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Distributed Algorithms for Environment Partitioning

in Mobile Robotic Networks
Marco Pavone, Alessandro Arsie, Emilio Frazzoli, Francesco Bullo

Abstract—A widely applied strategy for workload sharing is
to equalize the workload assigned to each resource. In mobile
multi-agent systems, this principle directly leads to equitable
partitioning policies whereby (i) the environment is equitably
divided into subregions of equal measure, (ii) one agent is
assigned to each subregion, and (iii) each agent is responsible for
service requests originating within its own subregion. The current
lack of distributed algorithms for the computation of equitable
partitions limits the applicability of equitable partitioning policies
to limited-size multi-agent systems operating in known, static
environments. In this paper, first, we design provably correct
and spatially distributed algorithms that allow a team of agents
to compute a convex and equitable partition of a convex environ-
ment. Second, we discuss how these algorithms can be extended
so that a team of agents can compute, in a spatially distributed
fashion, convex and equitable partitions with additional features,
e.g., equitable and median Voronoi diagrams. Finally, we discuss
two application domains for our algorithms, namely dynamic
vehicle routing for mobile robotic networks and wireless ad hoc
networks. Through these examples we show how one can couple
the algorithms presented in this paper with equitable partitioning
policies to make these amenable to distributed implementation;
more in general, we illustrate a systematic approach to devise
spatially distributed control policies for a large variety of multi-
agent coordination problems. Our approach is related to the
classic Lloyd algorithm, and exploits the unique features of power
diagrams.

I. INTRODUCTION

In the near future, large groups of autonomous agents will

be used to perform complex tasks including transportation

and distribution, logistics, surveillance, search and rescue

operations, humanitarian demining, environmental monitoring,

and planetary exploration. The potential advantages of multi-

agent systems are, in fact, numerous. For instance, the intrinsic

parallelism of a multi-agent system provides robustness to

failures of single agents, and in many cases can guarantee

better time efficiency. Moreover, it is possible to reduce the

total implementation and operation cost, increase reactivity

and system reliability, and add flexibility and modularity to

monolithic approaches.

In essence, agents can be interpreted as resources to be

shared among customers. In surveillance and exploration
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missions, customers are points of interest to be visited; in

transportation and distribution applications, customers are peo-

ple demanding some goods or services (e.g., utility repair); in

logistics tasks, customers could be troops on the battlefield.

A widely applied strategy for workload sharing is to equal-

ize the total workload assigned to each resource. In mobile

multi-agent systems, this strategy naturally leads to equitable

partitioning policies [1]–[4]. An equitable partitioning policy

is a workload sharing policy whereby the environment Q ⊂ R
d

is equitably partitioned into m openly disjoint subregions Qi

(i ∈ {1, . . . ,m}) whose union is Q, where m is the number of

available agents; then, each agent i is assigned to subregion

Qi, and each customer in Qi receives service by the agent

assigned to Qi. In this paper, equitability is in the following

sense: If we model the workload for subregion T ⊆ Q as

λT
.
=
∫

T
λ(x) dx, where λ(·) is a measure over Q, the

workload for agent i is λQi
(the measure λ can represent, for

example, the density of customers over Q, or, in a stochastic

setting, their arrival rate). Then, an equitable partition (i.e.,

a partition that guarantees equitable workload sharing) is a

partition where λQi
= λQ/m, for all i.

Equitable partitioning policies are predominant for three

main reasons: (i) efficiency, (ii) ease of design and (iii)

ease of analysis. Equitable partitioning policies are, therefore,

ubiquitous in applications involving multi-agent systems. To

date, nevertheless, to the best of our knowledge, all equitable

partitioning policies inherently assume a centralized compu-

tation of the partition of the environment (henceforth, we

will refer to algorithms for the computation of partitions as

partitioning algorithms). This fact is in sharp contrast with

the desire of a fully distributed architecture for a multi-agent

system. The lack of a fully distributed architecture limits the

applicability of equitable partitioning policies to limited-size

multi-agent systems operating in a known, static environment.

The contribution of this paper is threefold. First, we design

provably correct and spatially distributed algorithms that allow

a team of agents to compute a convex and equitable partition

of a convex environment. Our approach is related to the

classic Lloyd algorithm from vector quantization theory [5],

[6], and exploits the unique features of power diagrams, a

generalization of Voronoi diagrams (a similar approach is

studied in [7] in the context of sensor networks performing

static coverage optimization with area constraints; see also

[8] for another interesting application of power diagrams in

the context of power-constrained mobile sensor networks).

Second, we discuss how these algorithms can be extended so

that a team of agents can compute, in a spatially distributed

fashion, convex and equitable partitions with additional fea-

tures critical to applications. For example, we consider equi-
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table and median Voronoi diagrams, which play a key role

in several application domains: to the best of our knowledge,

no algorithm (centralized or distributed) is currently available

for their computation, but they are within the scope of our

analysis. Third, we discuss two important application domains

for our algorithms, namely, dynamic vehicle routing for mobile

robotic networks and wireless ad hoc networks. Through

these examples we illustrate a systematic approach to devise

spatially distributed control policies for the class of multi-

agent coordination problems that admit equitable partitioning

policies as a solution. This approach consists in combining the

partitioning algorithms presented in this paper with suitable

single-agent control laws. In other words, the partitioning

algorithms we devise in this paper are a “building block”

instrumental to design spatially distributed control policies for

a large variety of multi-agent coordination problems.

We mention that our algorithms, although motivated in the

context of multi-agent systems, are a novel contribution to

the field of computational geometry. In particular we address,

using a dynamical system framework, the well-studied equi-

table convex partition problem (see [9] and references therein);

moreover, our analysis provides new insights in the geometry

of Voronoi diagrams and power diagrams (including some

existence and impossibility results).

The paper is organized as follows. In Section II we provide

the necessary tools from calculus, algebraic topology, and

computational geometry. In Section III we first prove some

existence results for power diagrams, and then we design

provably correct and spatially distributed algorithms for the

computation of equitable partitions. In Section IV we discuss

how one can extend these algorithms to enable the spatially

distributed computation of convex and equitable partitions

with additional features (e.g., equitable and median Voronoi

diagrams). In Section V we describe two application domains

for the algorithms developed in this paper, namely dynamic

vehicle routing and deployment of wireless ad hoc networks,

and in Section VI we present results from numerical experi-

ments. Finally, in Section VII, we draw our conclusions.

II. BACKGROUND

In this section we introduce some notation and briefly

review some concepts from calculus, algebraic topology, and

computational geometry, on which we will rely extensively

later in the paper.

A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let Q be a compact,

convex subset of Rd. We denote the boundary of Q as ∂Q and

the Lebesgue measure of Q as |Q|. We define the diameter of

Q as: diam(Q)
.
= max{||p−q|| | p, q ∈ Q}. The distance from

a point x to a set M is defined as dist(x,M)
.
= infp∈M ‖x−

p‖. We define Im
.
= {1, 2, . . . ,m}. Let G = (g1, . . . , gm) ⊂

Qm denote the location of m points in Q. A partition (or

tessellation) of Q is a collection of m closed subsets {Qi}mi=1

with disjoint interiors whose union is Q. A partition {Qi}mi=1

is convex if each Qi, i ∈ Im, is convex. Let λ : Q → R>0 be

a measure over Q, absolutely continuous with respect to the

Lebesgue measure. Define λT
.
=
∫

T
λ(x) dx for any T ⊆ Q;

a partition {Qi}mi=1 of the environment Q is equitable with

respect to λ if λQi
= λQj

for all i, j ∈ Im.

Finally, we define the saturation function sata,b(x), with a <
b, as:

sata,b(x) =







1, if x > b,

(x− a)/(b− a), if a ≤ x ≤ b,

0, if x < a.

B. Variation of an Integral Function due to a Domain Change

The following result is related to classic divergence the-

orems [10]. Let Q = Q(y) ⊂ Q be a region that depends

smoothly on a real parameter y ∈ R and that has a well-

defined boundary ∂Q(y) for all y. Let h be a density function

over Q. Then

d

dy

∫

Q(y)

h(x) dx =

∫

∂Q(y)

(dx

dy
· n(x)

)

h(x) dx, (1)

where v ·w denotes the scalar product between vectors v and

w, n(x) is the unit outward normal to ∂Q(y) at x, and dx/dy
is the derivative of the boundary points with respect to y.

C. A Sufficient Condition for the Surjectivity of a Map

The following two results will be fundamental to prove

some existence theorems and are a direct consequence of the

theory of degree of continuous maps between spheres (see the

Appendix for the definition of degree of a map).

Theorem 2.1 (Surjectivity of continuous maps): Let Bm be

a closed m-dimensional ball and let Sm−1 be its boundary,

namely an (m − 1)-dimensional sphere. Let f : Bm → Bm

be a continuous map and assume that its restriction fSm−1 :
Sm−1 → Sm−1 has degree different from 0. Then f is onto

Bm.

Proof: See Appendix.

In the sequel we will also need the following result.

Lemma 2.2 (Degree of continuous bijective maps): Let f :
Sm → Sm, with m ≥ 1, be a continuous bijective map from

an m-dimensional sphere to itself. Then the degree of f is

equal to ±1.

Proof: See Appendix.

D. Voronoi Diagrams and Power Diagrams

We refer the reader to [11] and [12] for comprehensive treat-

ments, respectively, of Voronoi diagrams and power diagrams.

Assume that G = (g1, . . . , gm) is an ordered set of distinct

points. The Voronoi diagram V(G) = (V1(G), . . . , Vm(G)) of

Q generated by points G is defined by

Vi(G) = {x ∈ Q| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}.
We refer to G as the set of generators of V(G), and to Vi(G) as

the Voronoi cell or region of dominance of the i-th generator.

