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Distributed Adaptive Convex Optimization on

Directed Graphs via Continuous-Time Algorithms
Zhenhong Li, Zhengtao Ding, Senior Member, IEEE, Junyong Sun, and Zhongkui Li, Member, IEEE

Abstract—This note considers the distributed optimization pro-
blem on directed graphs with nonconvex local objective functions
and the unknown network connectivity. A new adaptive algorithm
is proposed to minimize a differentiable global objective function.
By introducing dynamic coupling gains and updating the coupling
gains using relative information of system states, the nonconvexity
of local objective functions, unknown network connectivity and
the uncertain dynamics caused by locally Lipschitz gradients
are tackled concurrently. Consequently, the global asymptotic
convergence is established when the global objective function is
strongly convex and the gradients of local objective functions are
only locally Lipschitz. When the communication graph is strongly
connected and weight-balanced, the algorithm is independent of
any global information. Then, the algorithm is naturally extended
to unbalanced directed graphs by using the left eigenvector of
the Laplacian matrix associated with the zero eigenvalue. Several
numerical simulations are presented to verify the results.

Index Terms—Consensus control, distributed convex optimiza-
tion, adaptive control.

I. INTRODUCTION

The last decades have witnessed a growing interest of

research in distributed optimization, due to its potential ap-

plications in a variety of scenarios such as sensor networks,

distributed parameters estimation, power system economic

dispatch and regression of distributed data (see, e.g., [1]–[4]).

An important class of distributed optimization problems is to

minimize a global objective function which is the sum of local

objective functions, by local computation and information

exchange with neighboring agents. This kind of distributed

optimization problems have been addressed by many resear-

chers from various perspectives (see, e.g., [5]–[20]).

Most of existing algorithms are based on discrete-time dy-

namics (see e.g., [5]–[10], [21]). By designing the consensus-

based dynamics, these discrete-time algorithms can find the

solution of the optimization problem. Recently, continuous-

time algorithms have been introduced to solve distributed

optimization problems (see, e.g., [11]–[20]). In [14], [16] and

[19], the Newton-Raphson and the Zero-Gradient-Sum based

continuous-time algorithms achieve the global convergence

on undirected graphs using the positive bounded Hessian

of local objective functions. Since the requirement of the
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positive bounded Hessian, local objective functions are as-

sumed to be twice differentiable and convex. The projection

based algorithm in [15] removes the requirement of the

twice differentiability of local objective functions by using

the projection of their gradients. Two adaptive schemes are

designed in [20] to solve the distributed optimization problem

for general linear dynamics with undirected communications.

The global convergence is established when local objective

functions are convex and local gradients are error-bounded.

The algorithms in [12], [13] and [17] successfully solve the

distributed optimization problem on weight-balanced directed

graphs, which is more challenging than the undirected case. To

deal with the unidirectional gradient flow, the global Lipschitz

constants of local gradients and the network connectivity (i.e.,

the smallest nonzero eigenvalue of the Laplacian matrix) are

used in the algorithms. However, these parameters require

the knowledge of entire network connections and are difficult

to get for large scale networks. The global asymptomatic

convergence of the algorithms is established when all local

objective functions with global Lipschitz gradients are convex.

Moreover, if the gradients of local objective functions are

only locally Lipschitz, the global convergence will degrade

to semiglobal.

Two main challenges for the distributed optimization with

directed communications are 1) removing the requirement

of global information, and establishing global convergence

with only locally Lipschitz gradients; 2) relaxing the common

assumption (see, e.g., [11]–[20], [22]) of convexity of local

objective functions. It is well-known in the consensus control

design that adaptive techniques can be used to deal with the

unknown network connectivity (see, e.g., [23]–[25]). However,

different from simply borrowing the adaptive techniques from

consensus control design, the design of adaptive schemes in

the distributed optimization has to tackle different features: the

non-linearity of local gradients and the coupled dynamics be-

tween system states and internal states caused by asymmetric

communications.

In this note, we propose a new adaptive algorithm on

weight-balanced directed graphs. Consequently, the require-

ments of the Lipschitz constants and the network connecti-

vity are removed. Unlike the previous results, the convexity

properties of local objective functions is not used in our

convergence analysis, which makes local objective functions

allowed to be nonconvex. The global asymptotic convergence

can be guaranteed if the sum of local objective functions

is strongly convex. Another contribution of this note is that

we extend our results to general unbalanced directed graphs.

The global asymptotic convergence can be guaranteed on
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unbalanced directed graphs provided that the left eigenvector

of the Laplacian matrix associated with the zero eigenvalue is

available.

The remaining sections of this note are organized as follows.

Section II is devoted to notations and mathematical prelimi-

naries. In Section III, the distributed optimization problem is

formulated. In Section IV, an adaptive distributed algorithm

is proposed for strongly connected weight-balanced directed

graphs. In Section V, a different adaptive algorithm is designed

for unbalanced directed graphs. Simulations are included in

Section VI, and conclusions are drawn in the last section.

