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Distributed Adaptive Consensus Disturbance
Rejection for Multi-agent Systems on Directed

Graphs
Junyong Sun, Zhiyong Geng, Yuezu Lv, Zhongkui Li, Member, IEEE,

and Zhengtao Ding, Senior Member, IEEE

Abstract—This paper considers the distributed consensus dis-
turbance rejection problem for general linear multi-agent systems
with deterministic disturbances under directed communication
graphs. Based on the relative state information of the neighboring
agents, the consensus protocols, which consist of two observers,
including a state observer and a separate disturbance observer,
are designed to guarantee that the consensus error goes to
zero with complete disturbance rejection. Furthermore, the state
observer is designed in a fully distributed fashion with adaptive
coupling gain, which has the advantage that the consensus con-
troller design is independent of the Laplacian matrix associated
with the communication network. The distributed observer-based
consensus disturbance rejection protocols are further extended
to containment control. Finally, an example is provided to
demonstrate the effectiveness of the proposed strategies.

Index Terms—Consensus control, multi-agent systems, distur-
bance rejection, adaptive control.

I. INTRODUCTION

Over the last decade, cooperative control of multi-agent
systems has gained a surge of interest from various research
communities, due to its potential applications in cooperative
surveillance, formation of unmanned aerial vehicles (UAV),
sensor networks, flocking and social networks [1, 2, 3, 4].
In the aforementioned literature, a fundamental theme is
consensus control, meaning that the individual agent negotiates
with its neighbors through local interaction to reach a global
agreement.

Since the fundamental work [5, 6], in which consensus
problem was first proposed in [5], and reference [6] estab-
lished a framework of consensus control for single-integrator
systems with different networks, much effort has been made
from different aspects, such as consensus with time delay
[7, 8, 9], finite-time consensus [10, 11], consensus with
connectivity preservation [12, 13], and synchronization of
complex networks [14, 15] which can be seen as an extension
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of consensus problem. The early results focus on the first-
, second- and high-order integrator systems [6, 16, 17], and
then the recent results have been extended more general linear
and nonlinear multi-agent systems [18, 19, 20, 21, 22]. In
the above literature, the formulation of consensus can be
categorized, based on the number of leaders, into three types
of problems: leaderless consensus, leader-following consensus
(or consensus tracking), and containment control, which has
multiple leaders. For leaderless consensus, the final consensus
value depends on the initial condition of each agent, while
consensus tracking has a reference (leader) as the common
trajectory, and for containment control, the followers move in
the convex hull spanned by the multiple leaders. Thus, it is
clear that, in leader-follower consensus, the leader can know
the agreement value in advance, and the containment control
has the advantage in some tasks, for example, the leaders
can formulate a safe area for the followers in a hazardous
environment.

In this paper, we address consensus tracking control for
general linear multi-agent systems with disturbance under
directed graphs. Among the works in consensus tracking,
the authors in [23] considered consensus tracking for dou-
ble integrators with a dynamic leader under an undirected
communication topology. The consensus tracking problem for
high-order integrator systems subject to external disturbances
was solved in [24], guaranteeing that consensus tracking
errors are ultimately bounded. A unified framework has been
introduced in [18] for consensus of linear multi-agent systems
and synchronization of complex networks. Along this line,
the consensus tracking problem for the linear system has
been addressed in [25] with both state feedback and output
feedback. In [26], the authors studied consensus for linear
systems based the low gain approach. One common feature
of the previous literature is that the consensus protocol design
depends on the eigenvalues of the Laplacian matrix associated
with the whole network, which is not easy to compute in
practice if the network is very large with some uncertain
connections. In order to remove this limitation, much effort
has been made in the references [27, 28, 29], in which the
main idea is to introduce an adaptive coupling gain in the
controller. However, a drawback is that the adaptive coupling
gain is difficult to be applied to directed communication
graphs, whose Laplacian matrices are generally asymmetric,
resulting in the difficulty in designing Lyapunov functions
and adaptive protocols. Recently, a new result is given in
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[30], which has readdressed the adaptive coupling technique
via multiplying a new nonlinear function in the controller,
accompanied by a new integral-type Lyapunov function in the
stability proof. By this new approach, the consensus protocols
design can be applied to the directed graph without requiring
the eigenvalues of the Laplacian matrix. But it is worth noting
that the controllers are designed by multiplying the adaptive
coupling gain and the nonlinear function together with the
tracking error, resulting in possible bursting in the amplitude
of the control input.

On the other hand, disturbances widely exist in practical sys-
tems. Thus, it is important to consider the disturbance rejection
problem. In literature, disturbance rejection and attenuation
have been extensively studied for individual systems [31, 32]
and recently for multi-agent systems [33, 34] and complex
networks [14, 35]. In [33, 34], the consensus control problems
with disturbance have been solved in the H∞ framework,
which can only deal with an L2-type disturbance. Besides, the
idea of H∞ control is to suppress the disturbance for the worst
case, which thus is conservative to some extent. In [14], the
robustness of a complex network to Gaussian white noise is
investigated and the consensus problem for linear integrators
are addressed. In [35], a multiplex distributed proportional-
integral approach is proposed to solve the consensus problem
of a group of agents with constant disturbances. For a non-
vanishing disturbance such as sinusoidal or constant distur-
bance, a key strategy is to design some input based on the
state or output information to cancel the disturbance in the
feed-forward sense, which can be realized through disturbance
observers based on specified disturbance models. In the frame-
work of disturbance observer-based control, typical results can
be found in the references [36, 37, 38], and the method has
been applied to various situations, such as industrial robotic
manipulators, and maglev suspension systems. Albeit the sig-
nificant developments in consensus control of linear systems
in the last decade, rejection of deterministic disturbances in
consensus control did not catch much attention until recently.
In [39], the consensus problem was addressed for second-
order integrators under an undirected graph. Fairly recently, in
[40], the author considered the consensus disturbance rejection
problem for the linear agents, but the communication topology
is undirected when an adaptive coupling gain is used.