For gi, gj ∈ G, i 6= j, we define the bisector between gi and

gj as b(gi, gj) = {x ∈ Q| ‖x − gi‖ = ‖x − gj‖}. The face

b(gi, gj) bisects the line segment joining gi and gj , and this

line segment is orthogonal to the face (Perpendicular Bisector
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Property). One can easily show that each Voronoi cell is a

convex set, and thus a Voronoi diagram of Q is a convex

partition of Q (see Figure 1(a)). The Voronoi diagram of an

ordered set of possibly coincident points is not well defined.

Assume, now, that each point gi ∈ G has assigned an

individual weight wi ∈ R, i ∈ Im; let W = (w1, . . . , wm).
We define the power distance as

dP (x, gi;wi)
.
= ‖x− gi‖2 − wi.

We refer to the pair (gi, wi) as a power point and define GW =(

(g1, w1), . . . , (gm, wm)
)

. Two power points (gi, wi) and

(gj , wj) are coincident if gi = gj and wi = wj . Assume that

GW is an ordered set of distinct power points. Similarly as be-

fore, the power diagram V(GW ) = (V1(GW ), . . . , Vm(GW ))
of Q generated by power points GW is defined by

Vi(GW ) = {x ∈ Q| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj ,

∀j 6= i, j ∈ Im}.

We refer to GW as the set of power generators of V(GW ),
and to Vi(GW ) as the power cell or region of dominance

of the i-th power generator; moreover we call gi and wi,

respectively, the position and the weight of the power generator

(gi, wi). One can easily show that a power diagram is a convex

partition of Q. Notice that, when all weights are the same, the

power diagram of Q coincides with the Voronoi diagram of Q.

Indeed, power diagrams are the generalized Voronoi diagrams

that have the strongest similarities to the original diagrams

[13]. There are some differences, though. First, a power cell

might be empty. Second, gi might not be in its power cell (see

Figure 1(b), where each weight is positive, and each power

generator (gi, wi) is represented by a circle whose center is

gi and whose radius is
√
wi). Finally, the bisector of (gi, wi)

and (gj , wj), i 6= j, is

b
(

(gi, wi), (gj , wj)
)

= {x ∈ Q| (gj − gi)
Tx =

1

2
(‖gj‖2 − ‖gi‖2 + wi − wj)}.

(2)

Hence, b
(

(gi, wi), (gj , wj)
)

is a face orthogonal to the line

segment gi gj and passing through the point g∗ij given by

g∗ij =
‖gj‖2 − ‖gi‖2 + wi − wj

2‖gj − gi‖2
(gj − gi);

this last property will be crucial in the remainder of the paper:

it means that, by changing the values of the weights, it is pos-

sible to arbitrarily move the bisector between the positions of

the two corresponding power generators, while still preserving

the orthogonality constraint. The power diagram of an ordered

set of possibly coincident power points is not well defined.

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi. When

the two Voronoi (power) cells Vi and Vj are adjacent (i.e.,

they share a face), gi ((gi, wi)) is called a Voronoi (power)

neighbor of gj ((gj , wj)), and vice-versa. The set of indices

of the Voronoi (power) neighbors of gi ((gi, wi)) is denoted

by Ni. We also denote the (i, j)-face as ∆ij
.
= Vi ∩ Vj .

gk

gj

Vi

gi

(a) A Voronoi Diagram.

g1

g2

g3

g4

g5

g6

(1, 4)

(1, 3)

(1
,
5)

(3,
5)

(3, 4)

(5, 6)

(3
,

6)

(4,
6)

√

w1

(b) A power diagram [13]. The
weights wi are all positive. Power
generator (g2, w2) has an empty cell.
Power generator (g5, w5) is outside
its region of dominance.

Fig. 1. Examples of Voronoi diagrams and power diagrams.

III. A SPATIALLY-DISTRIBUTED ALGORITHM TO

COMPUTE EQUITABLE PARTITIONS

In this section we develop a provably correct and spatially

distributed algorithm for the computation of a convex and

equitable partition of a convex environment Q (see, e.g., [14]

for a rigorous definition of spatially distributed algorithms). In

the next section we will present an extension of this algorithm,

which enables the spatially distributed computation of convex

and equitable partitions with additional features (e.g., convex

and equitable partitions that are approximations of equitable

Voronoi diagrams).

To develop our algorithms, we restrict our attention to a spe-

cific class of partitions, namely the class of power diagrams.

The reason for focusing on power diagrams is threefold. First,

power diagrams can be viewed as a map between sets of

weighted points and regions of dominance; as it will become

apparent in Section III-B, where we give an overview of the

proposed algorithm, this property simplifies considerably the

task of designing spatially distributed algorithms for environ-

ment partitioning. Second, several well-known and practically

important convex partitions, such as median Voronoi diagrams,

are particular types of power diagrams; hence, power diagrams

are rather general. Finally, equitable power diagrams are

always guaranteed to exist, as we show next.

A. On the Existence of Equitable Power Diagrams

An important property of power diagrams is that an equi-

table power diagram always exists for any λ (notice that in

general, when λ is non-uniform, an equitable Voronoi diagram

may fail to exist, as we will show in section III-E). Indeed, as

shown in the next theorem, an equitable power diagram (with

respect to any given λ) exists for any vector of distinct points

G = (g1, . . . , gm) in Q.

Theorem 3.1 (Existence of equitable power diagrams):

Let G = (g1, . . . , gm) be the positions of 1 ≤ m <∞ distinct

points in Q. Then, there exist weights wi, i ∈ Im, such that

the power points
(

(g1, w1), . . . , (gm, wm)
)

generate a power

diagram that is equitable with respect to λ. Moreover, given a

vector of weights W ∗ that yields an equitable power diagram,
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the set of all vectors of weights yielding an equitable power

diagram is W∗ .
= {W ∗ + t[1, . . . , 1] | t ∈ R}.

Proof: It is not restrictive to assume that λQ = 1 (i.e., we

normalize the measure of Q), since Q is bounded. The strategy

of the proof is to use a topological argument to force existence.

Specifically, we view a power diagram as a “map” that maps

vectors of weights into vectors of measures of power cells, and

we show that this map is surjective by applying Theorem 2.1.

The surjectivity of the “power diagram map”, in turn, implies

that it must exist a vector of weights that realizes an equitable

power diagram.

We begin the proof by constructing a weight space. Let

D = diam(Q)2/2, and consider the cube C .
= [−D,D]m (see

Figure 2). This is the weight space and we consider weight

vectors W taking value in C; this is not restrictive, since

if the difference between two weights is larger than 2D =
diam(Q)2, at least one cell has measure zero, and thus the

corresponding power diagram can not be equitable. Second,

consider the standard m-simplex of measures λQ1
, . . . , λQm

(where Q1, . . . ,Qm are the power cells). This can be realized

in R
m as the subset of defined by

∑m
i=1 λQi

= 1 with the

condition λQi
≥ 0 (see again Figure 2). Let us call this set “the

measure simplex A” (notice that it is (m− 1)-dimensional).

We call f : C → A the map associating, according to the

power distance, a weight vector W with the corresponding

vector of measures (λQ1
, . . . , λQm

). Since the points in G
are assumed to be distinct, this map is continuous.

To prove the first statement of the theorem, we will prove

that f : C → A is surjective for every m ≥ 1 by using

induction on m, starting with the base case m = 3 (the

statement for m = 1 and m = 2 is trivially checked).

We consider as base case m = 3 since its study, which

can be aided by visualization, contains most of the ideas

involved in the inductive step and makes the corresponding

proof more transparent. When m = 3, the weight space C is

a three-dimensional cube with vertices v0 = [−D,−D,−D],
v1 = [D,−D,−D], v2 = [−D,D,−D], v3 = [−D,−D,D],
v4 = [D,−D,D], v5 = [−D,D,D], v6 = [D,D,−D],
and v7 = [D,D,D]. The measure simplex A is a triangle

with vertices u1, u2, and u3 that correspond to the cases 1)

λQ1
= 1, λQ2

= 0, λQ3
= 0, 2) λQ1

= 0, λQ2
= 1, λQ3

= 0,

and 3) λQ1
= 0, λQ2

= 0, λQ3
= 1, respectively. Moreover,

call e1, e2 and e3 the edges opposite to the vertices u1, u2,

and u3, respectively. The edges ei are, therefore, given by the

condition {λQi
= 0} (see Figure 2).

Let us return to the map f : C → A. It is easy to see that

f is constant on sets of the form W .
= {{W + t(1, 1, 1)} ∩

C, t ∈ R}, where W is a weight vector in C; in other words,

whenever two sets of weights differ by a common quantity,

they are mapped to the same point in A. Moreover, fixing a

point p ∈ A, we have that f−1(p) is simply given by a set of

the form W for a suitable W (a proof of this fact is provided,

for any m ≥ 3, within the proof of the inductive step, which

is presented in the Appendix). Hence, the “fibers” of f , i.e.,

the loci where f is constant, are straight lines parallel to the

main diagonal v0v7 (the second statement in Theorem 3.1 is

an immediate consequence of this fact). Note that the image

of the diagonal v0v7 is exactly the point p0 of A for which the

v1

v2

v3

v4

v5

v6

v7
f

v0 = (−D,−D,−D) [λQ1
= 1,λQ2

= 0,λQ3
= 0] [λQ1

= 0,λQ2
= 0,λQ3

= 1]

u1 u3

[λQ1
= 0,λQ2

= 1,λQ3
= 0]u2 =

=

e
3
:
{λ

Q
3
=
0
}

e2 : {λQ2
= 0}

e
1
: {
λ
Q

1

=
0}

=

C A

Γ

Fig. 2. Weight space C, measure simplex A, and the power diagram map
f : C → A for m = 3.

measures are those of a Voronoi partition, since the weights

are all equal.