II. NOTATIONS AND PRELIMINARIES

Throughout this section, we introduce our notations and

some basic concepts of convex functions and graph theory.

A. Notations

Let R, R
n, R

n×m denote the sets of real numbers, real

vectors of dimension n, and real matrices of size n × m,

respectively. R>0 denotes the positive real numbers. The

superscript T denotes the transpose of a real matrix. The

identity matrix of dimension n is denoted by In, and the

column vector of size n with all entries equal to one is

denoted by 1n. For a vector a ∈ R
n, ‖a‖ is the Euclidean

norm of a; for a matrix A ∈ R
n×n, ‖|A|‖ is the spectral

norm of A (also known as its maximum singular value).

The ith eigenvalue of the matrix A, is denoted by λi(A).
Besides, the symbol ⊗ denotes the Kronecker product of the

matrices, which has the properties that (B ⊗ C)(D ⊗ E) =
(BD) ⊗ (CE), (B ⊗ C)T = BT ⊗ CT, where B, C, D,

E are matrices with proper dimensions. For a differentiable

function f : Rn → R, ▽f denotes the gradient of f ; f is

strongly convex over a convex set Ω ⊆ R
n iff there exists

m ∈ R>0 such that (x− y)T(▽f(x)−▽f(y)) > m ‖x− y‖
2

for all x, y ∈ Ω, x 6= y; f is locally Lipschitz at x ∈ R
n

if there exists a neighborhood W of x and M ∈ R≥0 such

that |f(y)− f(z)| ≤ M ‖y − z‖, for y, z ∈ W; f is locally

Lipschitz on R
n if it is locally Lipschitz at x for all x ∈ R

n.

B. Graph Theory

The information flow among agents is described by a

directed graph. Let a triplet G = (V, E ,A) be a directed graph,

where V = {1, . . . , N} is a set of nodes, E ⊆ V × V is a set

of edges, and A = [aij ] ∈ R
N×N is a weighted adjacency

matrix. An edge (i, j) ∈ E represents that ith agent can receive

the information from jth agent, but not vice versa. The jth

agent is a neighbor of ith agent if (i, j) ∈ E . A directed path

from node i1 to node iq is a sequence of ordered edges in the

form of (i1, i2), . . . , (iq−1, iq). A directed graph is strongly

connected if there exists a directed path connecting every pair

of nodes. The weighted adjacency matrix A is defined as

aij > 0 if (i, j) ∈ E , otherwise aij = 0. Due to the fact

that there is no self-loop in graph, aii = 0 for all nodes.

The Laplacian matrix L = [lij ] ∈ R
N×N associated with the

directed graph G is defined as lii =
∑N

j=1 aij and lij = −aij
for i 6= j. The eigenvalues of a symmetric L can be ordered

as 0 ≤ λ2(L) ≤ · · · ≤ λN (L). A directed graph G is weight-

balanced iff 1T
NL = 0

T
N .

Lemma 1: ( [26]) Let L ∈ R
N×N be the Laplacian matrix

of a strongly connected directed graph G. The following

properties hold:

1) Matrix L has a simple zero eigenvalue corresponding to

the right eigenvector 1N , and all nonzero eigenvalues

have positive real part.

2) Let r = [r1, r2, . . . , rN ]T, ri ∈ R>0, i = 1, 2, . . . , N ,

be the left eigenvector of L associated with the

zero eigenvalue and R = diag(r1, r2, . . . , rN ). Then,

minζTx=0,x 6=0

xTL̄x
xTx

>
λ2(L̄)
N

, where L̄ , RL + LTR,

ζ is any vector with positive entries. Moreover, r = 1N

iff G is strongly connected and weight-balanced.

III. PROBLEM STATEMENT AND EQUIVALENT

FORMULATIONS

In this section, we consider a set of N agents interacting

over a directed connection graph. Each agent has a local cost

function fi : R
n → R. The global cost function is defined as

f(z) =
∑N

i=1 fi(z). The objective of this note is to design

a continuous-time distributed algorithm such that each agent

can solve the optimization problem

minz∈Rnf(z), (1)

by using its own and neighboring information.

Following assumptions are supposed to be satisfied throug-

hout this note.

Assumption 1: The global cost function f is differentiable

and strongly convex over R
n. The local cost function fi is

differentiable and its gradient is locally Lipschitz on R
n, i.e.,

for any compact set U ⊂ R
n, there always exists Mi ∈ R≥0

such that |▽fi(y)− ▽fi(z)| ≤ Mi ‖y − z‖ for y, z ∈ U .

From Assumption 1, the strong convexity of the global cost

function f guarantees the unique solution of the problem (1).

Assumption 2: The communication graph G is strongly

connected.

