real-time with the methods described in 
this article. This result was obtained based on well-founded 
inferences into the insulin concentrations in interstitial fluid 
obtained from fully sampled DIST tests with insulin and C-
peptide sampling. Dependable assumptions from the 
protocol diminish the effects of the error in developing the 
population parameter estimations. The resulting simulated 
insulin concentrations are sufficiently accurate to allow good 
confidence in the derived SI. 

 Although there is a marginal reduction in correlation 
when the derivation set is isolated from the validation set, a 
strong correlation still exists (R=0.88 in Fig. 6). Two 
possible issues could be the cause of the slight fall in 
correlation from Fig. (5). First, when the DISTq solver 
estimates an individual’s SI using population relationships 
generated from the full subject data set, including data from 
this particular individual, the accuracy could be positively 
biased. This concern is allayed when considering that the 
relationship equations are smooth, and no attempt has been 
made to fit the population variability in the parameter 
estimation graphs shown in Fig. (3). Fitting this variation in 
the population parameter graphs would allow a stronger 
correlation in this study, but it would be at the expense of 
applicability of the DISTq method to the wider population. 

 The second, more likely reason for a loss in correlation is 
the increasing sparseness of the derivation or development 
population, which in some cases may be less indicative of 
the population as a whole. A larger derivation set of full 
DIST data is not yet available to resolve this issue, but would 
enable a more refined and conclusive result. Similarly, low 
dose IM-FSIVGTT data with full insulin and C-peptide 
sampling could be used with the model of Equations (1) to 
(5) to enable a larger data set to generate more representative 
population based insulin relationships shown in Equations 
(14) to (18). 

 In particular, the data used in this study was generated 
during the pilot study of the fully sampled DIST test and is 
inclusive of tests where the clinical protocol was under 
development and not necessarily consistent. Furthermore, the 
dosing level is not consistent as varied dosing levels were 
part of the pilot study [17]. It is expected that varying the 
dose would have a proportional effect on Uen. However, 
upon visual inspection of the relevant relationship graphs in 
Fig. (3), this expectation did not seem to be consistently the 
case. There is also a concern that saturation effects at 
different dosing levels may affect the value of liver clearance 
nL. Again, visual inspection did not show any significant 
difference in this case. If sufficient data becomes available 

with a set protocol and dosing regime, the parameter 
estimation stage would be stronger and could be fortified 
with confidence bounds to give a recommendation of the 
confidence interval of the DISTq derived SI. Such studies are 
ongoing but data has not yet become available. 

4.2. Comparison to Other Tests 

 The performance of any new test must also be assessed in 
light of tests of equivalent intensity. The intensity of the 
DISTq is greater than HOMA, and, in terms of clinician 
activity, the 2-hr Oral Glucose Tolerance Test (2hr-OGTT), 
in which an oral load of glucose is ingested and the glucose 
level is sampled after two hours. In contrast to the HOMA 
and 2hr-OGTT, which only require a nurse to perform, the 
DISTq protocol requires a more clinical environment with 
either nurses or doctors with experience in giving 
intravenous insulin, who can respond to hypoglycaemia if 
necessary. The DISTq protocol takes 30 - 45 minutes to 
perform and includes blood samples every 5 to 10 minutes, 
which is of greater clinical intensity than the 2hr-OGTT, 
which only requires one (sometimes two) blood samples. 
Thus, to be considered as a viable clinical option, the DISTq 
must predict SI, as well as changes in SI in response to 
therapy or intervention, with greater accuracy and reliability 
than either the HOMA or 2hr-OGTT. 

 The 2hr-OGTT has correlated well to the euglycaemic 
clamp, achieving R=0.74 [16]. This result is in contrast to a 
number of studies, which show relatively low repeatability in 
terms of re-classifying NGT, IGT and T2DM subjects (50-
65% repetition) [7, 10, 34]. In contrast, Fig. (7) shows DIST 
and DISTq should capture changes in SI much better than 
HOMA, and would likely have similar performance 
compared to the OGTT as noted above. 

