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Abstract

We consider a wireless sensor network witltsensor nodes. The sensed data needs to be transferred ini-hopulashion
to a common processing center. We consider the standardsaataling/sensing scheme where the sensor nodes have argampl
process independent of the transmission scheme.

In this paper, we study the problem of optimizing the enaito-delay in a multi-hop single-sink wireless sensor ndtwdfe
prove that the delay-minimization objective function iecty convex for the entire network. We then provide a distted opti-
mization framework to achieve the required objective. Tppraach is based on distributed convex optimization andrdenistic
distributed algorithm without feedback control. Only lbémowledge is used to update the algorithmic steps. Spatifiove
formulate the objective as a network level delay minim@atiunction where the constraints are the reception-capani service-
rate probabilities. Using the Lagrangian dual compositiethod, we derive a distributed primal-dual algorithm taimiize the
delay in the network. We further develop a stochastic detatrol primal-dual algorithm in the presence of noisy coiodis. We
also present its convergence and rate of convergence. Dpesal is extensively evaluated by analysis and simulgtion

I. INTRODUCTION AND RELATED WORK

Wireless Sensor networks (WSNs) is an emerging technolbgy ias a wide range of potential applications including
environment monitoring, medical systems, robotic expglora and smart spaces. WSNs are becoming increasinglyrtamo
in recent years due to their ability to detect and conveytiea, in-situ information for many civilian and militarypglications.
Such networks consist of large number of distributed senedes that organize themselves into a multihop wirelessarkt
Each node has one or more sensors, embedded processorswapaer radios, and is normally battery operated. Typical
these nodes coordinate to perform a common task.

Most of the research in the direction of WSNs is focused orrggreonserving routing [3], [4], where the idea of flow-
splitting is also utilized to achieve the global objectivensaximizing network lifetime. The idea of clustering to opize
network lifetime [6] is shown to provide better results cargd to flat architecture approaches like diffusion altponi [5],
but they tend to operate on small scale sensor networks dtiee tbmitations on transmission radius of the cluster heaus
[8], the authors outlined the state-of-the-art routingrapghes used in WSNs research community. The main focus tbfegle
research efforts was to maximize the network lifetime duedpstrained energy properties of these networks. Noneewh th
focused on the delay-optimization direction. It can be aiauelement when the applications require delay-semsiata in
order to operate properly. In which case, the existing apgres might deliver data to the sinks in an energy-efficiexyt kwut
this will serve no purpose if the data has spanned more+tbanired time in the network. Applications where delay isical
include: emergency-response, disaster-managemergnpatisponse, fire-prevention, and many more. In [2], wesickemed a
layered system model for sensor networks and studied thditstgproperties of the network. In particular, we have wimo
that the stability conditions proposed in the PRN literat{t] are not correct. Therefore, we provided the corredbikitya
conditions for this model. A cross-layered model is alsopps®ed that is shown to outperform the layered system. Thidemo
is meant to be used in applications where a sensor networkeid to observe the time variation of a random field over the
space on which the network is deployed. A distributed rautigorithm [7] is proposed for both models that tends to eahi
a Wardrop-equilibrium.

In this paper, we consider a sensor network withodes. The sensors are the sources of delay sensitive traffioeeds to
be transferred in a multi-hop fashion to a common processamger. We consider a layered model, where each layer @gerat
independently. We observe the average node delay in theorletiWhe objective then is to minimize the total delay in the
network. We provide a distributed optimization frameworidadeterministic distributed algorithm with no feedbackiol
to achieve this optimization. we avoid a feedback contra ¢ the fact that in multihop wireless networks, the fee#tbac
is obtained using error-prone measurement mechanismsndéafuoental open question is that under what conditions these
algorithms would converge to the optimal solution? Themefaur approach is based entirely on the local knowledge of
the node. Specifically, we formulate the objective as a neétd@vel delay minimization function where the constraiate
the reception-capacity and service-rate probabilitiesing the Lagrangian dual composition method, we derive tildiged
primal-dual algorithm to minimize the delay in the netwoe further develop a stochastic delay control primal-digd@thm



in the presence of noisy conditions. We also present its ergi@nce and rate of convergence.. To the best of our knoejedg
this is the first attempt to achieve delay optimizations fayemeral wireless sensor network.

