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Distributed Acoustic Sensing 
Using Dark Fiber for Near-Surface 
Characterization and Broadband 
Seismic Event Detection
Jonathan B. Ajo-Franklin  1, Shan Dou  1, Nathaniel J. Lindsey  1,2, Inder Monga  3, 

Chris Tracy3, Michelle Robertson1, Veronica Rodriguez Tribaldos1, Craig Ulrich1, Barry Freifeld1, 

Thomas Daley1 & Xiaoye Li4

We present one of the first case studies demonstrating the use of distributed acoustic sensing deployed 
on regional unlit fiber-optic telecommunication infrastructure (dark fiber) for broadband seismic 
monitoring of both near-surface soil properties and earthquake seismology. We recorded 7 months 
of passive seismic data on a 27 km section of dark fiber stretching from West Sacramento, CA to 
Woodland, CA, densely sampled at 2 m spacing. This dataset was processed to extract surface wave 
velocity information using ambient noise interferometry techniques; the resulting VS profiles were used 
to map both shallow structural profiles and groundwater depth, thus demonstrating that basin-scale 
variations in hydrological state could be resolved using this technique. The same array was utilized for 
detection of regional and teleseismic earthquakes and evaluated for long period response using records 

from the M8.1 Chiapas, Mexico 2017, Sep 8th event. The combination of these two sets of observations 
conclusively demonstrates that regionally extensive fiber-optic networks can effectively be utilized for a 
host of geoscience observation tasks at a combination of scale and resolution previously inaccessible.

Hydrogeologic and seismological data collection are two domains for which the absence of high spatio-temporal 
resolution data is particularly acute, with signi�cant impacts on our ability to characterize near-surface soil prop-
erties, groundwater systems, and seismic events. Even relatively basic subsurface hydrological parameters such as 
water table depths in sur�cial aquifers su�er from severe undersampling in both space and time. While heavily 
monitored basins o�en have a multitude of wells providing subsurface access, they are neither uniformly distrib-
uted nor frequently monitored resulting in heterogeneous datasets requiring manual quality control, curation, 
and analysis. �e few basin-wide hydrogeological data sources, typically based on satellite remote sensing tech-
nologies, provide only sur�cial property estimates like soil moisture1,2, integrated strain response (e.g. InSAR3), 
or low-resolution volumetric datasets (e.g. GRACE4,5) which require assimilation with point measurements to 
provide �nely resolved operational parameters6. Remote sensing measurements o�en also su�er from temporal 
undersampling due to satellite pass frequency. More recently, seismic ambient noise interferometry7 has been 
leveraged to provide broader information on ground water storage; unfortunately limited permanent seismic 
networks present a challenge for these approaches.

Likewise, seismological data collected using existing permanent networks o�en have spatial regions which 
su�er from signi�cant spatial undersampling, particularly in areas distant from major plate boundaries, resulting 
in challenges when attempting to detect and locate small natural and induced events. �e case of small magnitude 
induced events is particularly problematic since the basins where oil and gas production, wastewater injection, 
and carbon dioxide sequestration occur are o�en distant from historically seismogenic faults and the associ-
ated permanent seismic networks. Network sparsity increases the minimum event size for detection, results in 
statistical biases in the catalog, and greatly increases depth uncertainty for local events. Recent studies focusing 
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on seismic catalog completeness in California have determined that even M2 events cannot be detected in the 
majority of the Sacramento and San Joaquin Basins using the existing network stations8.

�ese spatio-temporal undersampling problems, for both hydrological and seismological measurements, can 
be remedied by re-purposing ubiquitous sensing platforms already deployed at scale. A recent example of such an 
approach is the utilization of smartphone accelerometers to measure strong ground motion as part of earthquake 
early warning applications as shown in previous studies9,10; other examples include using social media proxies as 
sensors11 or MEMS accelerometers in pervasive stationary devices such as personal computers12. Broader e�orts 
to leverage networking and sensor technologies related to the Internet-of-�ings (IoT) for seismology are devel-
oping but still in their infancy13.

An alternative approach is to exploit components of the built environment to serve as distributed sensor net-
works. In this case we couple the use of unlit subsurface �ber-optic cables, commonly referred to as “dark �ber” 
since they are not utilized for data transmission, and distributed acoustic sensing (DAS) to provide such a spa-
tially extensive sensing platform. �e vast majority of �ber-optic cables in the earth’s near-surface were installed 
exclusively for the purpose of telecommunications. Due to high cost of �ber-optic installation, typical commer-
cial practice is to deploy signi�cantly more capacity, as measured by �ber count, than required; this practice, 
combined with advances in bandwidth available per �ber, have yielded a surplus of available �bers that remain 
unused. �e US footprint of such unused �ber networks is massive with tens of thousands of linear kilometers of 
long distance �ber-optic cables available for lease or purchase in the current environment. One notable aspect of 
such dark �ber network components is that they tend to utilize existing “right-of-way” corridors along roads and 
rail connections14, environments rich in ambient seismic noise. Given the ubiquitous nature of installed telecom 
�bers, few studies have explored use of this resource for sensing applications. An early experiment explored the 
use of Brillouin Optical Time Domain Analysis (BOTDA) to monitor temperature over previously installed tel-
ecom �ber15; however, these studies were conducted primarily to provide network integrity information rather 
than for environmental sensing. In a seismological context, several recent studies16–18 have demonstrated the 
bene�ts of leveraging urban telecom infrastructure at a small scale. Most recently, a study in southwest Iceland19 
provided an excellent example of utilizing telecom �ber for detecting local earthquakes and measuring co-seismic 
strain measurement over a short transect.

