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Abstract

We consider a wireless sensor network withn sensor nodes. The sensed data needs to be transferred in a multi-hop fashion
to a common processing center. We consider the standard datasampling/sensing scheme where the sensor nodes have a sampling
process independent of the transmission scheme.

In this paper, we study the problem of optimizing the end-to-end delay in a multi-hop single-sink wireless sensor network. We
prove that the delay-minimization objective function is strictly convex for the entire network. We then provide a distributed opti-
mization framework to achieve the required objective. The approach is based on distributed convex optimization and deterministic
distributed algorithm without feedback control. Only local knowledge is used to update the algorithmic steps. Specifically, we
formulate the objective as a network level delay minimization function where the constraints are the reception-capacity and service-
rate probabilities. Using the Lagrangian dual compositionmethod, we derive a distributed primal-dual algorithm to minimize the
delay in the network. We further develop a stochastic delay control primal-dual algorithm in the presence of noisy conditions. We
also present its convergence and rate of convergence. The proposal is extensively evaluated by analysis and simulations.

I. I NTRODUCTION AND RELATED WORK

Wireless Sensor networks (WSNs) is an emerging technology that has a wide range of potential applications including
environment monitoring, medical systems, robotic exploration, and smart spaces. WSNs are becoming increasingly important
in recent years due to their ability to detect and convey real-time, in-situ information for many civilian and military applications.
Such networks consist of large number of distributed sensornodes that organize themselves into a multihop wireless network.
Each node has one or more sensors, embedded processors, and low-power radios, and is normally battery operated. Typically,
these nodes coordinate to perform a common task.

Most of the research in the direction of WSNs is focused on energy-conserving routing [3], [4], where the idea of flow-
splitting is also utilized to achieve the global objective of maximizing network lifetime. The idea of clustering to optimize
network lifetime [6] is shown to provide better results compared to flat architecture approaches like diffusion algorithms [5],
but they tend to operate on small scale sensor networks due tothe limitations on transmission radius of the cluster heads. In
[8], the authors outlined the state-of-the-art routing approaches used in WSNs research community. The main focus of all these
research efforts was to maximize the network lifetime due toconstrained energy properties of these networks. None of them
focused on the delay-optimization direction. It can be a crucial element when the applications require delay-sensitive data in
order to operate properly. In which case, the existing approaches might deliver data to the sinks in an energy-efficient way but
this will serve no purpose if the data has spanned more-than-required time in the network. Applications where delay is critical
include: emergency-response, disaster-management, patient-response, fire-prevention, and many more. In [2], we considered a
layered system model for sensor networks and studied the stability properties of the network. In particular, we have shown
that the stability conditions proposed in the PRN literature [1] are not correct. Therefore, we provided the correct stability
conditions for this model. A cross-layered model is also proposed that is shown to outperform the layered system. This model
is meant to be used in applications where a sensor network is used to observe the time variation of a random field over the
space on which the network is deployed. A distributed routing algorithm [7] is proposed for both models that tends to achieve
a Wardrop-equilibrium.

In this paper, we consider a sensor network withn nodes. The sensors are the sources of delay sensitive trafficthat needs to
be transferred in a multi-hop fashion to a common processingcenter. We consider a layered model, where each layer operates
independently. We observe the average node delay in the network. The objective then is to minimize the total delay in the
network. We provide a distributed optimization framework and deterministic distributed algorithm with no feedback control
to achieve this optimization. we avoid a feedback control due to the fact that in multihop wireless networks, the feedback
is obtained using error-prone measurement mechanisms. A fundamental open question is that under what conditions these
algorithms would converge to the optimal solution? Therefore, our approach is based entirely on the local knowledge of
the node. Specifically, we formulate the objective as a network level delay minimization function where the constraintsare
the reception-capacity and service-rate probabilities. Using the Lagrangian dual composition method, we derive a distributed
primal-dual algorithm to minimize the delay in the network.We further develop a stochastic delay control primal-dual algorithm



in the presence of noisy conditions. We also present its convergence and rate of convergence.. To the best of our knowledge,
this is the first attempt to achieve delay optimizations for ageneral wireless sensor network.