The organization of this paper is as follows. In Section Ig detail the network model under consideration. Section Ill
discusses the stability issues and objective functionsidened in this work. We then propose a distributed optitiora
framework and deterministic distributed algorithm. SewtilV presents the stochastic delay control algorithm unussy
conditions. Its rate of convergence is discussed in SesioNumerical results from our simulations are presented&nti®n
VI. In Section VII, we briefly conclude the paper and outlime future directions.

II. NETWORK MODEL

Consider a static wireless sensor network witltsensor nodes. Given is anx n neighborhood relation matridv that
indicates the node pairs for which direct communicationassible. We will assume tha¥ is a symmetric matrix, i.e., if node
i can transmit to nodg, then; can also transmit to node For such node pairs, thg, j)t" entry of the matrixNV is unity,

i.e., N;; =1if nodei andj can communicate with each other; we will S€f; = 0 if nodesi andj can not communicate.
For any node, we defineN; = {j : N; ; = 1}, which is the set of neighboring nodes of node

Each sensor node is assumed taseimpling (or, sensing) its environment at a predefined rate; we;ldenote this sampling
rate for nodei. The units ofr; will be packets per second, assuming same packet size fetheathodes in the network. In
this work we will assume that the readings of each of thesememodes are statistically independent of each other go tha
distributed compression techniques are not employed.

Each sensor node wants to use the sensor network to forvgasanpled data to eommon fusion center (assumed to be
a part of the network). Thus, each sensor node acts as a ftewaf data from other sensor nodes in the network. We will
assume that the buffering capacity of each node is infindehat there is no data loss in the network. We will also assume
that a sensor node does not discriminate among its own Faakelt the packets to be forwarded.

We let R denote then x n routing matrix. The(i, 7)*" element of this matrix is unity if nodg is the next-hop node on the
route from node to the fusion centerR; ; = 0 otherwisé. Clearly, R; ; = 1 is possible only ifN; ; = 1. Similarly, for any
nodei, we defineF; = {j : N; ; = 1N R;,; > 0}, which is the set of neighboring nodes of nadthat are transmitting data
to node: to be forwarded to the fusion center.

We assume that the system operates in discrete time, schthétrte is divided into (conceptually) fixed length slotsaci
the system operates on CSMA/CA MAC, we will assume that tieer® exponential backoff and that the channel access rate
of node: (if it has a packet to be transmitted) is< «; < 1. Thus,«; is the probability that node, if it has packet to be
transmitted, attempts a transmission in any slot.

IIl. DETERMINISTIC DISTRIBUTED OPTIMIZATION FRAMEWORK
We first provide the correct stability condition for the lagd system.

A. Rate Balance Equations
Lemma 1: The minimum rate at which a node can serve its transmit qugue i

A
pi S ai > Rij (1= ) Meen,\ iy (1— a) .
JEN;
Lemma 2: The minimum reception rate of nodds
A
7= (1= ai) ) Ryioglieny (1-ax).

JEN;
Let the total arrival rate into the transmit buffer of notdée denoted by:;. If all the transmit queues in the network are
stable, then the following relation is obtained fars
Lemma 3:

a; = T+ ZRN (aj AN (15 +7v5) A pg) .
Lemma 4: The transmit queue at nodds stable ifj
> Rij ((ri+ %) A i) > a.
Lemma 5: If all the nodes in the network f’frgistable, then

a; = Ti+£ Rj,iaj.
J

1The formulation of this paper and all the equations are enitin a manner that allows for values &; ; in the interval (0,1). This would mean a
probabilistic flow splitting as in the model of [1]. For sinigty of discussion, however, we will restrict our attemti¢o the0 — 1 value scheme foR; ;s.



Lemma 6: The probability that a transmission from nodés successful is
S; = Z Riyj (1 — wjaj)erNj\{i} (1 — Wkak).
JEN;
The proofs for the given lemmas can be found in [2].

