Distributed algorithms for improving
BitTorrent performance

s

30%@%09
ANIL CAN AKAY FKTHY

38 OCH KONST 2%

Setsse

KTH Electrical Engineering

Master's Degree Project
Stockholm, Sweden

XR-EE-LCN 2010:010

i

o %
¥ KI'H ¥
VETENSKAP
39 OCH KONST %

8 9

a%}g‘%)m

Distributed Algorithms

tfor Improving BitTorrent Performance

ANIL CAN AKAY

Supervisor : Gyorgy Dan

Examiner : Viktoria Fodor

Master of Science Thesis
Stockholm, Sweden 2010

Abstract

Among the peer-to-peer systems, BitTorrent haacid significant attention in research community
because of its efficiency, scalability and robussditTorrent utilizes peer contribution to distrie
content by splitting the content into many piecdscv can be transferred among peers. Unfortunately
BitTorrent depends on trackers in order to let peeterested in same content discover each other.
Trackers can be considered as a single point iréaaind a bottleneck in terms of system scalgbilit
The scalability and availability of the tracker ca@ improved by introducing multiple trackers, an
extension that allows the co-existence of multiplearms sharing the same content. Existence of
multiple swarms that are not aware of each othey caase efficiency to degrade due to piece and
bandwidth unavailability in small swarms. Swarm @g@ment algorithms therefore aim to increase
the swarm sizes virtually at a low cost, consedueiricreasing piece availability and peer
contribution for performance improvement.

In this thesis we developed a framework for meaguthe performance of swarm management
algorithms in an experimental testbed. The testbi#ers the opportunity to perform controlled
experiments in different scenarios. An improved RiXtocol was also developed that takes swarm
membership information of peers into account thzetimixing among swarms.

We modified an existing BitTorrent client to implent two swarm management algorithms, Random
Peer Migration (RPM) and Random Multi Tracking (RMMat introduce peers in different swarms to
each other by leveraging the Peer Exchange (PEXpgul. RPM achieves mixing through peers
migrating between swarms. RMT allows some fraciidrpeers to associate with more than one
tracker and mix peer information between swarms.

We evaluated the performance of the two swarm nmemegt algorithms in torrents in which all
swarms are in the steady state and have a pubhsliays available. The algorithms are estimated to
improve the protocol performance around 5% in nsz®narios whereas gain around 40% can be
observed for small torrents. The algorithms arenshto improve BitTorrent performance without
sacrificing the robustness and load balancing ptigseof the multi-tracker extension.

Keywords: BitTorrent, Dynamic Swarm Management, Multi-Trackextension, Peer Exchange
(PEX), performance, swarm splitting, distributegasithms

Acknowledgments

| owe my deepest gratitude to my supervisor, Gydgy. | would like to thank him for offering me
the chance to work with a great scientist. Thissigavould have never been finished without his

continuous encouragement, invaluable advice aribgoe.

| also would like to thank to Ognjen for his endl@atience and helps.

I would like to thank to my friends, for their gtesupport and friendship. | owe so much to my
childhood friends Erkin, Eren, Kuzu and Can for & being with me regardless of the distances.

You are part of me.

| am grateful to my friends from college Aykut, ReAli Galip, Deniz, Alev, Gorkem, Okan, Merve,
Kazim, Yunus, Cagri, Cigdem and Onur for the inedlle memories in ODTU, Ankara. | always feel

you near with me.

I would like to thank my friends Haluk and Bener foeir friendship and support during my thesis.

I am indebted to my friends in Sweden Nazim, Mehn@guzhan, Bahadir, Rafet, Erdal, Derya,

Ozden and Akif for making me feel at home and tisalokmany others which is hard to list all here.

| wish to give special thanks to my brother Onar,dnjoying the life together with me.

The greatest thanks are to my parents, for th@pau throughout my whole life.