Distributed Acoustic Sensing (DAS) is a recently developed technique which utilizes coherent optical 
time-domain re�ectometry to accurately measure the phase and amplitude of vibrations along an optical �ber20–22.  
�e technique exploits changes in Rayleigh scattering induced by extensional strain; these measurements have 
now been quantitatively compared to point seismic recordings at both intermediate23 and low frequencies24 and 
utilized for a host of tasks including vertical seismic pro�ling20,21,25, near-surface soil property estimation26–30, 
surface refraction tomography31 and earthquake seismology16–19,32. DAS has created a recent paradigm shi� in 
applied geophysics by enabling seismic measurements at a combination of high frequency (kHz range), large 
distances (tens of km), and �ne spatial sampling (as small as 1 m), a combination previously unavailable with 
conventional sensors at moderate costs. We should note that DAS is distinct from long-range optical interferom-
etry approaches which provide even greater measurement distances but sacri�ce spatial localization; this class 
of techniques was recently demonstrated33 as an approach for seismic detection utilizing trans-oceanic cables. 
While prior studies have convincingly demonstrated the value of dense networks for seismic imaging as well as a 
range of other purposes34, the high costs associated with massive nodal deployments over long time periods has 
precluded their use in many contexts.

In this study, we demonstrate the application of DAS utilizing dark fiber for measurement of seismic 
wave�elds at the sub-basin scale with an extremely �ne spatial sampling (2 m) over long time periods; the result-
ing ultra-dense dataset is utilized for both hydrogeological/near-surface characterization, using ambient noise 
interferometry, and the detection of seismic events, both regional and global. �is combination is perhaps a new 
frontier which leverages investment in built infrastructure to greatly extend the reach and sampling of existing 
permanent monitoring networks.

Seismic Monitoring with Dark Fiber Networks
Our study utilized dark �ber components of ESnet’s Dark Fiber Testbed. ESnet, a US Department of Energy 
(DOE) user facility, provides high-performance unclassi�ed network infrastructure to connect DOE research 
sites including high performance computing (HPC) facilities and data-intensive instrumentation e.g. x-ray, neu-
tron, and nanoscience facilities. �e Dark Fiber Testbed is a 20,920 km (13,000 mile) network of short and long 
haul telecommunication �ber designed for testing novel network communication equipment and protocols. �e 
network consists of single mode telecommunication �bers of varying age and installation technologies and hence 
is an excellent proxy for existing commercial network components. �is study is one of the �rst experiments that 
utilizes this massive network for sensing purposes. Figure 1A, depicts the long haul regional sections of the Dark 
Fiber Testbed in California, as well as the segment exploited for our test (1B), which runs from West Sacramento, 
CA to Woodland, CA.

Field Deployment
�e site of our study was a transect located in the Sacramento River �ood plain, north and west of Sacramento, 
CA. �e geology of the site consists largely of Quaternary sediments including a sequence of silts and clays under-
lain by �ne sands. Prior regional studies35 have mapped the surface sediments as a mixture of poorly sorted 
Holocene alluvium near the Sacramento and �ner-grained Holocene basin deposits deeper in the �ood plain. 
Partially lithi�ed sediments from the Tehama formation have been mapped from approximately 50 m to greater 
depths36. �e segment of dark �ber we utilized for this study, shown in Fig. 1 panel B in blue, runs from West 
Sacramento CA to the small town of Woodland CA. As can be seen from the �ber network map, the record-
ing pro�le extends from an urban environment into a section of farmland near the Sacramento River, crossing 
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Interstate 5 before bending westward towards Woodland. For the length of the �ber route shown in Fig. 1B, 
installed cables utilize the right-of-way associated with a rail line and are roughly co-linear with the train tracks. 
�e agricultural areas sampled by this pro�le are partially irrigated through a variety of methods and groundwa-
ter is actively extracted from both the shallow sur�cial aquifer as well as deeper sources.

�e seismic dataset presented in this study was recorded between July 28th, 2017 and Jan. 18th, 2018. �e DAS 
interrogation unit (IU; Silixa iDAS, Elstree, UK) was installed in a telecommunication Point-of-Presence (PoP) 
facility in West Sacramento. Hardware details on the installation are described in Methods Section 0.2. Ambient 
seismic noise was recorded using the DAS IU at 500 Hz sampling with a spatial sampling of 2 m; the gauge length 
was 10 m and �xed in hardware. Data was streamed continuously to large capacity (8 TB) USB-3 external hard 
drives that were exchanged on a weekly basis.

While the surface geometry of the dark �ber network was known before deployment, the mapping to linear 
�ber location was established by sequential impact tests at surface locations surveyed with high accuracy dif-
ferential GPS. �is is necessary due to the common practice of including spools of slack cable during telecom 
installation, an approach that makes the mapping of surface geometry to linear �ber location more complicated. 
Impact locations were observed on individual DAS gathers in terms of �ber distance, coordinated by GPS time; 
by establishing true DGPS coordinates for these locations, we were able to compensate for slack e�ects when 
mapping back to the previously surveyed deployment geometry. �e resulting geometry likely has an uncertainty 
on the order of 5 m due to the interpolation process along the transect.

A�er the network geometry was established, DAS signal strength, amplitude, and periodicity were examined 
to evaluate noise characteristics along the array. Dominant noise features include several regional highways, dif-
fuse urban noise, and energy from local railroad activity. Qualitatively, the highest quality data was observed on a 
straight section of �ber starting beyond West Sacramento and extending to the noise �eld of Interstate 5, shown as 
the highlighted red pro�le in Fig. 1B. Zones to the Southeast of this section su�ered from non-optimal installation 
conditions (e.g. the �ber was attached to surface structures including a bridge) as well as incoherent noise in the 
urban transition zone around West Sacramento. Zones to the North and West su�ered from both optical fading, 
insu�cient return photons which decreased measured S/N, and broadside noise interference from Interstate 5. 
�is illustrates the potential heterogeneity of signal quality across the existing telecom network.