Motivated by the aforementioned results, in this paper, we
aim to address the consensus disturbance rejection problem
for general linear multi-agent systems on directed graphs. The
main contributions of the paper are the following:

1) Firstly, based on the relative state information of the
neighboring agents, two new disturbance rejection con-
sensus protocols are proposed for the general directed
graph based on two observers, of which, one is the state
observer, and the other is the distributed disturbance
observer to handle the period disturbance. Both of the
protocols guarantee that the consensus errors converge
to zero asymptotically. Besides, the disturbance observer
gain is designed independently of the state observer,
while in [40], the disturbance observer gain and state
observer design are coupled with each other through the
observability of the disturbance.

2) Secondly, the consensus protocol with the adaptive
state observer is fully distributed in the sense that
the controller is designed without knowing the global
information of the Laplacian matrix associated with the
whole network. Based on this new adaptive estimator,
the proposed consensus protocol can achieve consensus
for directed graphs whose Laplacian matrices are not
symmetric.

3) Finally, a distributed adaptive observer is designed to de-
couple the adaptive coupling gain from the control input,
which has the advantage that the high-gain coupling has
no direct impact on the magnitude of the control input.
Furthermore, a low-pass filter motivated by [41], which
can be seen as a damping term, is added to reduce the
initial adaptive rate of the coupling gain. In contrast,
in [30], the coupling gain exists in the controller by
multiplying a nonlinear function, and the coupling gain
will increase rapidly if the initial consensus error is
large, which may result in very big control input.

The remainder of this paper is organized as follows. In
Section 2, some preliminary results are introduced. In Section
3, the consensus tracking problem with disturbance rejection
is formulated. The main results are developed in Section 4.
Simulation results are provided in Section 5, and Section 6
concludes the paper.

II. MATHEMATICAL PRELIMINARIES

A. Notations

Throughout the paper, the notation is defined as follows.
Let Rn×m denote a set of n×m real matrices, Rn represent a
set of n-dimensional vectors, and 0n×m represent the matrices
with all zeros. Besides, let IN denote the identity matrix of
dimension N , 1 represent a column vector with all entries
equal to one, and the symbol ⊗ denotes the Kronecker
product of the matrices. For a matrix X , λmin(X), λmax(X)
denote its minimum and maximum eigenvalue, respectively,
and σmin(X), σmax(X) denote its minimum and maximum
singular value, respectively.

B. Graph theory

In this paper, the information flow among the multiple
agents is depicted by a directed graph G , (V, E), with
V , {1, · · · , N} as the node set, and E ⊆ V × V as the
edge set. In the directed graph G, (i, j) ∈ E denotes that the
ith agent can receive the information from the jth agent, but
not vice versa. And a directed path from node i1 to node
is is a sequence of ordered pair of nodes in the form that
(i1, i2), · · · , (is−1, is). A directed graph contains a spanning
tree if there exists a node (which we call root), so that all
incoming edges to root may be deleted, whilst all other nodes
are reachable from root along directed paths. In the graph
theory, the adjacency matrix A = [aij ] is adopted to express
the information transmission direction among the nodes in the
way that aij = 1 if (i, j) ∈ E , otherwise is zero. And aii = 0
for all nodes due to the fact that there is no self-loop in the
topology. More importantly, based on the adjacency matrix, the
Laplacian matrix L = [Lij ] is defined as Lii =

∑N
j=1,j 6=i aij
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and Lij = −aij , i 6= j. And the Laplacian matrix associated
with the directed graph G has the following fundamental
property.

Lemma 1: ([42]) The Laplacian matrix L associated with
graph G has the property that it has a simple eigenvalue at
zero with the vector 1 as a corresponding eigenvector and all
other eigenvalues have positive real parts if and only if the
graph G contains a directed spanning tree.

Assumption 1: The graph G contains a directed spanning
tree with the leader as the root node.

Because the leader is denoted by the root node that has no
incoming edges, the Laplacian matrix L of G has the following
structure

L =

[
0 01×N
L2 L1

]
, (1)

where L1 ∈ RN×N and L2 ∈ RN×1. In light of Lemma 1,
zero is a simple eigenvalue of the Laplacian matrix L on the
condition that the Assumption 1 is satisfied. Thus, it is not
difficult to conclude that L1 is a nonsingular M-matrix that
has a significant property as follows:

Lemma 2: ([30]) For the nonsingular M-matrix L1, there
exists a diagonal matrix G = diag(g1, · · · , gN ) with gi >
0, i = 1, · · · , N such that GL1 + LT1 G , L̂1 > λ0IN > 0,
where λ0 is the minimum eigenvalues of the matrix L̂1.
And the positive definite matrix G can be computed as
[g1, · · · , gN ]T = (LT1 )−11.

III. PROBLEM STATEMENT

Consider a group of N + 1 agents with general linear
dynamics, consisting of N followers and one leader indexed
with 0. The dynamics of the followers are denoted by

ẋi(t) = Axi(t) +Bui + Edi(t), (2)

where for agent i, i = 1, . . . , N , xi ∈ Rn is the state vector,
ui ∈ Rm is the control input vector. A ∈ Rn×n, B ∈ Rn×m,
E ∈ Rn×s are constant matrices, di(t) ∈ Rs is the disturbance
that is generated by an exosystem, i.e.

ḋi = Sidi,

where Si ∈ Rs×s is a known constant matrix that is called
exosystem matrix, which can be different for each agent.