Contents

L. INTRODUGCTION ..ttt ettt oo e ettt e e a2 et ettt bt e e e e e e aeeeaeesebba s e eaaeeeasbbnnn e aaaaaeeees 1
1.1. Problem STAEMENToiiiiiii et e e e e e e e e e e 1
7 Y/ =1 o T o] o o Y AP 2
1.3. Organization Of the REPOIo e 2

2. BACKGROUNDcottiiiiiitiiiiiiiiatiieeesmmmn s a e e e e e e e e e e e e e e e e e e seeeeea s s e e e e s e e e e e e e e e aas 3
2.1, BItTOITENE PIOTOCOL.ttt e e e e e e e e e e e e e e e e e aee s 3

2.1.1. General Description Of BitTOIMENT. ... cccem oo 3
2.1.2. BItTOrrent COMPONENTSccoiiii ettt as s e e eneeernnesnnssnnnnnnns 4
2.1.3. ProtoCOI DELAIISccoiiiiieit et 5
2.1.4. ProtOCOI EXIENSIONSccciuurtei ittt e e sttt e e et e e ettt e asee e s s e e e s abre e e e e e sanreeeeeas 7
2.2, KAAEIMIIA ...ttt ettt et s e e e e e e e 13
2.3 REIAIEA WOTK ...ttt e et e e e e e s s r e e e e e e e e e 17

3. DISTRIBUTED ALGORITHMS DESIGNccoiiiiiiiaaeiiiiiiiiiiiiieeieeeeeeeeeee e reeee e e e 19

3.1. Swarm Management AlgOItNMS ... o oo eeeeeeeeeeeennes 19
.11 BASEIING .. 20
T 2 o) (] o =T o To [T AR Y7 1 20
3.1.3. RANAOM PEEI MIQIatiOnoemmmmmmmeeeessaaaiiieeieeteeeessaaaisnns e e esssaessneeeeaeeeesssannnenes 21
3.1.4. Random MUlti TraCKiNgooiiiiieecceeeeeeeeeeeee et eeeveeeesee s e eeneeeeseeeeeeeeeeeeseeeseees 22

3.2. Improved PEX ProtOCOIccooiiii et enenneennne 25

4. FRAMEWORK IMPLEMENTATION ...ttt e eeee e 30
4.1. Selecting BitTOrrent CHENL...........uuee et e e 30
4.2. Selecting BItTOIMENE TIrACKET ..o et 32
4.3, EXPEriMENTAl SEUPcoo ettt 32

4.3.1. Running Experiments in Steady STatecc.....oovieiiiiiiiiiiii e 32
4.3.2. DowNscaling EXPEIIMENTSummm ettt e e e e e et e e eessn e e e e e e e e 36
4.3.3. Providing Global View to Initial Seedccccoovviiiiiiiiii e, 37
4.3.4. Determining Warm-up Period and ExperimemgiBcccoiiiiiiiiiiiii e 37

4.3.5. Emulating Real Network CharacteristiCS.ccccc.ooooooviiiiiiieieeeeeeeeeeeeeeeee e, 38
4.3.6. Boundaries on SysStem RESOUICES ... 39

4.4, SYStEM COMPONENES ...ttt ettt e et et et e e e e e et eabb s eaaaaaeaeeeaebba e e e aeaeeesbbannnnns 40
4.4.1. InitialiZiNg COMPULEIS ... oo e 40
4.4.2. Initializing EXPEIIMENTScooi it e e e e e e e e e e e e e e e e e e eeeeeees 42

4.4.3. RUNNING EXPEIIMENTSiiiiiiiiiis e ettt ettt ettt e e e e ee eeees 42

4.4.4. Terminating EXPEIIMENTScoii ittt eeee e reeeeeseeeeeeeeeeeeseeeeeees 44

4.4.5. Processing ColleCted Data..........ccccmmeerririiiiiee i 45
4.4.6. ReSetting EXPEIIMENT ... et eee ettt ettt eeeeeeeeeseet e e e eeneeeeeeeeeeeeeeeeeeeeeeeeees 46
4.4.7. Automating Set Of EXPEIMENTSuuummmmreereerrreeieiereeeeeeeeessarsiesrienrrrereeeeerrerrreerere. 47
B EVALUATION et oottt e oo e e e ettt e e e e e e e e e e e eee bbb e e e e e e eeebbann e eaaaaeenes 49
5.1, EVAIUALION MEIIICS ...oeiiiiiiiiiiiiiit sttt ettt eesn et e e e e e e e e e erneeeeens 49
5.2. Default EXperiment ParameEters.cccceacuuuieiiiieiiieiiiei e seeeaeeeeeeeeeeeeenneennnes 49
5.3 RESUILS ..ottt e e e e e et e e e e e as 51
5.3.1. Protocol Performance as a Function of theefb Size..............cccoocviieeiiiiiiscommmneee 52
5.3.2. EXPeriments With 2 SWaIMSccmmmeeeeeeiieee et re e e e e e e 56
5.3.3. EXPeriments With 3 SWAIMIScewmmmmmevrrrrriinnniinnninnnsennnnnneensnnnnnssssssennnnrnnnnnnnn. 58
5.3.4. Performance as a Function of the NUmbem@iriS ..o e 62
5.3.5. DISCUSSION ...coeieiiiiiiitt et e ettt e et ettt e e e e e e m e annnnnnees 69

6. CONCLUSION and FUTURE WORKcciitiimamiie ettt e s 71

1. INTRODUCTION

Among all available peer-to-peer applications fontent distribution, BitTorrent has become the most
popular by dominating approximately half of the laliernet traffic [2]. This popularity can be grgat
attributed to the efficiency, scalability and rotness of the protocol.