The organization of this paper is as follows. In Section II, we detail the network model under consideration. Section III
discusses the stability issues and objective functions considered in this work. We then propose a distributed optimization
framework and deterministic distributed algorithm. Section IV presents the stochastic delay control algorithm undernoisy
conditions. Its rate of convergence is discussed in SectionV. Numerical results from our simulations are presented in Section
VI. In Section VII, we briefly conclude the paper and outline the future directions.

II. N ETWORK MODEL

Consider a static wireless sensor network withn sensor nodes. Given is ann × n neighborhood relation matrixN that
indicates the node pairs for which direct communication is possible. We will assume thatN is a symmetric matrix, i.e., if node
i can transmit to nodej, thenj can also transmit to nodei. For such node pairs, the(i, j)th entry of the matrixN is unity,
i.e., Ni,j = 1 if node i andj can communicate with each other; we will setNi,j = 0 if nodesi andj can not communicate.
For any nodei, we defineNi = {j : Ni,j = 1}, which is the set of neighboring nodes of nodei.

Each sensor node is assumed to besampling (or, sensing) its environment at a predefined rate; we letτi denote this sampling
rate for nodei. The units ofτi will be packets per second, assuming same packet size for allthe nodes in the network. In
this work we will assume that the readings of each of these sensor nodes are statistically independent of each other so that
distributed compression techniques are not employed.

Each sensor node wants to use the sensor network to forward its sampled data to acommon fusion center (assumed to be
a part of the network). Thus, each sensor node acts as a forwarder of data from other sensor nodes in the network. We will
assume that the buffering capacity of each node is infinite, so that there is no data loss in the network. We will also assume
that a sensor node does not discriminate among its own packets and the packets to be forwarded.

We let R denote then×n routing matrix. The(i, j)th element of this matrix is unity if nodej is the next-hop node on the
route from nodei to the fusion center;Ri,j = 0 otherwise1. Clearly,Ri,j = 1 is possible only ifNi,j = 1. Similarly, for any
nodei, we defineFi = {j : Ni,j = 1 ∩ Rj,i > 0}, which is the set of neighboring nodes of nodei that are transmitting data
to nodei to be forwarded to the fusion center.

We assume that the system operates in discrete time, so that the time is divided into (conceptually) fixed length slots. Since
the system operates on CSMA/CA MAC, we will assume that thereis no exponential backoff and that the channel access rate
of nodei (if it has a packet to be transmitted) is0 ≤ αi ≤ 1. Thus,αi is the probability that nodei, if it has packet to be
transmitted, attempts a transmission in any slot.

III. D ETERMINISTIC DISTRIBUTED OPTIMIZATION FRAMEWORK

We first provide the correct stability condition for the layered system.

A. Rate Balance Equations

Lemma 1: The minimum rate at which a node can serve its transmit queue is

µi
∆
= αi

∑

j∈Ni

Ri,j (1 − αj)Πk∈Nj\{i} (1 − αk) .

Lemma 2: The minimum reception rate of nodei is

γi
∆
= (1 − αi)

∑

j∈Ni

Rj,iαjΠk∈Ni\j (1 − αk) .

Let the total arrival rate into the transmit buffer of nodei be denoted byai. If all the transmit queues in the network are
stable, then the following relation is obtained forais

Lemma 3:

ai = τi +
∑

j

Rj,i (aj ∧ (τj + γj) ∧ µj) .

Lemma 4: The transmit queue at nodei is stable if
∑

j∈Ni

Ri,j ((τi + γi) ∧ µi) > ai.

Lemma 5: If all the nodes in the network are stable, then

ai = τi +
∑

j

Rj,iaj .

1The formulation of this paper and all the equations are written in a manner that allows for values ofRi,j in the interval (0, 1). This would mean a
probabilistic flow splitting as in the model of [1]. For simplicity of discussion, however, we will restrict our attention to the0 − 1 value scheme forRi,js.



Lemma 6: The probability that a transmission from nodei is successful is

si =
∑

j∈Ni

Ri,j (1 − πjαj)Πk∈Nj\{i} (1 − πkαk) .

The proofs for the given lemmas can be found in [2].