Under Assumption 2, the problem (1) can be reformulated

as

minxi∈Rn f̃ =
N
∑

i=1

fi(xi), subject to (L ⊗ In)x = 0, (2)

where xi is the state of ith agent, and x = [xT
1 , x

T
2 , . . . , x

T
N ]T

is the state of network. In view of Lemma 1, (L ⊗ In)x = 0

iff x = 1N ⊗ τ , for some τ ∈ R
n. Then, it can be concluded

that the problem (1) is equivalent to the problem (2). By

reformulating the problem (1), the problem is transformed

into a distributed minimization problem under a consensus

condition.

IV. DISTRIBUTED ADAPTIVE CONTINUOUS-TIME

CONVEX OPTIMIZATION ALGORITHM ON

WEIGHT-BALANCED DIRECTED GRAPHS

In this section, we propose a fully distributed algorithm to

solve the problem (2). Consider the following algorithm with
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dynamic coupling gains

v̇i =γ1(αi + βi)

N
∑

j=1

aij(xi − xj), (3a)

ẋi =− γ2▽fi(xi)− γ1(αi + βi)

N
∑

j=1

aij(xi − xj)

−

N
∑

j=1

aij(vi − vj), (3b)

α̇i =eTi ei, (3c)

where βi = eTi ei, vi ∈ R
n is the internal state of the algorithm,

ei =
∑N

j=1 aij(xi−xj) is the relative error, γ1, γ2 ∈ R>0 are

control gains, and αi, βi are the dynamic coupling gains with

αi(0) ∈ R>0.

Note that (3) is distributed, since each agent only communi-

cates with its neighboring agents. The term
∑N

j=1 aij(vi−vj)
in (3b) implies that agents need to transmit the internal states

of the algorithm via the communication graph G.

The dynamics of the network can be written in a compact

form as

v̇ =γ1[(α̂+ β̂)L ⊗ In]x, (4a)

ẋ =− γ2▽f̃(x)− γ1[(α̂+ β̂)L ⊗ In]x− (L ⊗ In)v, (4b)

α̇i =eTi ei, (4c)

where βi = eTi ei, α̂ = diag(α1, α2, . . . , αN ),
β̂ = diag(β1, β2, . . . , βN ), v = [vT1 , v

T
2 , . . . , v

T
N ]T

is the internal state of the network, and ▽f̃(x) =
[▽f1(x1)

T,▽f2(x2)
T, · · · , fN (xN )T]T is the vector of

the network gradient.

Lemma 2: Under Assumptions 1 and 2 , if the communica-

tion graph G is weight-balanced, the equilibrium point of (4)

is an optimal solution of the distributed optimization problem

(2).

Proof: We can obtain the equilibrium point (x̃, ṽ) of (4),

from

0 = γ1[(α̂+ β̂)L ⊗ In]x̃, (5)

0 = −γ2▽f̃(x̃)− γ1[(α̂+ β̂)L ⊗ In]x̃− (L ⊗ In)ṽ. (6)

In the sequel, we will show that the equilibrium point is a

solution of the problem (2). Deducing from (5) and (6), the

equilibrium point satisfies

x̃i = x⋆, i =1, 2, . . . , N, (7)

N
∑

j=1

aij(ṽi − ṽj) =− γ2▽fi(x
⋆), (8)

γ2

N
∑

i=1

▽fi(x
⋆) =(1T

NL ⊗ In)ṽ = 0, (9)

where x⋆ ∈ R
n. Since f̃ is strongly convex,

∑N

i=1 ▽fi(x
⋆) =

0 implies that (x̃, ṽ) is a global minimizer of (2). Note that if

(x̃, ṽ) is a solution of (2), so is (x̃, ṽ + 1N ⊗ κ), κ ∈ R
n.

Theorem 1: Under Assumptions 1 and 2 , if the commu-

nication graph G is weight-balanced, the dynamic algorithm

(3) solves the distributed optimization problem (2) for any

xi(0), vi(0) ∈ R
n. Furthermore, the dynamic coupling gains

αi converge to some finite steady-state values.

Proof: Theorem 1 is proved by showing that the tra-

jectories of (x, v) converge to the equilibrium point of (4).

Transferring the equilibrium point (x̃, ṽ) to the origin by the

state transformation µ = v − ṽ, g = x − x̃, we can further

write the network dynamics as

µ̇ =γ1[(α̂+ β̂)L ⊗ In]g, (10a)

ġ =− γ2(▽f̃(g + x̃)− ▽f̃(x̃))− γ1[(α̂+ β̂)L ⊗ In]g

− (L ⊗ In)µ, (10b)

α̇i =





N
∑

j=1

aij(gi − gj)





T 



N
∑

j=1

aij(gi − gj)



 , (10c)

where βi =
[

∑N

j=1 aij(gi − gj)
]T [

∑N

j=1 aij(gi − gj)
]

. To

get (10), we have used (L ⊗ In)[(α̂ + β̂) ⊗ In](L ⊗ In) =
[L(α̂+ β̂)⊗ In](L ⊗ In).

The distributed optimization problem (2) is solved by the

algorithm (3) if limt→∞ µ(t) = 1N ⊗ κ, κ ∈ R
n and

limt→∞ g(t) = 0.