High Resolution Kilometer-Scale Near-Surface Imaging Using Ambient Noise
Prior studies have demonstrated the potential of utilizing ambient noise interferometry and classical sensors to 
detect �uctuation in groundwater state7. Ambient noise interferometry is an established group of seismological 
techniques that utilize environmental vibrations from either near-surface or subsurface sources to retrieve coher-
ent seismic information, referred to as empirical Green’s functions37–41. More recently, several authors26,28 have 
demonstrated that such techniques could be utilized to transform infrastructure noise in the 2–30 Hz band (e.g. 
surface waves generated by cars, trucks, and trains) into accurate and stable 1-D estimates of shear wave velocity 
from 0–30 m depth using DAS. While prior studies have examined data acquired on a �t-for-purpose array, the 
processing strategy proposed can be easily adapted to dark �ber deployments.

�e present study images near-surface shear wave structure using infrastructure noise generated by freight 
trains operating along a 6600 m subsection of the dark �ber array (bold red line in Fig. 1B). Similar to earlier 
work which exploited road noise, we use ambient noise interferometry to transform the raw noise records into 
virtual common-shot gathers; we then apply multichannel analysis of surface waves (MASW) analysis42–45 to infer 
shear-wave velocity (VS) pro�les with a multimodal inversion strategy. Figure 2 is an illustration of this work�ow 
(see Fig. S1 for more details). All examples use only 40 minutes of ambient noise data with the caveat that only 
noise from trains are utilized; a more detailed discussion of data selection is detailed in the Methodology section. 
A�er generation of dispersion images from virtual common-shot gathers, we auto-pick dispersion curves for high 
energy modes. �ese experimental curves are inverted using a previously developed Monte Carlo (MC) inver-
sion strategy46 which utilizes a novel multimodal objective function47 which does not require mode numbering. 

Figure 1. Map of a section of the ESNet Dark Fiber Testbed (https://www.es.net/network-r-and-d/experimental-
network-testbeds/100g-sdn-testbed/terms-and-conditions/). (A) �e regional network within CA and western 
NV; zone of panel (B) shown in black dashed box. (B) �e subsection of the network used in this study. �e red 
segment in (B) is the area of focus for ambient noise analysis; W1 and W2 are reference wells for water table and 
soil horizons, respectively. �e study �ber (blue) is aproximately co-linear with an active rail line. Dashed green 
line labeled I-5 is Interstate 5, a major source of ambient noise beyond the rail corridor.
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Supplementary Fig. S2 shows a detailed example of solutions across the array and associated �ts to experimental 
curves. Of the resulting solutions, the best-�tting model is selected for interpretation; however, the family of 
accepted models can be used to evaluate solution uncertainty as discussed in the Supplementary section and 
shown in Fig. S3.

�e results of our processing �ow are a series of VS pro�les, each representing 1-D approximations of the 
subsurface underneath each of the 120-meter-long �ber subsections (Fig. 3). �is length was selected to provide 
su�cient array size for dispersion analysis yet some degree of lateral spatial resolution42. As is to be expected, the 
installation conditions of the dark �ber are not always ideal for VS imaging, hence gaps are le� in the pseudo 2-D 
section shown in Fig. 3b. Reasons for the gaps include a small section with localized strongly directional coherent 
noise, likely a pump in one case, as well as poorly-structured dispersion curves which could not be �t within 
reasonable tolerance. However, with 57% of the 6600-meter-long �ber transect providing useful data (inverted 
sections in Fig. 3b), our lateral coverage of 3760 meters warrants its place as one of the longer high-resolution 
MASW pro�les obtained using ambient noise alone. For all o�sets shown, the forward modeling based on the 
inversion results e�ectively predicts the picked dispersion curves as can be seen in Fig. 2 as well as Fig. S2 for the 
fundamental mode and 1st overtone which can be reliably observed. We should note that the S-wave velocity of 
the lowest interface (underlying half space) is poorly constrained due to the limited o�set, minimal recovered 

Figure 2. Illustration of data processing work�ow for ambient noise interferometry. (a) Example of train noise 
shown via an 8 second time domain slice. �e red box in (a) highlights subsection of the array used for (b) noise 
correlation gather, (c) dispersion analysis, and (d) inversion of the shear-wave velocity (VS) pro�les. Black and 
white markers in (c) denote observed and model-predicted multimodal dispersion curves respectively. In (d), 
the yellow dashed lines denote upper and lower bounds of the parameter space used in Monte Carlo sampling; 
the bold red line marks the best-�t VS pro�le; the yellow/blue lines denote the top 0.1% best-�tting VS pro�les 
(color coded by their corresponding inversion mis�ts); Mis�t† denotes normalized mis�t values (min-max 
normalized by mis�ts of the top 0.1% VS pro�les).
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energy at low frequencies, and biases in the autopicker under these conditions; autopicker behavior within our 
present implementation tends to bias this velocity high without manual intervention. Zones above 40 m are con-
siderably better constrained as discussed in the Supplementary section 2.

Comparisons to our limited ground truth database reveal that the interfaces of the VS pro�les match rea-
sonably with the groundwater level and deeper lithological horizons, which con�rms the validity of the inver-
sion results. �e lithological horizons consist of transitions from near-surface silty clay units to deeper sand/
gravel units and underlying clay-rich horizons, as inferred from drilling logs from an unmonitored local well 
(W2) as shown in Fig. 3b. �e depth to the sur�cial aquifer is estimated from the thickness of the top low veloc-
ity layer recovered from the surface wave inversion; in Fig. 3a, these estimates are compared to the water table 
depths measured in well W1, located slightly to the southeast of the measurement section. Details of well W1 
are included in the Supplementary Information. More detailed analysis of a sub-array in the central section of 
the pro�le (see Fig. S3) show that the depth uncertainty for the top interface at that location is approximately 
4.62 ± 0.8 m, hence the measured water table matches within error.