B. Optimization Problem

We will call a routing matrix feasible if the following constraint is met
∑

1<j≤n τj = a1, where, without loss of generality,
we have given an index1 to the fusion center. This requirement says that all the datagenerated in the network must end-up
at the fusion center. We have the following consideration now: Minimize the total delay in the network

∑

i

wi

1

1 − ai

µi

(

1 − ai

2µi

)

(1)

where we have used the average delay formula for the M/D/1 queue with mean service requirement of unity. Herewi > 0 is
a weight given to the nodei, for example, the node close to fusion center may be heavily loaded, hence we may want to give
more attention to this node. Hereaj

µj
is the load on nodej. s.t.

∑

i wi (µi − ai). which says, maximize the difference between
the service rate and the arrival rate into any node, while in the stable region. It is important to be noted that we first fix the
routing in the network, and thus, fixing the arrival rate at each node. We then look at the optimization criteria assuming the
network is operating in the stable region. We thus want to maximize the system performance while in the stable region.

We first consider the delay minimization objective function

min
∑

i

wi

1

1 − ai

µi

(

1 − ai

2µi

)

=
∑

i

wi

(

1 +
1

2
aixi

)

(2)

wherexi = 1
µi−ai

. Suppose thatµi − ai = A. First of all, we will prove thatxi is a convex function. Letf (µi) be a function
of a single variable defined on the intervalI, thenf (µi) is convex, if for alla ∈ I, all b ∈ I, and allt ∈ [0, 1], we have

f (c) − tf (a) − tf (b) ≤ 0

wheret = 1 − t. Also, we assume the feasible region ofxi is [a, b]. We have

a =






a1

...
ai




 , b =






b1

...
bi




 ⇒ c = ta + tb =






ta1 + tb1

...
tai + tbi






Then, we need to prove that

f
(
ta + tb

)
− tf (a) − tf (b) ≤ 0

or

f (c) − tf (a) − tf (b) ≤ 0

n-Node Example: Let us consider an example ofn-nodes and use this method to prove convexity. According to the objective
function (2), we can rewrite it as

f
(
µ
)

= wT

(

I +
1

2
ax

)

whereµ = [µ1 · · ·µi]
T, x =

[
1

µ1−a1

· · · 1
µi−ai

]T

, w = [w1 · · ·wi]
T anda = [a1 · · · ai]

T. For the ease of understanding in the
proof, here we useqi replacingai in (1). So

f
(
µ
)

= wT

(

I +
1

2
qx

)

= wT

[

I +
1

2
q
(
µ − q

)−1
]

wherex =
[

1
µ1−q1

· · · 1
µi−qi

]T

. Therefore, we can writef (a) andf (b) as follows

f (a) = wT
[

I + 1
2q

(
a − q

)−1
]

, f (b) = wT
[

I + 1
2q

(
b − q

)−1
]

(3)

Similarly, we can write

f (c) = wT
[

I + 1
2q

(
ta + tb − q

)−1
]

= wT
[

I + 1
2q

(
b − q + t (a − b)

)−1
]

(4)



whereI =






1
...
1




. And for a andb, we have

tf (a) + tf (b) = wTI +
1

2
wTq

[

t
(
a − q

)−1
+ t

(
b − q

)−1
]

(5)

Therefore, we need to prove that

f (c) − tf (a) − tf (b) ≤ 0 (6)

By plugging(4) and (5) into (6) and solving, we get

f (c) − tf (a) − tf (b) = 1
2wTq

[(
b − q + t (a − b)

)−1 − t
(
a − q

)−1 − t
(
b − q

)−1
]

(7)

Assume:A = a − q, B = b − q. Then

(
b − q + t (a − b)

)−1 − t
(
a − q

)−1 − t
(
b − q

)−1
= 1

B+t(A−B) − t
A
− t

B

= 1
tA+tB

− tA+tB
AB

=
AB−(t·A+B·t)(A·t+t·B)

AB(t·A+t·B)
= Q1

Q2

(8)

Q1 = AB −
(

t · t
(
A2 + B2

)
+ AB

(

t
2

+ t2
))

= AB −
[(

t − t2
) (

A2 − B2
)

+
(
1 − 2t + 2t2

)
AB

]