 The DISTq differs compared to the 2hr-OGTT by the 
approach in which insulin and glucose are elevated in the test 
subject. Insulin is not measured in either the 2hr-OGTT or 
DISTq. However, the DISTq protocol introduces a known 
bolus of insulin at a known time, which is not done in the 
2hr-OGTT. This bolus accounts for the majority of the 
subjects’ plasma insulin and allows significantly more 
accurate predictions of the insulin concentration that are not 
possible in the 2hr-OGTT protocol, which relies only on an 
endogenous response to a larger glucose challenge. The 
endogenous insulin response is much more varying within 
individuals and is harder to predict. In addition, the 2hr-
OGTT protocol primarily measures the ability to dispose of 
glucose, and the efficiency of insulin is not assessed. Thus, 
the derived metric is not a fully true reflection of SI, but it is 
instead an overall measure of the ability to dispose of 
glucose. The 2hr-OGTT metric is thus effective in some 
clinical scenarios, such as in diagnosing individuals with 
impaired glucose tolerance (IGT) or type 2 diabetes (T2DM). 
However, it is not suitable in studies where accurate 
assessment of insulin sensitivity, or modest changes in this 
value over time or therapy are critical, such as when 
monitoring the patient response to drug therapy. Thus the 
2hr-OGTT is an accepted crude T2DM diagnostic test, but 
not effective in tracking or quantifying insulin sensitivity 
changes. 

 The HOMA is a simple protocol requiring only one blood 
sample analysed for glucose and insulin. A simple linear 
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formula then calcualtes an individuals insulin resistance 
level [18]. However, this simplicity means that the derived 
metric is not representative of insulin mediated glucose 
disposal in a dynamic, non-fasting situation. The pulsatile 
nature of insulin secretion [31, 35] and lag in the insulin-
glucose dynamics cause effectively random errors in the 
derived HOMA metric. The relatively poor correlation of 
HOMA to the euglycaemic clamp SI metric (ISIG) (R=-0.37) 
found in this study emphasises the uncertainty created by 
these fluctuations. Furthermore, Fig. (7) shows that HOMA 
has a clear inability to capture modest changes in SI due to 
intervention and therapy. The SIDISTq derived in the Monte 
Carlo study accurately repeated the clinically observed 
intervention-driven intra-patient change in ISIG with a 
correlation of R=0.92. In contrast, the HOMA achieved a 
much lower R=-0.22 correlation. These results indicate that 
the DISTq approach should be a better and more effective 
test in presence of the physiological and clinically induced 
variations accounted for in the Monte Carlo study. 

 This strength can be largely attributed to the pacifying 
effect that a longitudinal intervention study has on the 
DISTq sub-process that introduces greatest variability. In 
particular, the primary cause of variability in SIDISTq is the 
population-based parameter estimation stage (Equations (14) 
to (18)). The average error between the full DIST solved 
parameters and the parameters derived from Equations (14) 
to (18) is approximately 35%. Although this value is 
significant, the effect on SI is minimised by the specific 
structure of the DIST protocol and DISTq method. As 
changes in these estimated parameters are likely to be 
minimal during a longitudinal study between interventions, 
or if measured regularly over 3-12 month intervals, the 
change in SI can be defined by the changes in the gradient of 
glucose caused by the altered efficiency of the insulin bolus 
in the subject. Studies that could utilise DISTq include drug 
trials for enhancing insulin sensitivity and interventional 
dietary or lifestyle studies. 