On the weight space C let us define the following equiv-

alence relation: W 1 ≡ W 2 if and only if they are on a line

parallel to the main diagonal v0v7. The map f : C → A
induces a continuous map (still called f by abuse of notation)

from C/ ≡ to A having the same image. Let us identify C/ ≡
with a simpler topological space. Since any line in the cube

parallel to the main diagonal v0v7 is entirely determined by

its intersections with the three faces F3 = C ∩ {w3 = −D},

F2 = C ∩ {w2 = −D}, and F1 = C ∩ {w1 = −D}, we can

identify C/ ≡ with the union of these faces and we call this

union F . We therefore have a continuous map f : F → A
that has the same image of the original f ; besides, the induced

map f : F → A is injective by construction, since each fiber

intersects F in only one point.

Observe that F is homeomorphic to B2, the 2-dimensional

ball, like A itself. Up to homeomorphisms, therefore, the map

f : F → A can be viewed as a map (again called f by abuse

of notation) f : B2 → B2. Consider the closed loop Γ given

by v2v5, v5v3, v3v4, v4v1, v1v6, v6v2 with this orientation (see

Figure 2). This loop is the boundary of F and we think of it

also as the boundary of B2. Taking into account the continuity

of f , it is easy to see that f maps Γ onto the boundary of A.

For example, while we move on the edges v2v5 and v5v3,

that are characterized by having w1 = −D, the corresponding

point on the measure simplex moves on the edge e1.

Moreover, since f is injective by construction, the inverse

image of any point on the boundary of A is just one element

of Γ. Identifying the boundary of A with S1 (up to homeomor-

phisms) and the loop Γ with S1 (up to homeomorphisms) we

have a bijective continuous map fS1 : S1 → S1. By Lemma

2.2 the degree of f is equal to ±1 and, therefore, f is onto

A, using Theorem 2.1. This proves the base case m = 3. The

proof of the inductive step is provided in the Appendix.

Some remarks are in order.

Remark 3.2 (General measure assignment): In the proof of

the above theorem, we actually proved that for any measure

vector (λQ1
, . . . , λQm

) in A there exists a weight vector W ∈
C realizing it through the map f . This could be useful in some

applications.

Remark 3.3 (Uniqueness of equitable power diagrams):

Since all vectors of weights in W∗ yield exactly the same

power diagram, we conclude that the positions of the
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generators uniquely induce an equitable power diagram.

B. Overview of the Algorithm

Henceforth, we assume that Q is a compact, convex sub-

set of R
2 (we will discuss more general environments in

Remark 4.5). Each agent locally controls a power generator

(gi(t), wi(t)) ∈ Q × R, where t ∈ R≥0 denotes dependence

on time. We will refer to the power cell Vi = Vi(GW ), where

GW =
(

(g1, w1), . . . , (gm, wm)
)

, as the region of dominance

of agent i, and to the partition into regions of dominance

induced by the set of generators1 GW as V(GW ).
The key idea is to construct an energy function with the

properties that (1) it depends on the weights of the generators,

and (2) all its critical points correspond to vectors of weights

yielding an equitable power diagram (whose existence is

guaranteed by Theorem 3.1). Then, the agents update their

weights according to a spatially distributed gradient-descent

law (while maintaining the positions of the generators fixed)

until a critical point of the energy function (and hence an

equitable power diagram) is reached.

Assume, henceforth, that the positions of the generators are

distinct, i.e., gi 6= gj for i 6= j, and define the set

S
.
=
{

(w1, . . . , wm) ∈ R
m |λVi

> 0, ∀i ∈ Im

}

.

In other words, set S contains all vectors of weights such that

no region of dominance has measure equal to zero.

We introduce the energy function HV : S → R>0:

HV(W )
.
=

m∑

i=1

(
∫

Vi(W )

λ(x)dx

)−1

=

m∑

i=1

λ−1
Vi(W ), (3)

where W = (w1, . . . , wm).

C. Smoothness and Gradient of HV

We now analyze the smoothness properties of HV . In the

following, let γij
.
= ‖gj − gi‖.

Theorem 3.4 (Smoothness of HV ): Assume the generators’

positions are distinct, i.e., gi 6= gj for i 6= j. The following

statements hold:

1) the function HV is continuously differentiable on S,

where for each i ∈ {1, . . . ,m}

∂HV

∂ wi

=
∑

j∈Ni

1

2γij

(

1

λ2Vj

− 1

λ2Vi

)
∫

∆ij

λ(x) dx, (4)

2) all critical points of HV are weight vectors that yield an

equitable power diagram.

Proof: By assumption, gi 6= gj for i 6= j, thus the power

diagram is well defined. Since the motion of a weight wi only

affects power cell Vi and its neighboring cells Vj for j ∈ Ni,

we have

∂HV

∂wi

= − 1

λ2Vi

∂λVi

∂wi

−
∑

j∈Ni

1

λ2Vj

∂λVj

∂wi

.

1For brevity, we will often refer to a power generator simply as a generator.

Now, the result in equation (1) provides the means to

analyze the variation of an integral function due to a domain

change. Since the boundary of Vi satisfies ∂Vi = ∪j∆ij ∪Bi,

where ∆ij = ∆ji is the edge between Vi and Vj , and Bi is

the boundary between Vi and Q (if any, otherwise Bi = ∅),

we have

∂λVi

∂wi

=
∑

j∈Ni

∫

∆ij

(
∂x

∂wi

·nij(x)) λ(x) dx+
∫

Bi

(
∂x

∂wi

· nij(x)

)

λ(x) dx

︸ ︷︷ ︸

=0

,
(5)

where we defined nij as the unit normal to ∆ij , outward of

Vi (thus nji = −nij). The second term is trivially equal to

zero if Bi = ∅; it is also equal to zero if Bi 6= ∅, since the

integrand is zero almost everywhere. Similarly,

∂λVj

∂wi

=

∫

∆ij

(
∂x

∂wi

· nji(x)

)

λ(x) dx. (6)

To evaluate the scalar product between the derivative of

the boundary points and the unit normal to the boundary in

equations (5) and (6), we differentiate equation (2) with respect

to wi at every point x ∈ ∆ij ; we get

∂x

∂wi

· (gj − gi) =
1

2
.

From equation (2) we have nij = (gj − gi) /‖gj − gi‖,

and the desired explicit expressions for the scalar products in

equation (5) and in equation (6) follow immediately (recalling

that nji = −nij). Collecting the above results, we obtain the

partial derivative with respect to wi.

The proof of the characterization of the critical points

(i.e., the proof of the second statement) is an immediate

consequence of the expression for the gradient of HV ; we

omit it in the interest of brevity.

Remark 3.5 (Spatially distributed gradient computation):

The computation of the gradient in Theorem 3.4 is spatially

distributed over the dual graph of the power diagram (we call

such graph the power-Delaunay graph), since the summation

in equation (4) only runs through the indices of generators

with neighboring power cells.

Example 3.6 (Gradient of HV for uniform measure): The

gradient of HV simplifies considerably when λ is uniform. In

this case, it is straightforward to verify that

∂HV

∂ wi

=
|Q|
2λQ

∑

j∈Ni

δij
γij

(
1

|Vj |2
− 1

|Vi|2
)

,

where δij is the length of the boundary segment ∆ij .

D. Spatially Distributed Algorithm for Equitable Partitioning

Each agent updates its own weight according to the follow-

ing control law defined over the set S:

ẇi(t) = −∂HV

∂wi

(W (t)), t ≥ 0, (7)
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where the dot represents differentiation with respect to

time, and where we assume that the partition V(W ) =
{V1, . . . , Vm} is continuously updated. One can prove the

following result.

Theorem 3.7 (Correctness of algorithm (7)): Assume that

the positions of the generators are distinct, i.e., gi 6= gj for

i 6= j. Consider the gradient vector field on S defined by

equation (7). Then generators’ weights starting at t = 0 at

W (0) ∈ S and evolving under (7) remain in S and converge

asymptotically to a critical point of HV , i.e., to a vector of

weights yielding an equitable power diagram.

Proof: Define the set

U
.
=
{

(w1, . . . , wm) ∈ R
m |

m∑

i=1

wi = c
}

,

where c ∈ R is an arbitrary constant. Let Ω
.
= S ∩ U . We

next prove that generators’ weights starting in Ω and evolving

under (7) converge to a vector of weights yielding an equitable

power diagram.

By assumption, gi 6= gj for i 6= j, thus the power diagram is

well defined. First, we prove that set Ω is positively invariant

with respect to (7). Noticing that control law (7) is a gradient

descent law, we have for all trajectories starting in Ω

λ−1
Vi(W (t)) ≤ HV(W (t)) ≤ HV(W (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously on

the weights, we conclude that the measures of all power cells

will be bounded away from zero; thus, the weights will belong

to S for all t ≥ 0, that is, W (t) ∈ S ∀t ≥ 0. Moreover, the

sum of the weights is invariant, in fact

∂
∑m

i=1 wi

∂t
=−

m∑

i=1

∂HV

∂wi

=

−
m∑

i=1

∑

j∈Ni

1

2γij

( 1

λ2Vj

− 1

λ2Vi

)∫

∆ij

λ(x) dx = 0,

since γij = γji, ∆ij = ∆ji, and j ∈ Ni ⇔ i ∈ Nj . Thus, we

have W (0) ∈ Ω ⇒W (t) ∈ U ∀t ≥ 0. Since for all trajectories

starting in Ω one has W (t) ∈ S ∀t ≥ 0 and W (t) ∈ U ∀t ≥ 0,

we conclude that W (0) ∈ Ω ⇒ W (t) ∈ S ∩ U = Ω ∀t ≥ 0,

that is, set Ω is positively invariant.