Also shown in Fig. 3a is an estimate of VS30, the travel-time average of Vs over the top 30 meters, calculated 
directly from the surface wave inversion results. VS30 is a widely used indicator of seismic site conditions and is 
readily obtainable from surface wave inversion48; both the values and the lateral variations of VS30 are useful data 
products that the dark �ber array can provide and can be compared to local estimates made as part of geotech-
nical studies.

To evaluate the utility of the DAS ambient noise inversion results for hydrogeological monitoring, we compare 
the transition in Vs identi�ed as the water table to direct point measurements in the one well with su�cient tem-
poral sampling information located on our transect. �e well (W1) is located at the southeastern end of the high 
S/N section of dark �ber near the intersection of County Road 126 and the Old River Road, shown as a red dot on 
Fig. 1B. Water level in this well varies by as much as 7.6 m (25 �) over annual hydrologic cycles and is impacted by 
Sacramento River levels, agricultural irrigation and sur�cial aquifer pumping. As can be seen in Fig. 3a, the depth 
of the �rst Vs increase (3.8–4.6 m below the surface) correlates to the measured sur�cial water table depth. We 
should note that an increase in Vs at the water table is not predicted by classical rock physics models which assume 
that shear modulus is not sensitive to saturation; despite this, past �eld studies26,49 have provided detailed obser-
vations of such sensitivity, presumably due to the impact of moisture on soil cohesion for dry sur�cial materials.

Time-Lapse Monitoring of Groundwater Level
As mentioned previously, the Sacramento Basin is a dynamic hydrologic environment with multiple productive 
aquifers, active groundwater production, irrigation, and river interactions. Besides static pro�les quantifying Vs, 
the dark �ber array also allows for time-lapse monitoring of the subsurface, enabling measurement of hydrologic 
transients in the near-surface. Traditionally, because sensors are rarely dense enough for imaging, time-lapse 

Figure 3. Shear-wave velocity (Vs) inversion results and ground truth comparison. (a) Depths of groundwater 
levels (GWL) (upper) and Vs30 estimates (lower) extracted from the surface wave inversion results. (b) 
Pseudocolor display of Vs pro�les and comparisons against well data. In (b), W1 and W2 mark surface 
locations of the two reference wells shown in Fig. 1; the blue dashed line denotes the depth of the ground water 
level provided by water well W1; the black dashed lines correspond to lithological horizons obtained from 
geotechnical well W2.
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monitoring results are typically presented as an apparent-velocity perturbation along the path connecting two 
sensors, without identifying where on this path the changes are occurring. �is level of detail is insu�cient for 
proactive management of groundwater resources, given that both vertical and lateral changes of the groundwater 
level could a�ect the overall sustainability of the aquifer. With the dark �ber pro�le enabling time-lapse imaging 
of the near surface, changes in groundwater levels could be resolved with spatial-temporal resolutions pertinent 
to groundwater management.

Figure 4 demonstrates the repeatability of time-lapse imaging chie�y by comparing the groundwater levels 
retrieved from a monitoring well against what were obtained from the closest dark-�ber section. Note that no 
major rainfall events had occurred during the three-month monitoring period processed for this study, and as a 
result, the maximum changes in the measured water table did not exceed 0.9 m, on the order of our current error 
estimates for determination of sur�cial layer thickness (see Supplementary section, Table 1). �e high repeatabil-
ity of interferometric gathers, both in the o�set-time domain (Fig. 4a) and frequency-velocity domain (Fig. 4b) 
suggests that such levels of variation will not be resolvable using this approach. �e high time domain repeatabil-
ity for single o�sets are also shown in the Supplementary Materials (Fig. S4). An inspection in the model space 
(Fig. 4c) con�rms the inversion’s insensitivity to these sub-meter changes. However, such repeatability provides 
assurance for reliably resolving larger changes in groundwater levels, because the well data, when examined over 
a year-long period, exhibit groundwater level changes up to 8 m. Such marked changes should be resolvable with 
the dark �ber array with a more extended monitoring period.

Earthquake Seismology with a Dark Fiber DAS Array
Seismic network detection thresholds are highly heterogeneous, even across regions known for dense seis-
mic monitoring like the western United States and Japan50,51, in part because broadband seismic stations are 
sited in hard-rock locations where background noise is low52,53. Areas of less-competent geology, like sedi-
mentary basins, therefore correlate with poor catalog completeness; the magnitude of completeness is Mc 2–3 
in the Sacramento and Southern San Joaquin Basins compared to Mc 0.5–2.4 in the San Francisco Bay Area 
or Mc 0.5–1.8 in Southern California8,54,55. �us, despite the greater Sacramento area hosting signi�cant gas 

Figure 4. Time-lapse repeatability demonstration of ambient noise analysis in (a) space-time domain, (b) 
frequency-velocity domain, and (c) in terms of groundwater levels obtained from the model domain. Color 
sequence of red, green, and blue denote chronological orders of the monitoring period. In (c), the median, min-
max range, and percentiles are calculated based upon all the topmost best-�tting models associated with the 
monitoring period.
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production, underground gas storage, and high-volume waste water disposal, all of which can impact seismicity, 
the Sacramento Dark Fiber DAS array is located 30 km away from the nearest networked short-period seismom-
eter (NDH) and 62 km away from the nearest broadband seismometer (AFD).

