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Abstract
This paper introduces a distributed and fine grained ac-

cess control mechanism based on encryption for XML doc-
ument centric collaborative applications. This mechanism
also makes it possible to simultaneously protect the confi-
dentiality of a document and to verify its authenticity and
integrity, as well to trace its updates. The enforcement of ac-
cess control is distributed to participants and does not rely
on a central authority.

Novel aspects of the proposed framework include the
adoption of a decentralized key management scheme to sup-
port the client-based enforcement of the access control pol-
icy. This scheme is driven by the expression of access pat-
terns of interest of the participants over document parts to
determine the keys required. A lazy rekeying protocol is
also defined to accommodate the delegation of access control
decisions that in particular reduces rekeying latency when
faced with the addition and removal of participants.

1. Introduction
Digital documents are an increasingly central concern

in today’s inter organizational exchanges and collaboration
processes, as illustrated by the multiplication of XML stan-
dards for instance. In many cases, such documents are com-
posite in that they are originated by multiple authorities in
charge of their own portion of the document ruling who may
read or edit fine grained parts of it. The document edition
process is becoming increasingly collaborative with partici-
pants joining and leaving the collaboration in particular be-
cause of mobility or churn. This increasing complexity has
been accompanied by the need to delegate access control to
handle situations in which an authority is unavailable. Fur-
thermore, the participants may exchange documents arbitrar-
ily, thus raising various security issues like integrity, con-
fidentiality, authenticity, or forward and backward secrecy
[11].

Centralized XML access control, which has been vastly
studied (see for instance [3, 7, 6, 10, 13, 20, 18]), relies on
an authority that maintains document repositories and en-
forces access control on a per request basis. A distributed
setting pleads for new models of access control in which ac-
cess control specification is decoupled from its asynchronous
enforcement.

We describe in this paper1 basic mechanisms for en-
abling a collaboration framework that allows a selective, dis-
tributed, and flexible accesses to be made on document nodes
and traced. Our approach is document driven and in particu-
lar aims at controlling the access to a document through the
encryption of its parts with keys shared by a group of par-
ticipants with similar access rights. It makes use of a tree-

1This work is partly supported by the EU IST-2004-026650 project

”R4eGov”.

based group cryptographic technique which we adapt for fine
grained and multi-authority access control. Our technique in
particular limits the scope of rekeying when participants dy-
namically join or leave.

The paper is organized as follows. Section 2 introduces
a collaboration edition scenario on XML documents and the
scope and objectives of our solution. Section 3 provides an
overview of our solution. Access control policies and their
relationships with access patterns expressed by participants
are discussed in Section 4. Section 5 introduces our key man-
agement scheme and the lazy rekeying approach. Section 6
describes the structure and usage of protected documents.
Section 7 discusses the security of our controlled document
edition protocol. Section 8 finally compares the scheme pre-
sented in this paper with related work, followed by a conclu-
sion.

2. Motivating Example
European Union (EU) administrative bodies, Europol and

Eurojust, and the associated law enforcement authorities of
27 member states [5] collaborate whenever there is an oc-
currence of cross border organized crime. Europol and Eu-
rojust have representatives, respectively a Europol National
Member and a Eurojust National Member, for each of the
27 member states. Each member state has its national con-
tact points (National Authority) for Europol and Eurojust.
This collaboration entails a request for Mutual Legal Assis-
tance (MLA). In such cases, participants collaboratively de-
fine and work on a document called European Arrest Warrant
(EAW ), as follows:

1. A Europol National Unit of country A (ENUA) makes
a written request of assistance (for a witness protec-
tion) to a Eurojust National Member of country A
(EJNMA).

2. The EJNMA opens a Temporary Work File (Twf) in a
local Case Management System (CMS).

3. The EJNMA contacts Eurojust National Member of
country B (EJNMB) by forwarding the request of as-
sistance.

4. The EJNMB contacts the responsible national author-
ity of country B (NAB). Steps are taken by the respon-
sible NAB to provide the requested assistance.

Figure 1 depicts a simplified EAW document instance com-
posed of four document parts instances. It distinguishes the
ownership of different parts of the EAW document by dotted
rectangles around subtrees. ENU is the owner of the sub-
tree rooted at ENU. Similarly EJNM and NA are the owners
of the subtrees rooted at nodes EJNM and NA respectively.
The EAW schema and labeling scheme used in Figure 1 is
detailed in [21]. Collaboration activities rely on the secure
edition of the EAW document as described in the following.
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Figure 1. Four document part instances: ENUA, EJNMA, EJNMB and NAB of EAW document.

2.1. Scope
1. Distributed Document Sources. Parts of a document

are issued asynchronously by participants that have to
share a common document schema. Still, access to the
different fields of the EAW document should abide by
the local regulations and policies, which might vary de-
pending on the European Union country or administrive
body. For example, one country’s law may prohibit the
disclosure of the religious beliefs of a suspect, while it
may be perfectly legal elsewhere.

2. Fine Grained Document Access. NAB may need to ac-
cess a deeply nested element PersonName contain-
ing a suspect’s name that is owned by the manager of
EJNMB. Access patterns may range from the whole
document to an individual element. These also may
specify document content to capture the context which
can be dynamic as participants perform their edition.

3. Document Distribution. No central repository should
be assumed to be available. Document editors are sup-
posed to send new or updated documents to other par-
ticipants, an ENUA employee sending his update to an
EJNMA employee for instance, or to store them into a
peer-to-peer network.

4. Autonomous Document Access. At any time, a partici-
pant may need to access document parts that are orig-
inated by an authority that may become unavailable,
provided the document can be obtained from another
participant for instance. The edition of the document
should not require a strong synchronization among all
participants, and reconciliation algorithms and policies
might be necessary if concurrent updates can happen
due to the distribution scheme.