The leader has dynamics as ẋ0(t) = Ax0(t) +Bu0(t) with
u0 = 0.

The control objective of this paper is to design distributed
adaptive consensus protocols for each follower with distur-
bance, such that the state of each follower converges to the
state of the leader, that is,

lim
t→∞

(xi(t)− x0(t)) = 0,

for any initial condition of xi(0), i = 1, 2, · · · , N .
Assumption 2: The eigenvalues of the exosystem matrix are

distinct, and on the imaginary axis.
Assumption 3: The disturbances in the subsystems satisfy

the matching condition, i.e., there exists a matrix F ∈ Rm×s
such that E = BF.

Remark 1: The Assumption 2 on the eigenvalues guarantees
that the disturbance di is the non-vanishing harmonic dis-
turbance including constants and sinusoidal functions, which
can also be used as the basis functions to approximate other
periodic signals, and this assumption is commonly used in
the disturbance rejection and output regulation community
[21, 43]. Assumption 3 is the matching condition on distur-
bances in the system, and sinusoidal functions or constants
can be completely rejected. Besides, unmatched disturbances
under some conditions can be transformed to the matched ones
according to references [40, 43].

IV. MAIN RESULT

A. Observer-Based Consensus Disturbance Rejection with
Static Coupling

In this section, based on the relative state of the neighboring
agents, the consensus protocols with disturbance rejection are
designed as follows

ui = cKθi − F d̂i (3)

where c > 0 ∈ R is the feedback coupling gain independent of
the Laplacian matrix. θi is the state of the following estimator
that is only based on the relative state information

θ̇i = Aθi + cBKθi + ρ(1 + βi)BK(ei − ξi), (4)

βi = (ei − ξi)TP−1(ei − ξi), (5)

where ρ is a positive constant to be determined later. ξi =
N∑
j=1

aij(xi−xj)+ai0(xi−x0) is the relative state information,

and ei =
N∑
j=1

aij(θi− θj) +ai0θi, K = −BTP−1, and P > 0

is a positive solution of the following LMI:

AP + PAT − 2cBBT < 0 (6)

and d̂i is the estimate of the disturbance, with the disturbance
observer designed as:

d̂i = zi + Lξi,

żi = Sizi + (SiL− LA)ξi − cLBKei
(7)

where L is the feedback gain to be determined later, and zi
is the virtual state of the disturbance observer.

Remark 2: Only based on the relative state information,
a state observer (4) is proposed, which is then adopted to
design the disturbance observer and consensus controller in
sequence. The main motivation to design the state observer
is to provide extra freedom for the controller design through
improving the order of the whole system. Furthermore, the
disturbance observer (7) is designed in the distributed fashion
for that only the relative information, including relative state
and relative estimate, is used. By exploring the structure of
the exosystem in Assumption 2, the disturbance observer and
the state observer design can be decoupled from each other,
which is different to the result in [40], where the disturbance
observer gain depends on the state observer.

Before moving forward, let δi = xi−x0, d̃i = d̂i−di as the
tracking error and disturbance estimation error, respectively.
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By virtue of the consensus protocol (3), the closed-loop error
dynamics of the ith agent can be obtained as

δ̇i(t) = Aδi(t) + cBKθi − Ed̃i. (8)

Let δ(t) = [δT1 (t), · · · , δTN (t)]T , d̃ = [d̃T1 (t), · · · , d̃TN (t)]T ,
ξ(t) = [ξT1 (t), · · · , ξTN (t)]T , e(t) = [eT1 (t), · · · , eTN (t)]T .
Then we have the fact that

ξ(t) = (L1 ⊗ In)δ(t), e(t) = (L1 ⊗ In)θ(t). (9)

where L1 is defined in (1). As L1 is nonsingular according
to Lemma 1, there exists a bijective mapping between vectors
ξ(t), e(t) and δ(t), θ(t), respectively.

Then we obtain the dynamics of ξi, ei in the compact form
as

ξ̇ = (IN ⊗A)ξ + (IN ⊗ cBK)e− (L1 ⊗ E)d̃,

ė = [IN ⊗ (A+ cBK)]e+ [ρL1(IN + β̂)⊗BK](e− ξ).
(10)

where β̂ = diag(β1, · · · , βN ).

Before giving the main result in this section, a lemma on
the disturbance observer is provided as follows.

Lemma 3: For the full column rank matrix E, if the observer
gain L is designed to guarantee that LE is positive definite,
the estimation error d̃i converges to zero exponentially based
on the disturbance observer (7). Besides, as a special case, the
observer gain can be designed as L = µET with µ > 0.

Proof: Let d̃ = [d̃T1 (t), · · · , d̃TN (t)]T , it is not difficult to
get the estimation dynamics in the compact form as

˙̃
d = [IN ⊗ Si − L1 ⊗ LE]d̃. (11)

Consider the Lyapunov function candidate

V1(t) = d̃T (G⊗ Is)d̃,

where G = diag(g1, · · · , gN ) from Lemma 2. The time
derivative of V1 along the trajectory of (11) is obtained as

V̇1 = d̃T [G⊗ (Si + STi )]d̃− d̃T [(GL1 + LT1 G)⊗ LE]d̃

≤ d̃T [G⊗ (Si + STi )]d̃− d̃T [λ0IN ⊗ LE]d̃ = −d̃THd̃

where H = −G⊗ (Si + STi ) + λ0IN ⊗ LE.
Based on the Assumption 2, it is obvious that all the eigen-

values of matrix H are on the right half side. Consequently,
we can obtain that V̇1 ≤ 0, and V̇1 = 0 is equivalent to d̃ = 0.
This completes the proof.

The main result in this section is summarized in the follow-
ing theorem.