A relevant question when examining seismic events on telecommunications networks in contrast to 
�t-for-purpose installations is the impact of installation conditions. As recently demonstrated16,17,19, �ber installa-
tion in a standard plastic conduit does not preclude su�cient sensor coupling required for the detection of earth-
quakes, but the case of recording DAS data with repurposed telecommunications �ber is yet untested at regional 
scales. To explore this question with the Sacramento Dark Fiber DAS experiment we extract raw strain-rate wave-
forms for major global and regional earthquakes that occurred during the continuous recording interval (Fig. 5). 
We again use the linear quiet portion of the array shown in Fig. 1B and process the data by averaging 100 seismic 
traces (200 m section) and applying a bandpass �lter to isolate the appropriate earthquake signals. To plot the 
raw strain-rate data in a more familiar unit we multiplied the data by a reference length equal to the gauge length 
(10 m) to convert to a unit that is proportional to velocity. We observed broadband DAS sensitivity to ground 
motion from earthquakes of varying magnitudes (M4.4–M8.1) and distances (100–7757 km). For example, in 
the case of the M7.5 Honduras event there is clear evidence of short period body waves and longer period surface 
waves over the two hour window following the origin.

While long period sensitivity is a major limitation of many inertial seismic sensors (e.g., accelerometers, 
short-period geophones, smartphone sensors), the long period response of DAS is currently a topic of active 
research with only limited available data24; teleseismic earth motion (strains near 1 × 10−8), for example, may 
be dominated by thermal expansion of the �ber-optic cable (strains on the order of 1 × 10−6) depending on 
the frequency studied as well as the depth, composition, and condition of the �ber-optic cable and conduit. 
Recent studies24,56 have used shallow hydrogeologic pump tests in a well with a �ber-optic cable to show that DAS 
has sensitivity to 9.4 × 10−3 Hz (period = 1080 seconds) oscillations in strain induced by the variable con�ning 
pressure, presumably due to Poisson e�ects. �is subject is complicated by the known directionality of DAS 

Figure 5. Example earthquakes recorded by the Sacramento Dark Fiber DAS array. �e recorded data are 
plotted as strain-rate a�er multiplying by the gauge length (10 m) to convert to units proportional to velocity 
(1e-6 m/s), and have been averaged over 100 m of linear �ber length (50 traces) and then bandpass �ltered in the 
0.1–0.4 Hz range for regional events, and 0.01–0.1 Hz for teleseisms. Events are sorted by increasing epicentral 
distance from Sacramento. Earthquake amplitudes for the Peru and Honduras events are scaled by the factors in 
parentheses.
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cables57,58, which for the horizontal geometry of telecommunications dark �ber cables is theoretically insensitive 
to vertically-incident compressional motion (P-waves).

To explore the long period sensitivity of the Dark Fiber DAS array to teleseismic events, we extract raw 
strain-rate seismograms from the largest earthquake recorded during the experiment, the M8.1 2017-Sep-08 
Chiapas, Mexico earthquake (Fig. 6). We observe broadband dispersive surface waves with strong energy at peri-
ods from 50–100 seconds. P-wave signal amplitude is lower than S-wave amplitude, perhaps because the sensor 
has minimal sensitivity to compressional particle motions for waves with incidence angles approaching 0° with 
respect to vertical (i.e. perpendicular to the �ber “broadside arrivals”). Nonetheless, the arrival times of major 
seismic phases are detected because of free surface scattering. Incidence angles of seismic phases are given in 
Fig. 6a. Di�erences in incidence angle also likely a�ect recorded amplitude, and appear to result in more coherent 
surface wave arrivals across the array (incidence angle = 0°) and as much as a 0.5 second delay time across the 
record section.

Telecommunications cables are commonly routed along railways, roads, and through high noise urban areas. 
We �nd that major regional earthquakes (M ≈ 4) generate ground motions on the Sacramento array that have 
equal or lesser amplitude than local moving vehicles, however anthropogenic seismic signals typically are dom-
inant in a higher frequency band (5–30 Hz). Figure 7 shows how the seismic signals from two di�erent regional 
earthquakes (M4.22 Geysers 2018-Jan-18 and M4.38 Berkeley 2018-Jan-04) are easily discriminated from the 
local noise �eld based on spectral content. Higher frequencies of interest for local microearthquake analysis 
(f ≤ 50 Hz) will not always separate in this way.

�e two earthquake records shown in Fig. 7 appear very di�erent despite having been generated in similar 
sized ruptures and traveled similar distances to Sacramento. �is may be due to source rupture depth di�erences 
(z = 2.4 km for �e Geysers, z = 12 km for Berkeley), or the major di�erences in geologic structure along the 
raypath, but could also be the result of strong DAS axial sensitivity to energy in the direction of the �ber axis. We 
observe larger recorded amplitudes for shear waves from Berkeley than from �e Geysers, but larger recorded 
amplitude for Rayleigh waves from �e Geysers because of the more favorably oriented polarization.

We hypothesize that the method of installation (direct-burial, single conduit, conduit inside a larger con-
duit, conduit attached to infrastructure) has a signi�cant e�ect on DAS recorded ground motion (see Fig. 8). 
�e �ber-optic cable itself (gel-�lled, aramid wrapped vs. loose-tube, polyethelene-jacketed vs. steel-armored, 
polyethelene vs. steel exterior) has each been shown to have only a small e�ect on recording quality at high 
frequencies26.