B. Optimization Problem

We will call a routing matrix feasible if the following consint is metz1< <, Tj = a1, Where, without loss of generality,
we have given an index to the fusion center. This requirement says that aII the dateerated in the network must end-up
at the fusion center. We have the following consideratiow:ndinimize the total delay in the network

Zwl ™ ( Q(Zi) @)

1223

where we have used the average delay formula for the M/D/Liguath mean service requirement of unity. Herg> 0 is

a weight given to the nodg for example, the node close to fusion center may be heavdlgidd, hence we may want to give

more attention to this node. Hef—’é is the load on nodg. s.t.> ", w; (1; — a;). which says, maximize the difference between

the service rate and the arrival rate into any node, whildhendtable region. It is important to be noted that we first fix th

routing in the network, and thus, fixing the arrival rate atteaode. We then look at the optimization criteria assumireg t

network is operating in the stable region. We thus want toimiepe the system performance while in the stable region.
We first consider the delay minimization objective function

. 1 a; 1
manwil_—ﬁ <1 — 2Iul> = Zw'L (1 + 5614(171) (2)

7 1223 [

wherez; = — —a; = A. First of all, we will prove thate; is a convex function. Lef (u;) be a function
of a single varlable defined on the intendglthen f (u;) is convex, if for alla € I, all b € I, and allt € [0, 1], we have

flo)—tf(a)—tf(b) <0

wheret = 1 — t. Also, we assume the feasible regionxgfis [a, b]. We have

ai by tay + thy

a; bl tai + fbl
Then, we need to prove that

f(ta+1t) —tf(a) —Tf (b) <0

or

flo)—tfla)—1f () <0
n-Node Example: Let us consider an example afnodes and use this method to prove convexity. Accordingembjective
function (2), we can rewrite it as
1
f (E) =w (I—i— 2(196)
T

1 L | w=[ww]" anda = [a;---a;]". For the ease of understanding in the

J— . T J—
wherey = i -+ u]”, 2 = [t o oty
proof, here we useg; replacinga; in (1). So

fp) =w" (I+ %gi) =w’ [H %g (E—Q)_l]

T
wherez = [Hllql e Hilqi] . Therefore, we can writ¢ (a) and f (b) as follows

fla) =w" [I+ %g(@—g)_l] , f)=w" [I+ %q(b—g)_l} (3)

flo)=wT [I+%g(t@+fb—g)_l] =w" {I+%g(b—g+t(g—b))_l} )



wherel = | : |. And for ¢ andb, we have
1
_ T 1 + -1 - -1
tf(g)+tf(b)=w1+§w g[t(g—g) +7(b—q) } (5)
Therefore, we need to prove that
flo)—tf(a)—tf(b)<0 (6)
By plugging (4) and (5) into (6) and solving, we get
F(© =t (@) ~Tf ) = fuTq[b-q+t@-1) " —tla-a) " -T-0) ] (7)
Assume:A =a—gq, B=>b—gq. Then
-1 -1 - -1 7
b-g+t@-b) -tla-9q9 -tlb-9 =smam 17
1 tartp  AB—(t-A+Bt)(At+tB) @, (8)
tAfiB  AB AB(t-A+1-B) T Q:
Q1= AB — (f~t(A2+BQ) + AB (¥2+t2)) =AB—[(t—#*

) (A? — B?) + (1 — 2t + 2t*) AB|
—(t—1?) [A2+ B> +2AB] = — (t — t?) (A+ B)®

thereforeQ, < 0. Also, Q; = AB (t- A+ - B) > 0. Therefore we have proved that

fle)=tf(a)=tf(b) <0
The proof is complete and is for any number of nodes [1, N]. We have shown that the functiomin ), wi—l_lﬂ (1-

a;
- 245 )
is a strictly convex function in,. Therefore, we now use the Lagrange method to find the optidak of y;. We want to
min ). w; (1 + %aixi), wherez; = ‘ula, s.t.u; > a;. Let

. 1

Then the Lagrange of () is

2
1 1
gy | e (i) +u
oL i )
5L : : =0
Hi 5L
Opn

2
1 1
—5Wnan (‘unian) + An
oL 1

2
1 2
= —-wia; | —— Ai =0, zwia; = N (1 — ay
5 5 wid (M_a) + 5 wid (i — a;)

1
Aifi = 2Niptia; — Swith + Niai =0, pi =

2/\iai + \/(2)\1-(11-)2 — 4/\1 (%wiai + /\laf)
2

:ai:I:

1 1
o\ \/4)\120,3 + 2/\1w1a1 - 4A$CLZ2, = a; + K\/ 2/\1w1a1

We suppose that; > 0, because then the conditign > a; is satisfied.
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2