Introducing another state transformation ̺ = (L ⊗ In)µ,

η = (L ⊗ In)g, we obtain the dynamics

˙̺ =γ1[L(α̂+ β̂)⊗ In]η, (11a)

η̇ =− γ2(L ⊗ In)h− γ1[L(α̂+ β̂)⊗ In]η

− (L ⊗ In)̺, (11b)

α̇i =ηTi ηi, (11c)

where h = ▽f̃(g + x̃)− ▽f̃(x̃) and βi = ηTi ηi.

Consider following positive definite functions

V1 =
1

2

N
∑

i=1

(αi − α)2, (12)

V2 =
1

2

N
∑

i=1

(2αi + βi)η
T
i ηi, (13)

where α is a positive scalar to be designed later. The time

derivatives of (12) and (13) along the trajectory of (11) are

given by

V̇1 =

N
∑

i=1

(αi − α)eTi ei

=

N
∑

i=1

ηTi (αi − α)ηi = ηT[(α̂− αIN )⊗ In]η, (14)

V̇2 =
N
∑

i=1

(2αi + 2βi)η
T
i η̇i + βiα̇i

=− 2γ2η
T[(α̂+ β̂)L ⊗ In]h

− 2ηT[(α̂+ β̂)L ⊗ In]̺+ ηT(β̂ ⊗ In)η

− γ1η
T{[(α̂+ β̂)(L+ LT)(α̂+ β̂)]⊗ In}η. (15)

Let η̃ = [(α̂ + β̂) ⊗ In]η. Then, we can obtain η̃T[(α̂ +
β̂)−1

1N ⊗ 1n] = gT(LT
1N ⊗ 1n) = 0.



4

Since all the entries of (α̂+ β̂)−1
1N ⊗ 1n are positive, in

light of Lemma 1, it follows that

ηT{[(α̂+ β̂)L(α̂+ β̂)+(α̂+ β̂)LT(α̂+ β̂)]⊗ In}η

≥
λ2(L̂)

N
ηT[(α̂+ β̂)2 ⊗ In]η,

where L̂ = L + LT and the equality holds iff η = 0. By

incorporating this fact into (15), we have

V̇1 + V̇2 ≤−
γ1λ2(L̂)

N
ηT[(α̂+ β̂)2 ⊗ In]η

+ ηT[(α̂+ β̂ − αIN )⊗ In]η − 2ηT[(α̂+ β̂)L

⊗ In]̺− 2γ2η
T[(α̂+ β̂)L ⊗ In]h. (16)

Define a convex set containing (x̃, ṽ) as

H = {(x, v) ∈ R
Nn × R

Nn |

‖x− x̃‖ ≤ ‖x(0)− x̃‖ , for any v ∈ R
Nn}.

Since x̃ is unique, H is compact for x. Based on Assumption

1, there exists Mi ∈ R>0 such that ‖▽fi(xi)− ▽fi(x̃i)‖ ≤
Mi ‖xi − x̃i‖ , i = 1, 2, . . . , N , for (x, v) ∈ H. In what

follows, we show that η and ̺ converge to 0. Using Young’s

inequality, we deduce that

−2ηT[(α̂+ β̂)L ⊗ In]̺ ≤
γ1λ2(L̂)

4N
ηT[(α̂+ β̂)2 ⊗ In]η

+
4NλN (LTL)

γ1λ2(L̂)
̺T̺, (17)

−2γ2η
T[(α̂+ β̂)L ⊗ In]h ≤

γ1λ2(L̂)

2N
ηT[(α̂+ β̂)2 ⊗ In]η

+
2Nγ2

2M
2
maxλN (LTL)

γ1λ2(L̂)
gTg,

(18)

where Mmax = max(M1,M2, . . . ,MN ). To obtain (18), we

have applied the fact

hT(LTL ⊗ In)h ≤
∥

∥

∣

∣LTL
∣

∣

∥

∥ ‖h‖
2

≤ M2
maxλN (LTL)gTg. (19)

Based on (16), (17) and (18), we can obtain

V̇1 + V̇2 ≤−
γ1λ2(L̂)

4N
ηT[(α̂+ β̂)2 ⊗ In]η

+ ηT[(α̂+ β̂ − αIN )⊗ In]η +
4NλN (LTL)

γ1λ2(L̂)
̺T̺

+
2Nγ2

2M
2
maxλN (LTL)

γ1λ2(L̂)
gTg. (20)

Consider

V3 =
1

2
(̺+ η)T(̺+ η). (21)

The time derivative of V3 along (11) can be written as

V̇3 =̺T ˙̺ + ηTη̇ + ̺Tη̇ + ηT ˙̺

=− γ2η
T(L ⊗ In)h− ηT(L ⊗ In)̺− γ2̺

T(L ⊗ In)h

− ̺T(L ⊗ In)̺

≤
λ2(L̂) + 2λN (LTL)

λ2(L̂)
ηTη −

λ2(L̂)

4
̺T̺

+
γ2
2M

2
maxλN (LTL)(λ2(L̂) + 8)

4λ2(L̂)
gTg. (22)

To get (22), we have used (19) and the facts that

̺T(L ⊗ In)̺ =
̺T(L̂ ⊗ In)̺

2
, λi(LL

T) =λi(L
TL).