2.2. Security Objectives
Document Authorization:

1. Access Decision Delegation. For scalability reasons,
access control decisions cannot be performed in cen-
tralized fashion, especially in scenarios involving vir-
tual organizations or multiple authorities. For exam-
ple, one may delegate the access decision regarding
PersonName to a subordinate during vacation.

2. Distributed Control of Data Disclosure. Only autho-
rized participants should get access to the protected
document parts, yet access control enforcement should
not rely on a central authority.

Document Protection:
1. Document Confidentiality. Selected document contents

should only be disclosed to the authorized participants.

2. Document Authenticity. Participants should verify that
the received document is from an authentic source.

3. Content-wise and Structural Integrity. Participants
should be able to verify the content-wise and structural
integrity of a document as intruders may alter original
documents or inject invalid ones.

4. Traceability of Document Access. All accesses by par-
ticipants should be tracked. Our proposal traces update
access only, in particular to ensure that the update of a
document part was performed in conformance with the
authorization policy.

3. Solution Overview
This paper describes a distributed XML document access

control scheme for XML documents featuring a two phase
controlled edition protocol. This section outlines the edition
protocol and introduces the encryption scheme used for the
client based enforcement of access control.

3.1. Edition Protocol
Every run of the document edition protocol starts with an

interest specification phase, in which all the interested par-
ticipants request access to document parts to their direct au-
thority (the owner in the beginning). Participants express
their interest using access primitives described at Section
4.1. Upon receiving those descriptions, the participant’s au-
thority evaluates requests with respect to its access control
policy and determines which participants share the same ac-
cess interests (see Section 4.2). The authority finally dis-
tributes control information (Section 5.2) used by the partic-
ipants to enforce access control and to manage group mem-
bership.

The protocol then moves on to a collaboration phase, in
which actual accesses are performed on the document. The
various parts of the exchanged documents are encrypted ac-
cording to the access control policy. Access to a document
part is made possible only through the computation of a com-
mon secret key based on the control data received from their
authority (Section 5.3). Participants performing updates also
have to encrypt the document parts they modified.
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their DH values in the leaves. The notation k → αk means

that participants compute the DH private value and then

compute the DH public value BK = αk and broadcast it.

3.2. A Distributed Approach
Autonomous document distribution and access plead for

the enforcement of authorizations and protection objectives
through a client based approach using data encryption as op-
posed to server based access control enforcement. In addi-
tion, scalability makes it infeasible for a single authority to
manage every participant. While access control models like
RBAC make it possible to hide some complexity in the user
and even resource dimensions, they do not provide enough
control to address the fine-grained authorizations required
at document level. The authorization scheme proposed in
this paper deals with such aspects by having participants in-
volved in the access control decision and by making them
local and accountable authorities.

It ensures at least a partial availability of documents
through the separation of document transmission, which can
rely on caching, peer-to-peer exchanges, or even sneaker-
net transmission from access control enforcement. This can
be made scalable through key management and an a poste-
riori compliance verification of updates with the policy. A
centralized access control system constituting a single point
failure is for instance more subject to denial of service with
respect to document availability.

3.3. Dynamic Groups
Our approach relies on the encryption of document parts

to protect their access. Decentralizing access control en-
forcement through a static encryption scheme is however
not enough to address dynamic changes in group member-
ship. We also assume that participants might not know each
other, except through their hierarchy, subordinates, or past
collaborators, and that some organizations specifically want
to retain the management of their personnel and authoriza-
tions. These issues are addressed through the adoption of a
rekeying mechanism by which adding a new member would
only imply updating the keys of the groups sharing his access
interests. Keying and rekeying are done with a tree based
group Diffie-Hellman (TGDH) protocol [11] (see Figure 2)
operated on a binary key tree 2.

This scheme was developed to allow a group of partici-
pants to compute a common secret based only on the par-
tial knowledge of other members of the group and without
relying on a central authority, which also provides back-
ward and forward secrecy. The TGDH original paper as-
sumes that, when a participant joins or leaves, all others

2The key tree is a binary search tree. The list of nodes in the path from

the leaf to the root are termed a key path. A sibling path is the list of sibling

nodes of the nodes in a key path.

rekey together either synchronously as in the original scheme
or semi-synchronously using an interval based rekeying [14]
or a non-blocking rekeying [15]. In contrast, our approach
is asynchronous and rekeys (see Section 5.4) only when re-
quired upon receiving a document encrypted for the updated
group.

3.4. Document-Based Updates
To address the abovementioned issues, the group updates

required by participants joining and leaving are piggybacked
with the document. These updates are then communicated
when a document is exchanged among participants, thereby
suppressing the need for broadcasting synchronizing all par-
ticipants. The group update information does not contain a
whole tree update and therefore requires a limited memory
for secret key computation. Upon receipt of a document,
participants can decide whether they need to rekey to access
one particular part of the document, a process we call lazy
rekeying.

4. Access Control Policy
This section describes how participants interested in ac-

cessing some document part can express access patterns that
will be matched against the access control policy. Partic-
ipants can describe targets in the document which we call
Expressions of Access Interest (EAIs), as can be described
with X-Path or X-Query3. A V alid EAI refers to such a tar-
get whose presence in the document has been validated by
the authority such as the owner of the document. This sec-
tion describes how a policy rule can express the access to
such a target using access primitives (View, Append, Delete,
Rename) and how to determine participants with a similar
access interest.