Hi—opt = G4 +
>0
As discussed beforey; is the weight given to the node We want to give a higher weight to those nodes that are heavil

loaded so that they can have a higher priority for transmissover nodes that are not. Here is how we calculate the weigh
w; for each node

Here, F; is the set of neighboring nodes that are transmitting dathdamode:, N; is the entire set of one-hop neighbors
of nodes, andgq; is the total arrival rate into node Here we take into consideration the total load on the noieterms of
arrival ratea, along with the neighborhood of the node. Because, we do not teadestabilize the neighborhood a node by
assigning it a high priority over transmissions. Therefave consider both the load; and the neighborhoo%ﬁ of nodei
while assigning weight in order to be fair. '

C. Lagrange Dual Approach

In what follows, we use the Lagrange dual decomposition ptktto solve the minimization problem. The Lagrangian
function with the Lagrange multipliers\;)is given as follows:

L(p,\) = zi:wi (1 + %am) + zi:/\i (i — ai)

wherey = {u;, i=1,...,n}andA={\;, i =1,...,n}.
Then, the Lagrange dual function i€ (\) = min,, L (x, A)
Thus, the dual problem is given by2 : maxyso @ (A)
D. Deterministic Primal-Dual Algorithm
The delay minimization problem can be solved via the follogvileterministic distributed algorithm
o The s are updated by:; (n+1) = p; (n) — €, Vy, L (p(n), A (n))
« The Lagrange multipliers are update By(n + 1) = X; (n) + €,V L (¢ (n), A (n)), where

Vy,L=— wi | 14+ zajz; | + Aj(pj —aj)| =wiza———+ A= ——= + X\
Iz o1 [XJ: J o4t XJ: i (15 3)} 2 i — i) 2(%_&1_)2

K2

VL=

4]
ON;

{Z wj (1 + %ajwj) + Z)\j (ks — aj)] =i — a;

We note that in the above algorithm, we have used the samesitep,, for both the primal and the dual algorithms. We
can finally write the Primal-Dual algorithm as follows

i 1) = 5 ) e (2 O} ) = A )+ G () = a3 ()

IV. STOCHASTIC DELAY CONTROL AND STABILITY UNDER NOISY CONDITIONS

In this section, we examine the convergence performandeeofibove distributed algorithms under stochastic pertians
due to noisy feedback information.

A. Sochastic Primal-Dual Algorithm For Delay Control

In the presence of noisy feedback information, the gradian¢ estimators. More specifically, the stochastic versiahe
primal-dual algorithm is given as follows

pi(n+1) = pi(n) — € - Ly, (11(n), 0(n)), @i(n+1) = ¢i(n) + €n - Ly, (1(n), (n)) 9)

whereL,, is an estimator oW, L(u(n), ¢(n)) and L, is an estimator oV, L(p(n), ¢(n)).



B. Probability One Convergence Of Sochastic Delay Control Algorithm

Next, we examine in detail the models for stochastic pestiobs. Let{f ,} be a sequence of-algebras generated by
{(pi(m), ;(m)),¥m < n}. For convenience, we ude, [-] = E[-|F ,,] to denote the conditional expectation.

1) Stochastic gradient,,,: Observe that,, (u(n), p(n)) = V., L(i(n), p(n)) + a;(n) + Ci(n), where

(
a(n) 2 En [L, (). o(n)| =V, Lpn) ), G(n) 2 Ly, (u(n).¢n) = By | L (). em)]  @0)
(n

)
i.e.a;(n) is the biased random error 8, L(u(n), ¢(n)) andg} ) is a martingale difference noise singg [(;(n)] = 0.
2) Stochastic gradient,,,: Observe that.,,, (i1(n), p(n)) = V,, L(u(n ) p(n)) + Bi(n) + &(n), where

Bi(n) 2 B [ Ly, (1), 9(n)] = Vo, L(1a(n), (n), &(n) 2 L, ((n), 0 (n)) = B [ L, (1), ()]

i.e. B;(n) is the biased random error &, L(p(n), ¢(n)) and&;(n) is a martingale difference noise.
We impose the following standard assumptions in order tonix@ the convergence of the stochastic primal-dual algarit

Al. We assume that the estimator of the gradients are based on the measurements in each iteration only.