Theorem 1: Suppose the directed topology satisfies Assump-
tion 1 together with Assumption 2 and 3, the gain matrix L is
designed such that −LE is Hurwitz, and the gain ρ in the state
observer (4) satisfies that ρ ≥ 4cgmax

λ0
, where λ0 is the minimal

eigenvalue of the matrix L̂1, gmax = max{g1, · · · , gN}, then
the consensus protocol (3) solves the consensus disturbance
rejection problem with the state observer (4), and disturbance
observer (7).

Proof: Consider the following Lyapunov function candi-
date

V2 = eT (IN ⊗ P−1)e+
γ1

2

N∑
i=1

gi(2 + βi)βi.

Then, the time derivative of V2 along the trajectory of (10)
is given by

V̇2 = 2eT (IN ⊗ P−1)ė+ γ1

N∑
i=1

gi(1 + βi)β̇i.

Observe that

2eT (IN ⊗ P−1)ė

= eT [IN ⊗ (P−1A+ATP−1 − 2cP−1BBTP−1)]e

− 2eT [ρL1(IN + β̂)⊗ Γ](e− ξ)

≤ −eT (IN ⊗H1)e+ eT (IN ⊗
1

2
H1)e+ (e− ξ)T ·[2ρ2σ2

max(L1)λmax(Γ)

λmin(H1)
(IN + β̂)2 ⊗ Γ

]
(e− ξ)

= −eT (IN ⊗
1

2
H1)e+ (e− ξ)T

[2ρ2σ2
max(L1)λmax(Γ)

λmin(H1)

·(IN + β̂)2 ⊗ Γ
]
(e− ξ),

(12)

where −H1 = P−1A + ATP−1 − 2cP−1BBTP−1 < 0,
Γ = P−1BBTP−1, and the inequality has used the Young’s
Inequality.

Based on the dynamics (10), one can obtain

γ1

N∑
i=1

gi(1 + βi)β̇i

= 2γ1(e− ξ)T [G(IN + β̂)⊗ P−1](ė− ξ̇)
≤ γ1(e− ξ)T [G(IN + β̂)⊗ (P−1A+ATP−1)

− ρ(IN + β̂)(GL1 + LT1 G)(IN + β̂)⊗ Γ](e− ξ)
+ 2γ1(e− ξ)T [G(IN + β̂)L1 ⊗ P−1E]d̃,

where the inequality has used that GL1+LT1 G = L̂1 ≥ λ0IN ,
then the inequality can be computed as

≤ γ1(e− ξ)T [G(IN + β̂)⊗ (P−1A+ATP−1)

− ρλ0(IN + β̂)2 ⊗ Γ](e− ξ)
+ 2γ1(e− ξ)T [G(IN + β̂)L1 ⊗ P−1E]d̃

≤ γ1(e− ξ)T [G(IN + β̂)⊗ (P−1A+ATP−1 − 2cΓ)]·

(e− ξ)− γ1ρ
λ0

2
(e− ξ)T [(IN + β̂)2 ⊗ Γ](e− ξ)

+ 2γ1(e− ξ)T [G(IN + β̂)L1 ⊗ P−1E]d̃,
(13)

where the last inequality is derived by virtue of the fact that
ρ ≥ 4cgmax

λ0
, and (IN + β̂) ≥ IN .
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In light of the Young’s inequality, it can be obtained that

2γ1(e− ξ)T [G(IN + β̂)L1 ⊗ P−1E]d̃

≤ γ1ρ
λ0

4
(e− ξ)T [(IN + β̂)2 ⊗ Γ](e− ξ)

+ γ1
4

λ0ρ
d̃T [(GL1)T (GL1)⊗ FTF ]d̃

≤ γ1ρ
λ0

4
(e− ξ)T [(IN + β̂)2 ⊗ Γ](e− ξ)

+ γ1
4g2

maxλmax(LT1 L1)λmax(FTF )

λ0ρλmin(H)
d̃THd̃.

(14)

Consider the Lyapunov function candidate for the whole
closed-loop systems as

V = γ1γ2V1 + V2.

Thus, based on the result (12)(13)(14) and Lemma 3, the
derivative of the Lyapunov function is

V̇ ≤ γ1(e− ξ)T [G(IN + β̂)⊗ [P−1A+ATP−1 − 2cΓ]·

(e− ξ)− eT (IN ⊗
1

2
H1)e+ (e− ξ)T ·[2ρ2σ2

max(L1)λmax(Γ)

λmin(H1)
(IN + β̂)2 ⊗ Γ

]
(e− ξ)

− γ1
ρλ0

4
(e− ξ)T [(IN + β̂)2 ⊗ Γ](e− ξ)− γ1γ2·

d̃THd̃+ γ1
4g2

maxλmax(LT1 L1)λmax(FTF )

λ0ρλmin(H)
d̃THd̃

≤ −γ1(e− ξ)T [G(IN + β̂)⊗H1](e− ξ)

− eT (IN ⊗
1

2
H1)e− γ1d̃

THd̃.

(15)

where γ1 ≥ 8ρσ2
max(L1)λmax(Γ)
λ0λmin(H1) and γ2 ≥ 1 +

4g2maxλmax(LT
1 L1)λmax(FTF )

λ0ρλmin(H) .