= −
(
t − t2

) [
A2 + B2 + 2AB

]
= −

(
t − t2

)
(A + B)2

thereforeQ1 ≤ 0. Also, Q2 = AB
(
t · A + t · B

)
> 0. Therefore we have proved that

f (c) − tf (a) − tf (b) ≤ 0

The proof is complete and is for any number of nodesn ∈ [1, N ]. We have shown that the functionmin
∑

i wi
1

1− ai
µi

(1− ai

2µi
)

is a strictly convex function inµi. Therefore, we now use the Lagrange method to find the optimalvalue ofµi. We want to
min

∑

i wi

(
1 + 1

2aixi

)
, wherexi = 1

µi−ai
s.t. µi > ai. Let

f (·) = min
∑

i

wi

(

1 +
1

2
aixi

)

Then the Lagrange off (·) is

L = min
∑

i

wi

[

1 +
1

2
ai

(
1

µi − ai

)]

+
∑

i

λi (µi − ai)

δL

δµi

=






δL
δµ1

...
δL
δµn




 =








− 1
2w1a1

(
1

µ1−a1

)2

+ λ1

...

− 1
2wnan

(
1

µn−an

)2

+ λn








= 0

δL

δµi

= −1

2
wiai

(
1

µi − ai

)2

+ λi = 0,
1

2
wiai = λi (µi − ai)

2

λiµ
2
i − 2λiµiai −

1

2
wiai + λia

2
i = 0, µi =

2λiai ±
√

(2λiai)
2 − 4λi

(
1
2wiai + λia2

i

)

2λ

= ai ±
1

2λi

√

4λ2
i a

2
i + 2λiwiai − 4λ2

i a
2
i , = ai ±

1

2λi

√

2λiwiai

We suppose thatλi > 0, because then the conditionµi > ai is satisfied.



µi−opt = ai +

√
wiai

2λi
︸ ︷︷ ︸

> 0

As discussed before,wi is the weight given to the nodei. We want to give a higher weight to those nodes that are heavily
loaded so that they can have a higher priority for transmissions over nodes that are not. Here is how we calculate the weight
wi for each nodei

wi =
Fi

Ni

ai

Here,Fi is the set of neighboring nodes that are transmitting data tothe nodei, Ni is the entire set of one-hop neighbors
of nodei, andai is the total arrival rate into nodei. Here we take into consideration the total load on the nodei in terms of
arrival rateai along with the neighborhood of the node. Because, we do not want to destabilize the neighborhood a node by
assigning it a high priority over transmissions. Therefore, we consider both the loadai and the neighborhoodFi

Ni
of nodei

while assigning weight in order to be fair.

C. Lagrange Dual Approach

In what follows, we use the Lagrange dual decomposition method to solve the minimization problem. The Lagrangian
function with the Lagrange multipliers(λi)is given as follows:

L (µ, λ) =
∑

i

wi

(

1 +
1

2
aixi

)

+
∑

i

λi (µi − ai)

whereµ = {µi, i = 1, . . . , n} andλ = {λi, i = 1, . . . , n}.
Then, the Lagrange dual function is:Q (λ) = minµ L (µ, λ)
Thus, the dual problem is given by:D : maxλ>0 Q (λ)

D. Deterministic Primal-Dual Algorithm

The delay minimization problem can be solved via the following deterministic distributed algorithm

• The µ′
is are updated byµi (n + 1) = µi (n) − εn∇µi

L (µ (n) , λ (n))
• The Lagrange multipliers are update byλi (n + 1) = λi (n) + εn∇λi

L (µ (n) , λ (n)), where

∇µi
L =

δ

δµi




∑

j

wj

(

1 +
1

2
ajxj

)

+
∑

j

λj (µj − aj)



 = wi

1

2
ai

−1

(µi − ai)
+ λi =

−wiai

2 (µi − ai)
2 + λi

∇λi
L =

δ

δλi




∑

j

wj

(

1 +
1

2
ajxj

)

+
∑

j

λj (µj − aj)



 = µi − ai

We note that in the above algorithm, we have used the same stepsize εn for both the primal and the dual algorithms. We
can finally write the Primal-Dual algorithm as follows

µi (n + 1) = µi (n) + εn

(
wi (n) ai (n)

2 (µi (n) − ai (n))
− λi (n)

)

, λi (n + 1) = λi (n) + εn (µi (n) − ai (n))

IV. STOCHASTIC DELAY CONTROL AND STABILITY UNDER NOISY CONDITIONS

In this section, we examine the convergence performance of the above distributed algorithms under stochastic perturbations,
due to noisy feedback information.