Consider a Lyapunov function candidate for the whole

closed-loop system as

V = V1 + V2 +
17NλN (LTL)

γ1λ2(L̂)2
V3. (23)

Applying the results (20) and (22), and from (23), we have

V̇ ≤ηT

[(

−
γ1λ2(L̂)

4N
(α̂+ β̂)2 + (α̂+ β̂)− αIN

+
17NλN (LTL)(λ2(L̂) + 2λN (LTL))

γ1λ2(L̂)3
IN

)

⊗ In

]

η

−
NλN (LTL)

4γ1λ2(L̂)
̺T̺+

(

2Nγ2
2M

2
maxλN (LTL)

γ1λ2(L̂)

+
17Nγ2

2M
2
maxλN (LTL)2(λ2(L̂) + 8)

4γ1λ2(L̂)3

)

gTg. (24)

Let δ ∈ R>0 be an arbitrary small positive constant.

Since g(x(t))Tg(x(t)) ≤ g(x(0))Tg(x(0)), for (x, v) ∈
H, when ηTη ≥ δ, there always exists a sufficiently

large positive scalar ǫ ∈ R>0 such that ǫηTη ≥
(

2Nγ2

2
M2

max
λN (LTL)

γ1λ2(L̂)
+

17Nγ2

2
M2

max
λN (LTL)2(λ2(L̂)+8)

4γ1λ2(L̂)3

)

gTg.

Choosing α ≥ 17NλN (LTL)(λ2(L̂)+2λN (LTL))

γ1λ2(L̂)3
+ ǫ + 1 +

N

γ1λ2(L̂)
,we can obtain from (24)

V̇ ≤ηT



−
γ1λ2(L̂)

4N

(

(α̂+ β̂)−
2N

γ1λ2(L̂)
IN

)2

⊗ In



 η

− ηTη −
NλN (LTL)

4γ1λ2(L̂)
̺T̺. (25)

For the reason that V̇ is continuous and negative definite

for ηTη ≥ δ, V (t) is bounded and αi converge to some

positive values. Applying LaSalle’s invariance principle, we

can conclude that ̺ converges asymptotically to zero, and η

converges to a residual set D =
{

η| ‖η‖
2
≤ δ
}

. Since δ can be

chosen as an arbitrary small constant, we assume η converges

to zero. It then follows that (x, v) converges to the set

I = {(x, v) ∈ H | x = x̃+1N⊗ξ, v = ṽ+1N⊗κ, ξ, κ ∈ R
n}

as t → ∞. Note that ǫ, δ and α are auxiliary variables only

used for convergence analysis. These variables are not the

parameters in the algorithm (3).
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In what follows, we prove ξ = 0n by seeking a contra-

diction. Assume ξ 6= 0n, based on (9) and (3b), the dynamics

of ξ can be written as

ξ̇ =
1

N
(1T

N ⊗ In)( ˙̃x+ 1N ⊗ ξ̇) =
1

N
(1T

N ⊗ In)ẋ

= −
γ2

N

N
∑

i=1

▽fi(x
⋆ + ξ) +

γ2

N

N
∑

i=1

▽fi(x
⋆)

= −
γ2

N
▽f(x⋆ + ξ). (26)

From (26), we can deduce that ξ moves towards to the point

which satisfies ▽f(x⋆ + ξ) = 0. For the reason that f is

strongly convex, the critical point x⋆ of f is unique, which,

since ξ 6= 0, is a contradiction.

Finally, we can conclude that the trajectories of (3) which

start from x(0), v(0) ∈ R
Nn converge to the global minimizer

(x̃, ṽ + 1N ⊗ κ), for some κ ∈ R
n. The algorithm (3) solves

the distributed convex optimization problem.

Remark 1: For any xi(0), vi(0) ∈ R
n, we can always define

a convex set H such that all the trajectories of algorithm (3)

converge to the global minimizer set I = {(x, v) ∈ H |
x = x̃, v = ṽ + 1N ⊗ κ, κ ∈ R

n}. The convergence of

(3) is global, while the results shown in [12], [13] can only

achieve semiglobal convergence when ▽fi, i = 1, 2, · · · , N ,

are locally Lipschitz.

Remark 2: The global convergence of the algorithm can be

guaranteed for any γ1, γ2 ∈ R>0. The values of γ1, γ2 and

αi(0) can be used to improve the transient process of the

algorithm. The static control gains γ1, γ2 can be interpreted

as the weights of local gradient and agent connectivity, re-

spectively; increasing γ1 and γ2 will increase convergence rate,

however, high static control gains may cause more oscillations.