The efficiency of the protocol is obtained by dpig the content into many pieces, which once
obtained by a peer, can be shared with others wthiée download continues. The incentive
mechanisms of BitTorrent forces peers to contritbotde system by transferring pieces to each other
hence allowing the system to scale well with sizéhe downloading population. In addition to that
contribution of every peer increases the resiliesfcgystem against peer departures or failures.

1.1. Problem Statement

Although BitTorrent is known for its efficiency, @ability and robustness; trackers are required for
the proper functioning of the system. Trackers bana bottleneck in terms of scalability and
robustness. The number of peers downloading the samtent can be limited by the capabilities of
the tracker. Furthermore upon tracker failurespipers may fail to discover each other hence harming
the data exchange [7].

In order to relieve the dependency on trackersrangments for the protocol such as multiple trasker
extension and distributed trackers (DHT) have bpermposed. The distributed trackers use the
contributing peers to form a distributed hash tdbfestoring peer contact information hence pears c
discover each other by querying the DHT. The nudicker extension allows use of multiple trackers
for the same content so the overall load can telnised among the trackers. In addition to that th
use of multiple trackers increases the resiliergzanest tracker failures.

Although existence of multiple trackers increasesrobustness of the system and performs a fair loa
distribution among trackers, the efficiency of g8ystem is reduced due to partitioning of the owyerla
as BitTorrent protocol only allows a peer to beoasgged with one tracker per content to avoid
excessive load increase. Typically larger swarmaskaown to perform better than smaller swarms if
the seed to leecher ratios of swarms are equiviB¢ntherefore coexistence of multiple swarms that
are unaware of each other causes the system taripenforse than they were a single swarm.

To prevent the partitioning two dynamic swarm mamagnt protocols, Random Peer Migration
(RPM) and Random Multi Tracking (RMT) [17], haveelneproposed that mixes the peer information
of different swarms. These algorithms aim to achimixing of swarms therefore increasing the size
of swarms virtually. As mentioned earlier incregsgwarm size increases the piece availability & th
system thus improving the overall protocol effiagn

The dynamic swarm management algorithms considep8rtant criteria:

» Peers belonging to different swarms of same toskatld be able to discover each other.
* The load on trackers should be balanced.
* The communication overhead due to swarm manageshentd be kept low.

The algorithms mentioned only require modificatiom peer behaviour hence no additional
information maintenance is required by trackerfRémdom Peer Migration (RPM) a small fraction of
the peers migrate between swarms and in Random Whaltking (RMT) some peers are allowed to
register to more than one tracker. The mentionedspmix the peer information of different swarms
by leveraging the peer exchange (PEX) protocol. P&EX protocol is also modified to take swarm

membership of peers into account during exchangad®ase the mixing between swarms. Briefly
the aim of the described algorithms is to increB#& orrent performance through mixing peer

information of disjoint swarms without causing afcessive increase in communication overhead. It
should be noted that all kinds of decentralized piscovery methods and the algorithms, RPM and
RMT, should be disabled if the peer is connecteal poivate tracker to respect the protocol.

Apart from the mixing algorithms, another algoritlwonsidering the tracker selection policy of peers,
Picking Biggest Swarm (PBS) has been examined. dlhisrithm tries to group all peers in a single
swarm for performance improvement.

1.2. Methodology

The progress of this thesis starts with literasitaly to discover the details of BitTorrent protoand
observe other works that analyze and improve th@opol. Later some algorithms have been
considered as promising and worth to experiment.

In order to use for experimentation and developpsorhe of the existing BitTorrent implementations
have been examined and a suitable one has beerdpidktails of the client selection process can be
observed in Section 4.1.

The testbed has been developed with an iteratipeoaph. Firstly, experiments have been performed
for testbed verification. Several reasons for irsistence results have been detected and experiments
have been repeated until collecting acceptabldtsesAdditionally the testbed has been modified to
work on multiple computers instead of a single naelso that experiments in larger scale could be
performed for evaluation purposes.