4.1. Access Expressions
We extend the access primitives described in [19] and

adapt them to cryptographic enforcement. An access con-
sists in an operation that a participant performs on one or
several parts of a secured document, and for which he re-
quests the distribution of appropriate keys. The document
parts on which the operation will take place are defined by
V alid EAIs (’targetEAI’ and/or ’sourceEAI’) and a propa-
gation value. The propagation is described by a non-negative
integer value n or the + symbol respectively indicating that
the access interest is propagated towards the n-th descen-
dant nodes (elements and its attributes) or the whole subtree,
n = 0 meaning no propagation.

Access Primitives. An access primitive is a function tak-
ing the abovementioned parameters as inputs and returning
a subset of a document part, as follows:

1. View(targetEAI, [Propagation]). The View primitive
returns the nodes of the document part that matches the
valid ’targetEAI’. For a propagation value of 0, only the
matching node with the ’targetEAI’ without the descen-
dant nodes is returned.

2. Append(targetEAI, newNode, [Propagation]). The
Append primitive creates a new node (i.e. ele-
ment,attribute) with the name ’newNode’ as a child
node of each matching node of the valid ’targetEAI’. If
the propagation value is 0 only the first matching node
is considered.

3We also defined a label based language [21] for expressing access in-

terests based on the document semantics rather than its syntactic structure

as X-Path or X-Query do; still our access control policy expression is quite

independent from the target description language. Such labels are used in

Figure 1.
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3. Delete(targetEAI, [Propagation]). The Delete primi-
tive deletes the nodes rooted at the matching valid ’tar-
getEAI’. The deletion is performed either up to the n-th
descendants of the matching node or the whole subtree
from that node.

4. Rename(targetEAI, newName[ ], [Propagation]).
The Rename primitive renames the nodes of the doc-
ument parts matching the valid ’targetEAI’. It is prop-
agated either down to the n-th descendant nodes of the
matching node or down the whole subtree rooted at the
matching ’targetEAI’. Each propagation of the access
primitive renames the corresponding descendant node
with a new name from the list ’newName[ ]’.

We term Append, Delete, and Rename as update primitives
hereafter. Update primitives implicitly grant a permission for
the View primitive to the nodes they apply to. Other oper-
ations like Copy(sourceEAI, targetEAI, [Propagation]) and
Move(sourceEAI, targetEAI, [Propagation]) can be built us-
ing these primitives. Copy creates an exact subtree up to
n-th descendants of the document parts rooted at the node
matching the valid ’sourceEAI’. The created subtree is then
appended as a child of the nodes matching the valid ’tar-
getEAI’. Intuitively, it uses the Append primitive. Move
does exactly the same operation as Copy except that it ad-
ditionally deletes the subtree matched by the ’sourceEAI’.

Credentials. We assume that the access control policy
is described based on credentials associated with the partic-
ipants. Such credentials, which are outside the scope of this
paper, should make it easy to determine whether a partici-
pant can read and subsequently control the dissemination of
some part of a document. In applications involving the col-
laboration of several organizations, credentials would likely
describe organization or group membership, roles, clearance
level, or possibly trust. Our only assumption is that cre-
dentials combine such information together with the partici-
pant’s public key, either through the signature of a certificate
by an appropriate authority or through secured exchanges
between trusted modules. Access control rules are formed
through the association of credentials with access primitives.
Access interest requests sent by participants to obtain the
common secret key corresponding to a given primitive as-
sociate the participant’s access key related to this primitive

together with the access primitive description. Such requests
are signed with the participant’s key for authentication pur-
poses.

4.2. Common Access Interest
The authority determines a disjoint set of all common ac-

cess interest groups (CIGs) with respect to the ’targetEAI’s
of all the access interest requests received at the interest
specification phase. We assume thereafter that the authority
is a member of every group it is managing. Let us assume
two access primitives ap1 and ap2 from P1 and P2 contain-
ing targetEAIs e1, e2 respectively refer to the two subtrees
S1 and S2 of the document part di and Oi is di’s authority.

Disjoint Sets. If S1 and S2 are disjoint, meaning S1∪S2 =
null, then e1 and e2 do not overlap. P1 and P2 are as-
signed to two disjoint sets of common access interest groups
CIGap1 ={P1} and CIGap2 ={P2} respectively.

Non-Disjoint Sets. If any subtree S2 is either (1) en-
tirely subsumed by the other S1, or (2) partly subsumed by
the other S1, then some overlapping occurs between e1 and
e2. Determining the disjoint set of common access interest
groups in this case proceeds as follows. Regarding case (1),
two disjoint subtrees of nodes are determined: one with the
subsumed subtree S2 and the other with S1\S2. Regarding
case (2), three disjoint subtrees of nodes are determined: one
with S1\S2, the second with S1∩S2 and the last with S2\S1.
Each disjoint subtree is associated with an access primitive
accordingly.

Update vs. View. Update primitives (U = ap ∈
{A,D, R}) generate two different groups CIGUi

and CIGVi

while View primitives (V = V iew) require only one group
CIGVi to be formed. Note that any participant having an
Update access interest may need to be a member of multiple
groups because of the implicit granting of a view access and
of the overlapping of different access interests:

• In case (1), assuming that e1 and e2 respectively re-
fer to view and update primitives, the disjoint groups
formed are: CIGV1\2 = {P1}, CIGV2 = {P2} and

CIGU2 ={P2}. If on the contrary e1 and e2 respectively
refer to update and view primitives, the disjoint groups



formed are now: CIGV1\2 = {P1}, CIGU1\2 = {P1},
CIGV2 ={P1, P2} and CIGU2 ={P1}.