A2. Condition on the step sizel €, > 0, ¢, — 0, Y., &, — oo and > €2 < oo,

A3. Condition on the biased error: }°  e,|a;(n)| < oo and )~ €,|8i(n)| < oo, Vi.

A4.  Condition on the martingale difference noise: 3, €, [¢i(n)?] < oo and 3, €, [&i(n)?] < oo, Vi.

Proposition 1: We have the following proposition. Under Conditioh% - A4, the iterates, generated by stochastic approximation
algorithm (9), converge with probability one to the optinsalutions of Problem.

Sketch of the proof: The proof consists two steps. First, using the stochastapuyov Stability Theorem, we establish that
the iterates generated by (9) return to a neighborhood obtienal points infinitely often. Then we show that the reeutr
iterates eventually reside in an arbitrary small neighbochof the optimal points, and this is proved by usiogal analysis .

We use the following example to illustrate how to charaztersufficient conditions for the almost sure convergence of
stochastic gradient algorithms.

We assume that the exponential marking technique is useeéebfck the price informationy;, to the source nodes.
Therefore the overall non-marking probability is that= exp(y;).

To estimate the overall price, sourcsendsN; packets during round and counts the non-marked packets. For example,
if K non-marked packets have been counted, then the estimdtibie overall pricep,can beK/N,;. Therefore

MAMMWWH=—%$%§;H%@J (12)
By the definition of (10), we have
a;(n) = Ey [log (p;)] — log (pi)

Note thatK is a Binomial random variable with distributioB (V;, ¢). When N is sufficiently large, it follows thap, ~
N(pi, pi (1 —pi) /N;) and p; € [P, — c¢/\/N;, Pi + ¢/+/N;] with high probability, where: is a positive constant. Then the
estimation bias of the price information can be upper-bednds|«;(n)| < f]/v for large N;, wherec’ is some positive
constant.

To ensure the convergence of primal-dual algorithm, fromdition A3, it suffices to have that

Next, we discuss that the variance conditidd is satisfied for¢;(n). By (10) and (11),

En [G(n)?] = PUM%¢Mﬂ—ﬁﬁﬂM@wWﬂ:Mmﬁ@M—ﬁWMM]
E, [log? (5;)] < En [log? (pi +¢)]  VN; >0
Similar studies can be done fé(n) and¢;(n).

V. RATE OF CONVERGENCE OFSTOCHASTIC DELAY CONTROL ALGORITHM

The rate of convergence is concerned with the asymptotiewieh of normalized errors about the optimal points. Our
primal-dual algorithm can be rewritten as a general coimstthform as follows:

[Fen J=[0 oo [ty Jre [ 500800 |+ [ 4]



wheree, Z! ande, Z¢* are the correction term which forge and ¢, to reside inside the constraint set. As is standard
in the study on the rate of convergence, we assume that ttaeisegenerated by the stochastic primal-dual algorithve ha
entered in a small neighborhood of an optimal solutigh, (7).

To characterize the asymptotic properties, we define(n) £ (u; (n) — uf) /v/en and Uy, (n) £ (501( ) —©5) /v/en,
and we constructU”(¢) to be the piecewise constant interpolationidfn) = {U,, (n), U ( )}, e, U™(t) = Upya, for
t € [tnti — by b1 — L), wheret, 2 57 Ve,

A5. LetO(n) £ (ui(n), ¢i(n)) andp(n) = (¢(n), £(n)). Suppose for any given small> 0, there exists a positive definite
symmetric matrixX = oo’ such that

E, [¢udy — Z]1{|0(n) — 0*| < p} — 0, as n — oc.

Define
A Y |: L,U«ill«i (H*a 90*) Ltpi,ui (/1’*730*) :|
_L%M (H*, 90*) 0
A6. Lete, = 1/n, and assumed + I/2 is a Hurwitz matrix. Note that it can be easily shown that teel parts of the
eigenvalues ofd are all non-positive (cf. page 449 in [9]).
Proposition 2: We have the following proposition.
a) Under Conditions Al and A3-A&/™ (-) converges weakly to the solution (denotedlgsto the Skorohod problem

dUM — { Um dZMi
( du, ) = (A+ 2) ( i )dt—i—adw(t)-i-( iz,

b) If (uf,})is an interior point in the constraint set, the limiting pessU is a stationary Gaussian diffusion process, and
U(n) converges in distribution to a normally distributed randeamiable with mean zero and covariante

c) If (u7, ) is on the boundary of the constraint set, then the limitingcpssU is a stationary reflected linear diffusion
process.