 Although the prediction capability of the DISTq method 
exceeds that of tests with similar intensity, the CV of the 
derived metric is relatively high. The CV of 21% predicted 
by the Monte-Carlo simulation is higher than what would be 
expected in the 2hr-OGTT or the HOMA. However, for 
diagnostic purposes this effect can be ameliorated. In 
particular, the stored blood samples from borderline 
diagnoses could be analysed for insulin and C-peptide and an 
SI value found using the full DIST analysis. Thus, an SI 
value with a much greater certainty could be estimated 
(CV=4-6%) and the subject would not have to participate in 
another test. Although, this solution would eliminate the 
real-time capability of the test for cases with borderline 
DISTq results, it would only be necessary in limited cases 
needing more resolution. 

4.3. Clinical Impact, Issues and Limitations 

 The area of significant clinical interest is the lower end of 
the SI scale (1.0-5.0 e

-4
L·mU

-1
·min

-1
), as most individuals 

with diabetes risk would fall into this range [24]. The CV of 
the DISTq is highest in this range due to a number of factors 
in the method and protocol. The small glucose disposal rate 
variations generated by the Monte Carlo simulation alter the 
SI predictions. In particular, small shifts in this SI have a 

greater effect on the unknown parameter estimation sub-
process as the equation gradients are highest in this range. 
The re-simulated insulin concentration profile would incline 
SI further in the direction of any noise generated change. 
This error and its propagation is unavoidable with this 
method. The higher gradients in this range are necessary to 
capture the rapid increase in pancreatic insulin output and 
basal insulin concentration found in some pre-diabetic states. 
However, again, any borderline diagnosis with a DISTq 
could result in a more accurate DIST being done with stored 
blood, as only the assays used are different between DIST 
and DISTq analyses. As a result, expensive insulin and C-
peptide assays are taken only where needed and a hierarchy 
of tests is enabled. 

 This variability in metabolic response to the test for 
subjects with low SI increases the parameter estimation 
uncertainty in the low SI region for the DISTq. The increase 
in error is partly a result of the nature of the natural 
progression of type 2 diabetes. A newly diagnosed type 2 
diabetic individual can exhibit a low SI with very high basal 
insulin concentrations and high second phase insulin 
secretion (Uen). In contrast, a long-term type 2 diabetic 
individual with the same or very similar SI may have either 
exhausted or significantly diminished beta cell function, 
resulting in very low basal and second phase insulin 
secretion levels. Hence, there are two very similar SI values 
with markedly different endogenous insulin responses 
depending on time of exposure to the disease. This 
characteristic can be observed as the “trumpet” shape seen in 
the parameter estimation graphs of Fig. (3) at a low SI. 
Accounting for these differences remains a topic of future 
research. 

 The clinical real-time capability of the DISTq may allow 
new applications to benefit from SI testing. Glycaemic 
control and sepsis diagnosis in an intensive care environment 
could be improved [19]. It may also aid the planning of 
glycaemic regulation for newly diagnosed diabetic 
individuals. Further research must be undertaken to ensure 
that the protocol is suitable, and that the population-based 
equations are relevant in these situations. 

5. CONCLUSIONS 

 Accurate SI estimation is possible in clinical real-time 
with only glucose samples using the DIST protocol and a 
number of population based parameter assumptions. There is 
a strong correlation between fully sampled SIDIST and SIDISTq 
of R=0.91, which is maintained outside the parameter 
estimation population. The method is robust as the protocol 
avoids saturation characteristics and allows very good 
assumptions about an individual’s insulin concentrations. 

 When choosing an insulin-sensitivity test the clinician or 
researcher should decide what level of resolution, intensity, 
cost, complexity, speed and confidence is best suited for that 
particular application or study. The DISTq is not an answer 
for all of these purposes, but should be considered when a 
low intensity, very inexpensive, but relatively accurate 
estimation of SI is desired. The low cost and relatively low 
intensity for the accuracy and resolution delivered may allow 
greater numbers to be studied or tested. The test requires 
advanced mathematical processes, but once provided, the 
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data can be analysed and delivered in clinical real-time and 
the researcher or clinician can thus get a result immediately. 
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