Second, function HV is clearly non-increasing along system

trajectories starting in Ω, that is, ḢV ≤ 0 in Ω.

Third, all trajectories with initial conditions in Ω are

bounded. Indeed, we have already shown that
∑m

i=1 wi(t) = c
along system trajectories starting in Ω. This implies that

weights remain within a bounded set: If, by contradiction, a

weight could become arbitrarily positive large, another weight

would become arbitrarily negative large (since the sum of

weights is constant), and the measure of at least one power cell

would vanish, which contradicts the fact that Ω is positively

invariant.

Finally, by Theorem 3.4, HV is continuously differentiable

in Ω. Hence, by invoking the LaSalle invariance principle (see,

for instance, [6]), generators’ weights with initial conditions

in Ω and evolving under (7) will converge asymptotically to

the set of critical points of HV in Ω, which is not empty as

confirmed by Theorem 3.1. Indeed, by Theorem 3.1, we know

that all vectors of weights yielding an equitable power diagram

differ by a common translation. Thus, the largest invariant set

of HV in Ω contains only one point. This implies that for all

W (0) ∈ Ω the limit limt→∞W (t) exists and it is equal to a

vector of weights that yields an equitable power diagram.

The theorem then follows since c was chosen arbitrarily.

Some remarks are in order.

Remark 3.8 (Global convergence): By Theorem 3.7, con-

vergence to an equitable power diagram is global with respect

to S for any set of generators’ distinct positions. Indeed, there

is a very natural choice for the initial values of the weights.

Assuming that at t = 0 agents are in Q and in distinct

positions, each agent initializes the position of its generator

to its physical position, and the corresponding weight to zero.

Then, the initial partition is a Voronoi tessellation; since λ
is positive on Q, each initial cell has nonzero measure, and

therefore W (0) ∈ S.

Remark 3.9 (Spatially distributed algorithm): The compu-

tation of the partial derivative of HV with respect to the

i-th weight only requires information from the agents with

neighboring power cells. Therefore, the gradient descent law

(7) is indeed a spatially distributed algorithm over the power-

Delaunay graph. We mention that, in a power diagram, each

power generator has an average number of neighbors less than

or equal to six [13]; therefore, the computation of gradient (7)

is scalable (on average) with the number of agents.

Remark 3.10 (Partitions with general measure assignment):

The focus of this paper is on equitable partitions. Notice,

however, that it is easy to extend the previous algorithm to

obtain a spatially distributed (again, over the power-Delaunay

graph) control law that provides any desired measure vector

(λV1
, . . . , λVm

). In particular, assume that we desire a partition

such that λVi
= βiλQ, where βi ∈ (0, 1),

∑m
i=1 βi = 1. If

we redefine HV : S → R>0 as

HV(W )
.
=

m∑

i=1

β2
i

λVi(W )
,

then, following the same steps as before, it is possible to show

that under control law

ẇi = −∂HV

∂wi

(W ) =
∑

j∈Ni

1

2γij

(
β2
j

λ2Vj

− β2
i

λ2Vi

)∫

∆ij

λ(x) dx,

the solution converges to a vector of weights that yields

a power diagram with the property λVi
= βiλQ (whose

existence is guaranteed by Remark 3.2).

E. On the Use of Power Diagrams instead of Voronoi Dia-

grams

A natural question that arises is whether a similar result

can be obtained by using Voronoi diagrams (of which power

diagrams are a generalization). The answer is positive if we

constrain λ to be uniform over Q, but it is negative for general

measures λ, as we briefly discuss next.

Indeed, when λ is uniform over Q, an equitable Voronoi

diagram always exists. We prove this result in a slightly more

general setup.
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Definition 3.11 (Unimodal Property): Let Q ⊂ R
d be a

bounded, measurable set (not necessarily convex). We say

that Q enjoys the Unimodal Property if there exists a unit

vector v ∈ R
d such that the following holds. For each s ∈ R,

define the slice Qs .
= {x ∈ Q, v · x = s}, and call

ψ(s)
.
= md−1(Qs) the (d−1)-dimensional Lebesgue measure

of the slice. Then, the function ψ is unimodal. In other words,

ψ attains its global maximum at a point s̄, is increasing on

(−∞, s̄], and decreasing on [s̄,∞).

When λ is uniform, the Unimodal Property (notice that

every compact, convex set enjoys this property) turns out to

be a sufficient condition for the existence of equitable Voronoi

diagrams, as stated in the following theorem.

Theorem 3.12 (Existence of equitable Voronoi diagrams):

If Q ⊂ R
d is a bounded, measurable set satisfying the

Unimodal Property and λ is uniform over Q, then for every

m ≥ 1 there exists an equitable Voronoi diagram with m
(Voronoi) generators.

Proof: See Appendix.

Then, an equitable Voronoi diagram can be achieved by

using a gradient descent law conceptually similar to the one

discussed previously (the details are presented in [15]). We

emphasize that the above existence result on equitable Voronoi

diagrams seems to be new in the rich literature on Voronoi

tessellations.

While an equitable Voronoi diagram always exists when

λ is uniform over Q, in general, for non-uniform λ, an

equitable Voronoi diagram fails to exist, as the following

counterexample shows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

P
2
 =(2/10,1/3)

P
1
 =(3/20,17/6)

P
3
 =(8/10,1/3)

P
4
 =(17/20,17/6)

λ

b1 b2 b3 b4

V1 V2 V3 V4 V5

Fig. 3. Example of non-existence of an equitable Voronoi diagram on a line.
The above tessellation is an equitable partition, but not a Voronoi diagram.

Example 3.13 (Existence problem on a line): Consider a

one-dimensional Voronoi diagram. In this case a Voronoi

cell is a half line or a line segment (called a Voronoi line).

It is easy to notice that the boundary point between two

adjacent Voronoi lines is the mid-point of the generators of

those Voronoi lines. Consider the measure λ in Figure 3,

whose support is the interval [0, 1]. Assume m = 5. Let bi
(i = 1, . . . , 4) be the position of the i-th leftmost boundary

point and gi be the position of the i-th leftmost generator

(i = 1, . . . , 5). It is easy to verify that the only admissible

configuration for the boundary points in order to obtain an

equitable Voronoi diagram is the one depicted in Figure 3 (the

Vi’s represent the Voronoi lines). Now, by the Perpendicular

Bisector Property, it must hold:
{
g3 − b2 = b2 − g2
g4 − b3 = b3 − g3

Therefore, we would require g4 − g2 = 2(b3 − b2) = 1.2; this

is impossible, since g2 must belong to the interval [0.1, 0.2]
and g4 must belong to the interval [0.8, 0.9].

IV. DISTRIBUTED ALGORITHMS FOR EQUITABLE

PARTITIONS WITH ADDITIONAL FEATURES

In this section we devise spatially distributed algorithms to

compute convex, equitable partitions with additional features

(e.g., convex and equitable partitions that are approximations

of equitable Voronoi diagrams). In the next section we will

provide in-depth motivations for the partitions we study here

and two applications for the algorithms we devise.

From an algorithmic standpoint, the key idea we exploit

is that an equitable power diagram can be obtained by just

changing the values of the weights (while keeping the gener-

ators’s positions fixed), as shown in Theorem 3.7. Thus, one

can use the degrees of freedom given by the positions of the

generators to achieve additional objectives. Specifically, we

now assume that both generators’ weights and positions obey

a first order dynamical behavior
{
ẇi = uwi ,
ġi = ugi .

Define the set

S̃
.
=
{(

(g1, w1), . . . , (gm, wm)
)

∈ (Q× R)m | gi 6= gj

for all i 6= j, andλVi
> 0 ∀i ∈ Im

}

.

The primary objective is to achieve a convex and equitable

partition, and is captured, similarly as before, by the energy

function H̃V : S̃ → R>0

H̃V(GW )
.
=

m∑

i=1

λ−1
Vi(GW ).

Theorem 4.1 (Smoothness of H̃V ): The following

statements hold:

1) the function H̃V is continuously differentiable on S̃,

where for each i ∈ {1, . . . ,m}
∂H̃V

∂ gi
=
∑

j∈Ni

( 1

λ2Vj

− 1

λ2Vi

)∫

∆ij

(x− gi)

γij
λ(x) dx,

∂H̃V

∂ wi

=
∑

j∈Ni

( 1

λ2Vj

− 1

λ2Vi

)∫

∆ij

1

2γij
λ(x) dx,

2) all critical points of H̃V are generators’ positions and

weights that yield an equitable power diagram.

Proof: The proof of this theorem is very similar to the

proof of Theorem 3.4; we omit it in the interest of brevity (the

derivation of the partial derivative ∂H̃V

∂ gi
can be found in [16]).

Notice that the computation of the gradient in Theorem 4.1

is spatially distributed over the power-Delaunay graph. For

brevity, we denote the vectors ±∂H̃V

∂gi
with v±∂H̃i

, respectively.

Three possible additional objectives are discussed in the

remainder of this section.
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A. On Approximating Equitable and Median Power Diagrams

We call a power diagram V(GW ) a median power diagram

of Q with respect to the measure λ if the ordered set of gen-

erators’ positions G is equal to the ordered set of generalized

medians of the sets in V(GW ) with respect to λ, i.e., if for

all i ∈ {1, . . . ,m}

gi = arg min
g∈R2

∫

Vi(GW )

‖g − x‖λ(x). (8)

If all weights are equal, a median power diagram is referred

to as a median Voronoi diagram (since when all weights

are equal a power diagram reduces to a Voronoi diagram).

It is possible to show that a median power diagram always

exists for any compact domain Q and density λ [17]. The

minimization problem in equation (8) is a strictly convex

optimization problem, and we denote its (unique) solution with

g∗i ; the point g∗i can be readily computed by using iterative

methods, e.g., gradient-descent methods where the gradient is

given by the formula

∂
∫

Vi(GW )
‖g − x‖λ(x) dx
∂g

=

∫

Vi(GW )

g − x

‖g − x‖λ(x) dx.