The transient performances of the proposed algorithms also

are related to the static control gain ratio
min(αi(0))γ1

γ2

. By

increasing the ratio
min(αi(0))γ1

γ2

, the consensus effects will be

enhanced.

Remark 3: Many previous results have been obtained for

the undirected connected graph, but the value of network

connectivity is required when the communication graph is a

weight-balanced directed graph (e.g., [12], [13]). By introdu-

cing the dynamic coupling gains αi and βi and continuously

updating the coupling gains using the relative errors ei, we

solve the distributed optimization without using the network

connectivity. Of course, algorithm (3) can also be applied to

undirected connected graphs.

Remark 4: In Assumption 1, only the global cost function

is required to be strictly convex, while the local cost functions

fi can be any differentiable functions. Note that the local cost

functions are also assumed to be strongly convex in [12]–[15],

[22]. Different from [14], there is no restriction on the local

cost functions fi to be twice differentiable with the proposed

scheme.

V. DISTRIBUTED ADAPTIVE CONTINUOUS-TIME CONVEX

OPTIMIZATION ALGORITHM ON UNBALANCED DIRECTED

GRAPHS

In the previous section, a distributed adaptive algorithm is

proposed to solve the problem (2) with strongly connected

and weight-balanced graphs. Here, we extend our analysis

for strongly connected unbalanced graphs. The distributed

optimization algorithm with dynamic coupling gains can be

designed as

v̇i =γ1(αi + βi)

N
∑

j=1

aij(xi − xj), (27a)

ẋi =− γ2▽f̄i(xi)− γ1(αi + βi)

N
∑

j=1

aij(xi − xj)

−

N
∑

j=1

aij(vi − vj), (27b)

α̇i =eTi ei, (27c)

where βi = eTi ei, ▽f̄i(xi) = 1
ri
▽fi(xi), and r =

[r1, r2, . . . , rN ]T is the left eigenvector of L associated with

the zero eigenvalue. Other notations are the same as the

previous section.

Lemma 3: Under Assumptions 1 and 2 , if the communica-

tion graph G is unbalanced, the equilibrium point of (27) is an

optimal solution of the distributed optimization problem (2).

Proof: The equilibrium point (x̃, ṽ) of (27) is obtained as

0 = γ1[(α̂+ β̂)L ⊗ In]x̃, (28)

0 = −γ2▽f̄(x̃)− γ1[(α̂+ β̂)L ⊗ In]x̃− (L ⊗ In)ṽ, (29)

where ▽f̄(x) = [▽f̄1(x1)
T,▽f̄2(x2)

T, . . . ,▽f̄N (xN )T]T. It

follows that the equilibrium point satisfies

x̃i = x⋆, i =1, 2, . . . , N, (30)

N
∑

j=1

aij(ṽi − ṽj) =− γ2▽fi(x
⋆), (31)

γ2

N
∑

i=1

ri▽f̄i(x
⋆) =γ2

N
∑

i=1

▽fi(x
⋆)

=(rTL ⊗ 1
T
n )ṽ = 0. (32)

Since f̃ is strongly convex, invoking (32), one can obtain that

(x̃, ṽ) is a solution of (2) and so is (x̃, ṽ + 1N ⊗ κ), κ ∈ R
n.

Theorem 2: Under Assumptions 1 and 2, if the com-

munication graph G is unbalanced, the dynamic algorithm

(27) solves the distributed optimization problem (2) for any

xi(0), vi(0) ∈ R
n. Moreover, the dynamic coupling gains αi

will converge to some finite steady-state values.

Proof: The proof is stated in Appendix.

Remark 5: Similar to the algorithm (3), the adaptive algo-

rithm (27) guarantees the global stability for the local cost

functions fi with locally Lipschitz gradients. Only the global

cost function is assumed to be strongly convex, while the local

cost functions fi can be any differentiable functions.

Remark 6: In the algorithm (27), r is the left eigenvector of

L associated with the zero eigenvalue which implies that the

algorithm (27) needs the information of the Laplacian matrix

for unbalanced directed graphs.
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VI. SIMULATION STUDIES

In this section, we show two simulation examples. The first

example illustrate the effectiveness of above theoretical results.

The second example is an application of our algorithms in

solving a regression problem.

A. Example 1

Consider a network of 60 agents whose local cost functions

on R are described by

fj =sin(x+ j), f10+j =cos(ln(x+ j)2 + 1)),

f20+j =(x+ j)
4

3 + e0.1(x+j), f30+j =(x+ j − 4)4,

f40+j =(x+ j + 3)2, f50+j =
(x+ j)2

√

(x+ j)2 + 1
,

(33)

for j = 1, 2, · · · , 10. Note that f1, f2, · · · , f20 are pe-

riodic functions which are nonconvex. The gradients of

f21, f22, · · · , f40 are locally Lipschitz. Moreover, the gradients

of f21, f22, · · · , f30 are undifferentiable, i.e., we can not

get the Hessians of f21, f22, · · · , f30. Since the global cost

function f(x) =
∑60

i=1 fi(x) is strongly convex, the global

minimizer x⋆ is unique.