Installation information for the Sacramento Dark Fiber DAS array provides clues as to the heterogene-
ity of fiber-soil coupling across our experimental profile. Cable installation occurred in 1999–2000. Most 
of the �ber was pulled through one of 12 high-density polyethelene (HDPE) conduits (ID = 3.5–4 cm, wall 

Figure 6. Teleseismic DAS recording of the M8.1 Chiapas, Mexico 2017-Sep-08 earthquake. (a) Seismic data 
for [black trace] one location and [red and blue] all locations from 0.0–7.6 km at a 2 m spacing (4001 traces 
total); top right inset shows surface waves arriving at the [black] south and [pink] north end locations of the 
array (backazimuth 120°), bottom le� inset shows body waves arriving coincidently at both locations. A two-
corner, zerophase, f = 0.01–0.5 Hz bandpass �lter was applied. (b) Stacking 400 m or 200 consecutive DAS 
channels, color-coded by the bandpass �lter applied to emphasize the broadband observation (1–100 seconds). 
Gray background traces show the single trace recording for cases that make a signi�cant di�erence. Each of the 
traces is normalized to peak amplitude.
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thickness = 0.5 cm) that were buried together in a trench at 1–1.5 m and back�lled with soil before installing the 
�ber cable inside. Each �ber cable contains 84 gel-�lled, loose-tube Corning LEAF �bers that are polythelene 
jacketed and steel-armored. �e DAS data were recorded using a single 9/125 µm single-mode �ber from one 
of these cables. In a few locations, trenching was not possible so directional boring was used to install a large 
casing conduit (ID = 20–25 cm, wall thickness = 0.4 cm), inside of which the 12 smaller conduits were pulled. 
Depth of boring varied between one meter and a few meters when navigating around various culverts, sections of 
road and railway, and other obstacles. In some instances the casing was not required, or a steel casing may have 
been used. A third mode of installation used for approximately 300 m of the dark �ber array involved attaching a 
20–25 cm diameter steel casing directly to the elevated rail line where it crosses a section of protected wetlands, 
the Sacramento Bypass Wildlife Area. Inside this attached conduit, the 12 HDPE conduits were installed as the 
boring method described above.

Figure 8 shows DAS strain-rate earthquake waveforms (BP 0.5–2 Hz n 4 p 2) and normalized Fourier ampli-
tude spectra for the M4.2 Geysers 2018-Jan-18 event stacked over 100 m of each of the three install modes. Any 
phase shi�s between traces are due to these install locations being separated by as much as 7 km along the array. 
�e conduit and cased conduit data show very similar seismic wave response to the ground motion centered in 
the f = 0.1–10 Hz range. Seismic signal amplitudes are observed to be on order with the optical noise at f ≥ 100 Hz. 
Data from attached section are noisier in a narrow frequency band centered on 12 Hz ± 3 Hz, perhaps caused by 

Figure 7. (a) Locations and focal mechanisms of the M4.2 2018-Jan-18 Geysers (red) and M4.4 2018-Jan-04 
Berkeley (blue) earthquakes, which occurred approximately 100 km from the Sacramento Dark Fiber DAS array 
(black line). (b,c) Raw and lowpass �ltered DAS strain-rate waveforms for these events averaged over 100 m 
(50 channels) at the yellow circle position shown in (a) (channel 4975 +/− 50 channels). Note the similarity 
between seismic and non-seismic signal amplitudes and the di�erences in frequency content.

Figure 8. (a) Illustration of di�erent installation geometries. (b) Earthquake (M4.2 Geysers 2018-Jan-18) trace 
comparison for each installation mode at Sacramento – trenched conduit (green), cased conduit (blue), attached 
conduit (red); strain-rate data are stacked over 100 m and �ltered (BP 0.5–2 Hz n 4 p 2). (c) Normalized Fourier 
amplitude spectra for the waveforms shown in b.
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interaction of the incident seismic energy with the infrastructure and/or tube waves traveling in the attached 
conduit at air velocity. �e trenched conduit shows a broader spectral response to near-surface scattering into 
surface waves, while the cased conduit is relatively insensitive to it. We should note that three installation condi-
tions discussed in this study are certainly not a comprehensive survey. A large variety of techniques are used for 
�ber installation, ranging from direct cable burial to installation on utility poles; the impact on DAS recording for 
many have yet to be evaluated.

Discussion
While the focus of our study was the speci�c utilization of installed telecom �ber probed by DAS for seismic 
sensing, our static imaging and monitoring results are consistent with and rely on broad advances in the �eld 
of ambient noise seismology applied to the near-surface. Beyond the foundational studies cited previously38, 
a variety of recent projects have utilized ambient noise approaches to probe hydrologic cycles7,59–61 and aqui-
fer structure62 although typically using a sparse network of stations. Such studies have typically relied on the 
microseisms band as a noise source (0.1–1 Hz) and hence are observing averaged velocity perturbations over 
signi�cant vertical extent, o�en to km depths. Despite this, such approaches have yielded convincing correlations 
with environmental parameters such as groundwater level59 although o�en for larger perturbations (10 s of m 
perturbations) in comparison to our study. In contrast, our experiment is densely sampled in space and utilizes 
infrastructure noise in the 0.5–18 Hz range; this enables adoption of surface wave inversion approaches utilized 
in the geotechnical community46,47,63 and the monitoring of very shallow features with some degree of depth 
resolution. Unfortunately, the minimal precipitation and small perturbations (1 m) in groundwater level which 
occurred during our study period precluded e�ective observation of hydrologic variations. Despite this fact, the 
static structure observed was consistent with our available ground truth dataset.

As mentioned previously, the ambient noise aspect of our study was also greatly enhanced by the broadband 
seismic signal generated by rail tra�c co-linear to our measurement �ber. Recent seismic interferometry exam-
ples from the 2014 Belen experiment64 which utilized a more classical sensor array (4.5 Hz geophones) con�rms 
the utility of rail noise as an imaging source for both P as well as S-wave imaging. �ese observations bode well 
for future dark �ber exploitation; since many telecom �ber installations use railway right-of-ways for installation, 
judicious selection of �ber paths can exploit this powerful source of seismic energy. Our experiment also provide 
an unusual case study of large (12k+ channel) array recording with dense receiver spacing (2 m). �e only com-
parably sized experiments (5000+ sensors) are massive nodal deployments, which have recently been leveraged 
for similar event detection34,65 and ambient noise66,67 applications.