Proposition 2 can be proved by appealing to a combination of tools usedeamptbofs of Theorem 5.1 in [10] and Theorem
2.1 in Chapter 6 in [11]. Roughly, we can expand, via a truedafaylor series, the interpolated procésg%(t) around the
chosen saddle poirfl:}, ¢F). Then, the main new step is to show that the tightneds"dft). To this end, we can follow part
3 in the proof of Theorem 2.1 in Chapter 6 in [11] to establishttthe biased term in the interpolated process diminishes
asymptotically. Then, the rest follows from the proof of ®hem 5.1 in [10].

The rate of convergence depends heavily on the smallest\gilye of(A + é) The more negative the smallest eigenvalue
is, the fast the rate of convergence would be. The reflecéomg would help increase the speed of convergence, which
unfortunately cannot be characterized exactly.

VI. SIMULATION RESULTS

In this section, we implement the proposed deterministgtrithuted primal-dual algorithm. Specifically, we conside
simple 8-node wireless sensor network as shown in Fig.1.thdl sensors sample data with = 0.1. We use a random
access CSMA/CA like MAC without backoff. We first fix the roog in the network, and thus, fixing the arrival rate at each
node. We then look at the convergence of primal-dual allgoritThe results obtained by the proposed primal-dual alyori
together with the theoretical optimal solution, are présérn Table I. It can be easily seen that the results obtdired the
primal-dual algorithm is very close to the optimal solution
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Fig. 1. A Simple Network Topology

We now look at the convergence of the distributed primalldilgorithm for some nodes in the network w.r.t time. Fig. 2
shows the convergence of distributed primal-dual algorifior node 3, 4, 5, and 6 in the network. It can be seen that the
optimal values ofus, u4, 15, andug are obtained by the distributed primal-dual algorithm issl¢han 100 iterations of the
algorithm. This shows a very fast convergence of the disteith primal-dual algorithm.



TABLE |
COMPARISON BETWEEN THE RESULTS OF THE PROPOSED PRIMARUAL ALGORITHM AND THE THEORETICAL OPTIMAL SOLUTION

| NOde| a; | Hi—opt | Hi—primal—dual |

1 0.1 0.102 0.121
2 0.2 0.208 0.225
3 0.1 | 0.1220 0.125
4 0.2 0.241 0.256
5 0.35| 0.383 0.412
6 0.7 0.719 0.743
7 1.05| 1.058 1.072
o N—— o~ AN o ~— — T —

01 038 \/\/\/\/\/\/\/J\

0 5 10 15 20 25 o 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Time -> s (10%) Time > s (109) Time -> s (10%) Time > s (109)

Fig. 2. Convergence qgfis, p4, us and pg using distributed primal-dual algorithm

VII. CONCLUSIONS ANDFUTURE WORK

We consider a general purpose wireless sensor network witensor nodes. The objective for the open system was to
minimize the total delay in the network where the constgaane the arrival-rate and service-rate of a node. Partlgulae
have shown that the objective function is strictly convextfee entire network. We then use the Lagrangian dual deceitimo
method to devise a distributed primal-dual algorithm toimize the delay in the network. The deterministic distrdaiprimal-
dual algorithm requires no feedback control and thereforeerges almost surely to the optimal solution. The reshitsv that
the required optimal value akrvice rate is achieved for every node in the network by the distributaoh@l-dual algorithm. It
is important to pay equal attention to both the observedydieldhe network and energy consumption for data transmissio
A fast convergence means that only a little extra energy issemed to perform local calculations to achieve the desired
optimizations. Only energy-efficient routing might notweiany purpose for some sensor network applications. Signilar
the stochastic delay control algorithm, we have shown a gty one convergence and its rate of convergence which is
entirely distributed in nature.

In the future, we will consider a dynamic routing approachl yo into a stochastic distributed primal-dual algorithm
approach to observe the effect of routing on system perfoomaNe also consider the problem of minimizing the prolitgbil
of collision for random medium access wireless sensor miésvia order to maximize the network lifetime of battery opted
sensor nodes.
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