The main motivation to study equitable and median power

diagrams is that, as it will be discussed in Section IV-C, they

can be used to approximate equitable and median Voronoi

diagrams. Such diagrams play a special role in the context of

dynamic vehicle routing for robotic networks (see Section V

for further details). Remarkably, in a median Voronoi diagram

the shape of the cells, under certain conditions, resembles that

of regular polygons [17].

A natural candidate control law for the computation of

an equitable and median power diagram (or at least for the

computation of an approximation of it) is to let the positions of

the generators move toward the medians of the corresponding

regions of dominance, when this motion does not increase the

disagreement between the measures of the cells (i.e., it does

not make the time derivative of H̃V positive). Accordingly, we

introduce the following C∞ saturation function

Θ(x)
.
=

{
0 for x ≤ 0 ,

exp
(

− 1
(βx)2

)

for x > 0, β ∈ R>0;

moreover, we denote the vector g∗i − gi as vg∗
i
,gi . Then,

each agent updates its own power generator according to the

following control law defined over the set S̃:

ẇi = −∂H̃V

∂wi

,

ġi = αΘ(vg∗
i
,gi · v−∂H̃i

) vg∗
i
,gi ,

(9)

where we assume that the partition V(GW ) = {V1, . . . , Vm} is

continuously updated, and where α ∈ R>0. The term Θ(vg∗
i
,gi ·

v−∂H̃i
) is needed to make the right-hand side of (9) compatible

with the minimization of H̃V ; in fact, due to the presence of

Θ(·), ġi = 0 whenever vg∗
i
,gi · v−∂H̃i

≤ 0. In other words,

gi moves toward the median of its cell if and only if this

motion is compatible with the minimization of H̃V . Note that

the vector field in equation (9) is Lipschitz continuous and

that the computation of the right-hand side of (9) is spatially

distributed over the power-Delaunay graph.

As in many algorithms that involve the update of generators

of Voronoi diagrams, it is possible (even though simulations

show that this is “highly unlikely”) that under control law (9)

there exists a time t∗ and i, j ∈ Im such that gi(t
∗) = gj(t

∗).
In such a case, either the power diagram is not defined (when

wi(t
∗) = wj(t

∗)), or there is an empty cell (when wi(t
∗) 6=

wj(t
∗)), and there is no obvious way to specify the behavior

of control law (9) for these singularity points. Then, to make

the set S̃ positively invariant, we have to make a technical

modification to the update equation for the positions of the

generators. The idea is to stop the positions of two generators

when they are close and are on a collision course.

Define, for ∆ ∈ R>0, the set Mi(G,∆)
.
= {gj ∈

G | ‖gj − gi‖ ≤ ∆, gj 6= gi}. In other words, Mi is the

set of generators’ positions within an (Euclidean) distance

∆ from gi. For δ ∈ R>0, δ < ∆, define the gain function

Ψ(ρ, ϑ) : [0,∆]× [0, 2π] 7→ R≥0 (see Figure 4) as follows:







ρ−δ
∆−δ

if δ < ρ ≤ ∆ and 0 ≤ ϑ < π,
ρ−δ
∆−δ

(1 + sinϑ)−sinϑ if δ < ρ ≤ ∆ and π ≤ ϑ ≤ 2π,

0 if ρ ≤ δ and 0 ≤ ϑ < π,
−ρ

δ
sinϑ if ρ ≤ δ and π ≤ ϑ ≤ 2π.

It is easy to see that Ψ(·, ·) is a continuous function on [0,∆]×
[0, 2π] and it is globally Lipschitz there. Function Ψ(·, ·) has

the following motivation. Let ρ be equal to ‖gj − gi‖ (for

some gj ∈Mi(G,∆)), and let vx be a vector such that the tern

{vx, (gj−gi), vx×(gj−gi)} is an orthogonal basis of R3, co-

oriented with the standard basis. In Figure 4, vx corresponds

to the x axis and gj − gi corresponds to the y axis. Finally,

let ϑ be the angle between vx and vg∗
i
,gi , where 0 ≤ ϑ ≤ 2π.

If ρ ≤ δ and 0 ≤ ϑ < π, then gi is close to gj and it is

on a collision course, thus we set the gain to zero. Similar

considerations hold for the other three cases; for example, if

ρ ≤ δ and π ≤ ϑ ≤ 2π, the positions of the generators are

close, but they are not on a collision course, thus the gain is

positive. In practice, one should choose small values for the

constants δ and ∆ (e.g., in our simulations, they are set to

values in the order of diam(Q) · 10−5).

z

ϑ

Zero gain

y = gj − gi

x = vx

vg
∗

i
,gi

Fig. 4. Gain function used to avoid that the positions of two power generators
can coincide.
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Accordingly, we modify control law (9) as follows:

ẇi = −∂H̃V

∂wi

.
= umed,w

i ,

ġi = αΘ(vg∗
i
,gi · v−∂H̃i

) vg∗
i
,gi ·

∏

gj∈Mi(G,∆)

Ψ
(

‖gj − gi‖, ϑij
)
.
= umed,g

i ,

(10)

where ϑij is the angle between vx and vg∗
i
,gi (see the above

discussion for the definition of vx). If Mi(G,∆) is the empty

set, then we have an empty product, whose numerical value is

1. Note that the right-hand side of (10) is Lipschitz continuous,

since it is a product of C1 functions and Lipschitz continuous

functions, and it can be still computed in a spatially distributed

way (in fact, it only requires information from the agents

with neighboring power cells, and whose generators’ positions

are within a distance ∆). Next theorem shows that algorithm

(10) is still guaranteed to provide an equitable power diagram,

whose closeness to an equitable and median power diagram

will be discussed in section VI.

Theorem 4.2 (Correctness of algorithm (10)): Consider

the vector field on S̃ defined by equation (10). Then

generators’ positions and weights starting at t = 0 at

GW (0) ∈ S̃ and evolving under (10) remain in S̃ and

converge asymptotically to the set of critical points of the

objective function H̃V (i.e., to the set of vectors of generators’

positions and weights that yield an equitable power diagram).

Proof: The proof is virtually identical to the one of

Theorem 3.7, and we omit it in the interest of brevity. We only

notice that H̃V is non-increasing along system trajectories

˙̃HV =

m∑

i=1

∂H̃V

∂gi
· ġi+

∂H̃V

∂wi

ẇi =

m∑

i=1

∂H̃V

∂gi
· ġi

︸ ︷︷ ︸

≤0

−
(∂H̃V

∂wi

)2

≤ 0.

Moreover, the components of vector field (10) for the position

of each generator are either zero or point toward Q (since the

median of a cell must be within Q); therefore, each generator

will remain within the compact set Q.

B. On Approximating Equitable Voronoi Diagrams

As we will show in Section V, in some applications it could

be preferable to have power diagrams as close as possible

to Voronoi diagrams (recall that when λ is not uniform, an

equitable Voronoi diagram could fail to exist). The objective of

obtaining a power diagram close to a Voronoi diagram can be

translated in the minimization of the function K : Rm → R≥0:

K(W )
.
=

1

2

m∑

i=1

w2
i ;

when wi = 0 for all i ∈ Im, one has K(W ) = 0 and the cor-

responding power diagram coincides with a Voronoi diagram.

To include the minimization of the additional objective K it

is natural to consider, instead of control law (7), the following

update law for the weights:

ẇi = −∂HV

∂wi

− ∂K

∂wi

= −∂HV

∂wi

− wi. (11)

However, HV (defined in equation (3)) is no longer a valid

Lyapunov function for control law (11). The idea, then, is to

let the positions of the generators move so that ∂H̃V

∂gi
· ġi −

∂H̃V

∂wi
wi = 0. In other words, the dynamics of generators’

positions are used to compensate the effect of the term −wi

(present in the weights’ dynamics) on the time derivative of

H̃V .

Thus, we set up the following control law, with ε1, ε2 and

ε3 positive small constants, ε2 > ε1,

ẇi = −∂H̃V

∂wi

− wi satε1,ε2

(

‖v∂H̃i
‖
)

sat0,ε3

(

dist(gi, ∂Vi)
)

,

ġi = wi

∂H̃V

∂wi

v∂H̃i

‖ v∂H̃i
‖2 satε1,ε2

(

‖v∂H̃i
‖
)

sat0,ε3

(

dist(gi, ∂Vi)
)

.

(12)

The gain satε1,ε2

(

‖v∂H̃i
‖
)

is needed to make the right-

hand side of (12) Lipschitz continuous, while the gain

sat0,ε3

(

dist(gi, ∂Vi)
)

ensures that generators’ positions stay

within Q. Notice that the computation of the right-hand side

of (12) is spatially distributed over the power-Delaunay graph.

As before, it is possible (even though simulations show that

this is “highly unlikely”) that under control law (12) there

exists a time t∗ and i, j ∈ Im such that gi(t
∗) = gj(t

∗). Thus,

similarly as before, we modify the update equations (12) as

follows

ẇi = −∂H̃V

∂wi

− wi satε1,ε2

(

‖v∂H̃i
‖
)

sat0,ε3

(

dist(gi, ∂Vi)
)

·
∏

gj∈Mi(G,∆)

Ψ
(

‖gj − gi‖, ϑij
)
.
= uvor,w

i ,

ġi = wi

∂H̃V

∂wi

v∂H̃i

‖ v∂H̃i
‖2 satε1,ε2

(

‖v∂H̃i
‖
)

sat0,ε3

(

dist(gi, ∂Vi)
)

·
∏

gj∈Mi(G,∆)

Ψ
(

‖gj − gi‖, ϑij
)
.
= uvor,g

i ,

(13)

where ϑij is defined as in Section IV-A, with wi
∂H̃V

∂wi
v∂H̃i

playing the role of vg∗
i
,gi .