The algorithms have been implemented incrementallgr the default client code. At first the
necessary modules that are common in all the dtgosi have been developed. Later the clients have
been diverged to branches and specific properties heen implemented.

1.3. Organization of the Report

The remainder of this thesis is structured as feloSection 2 presents general discussion about
BitTorrent based on protocol specification, protoextensions for peer discovery and related works.
Section 3 describes the algorithms that improva@ @itent performance through swarm management.
First the swarm management algorithms are discussddtail. Later the design details of improved
peer exchange protocol are given. Section 4 caniaiplementation details of the distributed testbed
for performing BitTorrent experiments. Importanoperties of experimental setup and functionalities
of deployed components are mentioned. Section facenthe evaluation results of the developed
algorithms. Finally Section 6 concludes the repod discusses the possible future work.

2. BACKGROUND

This chapter provides background information to teaders that are not familiar enough with
BitTorrent or Kademlia protocol and discusses thistmg related work.

The BitTorrent section firstly introduces the prib and the components of a BitTorrent system.
Then it goes into more detail of the protocol, désieg incentives and local policies of the systéys.

an end it gives information about specific protoestensions that aim to improve the information
availability of the system such as Multi-Trackertemsion, Peer-Exchange (PEX) protocol and
Distributed Hash Table (DHT) extension. In ordergn better understanding of DHT extension,
unfamiliar readers may also refer to Kademlia sectiThe Kademlia section briefly discusses the
Kademlia protocol, the routing algorithm of Kadeaéind the maintenance of routing tables. Finally
previous works aiming to increase information aaility of swarming systems with various methods
are mentioned.

2.1. BitTorrent Protocol

BitTorrent is a peer-to-peer content distributiontpcol that gained much popularity in recent years
Recent measurements show that it dominates thenétiteraffic by accounting approximately 27-55%
of all traffic by February 2009 [2].

2.1.1. General Description of BitTorrent

The main goal of BitTorrent is to efficiently digtute content among users. In a traditional client-
server approach, illustrated Figure 1, each client directly retrieves the content frdme server
causing a load on the server linearly proportiagnahe number of clients. The scalable approach of
BitTorrent aims to relieve the burden of a cenzeadi server by trying to utilize uplink bandwidths o
participating clients.

.

Figure 1: Content distribution via centralized server (Figurefrom [1])

In order to efficiently benefit from upload capaeit of peers the content in BitTorrent is splibint
many small pieces. The peers can cooperativelyaggehpieces among each other so the system can
handle large number of peers sharing the same rohteavoiding a server bottleneck. The user
cooperation in content distribution can be obseimeeigure 2where peers retrieve pieces from each
other and the load on server is relieved by usetritmitions.

L -

Figure 2: Content Distribution with BitTorrent (Figure from [1])

The peers that are interested in the same contentaaned aswarms Peers that share the whole
content either altruistically or through some inbgs are named aseeds The peers that have no
pieces or some fraction of them are calleechers Leechers are also expected to contribute piece
distribution while receiving pieces from other eer

In order to join a swarm, a peer initiayynouncestself through a centralized server nantestker.
The tracker maintains information about peers @std in same content. The peers are identifidd wit
their IP address, port number and a peer id. Tlee igeis a randomly generated string by the peer
itself at the start of a new download.

A peer can obtain a partial list of other peerthm swarm from the tracker, that it can connectrtd
exchange data. The obtained subset forms the bh#ie local neighbourhoodf the peer. In many
implementations, the list of peers send by thek#mcontains contact information of 50 peers by
default. The tracker randomly selects a subsetvaflable peers; resulting with a random graph
overlay for the swarm that is known to be populéhvits robustness property [6]. Peers can expand
their neighbourhood by iteratively querying theckar within time intervals or through some other
mechanisms such as Peer Exchange protocol oristd Hash Tables etc. which will be described
later.

Every peer in swarm keeps information about theofipieces it has, namely tlstmap Since peers
are provided only a subset of existing peers, tayonly gather information about the peers they ar
in direct contact. The peers exchange their bitnmapiseir first contact and notify their neighbotlng
HAVE messages every time they receive a complete macdting with a fresh local knowledge.

A peer interested in a specific piece of the cansamds a request for download to one of its local
contacts that has the piece. The details of dathagge policies among peers will be discussedean th
following sections.