By noting that V (t) ≥ 0, and V̇ (t) ≤ 0, it can be concluded
that limt→∞ V (t) = V (∞) and V (∞) ≤ V (t) ≤ V (0). Thus
all the signals in the closed-loop systems including ei, ξi are
bounded, that is, ei, ξi ∈ L∞. Integrating both sides of the
inequality (15), we can obtain that

V (0)− V (∞) ≥
∫ ∞

0

{γ1(e− ξ)T [G(IN + β̂)⊗H1](e− ξ)

+ eT (IN ⊗
1

2
H1)e+ γ1d̃

THd̃},
(16)

which implies
√
gi(IN + βi)(ei− ξi), ei, d̃i ∈ L2. Then from

the dynamics (10), we have ėi, ξ̇i ∈ L∞. By virtue of the
Barbalat’s Lemma, we can conclude that limt→∞(ei−ξi) = 0,
limt→∞ ei = 0, limt→∞ d̃i = 0. Consequently, the consensus
tracking error ξi goes to zero asymptotically, meaning that the
consensus tracking problem has been solved.

Remark 3: As pointed out in [18], a sufficient condition
for the existence of the feedback gain matrix K is that
(A,B) is stabilizable which guarantees that the LMI (6) has a
positive definite solution P > 0. Besides, the static coupling
c > 0 is an independent parameter that has no relation with
the Laplacian matrix of the communication graph, while the

dependence relation has been removed to the coupling gain ρ
in the state observer (4), which has the advantage that very
large coupling ρ has little influence on the controller.

B. Observer-Based Consensus Disturbance Rejection with
Dynamic Coupling

As is illustrated in the Theorem 1, the parameter ρ in the
state observer (4) depends on the parameters λ0, gmax, which
are associated with the Laplacian matrix of the whole com-
munication topology. Obviously, the whole network graph is
the global information and, therefore, the consensus protocols
in the above section are not in the fully distributed fashion. In
order to remove this limitation to make the controllers fully
distributed, a new adaptive coupling gain is adopted in the state
observer design. Based on the relative state of the neighboring
agents, a distributed consensus protocol with adaptive state
observer for the i-th agent is proposed as follows

ui = cKθi − F d̂i (17)

where c ∈ R is the feedback coupling gain independent of
the Laplacian matrix. θi is the state of the following adaptive
estimator with adaptive couplings as

θ̇i = Aθi + cBKθi + (αi + βi)BK(ei − ξi), (18)

α̇i = ki(ei − ξi)TΓ(ei − ξi)− kiσi(αi − bi(t)), (19)

βi = (ei − ξi)TP−1(ei − ξi), (20)

and bi(t), i = 1, · · · , N are the filtered coupling weight
estimates that are designed as follows

ḃi(t) = ρi(αi(t)− bi(t)), i = 1, · · · , N, (21)

where ki > 0, ρi > 0 are the learning rates, σi > 0 is a small
design parameter, and ξ, ei is the same as in Section IV-A,
and

Γ = P−1BBTP−1,K = −BTP−1,

where P > 0 is a positive solution of the following LMI:

AP + PAT − 2cBBT < 0 (22)

and d̂i is the estimate of the disturbance that keeps the same
form with (7) in the above section.

Follow the notations in (8)(9), then we obtain the dynamics
of ξi, ei in the compact form as

ξ̇ = (IN ⊗A)ξ + (IN ⊗ cBK)e− (L1 ⊗ E)d̃,

ė = [IN ⊗ (A+ cBK)]e+ [L1(α̂+ β̂)⊗BK](e− ξ).
(23)

where α̂ = diag(α1, · · · , αN ), β̂ = diag(β1, · · · , βN ).
Before moving forward, the following lemma is significant

for the stability analysis.
Lemma 4: Based on adaptive controller (19)(21), we have

the fact that αi(t)− bi(t) > 0 if the initial values satisfy that
αi(0)− bi(0) > 0.

Proof: Based on the adaptive law (19) and (21), we have

α̇i − ḃi = (ei − ξi)TΓ(ei − ξi)− (kiσi + ρi)(αi − bi).
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Then it can be obtained that

αi − bi = [αi(0)− bi(0)]e−(kiσi+ρi)t

+

∫ t

0

e−(kiσi+ρi)(t−τ)(ei − ξi)TΓ(ei − ξi)dτ

≥ [αi(0)− bi(0)]e−(kiσi+ρi)t > 0.

This completes the proof.

Based on the above preparations, the main result of this
section is given in the following theorem.

Theorem 2: Suppose the communication graph satisfies
Assumption 1 together with Assumption 2 and 3, then with
the distributed adaptive consensus protocols (17)-(21) and
the distributed disturbance observer (7), all the closed-loop
signals including ξi, θi, d̃i, αi, bi are uniformly ultimately
bounded and the consensus tracking error converges to zero
asymptotically.

Proof: Consider the following Lyapunov function candi-
date

V3 = eT (IN ⊗ P−1)e+
γ1

2

N∑
i=1

gi(2αi + βi)βi

+
γ1

2

N∑
i=1

1

ki
(αi − α)2 +

γ1

2

N∑
i=1

σi
ρi

(bi − α)2,

where α is a positive scalar to be designed later.

Then, the time derivative of V3 along the trajectory of (23)
is given by

V̇3 = 2eT (IN ⊗ P−1)ė+ γ1[

N∑
i=1

gi(αi + βi)β̇i +

N∑
i=1

giα̇iβi]

+ γ1

N∑
i=1

1

ki
(αi − α)α̇i + γ1

N∑
i=1

σi
ρi

(bi − α)ḃi.

Similar with the above section, it is obtained that

2eT (IN ⊗ P−1)ė

= eT [IN ⊗ (P−1A+ATP−1 − 2cP−1BBTP−1)]e

− 2eT [L1(α̂+ β̂)⊗ Γ](e− ξ)

≤ −eT (IN ⊗
1

2
H1)e+ (e− ξ)T ·[2σ2

max(L1)λmax(Γ)

λmin(H1)
(α̂+ β̂)2 ⊗ Γ

]
(e− ξ),

(24)

where −H1 = P−1A+ATP−1 − 2cP−1BBTP−1 < 0, and
the inequality has used the Young’s Inequality.