Next theorem shows that algorithm (13) is still guaranteed

to provide an equitable power diagram, whose closeness to an

equitable Voronoi diagram will be discussed in section VI.

Theorem 4.3 (Correctness of algorithm (13)): Consider

the vector field on S̃ defined by equation (13). Then

generators’ positions and weights starting at t = 0 at

GW (0) ∈ S̃ and evolving under (13) remain in S̃ and

converge asymptotically to the set of critical points of the

objective function H̃V (i.e., to the set of vectors of generators’

positions and weights that yield an equitable power diagram).

Proof: Consider H̃V as a Lyapunov function candidate.

First, we prove that set S̃ is positively invariant with respect to

(13). Indeed, by definition of (13), we have gi 6= gj for i 6= j
for all t ≥ 0 (therefore, the power diagram is always well

defined). Moreover, it is straightforward to see that
˙̃HV ≤ 0.

Therefore, it holds

λ−1
Vi(GW (t)) ≤ H̃V(GW (t)) ≤ H̃V(GW (0)), i ∈ Im, t ≥ 0.
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Since the measures of the power cells depend continuously

on the generators’ positions and weights, we conclude that

the measures of all power cells will be bounded away from

zero. Furthermore, since ġi = 0 on the boundary of Q for all

i ∈ Im, each generator will remain within the compact set Q.

Thus, the generators’ positions and weights will belong to S̃
for all t ≥ 0, that is, GW (t) ∈ S̃ ∀t ≥ 0.

Second, as stated before, H̃V : S̃ → R>0 is non-increasing

along system trajectories, i.e.,
˙̃HV ≤ 0 in S̃.

Third, all trajectories with initial conditions in S̃ are

bounded. Indeed, we have already shown that each generator

remains within the compact set Q under control law (13). As

far as the weights are concerned, we start by noticing that the

time derivative of the sum of the weights is

∂
∑m

i=1 wi

∂t
= −

m∑

i=1

wisatε1,ε2

(

‖v∂H̃i
‖
)

sat0,ε3

(

dist(gi, ∂Vi)
)

·
∏

gj∈Mi(G,∆)

Ψ
(

‖gj − gi‖, ϑij
)

,

since, similarly as in the proof of Theorem 3.7,
∑m

i=1
∂H̃V

∂wi
=

0. Moreover, the magnitude of the difference between any two

weights is bounded by a constant B ∈ R>0, that is,

|wi − wj | ≤ B for all i, j ∈ Im. (14)

In fact, if, by contradiction, the magnitude of the difference

between any two weights could become arbitrarily large, the

measure of at least one power cell would vanish, since the

positions of the generators are confined within Q. Assume,

for the sake of contradiction, that weights’ trajectories are

unbounded. This means that

∀R > 0 ∃t ≥ 0 and ∃ j ∈ Im such that |wj(t)| ≥ R.

For simplicity, assume that wi(0) = 0 for all i ∈ Im (the ex-

tension to arbitrary initial conditions in S̃ is straightforward).

Choose R = 2mB and let t2 be the time instant such that

|wj(t2)| = R, for some j ∈ Im. Without loss of generality,

assume that wj(t2) > 0. Because of constraint (14), we have
∑m

i=1 wi(t2) ≥ B
2m(3m+1). Let t1 be the last time before t2

such that wj(t) = mB; because of continuity of trajectories,

t1 is well defined. Then, because of constraint (14), we have

(i)
∑m

i=1 wi(t1) ≤ B
2m(3m − 1) <

∑m
i=1 wi(t2), and (ii)

∂
∑m

i=1
wi(t)

∂t
≤ 0 for t ∈ [t1, t2] (since wj(t) ≥ mB for all

t ∈ [t1, t2] and equation (14) implies mini∈Im wi(t) > 0 for

all t ∈ [t1, t2]); thus, we get a contradiction.

Finally, by Theorem 4.1, H̃V is continuously differentiable

in S̃. Hence, by the LaSalle invariance principle, under the

descent flow (13) the generators’ positions and weights will

converge asymptotically to the set of critical points of H̃V ,

which is not empty as confirmed by Theorem 3.1.

C. On Approximating Equitable and Median Voronoi Dia-

grams

In many applications, it is desirable to obtain approxima-

tions of equitable and median Voronoi diagrams. For exam-

ple, such diagrams are intimately related to the solution of

the well-known dynamic vehicle routing problem, where the

objective is to plan optimal multi-vehicle routes to perform

tasks that are generated over time by an exogenous process

(see Section V-A). Moreover, as the number of generators

increases, equitable and median Voronoi diagrams assume

an hexagonal honeycomb structure where each cell has the

same area (assuming that λ is uniform) [17]. This fact has

interesting applications in the context of wireless ad hoc

networks (see Section V-B). In general, equitable and median

Voronoi diagrams provide subregions having the same measure

and whose shapes show circular symmetry.

In light of Theorems 4.2 and 4.3, it is possible to obtain

a power diagram approximating an equitable and median

Voronoi diagram by combining control laws (10) and (13). In

particular, we set up the following spatially distributed control

law:

ẇi =u
med,w
i + uvor,w

i ,

ġi =u
med,g
i + uvor,g

i .
(15)

Next theorem shows that algorithm (15) is still guaranteed to

provide an equitable power diagram, whose closeness to an

equitable and median Voronoi diagram will be discussed in

section VI.

Theorem 4.4 (Correctness of algorithm (15)): Consider

the vector field on S̃ defined by equation (15). Then

generators’ positions and weights starting at t = 0 at

GW (0) ∈ S̃ and evolving under (15) remain in S̃ and

converge asymptotically to the set of critical points of the

objective function H̃V (i.e., to the set of vectors of generators’

positions and weights that yield an equitable power diagram).

Proof: The proof of this theorem is a straightforward

combination of the proofs of Theorems 4.2 and 4.3.

To the best of our knowledge, this is the first algorithm

to compute approximations of equitable and median Voronoi

diagrams. We observe that one can obtain a power diagram

approximating an equitable and centroidal Voronoi diagram

by simply replacing the motion toward the median with a

motion toward the centroid (see [18] for an introduction to

centroidal Voronoi diagrams and for a discussion on their

practical importance).

We conclude this section with a remark about the validity

of our algorithms when the environment is more general than

a compact, convex subset of R2.

Remark 4.5 (General environments): Both the existence

theorem 3.1 and the convergence theorems 3.7, 4.2, 4.3, and

4.4 indeed hold for any compact, connected environment in

R
d. In particular, the existence theorem 3.1 and the con-

vergence theorems 3.7, 4.2, 4.3, and 4.4 hold even if the

environment Q has “holes”, namely it is not simply connected

or it has nontrivial homology. In fact, in the presence of

“holes”, the map associating weight vectors with vectors of

measures is still surjective to the boundary of the measure

simplex; then, since in the “weight space” there are no “holes”

and for the measure simplex one needs to prove surjectivity

only on the boundary, the argument relying on the topological

degree carries over. Of course, if the environment is non-

convex, some of the power cells might be non-convex.
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V. APPLICATIONS

In this section we present two application domains for

the partitioning algorithms presented in Sections III and IV.

The discussion of these applications serves also to illustrate

a systematic approach to devise spatially distributed control

policies for the class of multi-robot coordination problems that

admit equitable partitioning policies as a solution.

A. Dynamic Vehicle Routing

An important application of the algorithms presented in this

paper lies in the context of dynamic vehicle routing problems,

where the objective is to plan optimal multi-vehicle routes to

perform tasks that are generated over time by an exogenous

process.

Specifically, we consider the following general model of

dynamic vehicle routing problem, know in the literature as the

m-vehicle Dynamic Traveling Repairman Problem (m-DTRP)

[1]: m vehicles operating in a bounded environment Q and

traveling with bounded velocity must service demands whose

time of arrival, location and on-site service are stochastic.

The objective is to find a routing policy to service demands

over an infinite horizon that minimizes the expected system

time (wait plus service) of the demands. There are many

practical settings in which such problem arises; e.g., any

distribution system which receives orders in real time and

makes deliveries based on these orders (e.g., courier services)

is a clear candidate. Surveillance missions where a team

of unmanned aerial vehicles must visit locations of events

dynamically originating within a protected environment is a

second important example.

The key concept linking the algorithms presented in this

paper with routing policies for the m-DTRP is that of π-

partitioning policy. Given a single-vehicle routing policy π
for the 1-DTRP (e.g., a first-come first-served policy) and m
vehicles, a π-partitioning policy is a multi-vehicle policy such

that 1) the environment Q is partitioned according to some

partitioning scheme into m openly disjoint subregions Qi,

i ∈ {1, . . . ,m}, whose union is Q, 2) one vehicle is assigned

to each subregion (thus, there is a one-to-one correspondence

between vehicles and subregions), and 3) each vehicle executes

the single-vehicle policy π to service demands that fall within

its own subregion.

The following two results, valid under the assumption that

the measure λ is uniform, characterize the optimality of two

types of π-partitioning policies [19].

Theorem 5.1 (Optimality of π-partitioning policies):

Assume π∗ is a single-vehicle optimal policy for the 1-DTRP.

For m vehicles,

1) a π-partitioning policy using a partitioning scheme

whereby {Qi}mi=1 is an equitable and median Voronoi

diagram is an almost optimal policy in light load (i.e.,

when the arrival rate of demands is “small”) and an

optimal policy in heavy load (i.e., when the arrival rate

of demands is “large”);

2) a π-partitioning policy using a partitioning scheme

whereby {Qi}mi=1 is an equitable partition is an optimal

policy in heavy load.