• In case (2), assuming that e1 and e2 respectively re-
fer to view and update primitives, the disjoint groups
formed are: CIGV1\2 = {P1}, CIGV1∩2 = {P1, P2},
CIGU1∩2 = {P2}, CIGV2\1 = {P2} and CIGU2\1 = {P2}
. In contrast, if e1 and e2 respectively refer to update
and view primitives, the disjoint groups formed are:
CIGV1\2 = {P1}, CIGU1\2 = {P1}, CIGV1∩2 = {P1, P2},
CIGU1∩2 ={P1} and CIGV2\1 ={P2} .

Figure 3 depicts case (1) and (2) considering view and ap-
pend primitives for S1 and S2 respectively from P1, P2, P3
and P4, P5. A similar figure for the append and view primi-
tives for S1 and S2 can be found in [21].

5. Key Management
A participant may have different access interest (View,

Append, Delete, Rename) depending on its collaboration
needs which they convey to the authorities by sending access
primitives. An authority needs to identify the participants
based on their signature in the access primitives. In effect
the participants may not know other participants who have
the same access interest yet they want to compute a common
secret key keeping their privacy. In the case of unavailability
of the authority, participants should be able to act as dele-
gate. As a result participants need means using which they
will be able to not only compute common secret keys of the
groups they are in but also to be a delegate dynamically.

This section introduces three different keys and their
management to achieve those. First, participant key pair
(PKi, SKi) associated with each participant Pi to relate
them with credentials as described in Section 4.1 and is not
discussed further. Second, access keys associated with each
access primitive identifies particular access interest of a par-
ticipant. Finally, a common secret key defines each com-
mon access interest group.

Notation. In the sequel of the paper, d refers to a docu-

ment made of n document parts di∈[1,n]. d̂i refers to the root
node of any document part di. M andK denote the message
and key space respectively. h1 and hM denote a one way
hash function and a Merkle hash function [1] respectively.
The encryption and signature of a message m ∈ M with
key K ∈K is written as [m]K and Signa(m) = [h1(m)]Ka

(where Ka is the private key of a) respectively.

5.1. Access Key Generation
Each participant Pi possesses a set of access key pairs

(SKi
ap, PKi

ap) associated with a particular access operation
ap. These keys also serve to compute the common secret
key used for document encryption and decryption. Based on
a new unique private access key SKi

ap, the participant gen-
erates his corresponding public access key using the Diffie-
Hellman scheme [9].

PKi
ap = αSKi

ap mod p

Participants Pi send a message consisting of the access prim-
itive and the corresponding public access key PKi

ap signed
using the participant’s private key SKi to Authority Ai.

Pi∈[1,n]

SignPi
(AccessPrimitive(),PKi

ap)−−−−−−−−−−−−−−−−−−−−−−→ Ai

0

3

2

4

1

O1 P1

P2

SK PK1
apO1

PK2
ap

PK1
ap

SKO1

PK1
ap

SKO1

PK2
ap

P1’s Key path = { 4 , 1 }

P1’s Sibling path SP1 = { 3 , 2}

P2’s Key path = { 2 }

P2’s Sibling path SP2= {1}

Figure 4. Owner Oi’s key tree with two participants P1 and P2.

Oi computes the sibling paths for P1 and P2.

5.2. Control Data Block Distribution
After determining the common access interest groups the

authority takes the charge of building a control data block
CDAi containing information for common secret key com-
putation for each member of a group it manages. This block

consists of a set of individual blocks CD
z∈[1,m]
Ai

for m mem-

bers of group CIGdi
ap interested in document part di for ac-

cess ap and defined as follows:

CD
z∈[1,m]
Ai

= [SPz]PKz

SPz is the sibling path containing a list of public DH values
that participant Pz uses to compute its key-path. The number
of such values being variable with the participant but always
smaller or equal to number m of participants in that group
and larger than or equal to log(m) in case of a balanced tree.
Note that, these values are computed DH public values of the
group members rather than being the public participant keys
of the members. This prohibits one participant to identify
other members in the group and thus they remain anonymous
to him.

The authority finally encrypts and sends each individual
block CDz

Ai
with the public key PKz of every participant

Pz as determined from the submitted credential and signed
requested access pattern.

Ai

CDz
Ai−−−−→ P

z∈CIG
di
ap

Knowledge of the control data block enables each participant
to compute the common secret key of its respective groups
and act as a delegate afterwards. Such a message cannot
be intercepted since each individual block is encrypted with
authorized member’s participant public key.

5.3. Common Secret Key Management
In TGDH, every node in the key tree (Figure 2) is as-

signed a unique number v, starting with the root node that is
assigned 0: the two child nodes of a non-leaf node v are set
to 2v +1, and 2v +2 respectively. Each node v is associated
with a key pair consisting of a DH private value Kv and of
a DH public value BKv , relying on the hardness of solving
the discrete logarithm. For every node v, Kv is computed
recursively as follows:

Kv =

⎧⎨
⎩

(BK2v+1)
K2v+2 mod p; if v is a non-leaf node;

= (BK2v+2)
K2v+1 mod p

= αK2v+1K2v+2 mod p
SKi

ap; if v is a leaf node.