2.1.2. BitTorrent Components
A BitTorrent content distribution protocol geneyatequires the components below:

* An ordinary web server

* A static meta-info file containing information atidbe torrent
* A BitTorrent tracker

* An original seed that has the whole content

* The end user web browsers

 The end user downloaders

In order to start distributing content using Bitfieat protocol, the peers require a static bootptrap
address to join the swarm and gather informatiooutitother peers in the swarm. Generally this
process is handled by the centralized componeakdrahowever other approaches like distributed
hash tables are still possible. The serving peerergges a “.torrent” file that contains meta-
information about the specific content. Each “gatf file is assigned aimfo hashgenerated using the
contents it contains and used to identify the tuge

The meta-info file contains the address of the satver that the tracker is located and the stracttir

the content as what file/files are included. Aswnothe protocol divides the content into smaller
pieces, generally with size 256-512 KB, which skdu carefully selected based on the total amount
of the content since too large piece sizes mayecpaesformance degradation and too small pieces
cause large “.torrent” files which is required t® &tored on web servers. The “.torrent” file camsai
the piece size and checksum of all pieces that snakgossible for the clients to ensure the correct
transmission of pieces. The checksums also prttectystem against malicious peers since altered or
bogus information can be detected easily.

A BitTorrent download is initiated as the user ass@s the “.torrent” file to a BitTorrent clienthe
“.torrent” file can be transferred by any possiboiethod; however the most preferred way is to
distribute it through an indexer web site. The BitEnt client reads the information in the “.toitfen
file and announces itself to the given tracker adslr The tracker returns a list of peers currently
associated with the same content and the contehtege takes place. The newly joining peer is also
registered by the tracker to be able to returadress to other peers when requested.

The original publisher that releases the contedidtibution should at least send one copy oftthal
content. However it may leave the system after isgndne copy, the content distribution will still
continue if the peers having unique pieces doemtd before sending them to others.

2.1.3. Protocol Details

In BitTorrent protocol all logistical problems ot exchange are handled in the interactions betwee
peers. The trackers simply help peers to find eztbler. In addition to that upload and download
amounts are sent to tracker but that is only flecting statistical information.

As there is no central coordinator for performamaprovement, peers are responsible for attempting
to maximize their own performance. In order to dppeers should consider two important points with
their knowledge of local neighbourhood. The firsin is thepiece selectiorstrategy of the peers.
Peers should decide on what pieces to download et second important point is teelection of
the peers to upload to

Selecting pieces to download in a good order isrg important task for achieving good performance.
A poor piece selection algorithm can end with aaibn where the peer only has the pieces that are
commonly possessed by other peers or in other wbedpeer does not have the pieces to trade with
others. Poor algorithms may also harm the systeresall performance and availability.

As a first rule, once a peer requests a block giege it does not request other pieces until the
particular piece is completely received. The poligyamed astrict priority and it aims to increase
the content availability of the system as quiclkpassible, since a peer can only announce possession
of piece after completely receiving it.

As mentioned earlier the peers exchange bitmaprr#ton with each other and announce when they
completely receive a piece. This information exg®aoonstitutes the local knowledge of a peer about

the pieces available in its neighbours. In ordeioptimize the piece availability, peers decide to
download the pieces which the fewest of their netgins have at first, which is namedlasal rarest

first (LRF) policy. Downloading the rarest pieces astfincreases the possible number of interested
peers in that piece so the piece can be traded mdttmy others. In addition to that, the rarest first
policy tries to replicate the rarest pieces in $ystem as quickly as possible, thus increasing the
availability of the content intuitively and increashe system resilience against peer departures.
Considering a system with only a single seed, itlavde the wisest decision for the seed to send
different pieces to different downloaders sinceurethnt downloads would decrease the content
availability in the swarm. The rarest first poliagain performs well by downloading a large varigfty
pieces from the seed as peers would be able tondatethe pieces that are already available irr thei
neighbourhood and ask the seed for the rare pieces.

Although rarest first policy performs very well bgtrieving the rare pieces first and using them in
trade for more common pieces, an exceptional cesgr® when the peer newly joins the systems or in
other words when it has nothing to upload. Sinds important to get a complete piece as soon as
possible to trade with other peers, trying to featuhrarest piece is not a very appropriate deti#s
expected, rare pieces are only present in verypesvs and many peers are in queue for them so they
would be downloaded slower when the peer has mpttuntrade. Instead of waiting for the rarest
piece, retrieving another piece which is availaillemany peers would be a better idea since the sub-
pieces can be obtained in parallel from differeaerg. For this reason, peers select the pieces to
download at random until the first complete piesadceived. This strategy is callemhdom first
pieceand peers switch to rarest first policy after ctetgdy downloading the first piece.