A. Stochastic Primal-Dual Algorithm For Delay Control

In the presence of noisy feedback information, the gradients are estimators. More specifically, the stochastic versionof the
primal-dual algorithm is given as follows

µi(n + 1) = µi(n) − εn · L̂µi
(µ(n), ϕ(n)), ϕi(n + 1) = ϕi(n) + εn · L̂ϕi

(µ(n), ϕ(n)) (9)

whereL̂µi
is an estimator of∇µi

L(µ(n), ϕ(n)) and L̂ϕi
is an estimator of∇ϕi

L(µ(n), ϕ(n)).



B. Probability One Convergence Of Stochastic Delay Control Algorithm

Next, we examine in detail the models for stochastic perturbations. Let{zn} be a sequence ofσ-algebras generated by
{(µi(m), ϕi(m)), ∀m ≤ n}. For convenience, we useEn [·] = E [·|zn] to denote the conditional expectation.

1) Stochastic gradient̂Lµi
: Observe that̂Lµi

(µ(n), ϕ(n)) = ∇µi
L(µ(n), ϕ(n)) + αi(n) + ζi(n), where

αi(n) , En

[

L̂µi
(µ(n), ϕ(n))

]

−∇µi
L(µ(n), ϕ(n)), ζi(n) , L̂µi

(µ(n), ϕ(n)) − En

[

L̂µi
(µ(n), ϕ(n))

]

(10)

i.e.αi(n) is the biased random error of∇µi
L(µ(n), ϕ(n)) andζi(n) is a martingale difference noise sinceEn [ζi(n)] = 0.

2) Stochastic gradient̂Lϕi
: Observe that̂Lϕi

(µ(n), ϕ(n)) = ∇ϕi
L(µ(n), ϕ(n)) + βi(n) + ξi(n), where

βi(n) , En

[

L̂ϕi
(µ(n), ϕ(n))

]

−∇ϕi
L(µ(n), ϕ(n)), ξi(n) , L̂ϕi

(µ(n), ϕ(n)) − En

[

L̂ϕi
(µ(n), ϕ(n))

]

i.e. βi(n) is the biased random error of∇ϕi
L(µ(n), ϕ(n)) andξi(n) is a martingale difference noise.

We impose the following standard assumptions in order to examine the convergence of the stochastic primal-dual algorithm:

A1. We assume that the estimator of the gradients are based on the measurements in each iteration only.
A2. Condition on the step size: εn > 0, εn → 0,

∑

n εn → ∞ and
∑

n ε2n < ∞.
A3. Condition on the biased error:

∑

n εn|αi(n)| < ∞ and
∑

n εn|βi(n)| < ∞, ∀i.
A4. Condition on the martingale difference noise:

∑

n εn

[
ζi(n)2

]
< ∞ and

∑

n εn

[
ξi(n)2

]
< ∞, ∀i.

Proposition 1: We have the following proposition. Under ConditionsA1 - A4, the iterates, generated by stochastic approximation
algorithm (9), converge with probability one to the optimalsolutions of Problem.

Sketch of the proof: The proof consists two steps. First, using the stochastic Lyapunov Stability Theorem, we establish that
the iterates generated by (9) return to a neighborhood of theoptimal points infinitely often. Then we show that the recurrent
iterates eventually reside in an arbitrary small neighborhood of the optimal points, and this is proved by usinglocal analysis .

We use the following example to illustrate how to characterize sufficient conditions for the almost sure convergence of
stochastic gradient algorithms.

We assume that the exponential marking technique is used to feedback the price information,ϕi, to the source nodes.
Therefore the overall non-marking probability is thatpi = exp(ϕi).