Two cases of connection graphs are considered for this

example. When the connection graph is strongly connected

weight-balanced, the adaptive algorithm (3) is applied to solve

the distributed optimization problem. The initial states of

xi(0), vi(0) ∈ R are chosen randomly within [−2, 0.5], and

the initial values of coupling gains αi(0) = 0.01. For the

convergence performance comparisons, the static control gains

are chosen as γ1 = 4, γ2 = 1 and γ1 = 4, γ2 = 8, respectively.

When the connection graph is strongly connected unbalance,

the adaptive algorithm (27) is applied. The initial values are the

same as that of the weight-balanced case, and the parameters

are chosen as γ1 = 4, γ2 = 1.

In Figs. 1a(top), 1b(top) and 1c(top), it can be observed

that all the trajectories of xi converge to the global minimizer

x⋆ (in a black dash-dot line). In Figs. 1a(bottom), 1b(bottom)

and 1c(bottom), it can be observed that the dynamic coupling

gains αi converge to some positive steady-state values. From

the simulation results in Figs. 1a and 1b we can see that,

when γ2 is increased from 1 to 8, more consensus efforts are

needed to deal with the gradients of local objective functions.

The dynamic gains αi in Fig. 1b(bottom) converge to larger

positive values than the αi in Fig. 1a(bottom).

From Figs. 1a and 1c, we can conclude that our adaptive

optimization algorithms can solve the distributed convex opti-

mization problem with the unknown network connectivity and

the nonconvex local objective functions on both balanced and

unbalanced directed graphs.

B. Example 2

In this example, we examine the performance of our propo-

sed algorithms in a practical scenario (e.g., regression problem

[16]). Due to the limitation of pages, we only show an example

of applying algorithm (3).

The objective of this task is to obtain a predictor of

house value by using UCI Housing datasets (available

at http://archive.ics.uci.edu/ml /datastes/Housing). Sometimes

datasets come from different users, and they do not want

to share their private information with others. Hence it is

meaningful to employ distributed optimization algorithms.

Consider a network of 6 users interacting over G1, and each

user has 50 datasets. The local cost functions are obtained as

fi(xi) =

50
∑

j=1

1

2
(νj − dTj xi)

2, ∀i = 1, 2, · · · , 6,

where xi ∈ R
3 is the vector of coefficient for linear predictor

ν̂j = dTj xi is the predicted median monetary value of the

house, νj ∈ R is the median monetary value of the house,

dj = [cj , pj , 1]
T ∈ R

3, and cj , pj ∈ R are the per capita crime

rate by town and lower status of the population, respectively.

The static control gains are chosen as γ1 = 1, γ2 = 0.2,

and other parameters are chosen in the same way as that of

Example 1. Fig. 3a illustrates that the estimated xi converge

to the global optimal value x⋆ ∈ R
3, which is verified by

a centralized least squares method. The optimization errors

‖xi − x⋆‖ are up bounded by 0.001 after 300 s, and the

dynamic coupling gains αi converge to positive steady-state

values. We also emulate the simulation in discrete-time mode,

by setting sample time as 0.1 s. Fig. 3b shows that the

optimization errors are up bounded by 0.001 after 300 s (3000

iterations). Although the trajectories of ‖xi − x⋆‖ and αi are

slightly different in the discrete-time case, the algorithm still

guarantee the convergence.

VII. CONCLUSION

In this note, we have proposed two new adaptive algorithms

to solve the distributed optimization problem on directed

graphs. By carefully designing adaptive laws, our proposed

algorithms achieve global asymptotic convergence when the

global cost function is strongly convex and the gradients of

local objective functions are locally Lipsthiz. For the strongly

connected and weight-balanced graphs, the proposed algorithm

is independent of any global information of communication

graphs and hence fully distributed. For strongly connected

unbalanced graphs, the left eigenvector of the Laplacian matrix

associated with the zero eigenvalue is required. Simulation

results have illustrated the effectiveness and potential applica-

tions of the theoretical results.

APPENDIX

A. Proof of Theorem 2

Applying the two same state transformations used in Section

IV, the network dynamics can be written as

˙̺ =γ1[L(α̂+ β̂)⊗ In]η, (34a)

η̇ =− γ2(L ⊗ In)h̄− γ1[L(α̂+ β̂)⊗ In]η

− (L ⊗ In)̺, (34b)

α̇i =ηTi ηi, (34c)

where h̄ = ▽f̄(g + x̃)− ▽f̄(x̃) and βi = ηTi ηi.
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Fig. 1. Simulation results of Example 1; trajectories of the states xi (top) and the adaptive coupling gains αi (bottom). (a) weight-balanced graphs case,
γ1 = 4, γ2 = 1; (b) weight-balanced graphs case, γ1 = 4, γ2 = 8; (c) unbalanced graphs case, γ1 = 4, γ2 = 1.