Let b̂ = diag(b1, · · · , bN ). Then, by virtue of the adaptive

coupling (19)(20) and the low-pass filter (21), we have

γ1

[ N∑
i=1

gi(αi + βi)β̇i +

N∑
i=1

giα̇iβi

]
+ γ1

N∑
i=1

1

ki
(αi − α)α̇i

+ γ1

N∑
i=1

σi
ρi

(bi − α)ḃi

= 2γ1(e− ξ)T [G(α̂+ β̂)⊗ P−1](ė− ξ̇) + γ1(e− ξ)T [(Gβ̂

⊗ Γ)− (Gσ̂(α̂− b̂)⊗ P−1) + (α̂− αIN )⊗ Γ](e− ξ)

− γ1

N∑
i=1

σi(αi − α)(αi − bi) + γ1

N∑
i=1

σi(bi − α)(αi − bi)

≤ γ1(e− ξ)T [G(α̂+ β̂)⊗ (P−1A+ATP−1)− (α̂+ β̂)

(GL1 + LT1 G)(α̂+ β̂)⊗ Γ + (Gβ̂ ⊗ Γ) + (α̂− αIN )⊗ Γ]

· (e− ξ) + 2γ1(e− ξ)T [G(α̂+ β̂)L1 ⊗ P−1E]d̃

− γ1

N∑
i=1

σi[αi − bi]2

≤ γ1(e− ξ)T [G(α̂+ β̂)⊗ (P−1A+ATP−1)− λ0(α̂+ β̂)2

⊗ Γ + (Gβ̂ ⊗ Γ) + (α̂− αIN )⊗ Γ](e− ξ)+

2γ1(e− ξ)T [G(α̂+ β̂)L1 ⊗ P−1E]d̃− γ1

N∑
i=1

σi[αi − bi]2,

(25)

where the first inequality has used the result in Lemma 4, and
the following fact that

γ1

N∑
i=1

σi(bi − α)(αi − bi)− γ1

N∑
i=1

σi(αi − α)(αi − bi)

= −γ1

N∑
i=1

σi[αi − bi]2,

and the second inequality has used that GL1 +LT1 G ≥ λ0IN .
Moreover,

γ1(e− ξ)T [Gβ̂ ⊗ Γ + (α̂− αIN )⊗ Γ

− λ0

2
(α̂+ β̂)2 ⊗ Γ](e− ξ)

≤ −γ1(e− ξ)T [
λ0

4
(α̂+ β̂)2 ⊗ Γ + (αIN −

1

λ0
IN

− 1

λ0
G2)⊗ Γ](e− ξ)

≤ −γ1(e− ξ)T [
λ0

4
(α̂+ β̂)2 ⊗ Γ + ᾱ⊗ Γ](e− ξ)

≤ −γ1(e− ξ)T [2cG(α̂+ β̂)⊗ Γ](e− ξ),

(26)

where α ≥ ᾱ + 1
λ0

+ 1
λ0
g2

max, and the constant scalar ᾱ is
determined by the fact that λ0

4 (α̂+ β̂)2 + ᾱIN ≥
√
λ0ᾱ(α̂+

β̂) ≥ 2cG(α̂+ β̂) if
√
λ0ᾱIN ≥ 2cG, that is, ᾱ ≥ 4c2gmax

λ0
.
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In light of the Young’s inequality, it can be obtained that

2γ1(e− ξ)T [G(α̂+ β̂)L1 ⊗ P−1E]d̃

≤ γ1
λ0

4
(e− ξ)T [(α̂+ β̂)2 ⊗ Γ](e− ξ)

+ γ1
4

λ0
d̃T [(GL1)T (GL1)⊗ FTF ]d̃

≤ γ1
λ0

4
(e− ξ)T [(α̂+ β̂)2 ⊗ Γ](e− ξ)

+ γ1
4g2

maxλmax(LT1 L1)λmax(FTF )

λ0λmin(H)
d̃THd̃.

(27)

Consider the Lyapunov function candidate for the whole
closed-loop systems as

V = γ1γ2V1 + V3.

Thus, based on the result (24)-(27) and Lemma 3, the deriva-
tive of the Lyapunov function is

V̇ ≤ γ1(e− ξ)T [G(α̂+ β̂)⊗ [P−1A+ATP−1 − 2cΓ](e− ξ)

− eT (IN ⊗
1

2
H1)e− γ1γ2d̃

THd̃

+ (e− ξ)T [
2σ2

max(L1)λmax(Γ)

λmin(H1)
(α̂+ β̂)2 ⊗ Γ](e− ξ)−

γ1
λ0

4
(e− ξ)T [(α̂+ β̂)2 ⊗ Γ](e− ξ)− γ1

N∑
i=1

ρi[αi − bi]2

+ γ1
4g2

maxλmax(LT1 L1)λmax(FTF )

λ0λmin(H)
d̃THd̃

≤ −γ1(e− ξ)T [G(α̂+ β̂)⊗H1](e− ξ)

− eT (IN ⊗
1

2
H1)e− γ1

N∑
i=1

ρi[αi − bi]2 − γ1d̃
THd̃,

(28)

where γ1 ≥ 8σ2
max(L1)λmax(Γ)
λ0λmin(H1) and γ2 ≥ 1 +

4g2maxλmax(LT
1 L1)λmax(FTF )

λ0λmin(H) .