Outside of the validation datasets presented previously, prior studies in close proximity to our site are not 
extensive. Geotechnical evaluations, conducted in support of levee evaluation and construction broadly agree 
with our conclusions. At a location near our �ber pro�le, a past study evaluating levee safety in West Sacramento68 
reported an average Vs30 of 234 m/s which is broadly consistent with our surface wave inversion values of (210–
280 m/s), a NEHRP class D soil environment.

As demonstrated in the prior sections, DAS-based seismic measurements acquired using dark �ber can pro-
vide a wealth of information relevant to near-surface seismic property estimation, hydrologic state, and natural 
seismicity. Measurements using dark �ber also have advantages in a host of situations ranging from marine to 
urban scenarios where classical seismic networks are challenging to execute.

An obvious strength of dark �ber DAS deployments, demonstrated in this study, is the potential to record 
data across long (10 s of km) transects at high spatial resolution without any required sensor installation or power 
source. Chains of such deployments could be utilized to provide true basin scale sensing; the Sacramento Basin’s 
central width (120 km) could be spanned using only 4 independent interrogation units and existing dark �ber 
resources, providing an unprecedented sensing resource. While basin scale hydrogeophysical monitoring studies 
using point sensors and ambient noise have been recently conducted7, the spatial resolution of such investiga-
tion is typically on the order of km due to sparse sensor distribution. Recent advances in large N processing 
approaches32 also o�er strategies for leveraging dense arrays for detecting small seismic events.

A second advantage of utilizing dark �ber for seismic measurements is dense non-invasive coverage in urban 
areas where diverse deployment and permitting environments challenge classical acquisition strategies. �e pres-
ent study provides coverage spanning urban (Sacramento), suburban, and rural zones without the typical land-
owner permission e�ort, permitting, and survey work required for deployment in occupied areas.

While not demonstrated in this study, dark �ber can also be utilized for observations in the transition zone 
and o�shore domains, areas where almost no measurements exist at present due to the high cost of tethered 
marine observatories including seismometers. O�shore DAS measurements would be particularly useful for 
improving the hypocenter accuracy for small events occurring on marine faults and earthquake early warning 
in subduction zones. Limitations of using DAS and dark �ber for o�shore observations include (a) distance 
constraints for DAS measurements on single mode �ber for existing optical chains, currently in the range of 
30–40 km, (b) the considerably higher cost for dedicated use of �bers in transoceanic cables, (c) the lower density 
of o�shore cable routes which reduces coverage. Having said this, o�shore dark �ber recording provides a clear 
future opportunity to extend the domain of seismological measurements into previously uninstrumented regions.

Despite these opportunities, challenges exist to fully exploit these conceptually novel sensing networks. 
Extremely large data volumes are among the most pressing, although solvable, problems; at maximum acquisition 
rates, a single interrogator can generate upwards of 20 TB/day. Combining these large N deployments with the 
long time periods required for ambient noise processing and monitoring yields raw data volumes that exceed the 
capacity of the computational infrastructure available to most researchers. �e array in this study, which included 
12000 channels sampled at 500 Hz, generated 128 TB of raw data in the �rst 3 months of operation and approxi-
mately 0.3 PB of raw data when the system was demobilized. Volumes of this size require careful consideration of 
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data transport requirements, storage, archiving, and automated processing to be successfully utilized. Fortunately, 
on-going e�orts to solve I/O and computational barriers in ambient noise studies69,70 provide a path to potentially 
handle the much larger datasets generated by dark �ber studies.

Methods
DAS system installation. �e Silixa iDAS unit utilized in this study was installed on a vibration iso-
lated table located in the West Sacramento PoP. Vibration isolation consisted of a 18 × 24′′ Nexus Breadboard 
(�orlabs) with passive Sorbothane feet (�orlabs) placed on a durometer 70 Sorbothane sheet. �is assembly 
was placed on a rack shelf within the PoP cage where the utilized dark �ber was terminated in a standard �ber-op-
tic patch panel with SC-UPC connection. Connection to the Silixa iDAS was made using an SC-UPC/SC-APC 
single-mode patch cable. An optical time-domain re�ectometer (OTDR) was used to evaluate �ber integrity prior 
to recording. An OTDR trace measured a total loss of 20.8 dB over the full �ber length of 101 km at 1550 nm, or 
an average loss of 0.2059 dB/km.

Details of data collection, computing, and processing infrastructure. As mentioned in the main 
manuscript, the data was collected at 500 Hz in the iDAS native format in the form of raw 1 minute records at 2 m 
spatial sampling. Files were written to a local USB3-connected 8 or 16 TB external hard drive. To maintain conti-
nuity of the dataset, hard drives were replaced on a weekly or biweekly basis and manually transferred from West 
Sacramento CA to Berkeley CA, where the data were uploaded to a local RAID storage server using the Globus 
protocol (https://www.globus.org/, last accessed: 2018-05-21) from a networked data transfer node. �e storage 
server was linked to �ve RAID6 disk arrays and the full dataset was striped to improve performance. Primary 
processing was carried out on a 32-core GPU server connected to the storage server via a fast GB switch. Final 
results were visualized using a combination of MATLAB (Mathworks) and the ObsPy package.