In short, computing the DH private value Kv of a non-leaf
node requires the knowledge of the DH private value of one
of the two child nodes and the DH public value of the other
child node. In effect, one participant only needs to compute
the DH private values along its key-path. In other words, one
participant only needs to know the DH public values of the
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Figure 5. (a) P1, P2 and P3’s key-paths with two data structure (i.e. TES/TEK, Neighbor List). (b) after P4 joins to P1. (c) Lazy

rekeying of P2 and P3 after receiving document envelope from P1. DocEnv(..) is the secure document envelope (Section 6.1).

siblings of the nodes of its key-path (sibling path). There-
fore, the value K0 computed for the root is the secret for all
the participants (including owner). At this point, the com-
mon secret key is derived from the shared secret as follows:
CKdi

ap =h1(K0).
In a distributed environment like the EAW scenario (Sec-

tion 2), one cannot assume the presence of any centralized
entity for computing and distributing the common secret key.
Even if such an entity were available, it would constitute a
single point of failure thereby rendering the system vulner-
able. In contrast, the owner (original authority) takes the
charge of initializing the group collaboration by exploiting
the key tree structure of TGDH. In particular, the owner gen-
erates a key tree by providing its DH private value in one
leaf node and taking other participants’ DH public values (i.e
Public access keys (PKi

ap)) one by one as other leaf nodes.
Example. Figure 4 illustrates how the owner O1 builds

the key tree for two participants with keys PK
i∈[1,2]
ap . Once

the key-tree is generated, the owner determines the sibling
path values SPz∈[1,2] and sends them as part of control data
block required for P1 and P2. �

While the owner initiates group collaboration, the scheme
is not centralized as multiple owners can intervene on their
respective documents, and as the participants compute the
common secret key along their key-paths independently.
Moreover, the computation of the shared secret is contrib-
utory [11] by nature as the owner takes public access keys
of all participants as the leaf nodes of the logical key tree
to compute the common secret key and therefore SPz . Fur-
thermore, this scheme has a twofold advantage. First, partic-
ipants can compute the common secret key without generat-
ing the complete key tree nor identifying other participants
in the group, which is essential with respect to document
centric exchanges. Second, group membership scales as de-
scribed in [14, 11].
Definition 1 Protected Document Part de

i : Given a common
interest group CIGdi

ap with a ’targetEAI’ e over a document
part di, any participant in the group can build a protected
document part de

i by encrypting all nodes N ∈ e with the
common secret key CKdi

ap while other nodes of di (i.e. di\N )

are left unchanged. �
According to the definition any participant having the com-
mon secret key CKdi

ap is able to get ap ∈ {V,A, D, R} ac-

cess to N ∈ e of de
i . The document owner is assumed to

originally distribute a protected document in which all sub-
trees are protected with appropriate common secret keys as
determined by the set of access interests it received.

5.4. Lazy Rekeying
Managing dynamically joining and leaving participants

requires updating the common secret key. Lazy rekeying
refers to re computation of a new common secret key by a
participant only when it requires to do so (see Figure 5). This
will take place when interacting with a participant that knows
about a different version of the group, which may happen
upon receiving a document envelope (further described in
Section 6.1).

Definition 2 Neighbors: A neighbor of participant Pi is
member of a TGDH group who provides DH public values
contributing to the computation of the DH private values
along the key path of Pi. �
It can be observed from a participant’s point of view that any
dynamic change in its neighbors incurs an update in its key-
path and similarly any dynamic change in its non-neighbors
incurs an update in its sibling path. In particular, incurred
dynamic changes cause new DH values to be computed in
corresponding key paths and sibling paths.

Definition 3 Top End Key-path Value (TEK) and Top End
Sibling-path Value (TES): A participant Pi’s TEK is the com-
puted DH private value associated with the top most node
along its key path and TES is the received DH public value
associated with the top most node along its sibling path. �
Example. In Figure 2 P1 and P2 are neighbors to each other
and so are P3 and P4. The DH values of nodes 1 and 2 are the
TEK and TES for P1, P2 respectively and the DH values of
nodes 2 and 1 are the TEK and TES of P3, P4 respectively.
In other words, neighbors have exactly the same TEK and
TES for a common access interest group. �

Lazy rekeying relies on the usage of Neighbor List and
the pair TES/TEK maintained by each participant in a



group where TES/TEK values are piggybacked with the se-
cure document envelope. The usage of Neighbor List and
TES/TEK is as follows: Pi updates its neighbor list and TEK
only when acting as a delegate for a joining/leaving event
or receiving a secure document envelope containing a new
TEK value indicating there has been a change in its neighbor
list. Pi updates its TES only when it receives a document
envelope containing a new TES value meaning there is a dy-
namic change in the key-paths associated with it’s TES. The
TES/TEK being piggybacked merely adds a small amount of
information to the envelope, which makes it scalable.

As group membership changes (further described in Sec-
tion 5.5), initial re computation is performed only for the
key-paths associated with the current authority and the par-
ticipant that is subject to join or leave. The pair TES/TEK
also contains the subject participant’s key (not shown in the
Figure 5) so that recipient can update its neighbor list ac-
cordingly. At this point, both can either exchange previous
document updates to the existing group members or perform
new updates in documents and then send document updates
to the current group members including or excluding the sub-
ject participant. In the former case, the secure document en-
velope contains the previous TES/TEK whereas in the lat-
ter case, a new TES/TEK is introduced. Dynamic changes
in the group are not broadcasted and the members that did
not interact with newcomers still can collaborate using pre-
vious common secret keys and they will not even notice the
join/leave event.

Example. In Figure 5, P1, P2 and P3, originally un-
der Oi’s authority (not in the figure), have an initial Neigh-
bor List of respectively [P2, P3], [P1, P3] and [P1] (a.1). P1

and P2’s TES/TEK as [2]/[1]4 and P3’s TES/TEK as [1]/[2]
(a.1). All of them have computed the common secret key
CK1 (a.2). When P4 joins with the delegate authority P1:
P1andP4 can compute their new key-paths and update their
Neighbor List to [P2, P3, P4] and [P1, P2, P3] (b.1). P1 and
P4 update their TES/TEK with the new value of [2]/[1.1]
(b.1). At this point P1 and P4 can compute the new com-
mon secret key CK2 (b.2). However, P2 and P3 are unaware
about this joining event and thus do not know P4’s identity.