Another improvement calleéndgame modé used in order to avoid potential delays closeat
download'’s finish. It is possible that a piece t@requested from a peer that has slow transfes rat
which is not problematic in the middle of a downddaut can be annoying when it is the final piece.
To keep that from happening, once a peer activehds requests for all the sub-pieces it does not
have; it requests all the remaining sub-pieces faedinpeers it knows. In order to avoid waste of
bandwidth due to redundant transfers, cancel message used for the obtained blocks. Since the
endgame period is a short period, it causes a smaunt of bandwidth to be wasted but in turn the
end of file is downloaded quickly.

As mentioned earlier the BitTorrent protocol hasceatral mechanism to control resource allocation,
peers are expected to utilize their own bandwidthsorder to do so peers try to download from
whoever they can and decide which peers to upl@ad variant ofit-for-tat. The tit-for-tat policy has
the goal to ensure that peers who upload to otirersnore likely to be able to download. This game
theoretic approach encourages peers to contribigstem and avoid the free-riders.

The peers can have connection with multiple peensilaneously; however they only upload to a
fixed number of peers simultaneously which is 6dyy default. The connections that upload is not
allowed are calledchoked meaning temporary refusal of upload. Downloads still takes place
through a choked connection and re-negotiatiorhefdonnection is not necessary when the choking
period ends or in other words when the peenhoked

A downloading peer keeps track of the downloadsritteeceives from its neighbouring peers. Even
though there can be different methods to calcutiienload rates, the base implementation of
BitTorrent uses a rolling 20-second average assitkiown to perform better than long-term

calculations due to the fluctuations caused byipgirand leaving peers [5]. The download rates
strictly form the basis for deciding which peeraitachoke; a peer only unchokes the fixed number of
peers that it receives the best download rates.chib&ing and unchoking decisions are calculated

once every 10 seconds and not applied for theviitip 10 seconds in order to avoid delays caused by
TCP protocol.

The problem with using the tit-for-tat approachredads that it provides no way to discover other
possible fast candidates from the unused connectlororder to solve this issue, BitTorrent protoco
usesoptimistic unchokinglgorithm that allows one additional connectiorb®ounchoked at random
regardless from the download rates. The optimistichoke period by default lasts for 30 seconds
which is considered to be enough for the uncholesl o reciprocate. As the period finishes, the
neighbour that has sent the smallest amount of dlaiag the period is choked. Then a new peer is
unchoked randomly among the connected peers. Begidiping to discover possible profitable
relationships, the optimistic unchokes also givepportunity to the newly joined peers to retrieve
their first pieces.

Since it is possible for a peer to be choked byedrs it is downloading from, the peers usesthte
snubbingstrategy. If a peer remains choked by a peer aweinute it assumes that itsaubbedby
that peer and stops uploading to that peer excepbpimistic unchoke case. The peer uses an
additional optimistic unchoke to find a better calate in replacement of the peer snubbed itself.

The tit-for-tat policy does not have applicability the seeds since they do not have download rates.
Instead of download rates, seeds evaluate the pegasding their upload rates; peers having better
upload rates are unchoked. This approach utiliaesupload capacity of the seed and it introduces
some level of fairness by preferring peers whicksdaot have utilized their uplinks.

As mentioned earlier each peer is expected to nimge decisions based on only the local knowledge
they have, the transfer rates between its neiglsb@upoor peer selection policy would obviouslydea
to inefficient distribution of the content which wld also decrease the content availability
correspondingly.

2.1.4. Protocol Extensions

The BitTorrent protocol with its nature eliminatessingle point of traffic congestion with the peer
participation in content distribution; however tinacker continues to be a single point of failusata

is the only component that enables coordinationveen peers. If the tracker managing the swarm
becomes unavailable the system will not be ableachable by new peers and existing peers will not
be able to extend their knowledge by querying thekier. Previous measurement studies point out the
shortness of uptime periods of existing trackerkigh fraction of them being shorter than a day [8]
Furthermore the failure period of trackers are mes to last around an hour, revealing that most of
the failures are caused by software or machindarther than a temporary network problem [7].