Processing Framework & Parameters for Ambient Noise Analysis. As mentioned in the primary 
manuscript, we adopted the ambient noise surface wave processing and inversion approach detailed in a prior 
DAS study26 with the steps shown in Supplemental Fig. S1. �e overall work�ow was initially derived from ambi-
ent noise analysis strategies developed over the last decade in the crustal imaging community41. Ambient noise 
interferometry was performed on sequential 120 m long subsections of the array to provide a combination of 
su�cient spectral resolution and a useful spatial resolution short enough for 1D analysis during inversion. In each 
subsection, the southernmost channel was treated as the virtual source and cross-correlated with the remainder 
of the channels.

Results shown in the ambient noise study are comprised exclusively of processing minutes when a train was 
passing near the selected array section; the train was the most energetic as well as broadband ambient noise 
source and selection of these records allowed for e�cient processing. Train passes were identi�ed for each sec-
tion by scanning trace windowed RMS amplitude on the raw records. One minute records where the train was 
approaching or departing from a section were tagged for ambient noise processing. �e train schedule was varia-
ble (2–6 passes per day) so each epoch utilized 40 minutes of train noise for analysis, independent of the number 
of days required to accumulate this stack. �ese N = 40 stacks were typically generated over approximately 10 
days.

A�er selection and to prepare the raw records for noise correlation, static o�sets and linear trends were 
removed, followed by temporal decimation down to a coarser sampling rate of 8 ms. Next, a temporal normaliza-
tion with running-absolute-mean was applied over a 0.5-second running window. �e frequency content of the 
data between 0.5 Hz and 18 Hz was then balanced with a spectral whitening step. Finally, in each of the 1-minute 
records, the noise of the virtual-source channel was cross-correlated with the rest of the channels’ records to form 
a common virtual-source gather. To achieve good SNR with a minimal stack count, phase-weighted stacking 
(ν = 0.5) was used and a stack count of 40 was su�cient for reaching temporal stability. Prior studies71 docu-
ment the utility of phase weighted stacks in ambient noise analysis. A slant stack was then applied to the stacked 
common virtual-shot gathers to transform the data from space-time domain to frequency-velocity (dispersion) 
domain.

The input to all inversions were experimental multimodal dispersion curves extracted from the 
frequency-velocity domain images. Given the very large number of datasets generated including 100 s of 
sub-arrays over 10 s of epochs, automation, rather than hand-picking, was a necessity. A simple algorithm was 
developed to pick the dispersion curves by 2D scans for local maximums with a lower threshold. As can be seen 
from the example in Fig. 2c, the presence of strong modes besides the fundamental forced adoption of a multi-
modal inversion approach. One weakness of the auto-picking approach is handling of the low frequency ends of 
the dispersion curves; in these cases, the auto-picks o�en are biased to high velocities which can distort (increase) 
the velocity of the bounding 1/2 space.

As discussed in prior work26, mode-labeling can present a challenge for this class of DAS dataset hence we 
adopted an inversion approach which did not require explicit mode numbering. For our objective function in 
the inversion, we utilized a recently developed formulation developed by Maraschini and collaborators46,47. �eir 
novel approach, which we refer to as the Haskell-�omson determinant method, searches for models that can 
minimize the determinant of a model-predicted propagator matrix whose frequency and velocity terms are 
replaced with the experimental dispersion curves. We refer the interested reader to prior descriptions of the algo-
rithm46,47 and a prior example of applying it to DAS data26. �e advantage of this approach is that (a) the objective 
function can be very e�ciently evaluated without root �nding, thus allowing global search, and (b) non-labeled 
multimodal dispersion data can be utilized as an input.

Because of the nonlinear nature of the problem and the low computational costs of the Haskell-�omson 
determinant method, Monte Carlo sampling was used46 as part of search and model selection. We adopted a 
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sparse parameterization for the search problem assuming a four layer model for each array subsection and solved 
for Vs and layer thickness for each location. For each 1D inversion, a Monte Carlo pool size of 1 × 106 models 
was used. Search bounds of the model parameters are shown in Table 1. Each model parameter was assumed to 
be uniformly distributed in the sampling process within the bounds, with the restriction that all models were 
required to have increasing Vs with depth, likely a valid assumption in this geology. As can be seen in Table 1 
and Fig. 2d, the bounds are not tight and allow e�ective model exploration. All models were ranked by L1 mis�t; 
the optimum models were selected for interpretation. Each set of the inversions took 1.5 minutes on 24 cores 
(2.3 GHz Intel Xeon processors).

Processing Framework & Parameters for Earthquake Analysis. We identi�ed earthquake records 
in the continuous raw DAS dataset using catalogued origin times and approximate travel times to Sacramento for 
the 1-D iasp91 Earth velocity model. 1-minute duration earthquake records were merged together, and then, if 
desired, stacked with a mean average of traces over a speci�ed length (100 m = 50 traces averaged and plotted at 
the midpoint), prior to the application of a speci�ed bandpass �lter to remove unwanted or uninteresting signals. 
In Fig. 5a, the iasp91 model was again used to calculate the phase arrival angles with respect to vertical. Figure 5b 
shows one stacking e�ect.

Data on Reference Wells. Data on the reference groundwater monitoring well discussed (W1) was 
acquired from the CASGEM database. As mentioned in the text, the well is referred to as the Sac Bypass Shallow 
Well (State well ID 09N04E20-N001M and CASGEM ID 25619). �e well is located in Yolo County at 38.6062 N, 
−121.5602 W with a surface elevation of 6.55 m (21.49 �) above sea level; the well is associated with the Yolo 
County Water Resources Association (WRA) with measurements conducted by the CA Department of Water 
Resources (DWR). �e well is completed with slotted PVC and a sandpack over a 6.1 m (20 �) interval from 24.4 
to 30.5 m below ground surface. Water table depths were measured manually at an irregular intervals (every 1 to 
3 months) with a reported accuracy of 0.3 cm (0.01 �).

Data Availability
Due to the very large size of this dataset, only decimated raw components or processed subsections are available 
upon request.
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