If P1 sends a secure document envelope with an updated
TES/TEK [2]/[1.1] to P2, the latter will notice TEK’s up-
date and thus the change in its neighborhood by comparing
its TES/TEK with the received one (c.1). P2 then updates its
TES/TEK (c.2) and computes the new common secret key
CK2 in order to decrypt the document envelope (c.3). Simi-
larly P3 can update its neighbor and TES/TEK and compute
the key CK2 if P1 sends a secure document envelope con-
taining updated TES/TEK [1.1]/[2] to P3 (c.4,c.5,c.6). Note
that the sent TES/TEK is inversed for P3 with compare to P2
as P3’s TEK is P2’s TES in the key tree. �
5.5. Joining and Leaving

The authority delegates its access decision among the par-
ticipants it is managing so that a group of participants can be
updated dynamically even when the owner (initial authority)
is unavailable. We now assume that the control data block
CDAi

introduced in Section 5.2 contains additional infor-
mation, in particular the description of access decision del-
egations and a description of the access control policy rules
that apply to the document part whose access is granted to
group members, as follows:

CD
z∈[1,m]
Ai

= [SPz, CertA1..CertAi , SecObj]PKz

(CertA1..CertAi
) denotes a chain of certificates origi-

nated from the owner Oi (i.e. A1) to the participant Pz

4The labeled integer value of a key tree node represents the correspond-

ing DH values.

for an access primitive ap ∈ {V,A, D, R}. Each certificate
CertAi =SignAi(PKz, PKz

ap) asserts that the authority Ai

authorizes Pz to perform the access ap over the document
nodes of di by binding PKz with PKz

ap in a signature. The
first certificate in the chain being from the owner enables a
participant to be a delegate which then also may add its cer-
tificate in the chain delegating further. This certificate then
can be used as a proof to other participants of CIGdi

ap that Pz

was entitled to access di. This can be also used to trace that
Pz has performed the updates on di.

’SecObj’ defines security objectives, i.e., access control
policy rules relevant for the di, like for instance the fact that
the data referred to in the di should be reserved to the Ger-
man police. Based on the chain of certificates and the ob-
jectives, the participant, acting as a delegate for the owner,
takes over the access decision related tasks of the owner in
the interest specification phase, and can evaluate later access
requests.

A new participant sends its access primitives to an author-
ity Pr it knows just as described in Section 5.1. Pr being a
delegate evaluates the new participant’s request and deter-
mines its eligibility to becoming a new member of an ex-
isting group (or to create a new group). Pr re-computes its
key path taking the new member’s access key into account
and sends control data to the new members as described in
Section 5.2.

The access control policy might additionally specify
whether backward secrecy applies to the new participant,
which should be described in ’SecObj’. If it does, the new
member can start document exchanges using the new com-
mon secret key from that point on. Otherwise, the authority
sends the previous n common secret keys to the new member
Pj so that it can observe the previous updates and collaborate
on these if possible.

Pr

[CK1...CKi..CKn]P Kj−−−−−−−−−−−−−−−→ Pj

In case of a voluntary leave, the participant sends its asso-
ciated certificate CertAi

=SignAi
(PKz, PKz

ap) in similar
fashion to the direct authority Pr it joined before.

Pi∈[1,m]

[CertAi
]P Kj−−−−−−−−→ Pj �=i∈[1,m]

Pr deletes the leaving member node from its key path and re-
computes its new key-path. More often, the participant’s au-
thority will decide on his group members’ leave. If forward
secrecy applies Pr immediately sends a secure document en-
velope with new TES/TEK values to the available members
of the groups wherein the leaving participant was a member
of so that they can re compute the new common secret key.
The other available members may not collaborate on doc-
ument updates performed with the new key right after new
members join and thus do not recompute the new common
secret key. This means that available members recompute
the corresponding common secret key in a lazy fashion only
when they receive a secure document envelope from other
participants in the group as described in Section 5.4 and de-
picted in Figure 5. In case the direct authority is unavailable,
a participant may accordingly notify the next indirect author-
ity that it knows from the certificate chain of the received
control data block.

6. Document-Related Security Metadata
As mentioned earlier, the scheme described above makes

no special assumption regarding how participants interact.
In particular, we target scenarios in which only documents
would be exchanged, possibly only on top of an asyn-
chronous messaging scheme like email for instance. In that
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Figure 6. Secure Document Envelope.

context, a document should contain all security metadata re-
lated to its content and data structure as well as to the cor-
rectness of its updates so far. It should also carry the nec-
essary security metadata making it possible for the receiving
participant to decide whether to rekey as explained above
in Section 5.4 and which key to use to decrypt the various
document parts. This section describes the secure document
envelope data structure that carries such security metadata.

6.1. Secure Document Envelope
Document parts may be arbitrarily exchanged between

and modified by an authority/editor of any authorized partic-
ipant. This requires ensuring the authenticity and integrity
of the data exchanged, even though the documents may be
passed through third-parties like unauthorized participants or
a node on the communication network. The Merkle Tree au-
thentication mechanism [17] used for instance in [1, 8] to
produce a Merkle signature out of a static XML document
addresses such issues. A unique digital signature can be ap-
plied at the root node of the document to ensure both its au-
thenticity and integrity as a whole. The collaborative edition
process iteratively modifies document fields, therefore this
technique alone is not enough. Definition 4 therefore intro-
duces a document containment property similar to the one
discussed in [1] that addresses such concerns:

Definition 4 Document Containment: Given a set of up-
dated nodes N ⊆ di of a document part di, a Merkle signa-
ture [1] of MSi(d̂i) and the Merkle hash path 5 MP (N, d̂i):
N is said to be contained in di if the locally computed Merkle
hash value of d̂i from the received N and MP (N, d̂i) is
equal to the verified signature value of MS(d̂i). �

A secure document envelope SDEj (Figure 6) consists
of the document and of associated metadata. The metadata
comprise a certificate chain, a Merkle hash paths blocks, and
group updates that serve to notify about joining and leaving
members.