Fig. 2. The strongly connected weight-balanced communication graph G1.

Let

V4 =
1

2

N
∑

i=1

ri(2αi + βi)η
T
i ηi. (35)

Following similar analysis in (14)-(20), for (x, v) ∈ H, it is

easy to get the time derivative of V1 +V4 along the trajectory

of (34)

V̇1 + V̇4 ≤ −
γ1λ2(L̄)

2N
ηT[(α̂+ β̂)2 ⊗ In]η

+ ηT[(α̂+Rβ̂ − αIN )⊗ In]η +
4Nr2maxλN (LTL)

γ1λ2(L̄)

· ̺T̺+
4Nγ2

2r
2
maxM

2
maxλN (LTL)

γ1r
2
minλ2(L̄)

gTg, (36)

where R = diag(r1, r2, . . . , rN ), L̄ = RL + LTR, rmax =
max(r1, r2, · · · , rN ) and rmin = min(r1, r2, · · · , rN ).

Consider the following positive definite function

V5 =
1

2

N
∑

i=1

ri(̺i + ηi)
T(̺i + ηi). (37)

The time derivative of (37) is described by

V̇5 =

N
∑

i=1

ri(̺
T
i ˙̺i + ηTi η̇i + ̺Ti η̇i + ηTi ˙̺i)

≤
λ2(L̄) + 2r2maxλN (LTL)

λ2(L̄)
ηTη −

λ2(L̄)

4
̺T̺

+
γ2
2r

2
maxM

2
maxλN (LTL)(λ2(L̄) + 8)

4r2minλ2(L̄)
gTg, (38)

where we have used Lemma 1 and the fact ̺T(RL⊗ In)̺ =
̺T(L̄⊗In)̺

2 .

A Lyapunov function candidate for the whole closed-loop

system is chosen as

V̄ = V1 + V4 +
17Nr2maxλN (LTL)

γ1λ2(L̄)2
V5. (39)

Applying the results (36) and (38), and from (39), we can

obtain

˙̄V ≤ηT
[(

−
γ1λ2(L̄)

2N
(α̂+ β̂)2 + (α̂+Rβ̂)− αIN

+
17Nr2maxλN (LTL)(λ2(L̄) + 2r2maxλN (LTL))

γ1λ2(L̄)3
IN

)

⊗ In

]

η +

(

4Nγ2
2r

2
maxM

2
maxλN (LTL)

γ1r
2
minλ2(L̄)

+
17Nγ2

2r
4
maxM

2
maxλN (LTL)2(λ2(L̄) + 8)

4γ1r2minλ2(L̄)3

)

gTg

−
Nr2maxλN (LTL)

4γ1λ2(L̄)
̺T̺. (40)

By Young’s inequality, we have

ηT(α̂+Rβ̂)η ≤ηT
[(

γ1λ2(L̄)

4N
β2 +

γ1λ2(L̄)

4N
α2

+
N(r2max + 1)

γ1λ2(L̄)
IN

)

⊗ In

]

η. (41)

Let δ̄ ∈ R>0 be an arbitrary small positive constant. Since

g(x(t))Tg(x(t)) ≤ g(x(0))Tg(x(0)), for (x, v) ∈ H, when

ηTη ≥ δ̄, there always exists a sufficiently large positive
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Fig. 3. Simulation results of Example 2. (a) The estimated errors ‖xi − x
⋆‖ (top) and the adaptive coupling gains αi (bottom) of Example 2 in continuous-time

mode; (b) the estimated errors ‖xi − x
⋆‖ (top) and the adaptive coupling gains αi (bottom) in discrete-time mode.

scalar ǭ ∈ R>0 such that ǭηTη ≥
(

4Nγ2

2
r2
max

M2

max
λN (LTL)

γ1r
2

min
λ2(L̄)

+
17Nγ2

2
r4
max

M2

max
λN (LTL)2(λ2(L̄)+8)

4γ1r
2

min
λ2(L̄)3

)

gTg.

By incorporating this fact and (41) into (40), and choosing

α ≥ ǭ+
17Nr2

max
λN (LTL)(λ2(L̄)+2r2

max
λN (LTL))

γ1λ2(L̄)3
+

N(r2
max

+1)

γ1λ2(L̄)
+

4N
γ1λ2(L̄)

, we have

˙̄V ≤ηT
[(

−
γ1λ2(L̄)

4N
(α̂+ β̂)2 −

4N

γ1λ2(L̄)
In

)

⊗ IN

]

η

−
Nr2maxλN (LTL)

4γ1λ2(L̄)
̺T̺

≤− ηT(α̂(0)⊗ In)η −
Nr2maxλN (LTL)

4γ1λ2(L̄)
̺T̺, (42)

where we have used the fact that αi are monotonically incre-

asing and αi(0) ∈ R>0. The rest of proof follows similarly as

that of Theorem 1.
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