This section focuses on the current BitTorrent gmot extensions that aim to improve availability.
The approaches consider different mechanisms ferspt discover other peers without causing
infeasible increase in the load of the system. fireeapproach considers use of multiple trackeith w
load balancing purposes or having backup trackgasat failures. The second approach introduces
use of distributed hash tables (DHT) in order tadhe peers work as trackers in a cooperative nranne
The third approach makes use of the communicatioong peers to increase content availability by
allowing them to exchange contact information waittmers. The extensions are named as Multi-
Tracker extension, Distributed Trackers (DHT protpcand Peer Exchange protocol (PEX)
respectively and will be discussed in more deteihe following sections.

2.1.4.1. Multi-Tracker Extension

The Multi-Tracker extension allows two or more kais to track the same torrent instead of only one
tracker. Use of multiple trackers originates fromo tapproaches. At first sight it tries to redistité

the load of a single tracker to multiple trackdfach tracker is expected to know all the peersién t
swarm; however each peer chooses a single tragkanriounce and query for contact information.
The multiple trackers with load balancing purposehange information about the peers they know in
order to possess a global knowledge of the swaemo@lly multi-trackers extension can be used for
backup purposes. In case of a tracker failure therpare expected to contact the spare tracker.
Multiple trackers for backup purposes are not etg@e¢o exchange their knowledge of the swarm.
The extension can either be used only for loadnzatg, backup purposes or both.

The load balancing property of multi-tracker extenscan be considered as replicated trackers. The
trackers both manage the same swarm; remain symightbby exchanging contact information but
only serve to a portion of the swarm to distribthe load. The availability improvement of this
extension actually arises from the backup propddiye should also note that multiple trackers for
load balancing may also serve for the backup pargote in case of failures the live trackers tal
contacted by the peers. The availability improvemsrobvious since it increases the probability of
finding at least one available tracker at a time.

In their work [7], the authors observe a correlatianong the failures of different trackers or ihest
words failures of different trackers are not indegent. The trackers are observed to be down in
similar periods. A possible reason for this cotietacan be hosting the trackers in the same machin
The trackers can be considered more vulnerabléeatimes where the peers cause churns in the
system. A flash crowd moving from a failed trackeranother can cause it to fail also and can be a
reason for this correlation.

To measure the availability improvement of muléeker feature, ime-awaremethod is used. The
method keeps history of each tracker and then ateduthe results by checking if at a given time
instant there is at least one available tracker.

The multi-tracker feature is shown to increaseatailability of the system but the idea behind this
improvement does not derive from having a combamatif trackers with low availability. In fact the
improvement arises from the increased probabilithaving a highly available tracker in the set of
trackers.

The implementation of the extension requires modifon to meta-info file, peer and tracker
behaviour. Instead of a single announce URL irrfetat” file, an announce-list section is addedeo b
used by the compatible clients. The announcediatlist of lists where trackers in the same listfar
load balancing purposes and different lists ofkess are the backup trackers. To join a swarm a pee
randomly selects a tracker from the first list &eeps using the same tracker until it leaves thteay

or the tracker fails. The backup lists are usedy ahlall the trackers in the previous list are
unreachable. Trackers in the same list, which sEwéad balancing, exchange contact information
periodically with each other to capture the globalv of the swarm but trackers belonging to différe
lists are not expected to do so.

A potential threat with the multi-tracker featusethat it jeopardizes the connectivity of the oagyl
use of multiple trackers can split the swarm inigjaiht subsets. A disconnected overlay would
certainly harm the content distribution since peemifferent subsets will not be aware of eacleoth
This can be caused by tracker failures, churnsoog ldelays between consecutive information
exchanges among trackers. A bad implementatioritdbBent client may also cause disjoint subsets
if it does not process the announce-list in coroeder as described in the specifications. Foaims

8

a peer announcing to backup trackers without tggtie trackers in the previous lists would probably
get separated from the good swarm. In additiomat if a peer announces to different trackers el ea
interval instead of sticking to the first trackeisuccessfully announced; it may cause the tradkers
store stale contact information as its departurg nm@ be handled by the correct tracker. Besides,
querying all the trackers can cause an excessivease in load if it is applied by all the peers.

The multi-tracker feature using purely the loadabalng property, having a single list with multiple
trackers, has been shown not to suffer much frortitipaing [7]. Its resistance against partitioning
can simply be explained by the periodic informatixchanges between trackers. However the backup
trackers may cause situations such as on the avarpger in a subset can at most discover halfeof t
peers from available set. A similar situation careege with a possible scenario when the first gack
fails and peers start using the backup trackerthasfirst tracker recovers back from the failure th
newly joining peers will form a different subsesjdint with the peers using backup tracker.