Light and heavy load can be defined more formally in terms

of load factor; we refer the interested reader to [19]. The

almost optimality in light load is to be understood as follows:

in light load, the average system time becomes a function of

the loitering locations of the vehicles [1], and the generalized

median locations that give rise to a median Voronoi diagram

correspond to local minima or saddle points of this function.

One can state a similar set of results for the general case where

the measure λ is not uniform; the details are omitted in the

interest of brevity and can be found in [19].

In light of Theorem 5.1, a systematic approach to ob-

tain multi-vehicle routing policies with provable performance

guarantees and amenable to distributed implementation is to

combine the partitioning algorithms presented in this work

with the optimal single-vehicle routing policies developed in

[19]. Note that an equitable power diagram guarantees optimal

performance in heavy load, while an equitable and median

Voronoi diagram provides almost optimal performance in light

load and optimal performance in heavy load.

Accordingly, the first step to obtain a spatially distributed

multi-vehicle routing policy is to associate each vehicle i with

a power generator (gi, wi), which is an artificial variable

locally controlled by the i-th vehicle. We define the region of

dominance for vehicle i as the power cell Vi = Vi(GW ), where

GW =
(

(g1, w1), . . . , (gm, wm)
)

(see Figure 5). Then, each

vehicle applies to its generator one of the previous partitioning

algorithms (e.g. control law (15), if one desires performance

guarantees in both light and heavy load), while simultaneously

performing within its own region of dominance the optimal

single-vehicle routing policies described in [19] (see Figure

5).

Generator’s position

Generator’s weight

Vehicle

Demand

Region of dominance

Fig. 5. Vehicles, demands, power generators, and regions of dominance. Radii
of light (dark) grey circles represent the magnitudes of positive (negative)
weights.

B. Hybrid Networks

A wireless ad-hoc network consists of a group of nodes

which communicate with each other over a wireless channel

without any centralized control; in situations where there is

no fixed infrastructure, for example, battlefields, catastrophe

control, etc., wireless ad hoc networks become valuable alter-

natives to fixed infrastructure networks for nodes to commu-

nicate with each other. To improve throughput capacity, one
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can add a sparse network of more sophisticated nodes (su-

pernodes) providing long-distance communication. Assuming

that normal nodes are independently and uniformly located in

the environment, supernodes should divide the area according

to a hexagonal tessellation [3], where all hexagonal cells

have the same area. One can design a spatially distributed

algorithm to deploy the supernodes into an equitable partition

with hexagonal cells as follows. Each supernode is associated

with a power generator, and we let the physical position of

each supernode coincide with the position of its correspond-

ing power generator. Then, setting λ ≡ 1, each supernode

updates its power generator (and, hence, its physical position)

according to algorithm (15). Since, when λ is uniform, algo-

rithm (15) provides equitable partitions with almost-hexagonal

polygonal cells (see Section IV-C), the supernodes will deploy

themselves into a near optimal configuration.

VI. SIMULATIONS AND DISCUSSION

The algorithms presented in Section IV are designed to

provide approximations of equitable power diagrams with

additional features (note that equitability of the partition is

always guaranteed). In this section we study by simulation

the quality of such approximations. Due to space constraints,

we focus on algorithm (15), which is designed to provide

approximations of equitable and median Voronoi diagrams

(again, equitability is a guaranteed property).

We introduce three criteria to judge, respectively, closeness

to a median power diagram, closeness to a Voronoi diagram,

and circular symmetry of a partition (in particular, closeness

to partitions with hexagonal cells).

A. Closeness to Median Power Diagrams

Consider a power diagram V(GW ) =
(V1(GW ), . . . , Vm(GW )), and let g∗i be the median of

power cell Vi, i ∈ Im. We consider the following metric to

measure closeness to a median power diagram:

dmed
.
=

1

m

m∑

i=1

‖g∗i − gi‖
diam(Vi(GW ))

.

Clearly, dmed equals zero when a power diagram coincides

with a median power diagram. We will also refer to dmed as

the median defect of a power diagram.

B. Closeness to Voronoi Diagrams

In a Voronoi diagram, the intersection between the bisector

of two neighboring generators gi and gj and the line segment

joining gi and gj is the midpoint gvor
ij

.
= (gi + gj)/2. Then,

if we define gpow
ij as the intersection, in a power diagram,

between the bisector of two neighboring generators (gi, wi)
and (gj , wj) and the line segment joining their positions gi
and gj , a possible way to measure the distance dvor of a power

diagram from a Voronoi diagram is the following:

dvor
.
=

1

2N

m∑

i=1

∑

j∈Ni

‖gpow
ij − gvor

ij ‖
0.5 γij

,

where N is the number of neighboring relationships and, as

before, γij = ‖gj − gi‖. Clearly, if a power diagram is also

a Voronoi diagram (i.e., if all weights are equal), dvor = 0.

We will also refer to dvor as the Voronoi defect of a power

diagram.

C. Circular Symmetry of a Partition

A quantitative manifestation of circular symmetry is the

well-known isoperimetric inequality, which states that among

all planar objects of a given perimeter the circle encloses

the largest area. More precisely, given a planar region Q
with perimeter pQ and area |Q|, then p2Q − 4π|Q| ≥ 0, and

equality holds if and only if Q is a circle. Then, we can

define the isoperimetric ratio as follows: RQ = 4π|Q|
p2

Q

; by

the isoperimetric inequality RQ ≤ 1, with equality only for

circles. Interestingly, for a regular n-gon the isoperimetric ratio

Rn is Rn = π
n tan π

n

, which converges to 1 for n → ∞.

Accordingly, given a partition {Qi}mi=1, we consider as a

measure for the circular symmetry of a partition the “average

isoperimetric ratio” R{Qi}m
i=1

.
= 1

m

∑
RQi

.

D. Simulation Results

All simulations are performed on a machine with a 2.4GHz

Intel Core Duo processor and 4GB of RAM. The code is

written in C++ and makes use of the C++ Computational

Geometry Algorithms Library CGAL2.

We apply algorithm (15) to ten power generators, whose

initial positions are independently and uniformly distributed in

the unit square Q, and whose weights are initialized to zero.

Time is discretized with a step dt = 0.01, and each simulation

run consists of 600 iterations (thus, the final time is T = 6).

Define the area error ǫ as ǫ
.
= (λimax

−λimin
)/(λQ/m), evaluated

at time T = 6; in the definition of ǫ, λimax
is the measure of the

power cell with maximum measure and λimin
is the measure

of the power cell with minimum measure. We perform two

sets of simulations. In the first set of simulations we consider

a measure λ uniform over Q, i.e., λ ≡ 1, while in the second

set of simulations we consider a measure λ that follows a gaus-

sian distribution, namely λ(x, y) = e−5((x−0.8)2+(y−0.8)2),

(x, y) ∈ Q, whose peak is at the top-right corner of the unit

square. Each set of simulations consists of 50 simulation runs.

Tables I and II summarize simulation results for the uniform

λ (λ=unif) case and for the gaussian λ (λ=gauss) case. In

both cases, average and worst-case values of the area error

ǫ, median defect dmed, Voronoi defect dvor, and average

isoperimetric ratio R{Qi}m
i=1

are with respect to 50 simulation

runs. Notice that for both measures, after 600 iterations, (i) the

worst-case area error is below 8%, (ii) the worst-case values

of dvor and dmed are very small, and, finally, (iii) cells have,

approximately, the circular symmetry of squares (since R4 ≈
0.78). Hence, simulation results show that algorithm (15)

consistently provides very good approximations of equitable

and median Voronoi diagrams. In both cases, the positions of

the generators always stayed within their corresponding power

2CGAL is freely available for academic research use at
http://www.cgal.org/.
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TABLE I
AVERAGE PERFORMANCE OF CONTROL LAW (15).

λ E [ǫ] E [dmed] E [dvor] E
[

R{Qi}

]

unif 0.1% 2.8% 0.2% 0.75
gauss 1.4% 2.2% 1% 0.74

TABLE II
WORST-CASE PERFORMANCE OF CONTROL LAW (15).

λ max ǫ max dmed max dvor minR{Qi}

unif 0.5% 3.4% 0.4% 0.7
gauss 7.7% 3.8% 2.7% 0.7

cells. Figure 6 shows some typical equitable partitions that are

achieved with control law (15) (the number of generators is

10 and Q is an irregular convex polygon).

We have also performed extensive simulations of algorithms

(7), (10), and (13). In general, these algorithms provide equi-

table power diagrams with “long and skinny” power cells (i.e.,

with a low value of the average isoperimetric ratio R{Qi}m
i=1

).

Moreover, they sometimes lead to partitions where some of

the generators’ positions are outside their corresponding power

cells.

(0, 0) (1, 0)

(0, 1)

(a) Typical equitable partition of
Q for λ(x, y) = 1 (ǫ = 0.01%,
dmed = 2.3%, dvor = 0.4%,
R{Qi}

=0.76).

(0, 0) (1, 0)

(0, 1)

(b) Typical equitable partition
of Q for λ(x, y) =

e−5((x−0.8)2+(y−0.8)2)

(ǫ = 0.7%, dmed = 2.1%,
dvor = 2.2%, R{Qi}

= 0.74).

Fig. 6. Typical equitable partitions achieved by using control law (15) after
1500 iterations. The squares represent the positions of the generators, while
the circles represent the medians. Notice how each bisector intersects the
line segment joining the two corresponding power neighbors almost at the
midpoint; hence both partitions are very close to Voronoi partitions.

VII. CONCLUSION

We have presented provably correct, spatially distributed

algorithms for the computation of a convex and equitable

partition of a convex environment. We have also considered the

issue of computing convex and equitable partitions with addi-

tional features (e.g., convex and equitable partitions that are

approximations of equitable and median Voronoi diagrams).