By noting that V (t) ≥ 0, and V̇ (t) ≤ 0, it can be concluded
that limt→∞ V (t) = V (∞) and V (∞) ≤ V (t) ≤ V (0). Thus
all the signals in the closed-loop systems including ei, ξi, αi, bi
are bounded, that is, ei, ξi, αi, bi ∈ L∞. Integrating both sides
of the inequality (28), we can obtain that

V (0)− V (∞) ≥
∫ ∞

0

{γ1(e− ξ)T [G(α̂+ β̂)⊗H1](e− ξ)

+ eT (IN ⊗
1

2
H1)e

+ γ1

N∑
i=1

ρi[αi − bi]2 + γ1d̃
THd̃},

which implies
√
gi(αi + βi)(ei − ξi), ei, (αi − bi), d̃i ∈ L2.

Then from the dynamics (18)-(23), we have ėi, ξ̇i, α̇i, ḃi ∈
L∞. By virtue of the Barbalat’s Lemma, we can conclude that
limt→∞(ei − ξi) = 0, limt→∞ ei = 0, limt→∞(αi − bi) = 0,
limt→∞ d̃i = 0. Consequently, the consensus tracking error
ξi goes to zero asymptotically, meaning that the consensus
tracking problem has been solved. Besides, αi − bi goes to
zero, meaning that the adaptive coupling αi has tracked the

low-pass filter state bi, and goes to a constant asymptotically.

Remark 4: In the controller (17), the constant c is a positive
constant parameter that is independent of the eigenvalues of
the Laplacian matrix, thus the consensus protocol is designed
in the fully distributed fashion. Moreover, the adaptive cou-
pling αi is removed from the controller to the distributed
observer which has no direct impact on the amplitude of the
control input. Besides, the part −σi(αi − bi) in (19) can be
seen as a damping term added to the adaptive coupling in the
state observer, which helps to reduce the initial learn rate of
the adaptive coupling gain. In the references [30], the adaptive
coupling gains are designed by multiplying the consensus
errors, which has the limitation that the bursting phenomenon
in the transient process of the adaptive coupling results in large
control input, which is not practical in the real applications due
to the actuator’s finite ability. Besides, the adaptive observer
(18) has been designed partially motivated by [44].

Remark 5: The distributed disturbance observer (7) has
adopted the idea from the classical disturbance-observer-based
control, which has the advantage that the estimation of the
disturbance can be seen as an added patch to the nominal con-
troller, that is, we can add the distributed disturbance observer
to a multi-agent system that is already achieved consensus by
some other controllers. Thus, it is more convenient in the real
applications.

Remark 6: In the leader-follower consensus problem, the
control input is applied to each agent to achieve the consensus
tracking objective. As to the case where the control is exerted
to only a fraction of agents, we believe that the pinning control
method [45, 46] will be helpful to solve this future work of
this paper.

C. Extensions to Containment Control with Multiple Leaders

In this section, the above result is extended to the case
with multiple leaders, which is named containment control
in the literature. Suppose the group of agents consists of
M leaders, labeled as 1, · · · ,M , and N −M followers that
labeled with M + 1, · · · , N. The convex hull for the states
of multiple leaders set XL , {x1, · · · , xM} is defined as
co(XL) , {

∑M
i=1 αixi|

∑M
i=1 αi = 1, αi ≥ 0}. Then the

containment control is defined as follows.
Definition 1: The containment control problem is solved

if a group of followers converge to the convex hull co(XL)
spanned by the states of multiple leaders.

Similar to the Assumption 1, the communication topology
G′ among the agents satisfies the following assumption:

Assumption 4: In the graph G′, there exists at least one
leader that has a directed path for each of the N−M followers.
Assume that the leaders have no parents, the Laplacian matrix
L′ associated with the graph G′ has the following structure:

L′ =

[
0M×M 0M×(N−M)

L′2 L′1

]
, (29)

where L′1 ∈ R(N−M)×(N−M) and L′2 ∈ R(N−M)×M .
Lemma 5: ([47]) If the Assumption 4 is satisfied, the matrix

L′1 in the equation (29) is a M-matrix, and each entry of
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−(L′1)−1L2 is nonnegative and all row sums of −(L′1)−1L′2
equals to one.

Define L,F as the set of leaders and followers, respectively,
with L = {1, · · · ,M},F = {M + 1, · · · , N}. Then, let
ξ̄i =

∑
j∈L∪F

aij(xi − xj), ēi =
∑

j∈L∪F
aij(θi − θj), where

θi = 0, i ∈ L. Besides, let xL = [xT1 , · · · , xTM ]T , xF =
[xTM+1, · · · , xTN ]T , and ξ̄(t) = [ξ̄TM+1(t), · · · , ξ̄TN (t)]T , ē(t) =
[ēTM+1(t), · · · , ēTN (t)]T . Then one can obtain the fact that

ξ̄(t) = (L′1 ⊗ In)xF + (L′2 ⊗ In)xL, ē(t) = (L′1 ⊗ In)θ(t).
(30)

Based on the result in Lemma 5, ξ̄(t) = (L′1 ⊗ In)[xF +
((L′)−1

1 L′2 ⊗ In)xL] = 0 equals to xF = [−((L′)−1
1 L′2 ⊗

In)xL], where −((L′)−1
1 L′2 ⊗ In)xL is the convex hull of

the dynamic leaders. Thus the containment control has been
transformed to prove that ξ̄ → 0 as t→∞.

Based on the fact (30) and the similar form of controllers
in the above section, the dynamics of ξ̄, ē are obtained as

˙̄ξ = (IN ⊗A)ξ̄ + (IN ⊗ cBK)ē− (L′1 ⊗ E)d̃,

˙̄e = [IN ⊗ (A+ cBK)]ē+ [L′1(α̂+ β̂)⊗BK](ē− ξ̄).
(31)

where α̂ = diag(αM+1, · · · , αN ), β̂ = diag(βM+1, · · · , βN ).
The result on the containment control is summarized in the

following theorem.
Theorem 3: Suppose Assumption 2 and 3 hold, and the

communication network G′ satisfies Assumption 4, the con-
sensus protocol (17) with state estimator (18) and disturbance
observers (7) solves the containment control with disturbance
rejection.