Document Block. The document block,
(UpdP1(di), ..., UpdPj

(di)) is the series of updated
document parts of di performed by the participants
P1, ..., Pj respectively. Each participant Pj computes a
Merkle signature over the root node of UpdPj

(di) which it
signs together with the received Merkle signatures from the
previous editors using its private key SKj (a).

Metadata. The metadata are generated as follows:

• Certificate Chain. Each certificate in the chain,
(CertA1..CertAi

) is formed as described in Section
5.5. Each participant Pj signs its certificate CertAj

received from its authority together with the received
certificate chain with its private key SKj (b).

• Merkle Hash Paths Blocks. It consists of the
list (MPP1(UpdP1(di), d̂i), ..., MPPj

(UpdPj
(di),

5a list of nodes’ hash values required to compute the root’s hash value.

̂UpdPj (di))) of Merkle hash paths of the nodes of di

that are required for the recipient to compute locally
the corresponding Merkle signatures with respect to the
series of updates. Each participant Pj signs its Merkle

hash path MPPj (UpdPj (di), ̂UpdPj (di)) together with
the received Merkle hash paths starting from the owner
(i.e P1) with its private key SKj (c).

• Group Update. If a new participant edited the document
or if the editor knows about a joining or leaving partici-
pant, he should compute the signature of the TES/TEK
using his secret key SKi, which should be added to the
secure document envelope.

Secure Envelope The metadata are not all handled in the
same fashion: the first two types of metadata are bundled
with the document and hence encrypted together with the
(potentially new) group common secret key CKdi

ap; group
updates instead are only piggybacked with the document to
perform lazy rekeying, and hence signed together with the
previous encrypted block using the private key of their orig-
inator. Finally, all these blocks are encrypted together with
the public key PKz of other interested participant Pz which
only Pz �=j ∈ CIGdi

ap can decrypt.

Pj
SDEj−−−−→ P

z∈CIG
di
ap

6.2. Document Navigation
As described in Section 4.2, an accessible target docu-

ment part can be divided into several disjoint fine grained
target nodes, thus can be encrypted by a unique common
secret key for a group. Similarly, a participant can be as-
signed to several groups and thereby needs to maintain sev-
eral common secret keys. However, participants possess
the knowledge of the document schema using which they
annotate the document part schema nodes with the associ-
ated common secret keys that they compute and use those
as encryption/decryption keys for corresponding document
envelopes. As such participants can determine which key to
use for which document part nodes before sending and re-
ceiving of secured document envelopes.
• Before sending an updated document envelope partici-

pants parse the schema to find the annotated common
secret key associated with the updated document part.

• After receiving a document envelope participants can
determine the required decryption key by observing the
piggybacked TES/TEK value. If a re computation of
a new common secret key is performed as a result of
new TES/TEK, participants update their corresponding
annotation in the schema with the associated new com-
mon secret key.

7. Security Evaluation
This section discusses the security of our dynamic access

control model, with respect to both key management and
protection achieved by the secure document envelope.



7.1. Vulnerabilities in Key Management
Join and Leave. The possibility for an authority for eval-

uating huge number of join or leave requests may potentially
expose the system to denial of service. This risk is first re-
duced by the distribution of authorities. If the threat model
is such that traffic can be intercepted or the location of the
authority of a critical group of participants is known to the
attacker, the protocol should firsthand authenticate partici-
pants known by the authority. Asking the requestor to solve
a cryptographic puzzle based on a secret shared with the au-
thority should complement this measure to reduce the po-
tential attack rate. Resorting to indirect authorities might be
an attempt to bypass the direct authority. The policy they
enforce should therefore always be more stringent than that
of direct authorities and favor its immediate subordinate to
mitigate further denials of service.

Rekeying Group updates correspond to retrieving a new
TES/TEK during the collaboration phase. These are pro-
tected by the secure document envelope which a participant
Pz has to decrypt with SKz . Similarly to join and leave,
participants should authenticate the sender of a document
update as a member of the group to prevent being tricked
into decrypting a bogus document or computing a bogus
key repeatedly. Annotating the document schema (Section
6.2) with the keys of groups and thus identifying the poten-
tial keys alleviate this problem partly. However, fake group
updates may render into unnecessary rekeying. Additional
constraints at the application level might help to detect fake
group updates.

7.2. Document Protection
Confidentiality. Certificate chain and Merkle hash paths

are encrypted by the common secret key and thus only be
disclosed to a participant having the common secret key or
capable of computing the key. The use of TGDH as the ba-
sic scheme for encrypting document parts ensures that a new
participant will not get access to past exchanges (backward
secrecy), except if handed the common secret key used to
encrypt it. However, even though TGDH ensures forward
secrecy, the lazy rekeying scheme we suggest makes it pos-
sible for a participant leaving or dismissed from one group
to read parts of a document exchanged by existing partic-
ipants that are unaware of the departure and that have not
rekeyed. This is the result of the flexibility brought by the
asynchronous mode of operation of our scheme. This might
be alleviated by requesting a hard synchronization in the ac-
cess control policy if possible; otherwise, participants that
have been isolated from other members of a group should
systematically rekey when sending updates to a document
after some timeout.

Resilience to Pruning and Grafting. The nested sig-
nature over every block prevents any malicious participant
in the group to include any fake data block (i.e. fake docu-
ment parts, certificates and Merkle hash paths) or to suppress
an existing block. In the extreme, an attacker can destroy
the document if he controls the communication medium.
This should be prevented using appropriate replication tech-
niques.