Finally, we have discussed how the algorithms devised in

this paper represent a building block instrumental to design

spatially distributed control policies for several multi-agent

coordination problems, including dynamic vehicle routing, and

deployment of wireless networks.

This paper leaves numerous important extensions open for

further research. First, all the algorithms we proposed are

synchronous: we plan to devise algorithms that are amenable

to asynchronous implementation. Second, it is of interest to

consider the setting where the measure λ evolves in time. This

would require a characterization of the convergence rate of our

algorithms. Finally, to assess the closed-loop robustness and

the feasibility of our algorithms, we plan to implement them

on a network of unmanned aerial vehicles.
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APPENDIX

A. Definition of Degree of a Map

We start with the simplest definition of degree of a map.

Let f : X → Y be a smooth map between connected compact

manifolds X and Y of the same dimension, and let p ∈ Y
be a regular value for f (regular values abound due to Sard’s

lemma [20]). Since X is compact, f−1(p) = {x1, . . . , xm} is

a finite set of points, and since p is a regular value it means

that fUi
: Ui 7→ f(Ui) is a local diffeomorphism, where

Ui is a suitable open neighborhood of xi. Diffeomorphisms

can be either orientation preserving or orientation reversing.

Let d+ be the number of points xi in f−1(p) at which

f is orientation preserving (i.e., det(Jac(f)) > 0, where

Jac(f) is the Jacobian matrix of f ) and d− be the number

of points in f−1(p) at which f is orientation reversing (i.e.,

det(Jac(f)) < 0). Since X is connected, it can be proved that

the number d+−d− is independent of the choice of p ∈ Y and

one defines the degree of f as d+−d−. The degree can be also

defined for a continuous map f : X → Y among connected

oriented topological manifolds of the same dimensions, this

time using homology groups or the local homology groups at

each point in f−1(p) whenever the set f−1(p) is finite. For

more details see [21].

B. Proof of Theorem 2.1

Proof: Since f as a map from Sm−1 to Sm−1 is different

from zero, then the map fSm−1 is onto the sphere. If f is not

onto Bm, then it is homotopic to a map Bm → Sm−1, and

then fSm−1 : Sm−1 → Sm−1 is homotopic to the trivial map

(since it extends to the ball). Therefore fSm−1 : Sm−1 →
Sm−1 has zero degree, contrary to the assumption that it has

degree different from zero.

C. Proof of Lemma 2.2

Proof: The map f is a continuous bijective map from

a compact space to a Hausdorff space, and therefore it is a

homeomorphism. By observing that a homeomorphism f :
Sm → Sm has degree ±1 (see, for instance, [21, page 136]),

we obtain the claim.

D. Proof of Inductive Step in Theorem 3.1

Proof: Here we suppose that we have proved that the map

f is surjective for m− 1 power generators and we show how

to use this to prove that the map f is surjective for m power

generators.

If we have m power generators, the weight space is given by

an m dimensional cube C = [−D,D]m, in complete analogy

with the case of 3 generators. The m-simplex of measures is

again defined as a set A .
= {(λQ1

, . . . , λQm
) ∈ R

m} such that

λQi
≥ 0 for i ∈ {1, . . . ,m} and

∑m
i=1 λQi

= 1. Note that A
is homeomorphic to the (m− 1)-dimensional ball Bm−1. As

before, a power diagram can be viewed as a continuous map

f : C → A. It is easy to see that f is constant on sets of the

form W .
= {{W + t(1, . . . , 1)} ∩ C, t ∈ R}, where W is a

weight vector in C. Moreover, fixing a point p ∈ A we have

that f−1(p) is given by a set of the form W for a suitable

W . Indeed, assume this is not the case, then the vector of

measures (λQ1
, . . . , λQm

) is obtained via f using two sets of

weights: W 1 .
= (w1

1, . . . , w
1
m) and W 2 .

= (w2
1, . . . , w

2
m), and

W 1 and W 2 do not belong to the same W , namely it is not

possible to obtain W 2 as W 1+t(1, . . . , 1) for a suitable t. This

means that the vector difference W 2−W 1 is not a multiple of

(1, . . . , 1). Therefore, there exists a nonempty set of indices J
such that w2

j −w1
j ≥ w2

k−w1
k, whenever j ∈ J and for all k ∈

{1, . . .m}, and such that the previous inequality is strict for at

least one k∗ ∈ {1, . . .m}. Now, among the indices in J there

exists at least one of them, call it j∗, such that the generator j∗

is a neighbor of generator k∗, due to the fact that the domain Q
is connected. Indeed, if for all neighbors of k∗ the inequality

is not strict, choose as new k∗ (denoted with a slight abuse of

notation k∗,′ - in general their number is larger than one) each

neighbor of k∗ and look for neighbors of k∗,′ in the set J . If

the search provides no result, repeat taking as new k∗ each

neighbor of k∗,′ and keep looking for a j∗. Since there are

finitely many generators and the set is connected, eventually

with this procedure one explores the entire set, and if no j∗ is

found then W 2 is expressible as W 1+t(1, . . . , 1) for a suitable

t, contrary to the current assumption. Therefore, without loss

of generality, we can assume that among the indices in J there

exists at least one of them, call it j∗, such that the generator

j∗ is a neighbor of generator k∗. However, since w2
j∗ −w1

j∗ >
w2

k∗ −w1
k∗ , and w2

j∗ −w1
j∗ ≥ w2

k−w1
k for all k ∈ {1, . . . ,m},

then the measure λQj∗
corresponding to the choice of weights

W 2 is strictly larger than the measure λQj∗
corresponding to

the choice of weights W 1. This proves that f−1(p) is given

only by sets of the form W .

Accordingly, we introduce an equivalence relation on C,

declaring that two sets of weights W 1 and W 2 are equivalent

if and only if they belong to the same W . Let us call ≡ this

equivalence relation. It is immediate to see that f descends

to a map f : C/ ≡→ A (still called f by abuse of notation),

and that f is now injective. It is easy to identify C/ ≡ with

the union of the (m − 1)-dimensional faces of C given by

F = ∪m
i=1(C∩{wi = −D}) (see Figure 7). In this way we get

a continuous injective map f : F → A that has the same image

as the original f . Notice also that F is homeomorphic to the

closed (m−1)-dimensional ball, thus, up to homeomorphisms,

f can be viewed as a map f : Bm−1 → Bm−1.

We want to prove that the map f∂F , given by the restriction

of f to ∂F , is onto ∂A. To see this, consider one of the (m−
2)-dimensional faces ∂Ai of ∂A, which are identified by the

condition λQi
= 0 (see Figure 7). Consider the face Fi in F ,

where Fi is given by Fi
.
= C∩{wi = −D}. We claim that the

set Si
.
= ∂Fi∩∂F is mapped onto ∂Ai by f . Observe that set

Si is described by the following equation: Si = ∪j 6=i({wi =



15

−D,wj = D}∩F), so Si is exactly equivalent to a set of type

F for m− 1 generators. Moreover, observe that ∂Ai can also

be identified with the measure simplex for m− 1 generators.

By inductive hypothesis the map f : Si → ∂Ai is surjective,

and therefore also the map f∂F is onto ∂A.

e
3
:
{λ

Q
3
=
0
}

e2 : {λQ2
= 0}

e
1
: {
λ
Q

1

=
0}

S2

∂A2 : measure simplex with 2 generators

∂A2

F S2 : set of type F corresponding to 2 generators

f

Face F2 : {w2 = −D}

Fig. 7. The set S2 and f : S2 → ∂A2 for the case m = 3. Unfortunately,
for m > 3, visualization is not possible. Notice that S2 is indeed a set of
type F for m = 2 generators.

Since f∂F is a bijective continuous map among (m − 2)-
dimensional spheres (up to homeomorphisms), it has degree

±1 by Lemma 2.2. Finally, we conclude that f is onto A,

using Theorem 2.1.

E. Proof of Theorem 3.12

Proof: The proof mainly relies on [22]. Let v be the unit

vector introduced in the definition of the Unimodal Property.

Then, there exist unique values s0 < s1 < . . . < sm such that

s0 = inf{s;Qs 6= ∅}, sm = sup{s;Qs 6= ∅}, and

λ{x∈Q; v·x≤sk} =
k

m
λQ, k = 1, . . . ,m− 1. (16)

Consider the intervals Li
.
= [si−1, si], i ∈ Im. We claim that

one can choose points gi = tiv ∈ R
d, i ∈ Im, such that

ti ∈ Li and the corresponding Voronoi diagram is

Qi = {x ∈ Q | ‖x− gi‖ = min
k

‖x− gk‖}
= {x ∈ Q | v · x ∈ [si−1, si]}.

(17)

Together, equation (16) and equation (17) yield the desired

result.

Since, by assumption, Q enjoys the Unimodal Property,

there exists an index ī ∈ {1, . . . ,m} such that the length of

the intervals Li = [si−1, si] decreases as i ranges from 1 to ī,
then increases as i ranges from ī to m. Let Lī = [sī−1, sī] be

the smallest of these intervals, and define t̄i
.
=

sī−1+sī
2 ∈ Lī.

By induction, for i increasing from ī to m− 1, define ti+1 as

the symmetric to ti with respect to si, so that ti+1 = 2si− ti,
i = ī, ī+1, . . . ,m−1. Since the length of Li+1 is larger than

the length of Li, we have

ti ∈ Li ⇒ ti+1 ∈ Li+1. (18)

Similarly, for i decreasing from ī to 2, we define ti−1 =
2si−1 − ti, i = ī, ī− 1, . . . , 2. Since the interval Li−1 is now

larger than the interval Li, we have

ti ∈ Li ⇒ ti−1 ∈ Li−1. (19)

Equations (18)-(19) imply ti ∈ Li for all i = 1, . . . ,m. Hence

the second equality in equation (17) holds.
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