To estimate the overall price, sourcei sendsNi packets during roundn and counts the non-marked packets. For example,
if K non-marked packets have been counted, then the estimation of the overall pricep̂ican beK/Ni. Therefore

L̂µi
(µ(n), ϕ(n)) = − wiai

2(µi − ai)2
+ log (p̂i) (11)

By the definition of (10), we have
αi(n) = En [log (p̂i)] − log (pi)

Note thatK is a Binomial random variable with distributionB (Ni, q). WhenNs is sufficiently large, it follows that̂pi ∼
ℵ(pi, pi (1 − pi) /Ni) and p̂i ∈

[
Pi − c/

√
Ni, Pi + c/

√
Ni

]
with high probability, wherec is a positive constant. Then the

estimation bias of the price information can be upper-bounded as|αi(n)| ≤ c′

√
Ni

for large Ni, wherec′ is some positive
constant.

To ensure the convergence of primal-dual algorithm, from condition A3, it suffices to have that
∑

n

εn√
Ni

< ∞

Next, we discuss that the variance conditionA4 is satisfied forζi(n). By (10) and (11),

En

[
ζi(n)2

]
= En

[

L̂2
µi

(µ(n), ϕ(n))
]

− E2
n

[

L̂µi
(µ(n), ϕ(n))

]

= En

[
log2 (p̂i)

]
− E2

n [log (p̂i)]

≤ En

[
log2 (p̂i)

]
≤ En

[
log2 (pi + c)

]
∀Ni � 0

Similar studies can be done forβi(n) andξi(n).

V. RATE OF CONVERGENCE OFSTOCHASTIC DELAY CONTROL ALGORITHM

The rate of convergence is concerned with the asymptotic behavior of normalized errors about the optimal points. Our
primal-dual algorithm can be rewritten as a general constrained form as follows:

[
µi(n + 1)
ϕi(n + 1)

]

=

[
µi(n)
ϕi(n)

]

+ εn

[
−∇µi

L(µ(n), ϕ(n))
∇ϕi

L(µ(n), ϕ(n))

]

+ εn

[
αi(n) + ζi(n)
βi(n) + ξi(n)

]

+ εn

[
Zµi

n

Zϕi
n

]



whereεnZµi
n and εnZϕi

n are the correction term which forceµi and ϕi to reside inside the constraint set. As is standard
in the study on the rate of convergence, we assume that the iterates generated by the stochastic primal-dual algorithm have
entered in a small neighborhood of an optimal solution (µ∗

i , ϕ∗
i ).

To characterize the asymptotic properties, we defineUµi
(n) , (µi (n) − µ∗

i ) /
√

εn and Uϕi
(n) , (ϕi (n) − ϕ∗

i ) /
√

εn,
and we constructUn(t) to be the piecewise constant interpolation ofU(n) = {Uµi

(n) , Uϕi
(n)}, i.e., Un(t) = Un+1, for

t ∈ [tn+i − tn, tn+i+1 − tn], wheretn ,
∑n−1

i=0 εn.
A5. Let θ(n) , (µi(n), ϕi(n)) andφ(n) , (ζ(n), ξ(n)). Suppose for any given smallρ > 0, there exists a positive definite

symmetric matrixΣ = σσ′ such that

En

[
φnφT

n − Σ
]
I {|θ(n) − θ∗| ≤ ρ} → 0, as n → ∞.

Define

A ,

[
Lµiµi

(µ∗, ϕ∗) Lϕiµi
(µ∗, ϕ∗)

−Lϕiµi
(µ∗, ϕ∗) 0

]

A6. Let εn = 1/n, and assumeA + I/2 is a Hurwitz matrix. Note that it can be easily shown that the real parts of the
eigenvalues ofA are all non-positive (cf. page 449 in [9]).