Proof: The proof is similar with that in Theorem 2, thus
is omitted here.

Remark 7: The containment control in this section with
multiple leaders can be seen as the extension of the consensus
tracking problem in Theorem 2. Actually, when M = 1,
the containment control will reduce to the consensus tracking
control.

V. SIMULATION

In this section, a simulation example is provided to illustrate
the effectiveness of the above theoretical results. Consider a
network of six agents, consisting of five followers and one
leader labeled with 0, whose dynamics, which is the Hill
equation of the spacecraft in the low Earth orbit, are given
as follows [18]:

A =

[
0 I3
A1 A2

]
, B =

[
0
I3

]
,

where

A1 =

 0 0 0
0 3η2

0 0
0 0 −η2

0

 , A2 =

 0 2η0 0
−2η0 0 0

0 0 0

 ,
and E =

[
0 0 0 1 0 0
0 0 0 0 1 0

]T
. The communication

graph is represented by Fig. 1, and only the follower indexed
by 1 is available to the leader’s information. From the Fig. 1,
it is easy to see that the communication topology contains

Fig. 1. Communication topology.

a directed spanning tree. In this simulation, the harmonic
disturbance is generated by the exo-system with the matrix

Si =

[
0 ωi
−ωi 0

]
, where ωi is the disturbance frequency.

And in this simulation, η0 = 0.001, ω1 = 1, ω2 = 2, ω3 =
1.5, ω4 = 0.5, ω5 = 2.5.

A. Case 1:

In this case, the consensus protocols in Theorem 1 is veri-
fied. By solving the LMI (6) with the LMI toolbox of MAT-
LAB, the feedback gain K = −BTP−1,Γ = P−1BBTP−1

can be computed as

K =
[−0.6596 0.0013 0 −1.9789 0 0
−0.0013 −0.6596 0 0 −1.9789 0

0 0 −0.6596 0 0 −1.9789

]
,

Γ =

 0.4351 0 0 1.3053 0.0026 0
0 0.4351 0 −0.0026 1.3053 0
0 0 0.4351 0 0 1.3053

1.3053 −0.0026 0 3.9159 0 0
0.0026 1.3053 0 0 3.9160 0

0 0 1.3053 0 0 3.9159

 .
where the matrix P is

P =

 2.2740 −0.0000 0 −0.7580 −0.0015 0
−0.0000 2.2740 0 0.0015 −0.7580 0

0 0 2.2740 0 0 −0.7580
−0.7580 0.0015 0 0.7580 −0.0000 0
−0.0015 −0.7580 0 −0.0000 0.7580 0

0 0 −0.7580 0 0 0.7580

 .
The Laplacian matrix L1 associated with the graph in Fig. 1

is that

L1 =


2 0 0 0 −1
0 1 0 0 −1
−1 −1 2 0 0
0 0 −1 1 0
0 0 0 −1 1

 . (32)

Then, based on Lemma 2, matrix G = diag(5, 10, 9, 17, 16)
and λ0 = 1.7919. Thus, the static coupling is chosen as ρ =

32 ≥ 4cgmax

λ0
= 31.2517, and the matrix F =

[
1 0 0
0 1 0

]T
.

The initial states of the system xi, the state observer θi, and the
disturbance observer zi are chosen randomly within [−10, 10]
based on the rand function in MATLAB. Norm of consensus
errors ξi are described given in Fig. 2a, which shows clearly
that the tracking errors converge to zero, that is, the consensus
tracking is achieved.

B. Case 2:

In this case, the consensus protocols with adaptive estima-
tors in Theorem 2 are applied. Compared with the first case,
the Laplacian matrix of the communication network is not
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Fig. 2. (a) Case 1: Norm of consensus error ξi, i = 1, · · · , 5, (b) Case 2: Norm of consensus error ξi, i = 1, · · · , 5, (c) Case 2: The adaptive coupling αi

and filter state bi.

required. Instead, a new adaptive coupling αi is added. The
initial conditions for the adaptive coupling αi and the filter
bi are chosen randomly within [3, 10] and [0, 2], respectively,
which can guarantee that the initial states satisfy the relation
αi(t0) > bi(t0), i = 1, · · · , 5. For the space limitation, only
the norm of consensus errors are shown in Fig.2b, from which
it can be seen that consensus tracking is achieved for case 2
with adaptive coupling in the state observer.

In Fig. 2c, the solid thick lines denote the adaptive coupling
αi, i = 1, · · · , 5, and solid thin lines denote the filter state
bi, i = 1, · · · , 5. From the Fig.2c, it can be seen that αi, bi, i =
1, · · · , 5 converge to some constant values asymptotically, and
αi → bi, i = 1, · · · , 5. Moreover, the dashed lines denote the
adaptive coupling gain without the low-pass filter, indicating
that the low-pass filter has reduced the learn rate of the
coupling gain to make the gains smaller.

VI. CONCLUSION

This paper has addressed the distributed consensus distur-
bance rejection problem for general linear multi-agent systems
with the directed communication topology. Two observer-
based consensus protocols are designed with static-coupling
state observer and adaptive state estimator, respectively, and
the result with the adaptive estimator has been extended to
the containment control. The consensus protocol with adaptive
state estimator has separated the adaptive coupling gain from
the controller to the observer, which isolates the possible
burst of the adaptive coupling gain from the control input.
In addition, the adaptive consensus protocol is designed in a
fully distributed format in the sense that the parameters in
the protocol are independent of the global information, such
as the Laplacian matrix associated with the whole commu-
nication network. Finally, an example has demonstrated the
effectiveness of the theoretical results.
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