Containment. Upon decrypting the encrypted data block
any participant in the group can verify the received docu-
ment part’s containment as a whole thanks to the Merkle
hash. For instance, when Pj receives the initial secure
document envelope containing UpdA1(di) it can verify
UpdA1(di)’s containment in the original document di by
computing a Merkle hash out of the received Merkle hash

path MPA1(UpdA1(di), d̂i) and locally computed hash val-
ues of UpdA1(di). The computed Merkle hash should match

with the verified signature value of SignA1(MSAi(d̂i)).

Integrity and authenticity. Any participant Pj

upon receipt of a secure document envelope from
Pj−1 can verify the document integrity and authen-
ticity by computing the Merkle hashes out of the
received Merkle hash paths MPP1(..), ..,MPPj−1(..)
and locally computed hash values of corresponding
document part updates UpdP1(di), .., UpdPj−1(di).
Each locally computed Merkle hash should match
with the corresponding verified signature values of

SignPj−1(MSPj−1( ̂UpdPj−1(di)), ..., SignP1( ̂UpdP1(di))).
Metadata integrity is also verified by checking the integrity
of certificate chains and Merkle hash paths using PKi.

Traceability. As each participant signs its document up-
dates along with the previous series of updates performed by
previous editors the recipient can trace everyone’s updates by
simply verifying the signatures iteratively. It can also verify
the eligibility of previous editor Pi to perform a given ac-
cess through the iterative verification of the certificate chain,
which should contain a certificate CertAi(PKi, PKi

ap).

8. Related Work
There has been a quite remarkable progress in the area

of fine grained access control on XML documents in [7].
It depicts a client-server centralized framework. Clients re-
quest the server for accessing a document. The server, which
is responsible for designing the document schema, decides
about the authorizations and at the same time enforces ac-
cess control on the document. In [6] the authors describe a
fine grained access control technique for SOAP based com-
munication among web services.

From the enforcement perspective, these approaches are
known as view based XML access control. However, the
view based approach inherently contains two significant lim-
itations [3]: scalability and storage. As an increasingly large
number of requesters is involved, the management of views
does not scale up and the increasing number of documents
and clients demands more storage and cost on the server
side. The view based approach also does not consider the is-
sue of document updates where documents are dynamically
exchanged among several participants and in particular doc-
ument protection aspects. Moreover, the assumption here is
that access control is specified and enforced by a centralized
entity (e.g. DBA) of the XML data sources.

[16] presents mechanisms and algorithms for cooperative
updates of XML documents in a distributed environment.
While similar to our scheme in its use of cryptography to
support controlled document edition, this work does not con-
sider distributed sources of documents and their ownership.
The approach is more tailored to a posteriori verification of
the correct execution of a document edition process.

Encryption as an enforcement mechanism for access con-
trol decisions made at a server has been discussed in the lit-
erature for a while [2, 18, 12]: the server encrypts the data;
the client can access these if it possesses the right decryp-
tion keys. This technique supports dynamic change only
through the use of the server as a centralized point of en-
forcement that computes and distributes keys and therefore
constitutes a single point of failure. In our case clients are
able to perform there updates and send these autonomously.
Moreover, key distribution is completely eliminated utiliz-
ing the TGDH. Scalability and performance are central is-
sues growing with the number of clients accesses, notably
regarding the need for partial reencryption of data because of
changes in the access control rules. [12] improves scalability
by introducing hierarchical publishers as so called routers in
between producers and consumers of the documents. How-
ever, it relies on DOM to model the entire XML document in
memory which is impractical for large enterprise documents



for memory and performance reasons. Moreover, it is not
able to disseminate dispersed document nodes in the same
request from several XML subtrees. It should also be men-
tioned that these papers altogether do not address traceability
issues with respect to document updates.

The use of tamper-resistant modules [4] however makes
it possible to alleviate the limitation of the latest approach
regarding policy dynamicity, both in terms of access con-
trol decision and enforcement. Even though this approach
makes it possible to enforce flexible and context-aware poli-
cies suitable for ubiquitous computing, we believe delega-
tion might be enough to adapt the access control policy to
collaborative document edition. This approach in addition
requires the difficult and expensive deployment of a trusted
infrastructure.

Our distributed access control solution is fundamentally
different compared to these approaches:
• It provides an access interest specification based on

primitives which allows each participant to specify its
fine grained access interests on the document parts
owned by other participants.

• Instead of a purely server based approach, it makes it
possible to follow indiscriminately a push or pull based
approach since access control enforcement does not
rely on a central authority.

• While controlled by the owner, the edition of docu-
ments can be initiated and run by all participants in-
teracting autonomously.

• Lazy rekeying avoids the latency time for group collab-
oration during group membership changes.

• No assumption is made regarding participant execution
environments.

9. Conclusion and Future Work
We proposed a solution for a distributed and fine grained

access control framework for XML document centric collab-
oration. This solution perfectly fits document edition scenar-
ios in which multiple organizations are involved and man-
age a part of a composite document at their own discretion,
as illustrated by the EAW case of mutual legal assistance.
This addresses both document authorization and document
protection in situations in which authorization granting au-
thorities may be off line or unable to cope with numerous
users and may not be directly in touch with collaboration
participants. Document authorization relies on a crypto-
graphic enforcement: only participants that have computed
proper encryption keys can view or update a document part.
Document protection also encompasses verifying the confor-
mance of the update of a document part with the authoriza-
tion policy of its authority. To the best of our knowledge, this
framework is the first to cope with distributed access control
decision and its decoupled enforcement through the use of
lazy rekeying. We are currently working on an implemen-
tation of this framework to validate its deployment, and on
further issues like document versioning and consolidation.
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