Proposition 2: We have the following proposition.
a) Under Conditions A1 and A3-A6.Un (·) converges weakly to the solution (denoted asU ) to the Skorohod problem

(
dUµi

dUϕi

)

=

(

A +
I

2

) (
Uµi

Uϕi

)

dt + σdw(t) +

(
dZµi

dZϕi

)

b) If (µ∗
i , ϕ

∗
i )is an interior point in the constraint set, the limiting processU is a stationary Gaussian diffusion process, and

U(n) converges in distribution to a normally distributed randomvariable with mean zero and covarianceΣ.
c) If (µ∗

i , ϕ
∗
i ) is on the boundary of the constraint set, then the limiting processU is a stationary reflected linear diffusion

process.
Proposition 2 can be proved by appealing to a combination of tools used in the proofs of Theorem 5.1 in [10] and Theorem

2.1 in Chapter 6 in [11]. Roughly, we can expand, via a truncated Taylor series, the interpolated processUn(t) around the
chosen saddle point(µ∗

i , ϕ
∗
i ). Then, the main new step is to show that the tightness ofUn(t). To this end, we can follow part

3 in the proof of Theorem 2.1 in Chapter 6 in [11] to establish that the biased term in the interpolated process diminishes
asymptotically. Then, the rest follows from the proof of Theorem 5.1 in [10].

The rate of convergence depends heavily on the smallest eigenvalue of
(
A + I

2

)
. The more negative the smallest eigenvalue

is, the fast the rate of convergence would be. The reflection terms would help increase the speed of convergence, which
unfortunately cannot be characterized exactly.

VI. SIMULATION RESULTS

In this section, we implement the proposed deterministic distributed primal-dual algorithm. Specifically, we consider a
simple 8-node wireless sensor network as shown in Fig.1. Allthe sensors sample data withτi = 0.1. We use a random
access CSMA/CA like MAC without backoff. We first fix the routing in the network, and thus, fixing the arrival rate at each
node. We then look at the convergence of primal-dual algorithm. The results obtained by the proposed primal-dual algorithm,
together with the theoretical optimal solution, are presented in Table I. It can be easily seen that the results obtainedfrom the
primal-dual algorithm is very close to the optimal solution.

s5

s6

s7

s1

s2

s3
s4

Fig. 1. A Simple Network Topology

We now look at the convergence of the distributed primal-dual algorithm for some nodes in the network w.r.t time. Fig. 2
shows the convergence of distributed primal-dual algorithm for node 3, 4, 5, and 6 in the network. It can be seen that the
optimal values ofµ3, µ4, µ5, andµ6 are obtained by the distributed primal-dual algorithm in less than 100 iterations of the
algorithm. This shows a very fast convergence of the distributed primal-dual algorithm.



TABLE I

COMPARISON BETWEEN THE RESULTS OF THE PROPOSED PRIMAL-DUAL ALGORITHM AND THE THEORETICAL OPTIMAL SOLUTION

Node ai µi−opt µi−primal−dual

1 0.1 0.102 0.121
2 0.2 0.208 0.225
3 0.1 0.1220 0.125
4 0.2 0.241 0.256
5 0.35 0.383 0.412
6 0.7 0.719 0.743
7 1.05 1.058 1.072
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Fig. 2. Convergence ofµ3, µ4 , µ5 andµ6 using distributed primal-dual algorithm

VII. C ONCLUSIONS ANDFUTURE WORK

We consider a general purpose wireless sensor network withn sensor nodes. The objective for the open system was to
minimize the total delay in the network where the constraints are the arrival-rate and service-rate of a node. Particularly, we
have shown that the objective function is strictly convex for the entire network. We then use the Lagrangian dual decomposition
method to devise a distributed primal-dual algorithm to minimize the delay in the network. The deterministic distributed primal-
dual algorithm requires no feedback control and therefore converges almost surely to the optimal solution. The resultsshow that
the required optimal value ofservice rate is achieved for every node in the network by the distributed primal-dual algorithm. It
is important to pay equal attention to both the observed delay in the network and energy consumption for data transmissions.
A fast convergence means that only a little extra energy is consumed to perform local calculations to achieve the desired
optimizations. Only energy-efficient routing might not serve any purpose for some sensor network applications. Similarly for
the stochastic delay control algorithm, we have shown a probability one convergence and its rate of convergence which is
entirely distributed in nature.

In the future, we will consider a dynamic routing approach and go into a stochastic distributed primal-dual algorithm
approach to observe the effect of routing on system performance. We also consider the problem of minimizing the probability
of collision for random medium access wireless sensor networks in order to maximize the network lifetime of battery operated
sensor nodes.
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