2.1.4.2. Distributed Trackers

The distributed hash table (DHT) extension canctliyereplace or supplement the central tracker,
providing mechanisms for peer discovery and avgidine single point failure bottleneck of the
central tracker. Some of current BitTorrent cligntplement a distributed hash table so the clieats
form a single DHT infrastructure even though thelohg to different swarms. The DHT can be used
store/retrieve contact information of peers inter@sn a specific content. The extension is nanged a
distributed trackerssince peers cooperatively handle the job of tracKéhe info-hash that uniquely
identifies each torrent can be used askiéeand thevaluesare the contact information of the peers
associated with that content. Peers can perforikufmo for the requested content using its info-hash
and discover other peers even if they are noténsime swarm. The DHT extension can completely
eliminate the tracker dependencies however a hgmiloach certainly performs better.

Current BitTorrent implementations use Kademliatpeol to implement distributed hash tables. As
Kademlia stores same information on multiple natlpsovides a high success rate of lookups even in
highly dynamic environments. Kademlia with its higbsiliency against churn copes well with
frequent peer joins and departures in BitTorresteay. As mentioned before a peer should perform
lookups with the info-hash of the torrent and reeea set of peer contact information. In order to
announce itself to a torrent, a peer should firgtryg the DHT for the closest nodes that store the
contact information of the specified torrent. Thba peer simply inserts own contact information to
the set of closest nodes. In order to prevent moalscpeers associating irrelevant peers with amdyr

a random token should be transferred during thicgmture between nodes. For the details of node
lookups and storage in Kademlia readers should 8etion 2.2 .

To enable peer joins to DHT, the meta-info fileeldended to contain contact information of some
nodes that are highly available in the system. Addes can be manually assigned by the publisher or
can be the closest nodes to the info-hash.

In their work [7], the authors measure the effaftHT extension on information availability. By
sending pings to the discovered nodes in DHT, tthetect that 70% of the nodes are unavailable.
Despite having many stale entries in the system, DRT finds contact information for 93% of
torrents by exploring approximately 50 DHT node$é compared with a tracker, DHT significantly
suffers from the high response latency. Howeveatt still succeed to provide contact information at
the times when the trackers are unreachable. Theriexents show that trackers in general provide
more and faster information, but DHT increasesitiigrmation availability of the whole system. In
addition to that when used with a hybrid appro&iHT can help reducing the tracker load since peers
can discover other peers via DHT and query thé&émamore seldom.

A remarkable feature of DHT that should be highigghis that, it offers the possibility to discover
peers that are managed by different trackers baresthe same content. The approach significantly
increases the information availability when the ralleBitTorrent system is considered by allowing
content exchange among different swarms.

2.1.4.3. Peer Exchange Protocol

The peer exchange protocol (PEX) is a simple yeefficient approach to improve information
availability. Besides the centralized peer discgpuaethod offered by trackers, most of the modern
BitTorrent clients additionally provide decentraliz peer discovery using Peer Exchange (PEX) in
order to relieve the load on trackers and increaastness against tracker failures. The PEX pobtoc
leverages the knowledge of the peers that a peeorisected to; by asking them in turn for the
addresses of peers they are connected to. The pesoslically share the contact information they
have with each other. The information exchangectliireéakes place among the peers thus it does not
cause any extra load on the tracker. PEX helpscieduhe load of tracker and is a fast approach to
expand local neighbourhood of peers.

In PEX protocol, peers gossip with each other gular intervals with lists ofctive peers they know

in order to uncover genuine peers interested insdmae content. Unfortunately, this decentralized
method of peer discovery first requires a peemtovkat least one other peer using another method of
peer discovery such as a centralized tracker or DHGwever once a peer obtains a list of peerken t
swarm, PEX protocol does very well to discover otpheers in the system. With its decentralized
nature, PEX can help the swarm survive much lomgease of tracker failures, thus increasing the
fault tolerance of the system. Furthermore in $itus where the connectivity graph of the torrent
starts getting disconnected due to any reason, IRHp6 recovering the system back by merging the
almost disjoint sub-graphs if peers from the digjsub-graphs exchange their contacts at least once

It should be highlighted that beirmgtively connected to a peer and knowing the address eéagre
different notions. In order to have reasonable arhoifiresource consumption, it is inevitable todav
limitations on the number of the peers to conneotyever a peer may keep the contact information of
peers it met once in a buffer, despite not havim@etive connection with it, and share the buffered
knowledge with other peers. Unfortunately a peepgdizes the efficiency of the peer exchange
protocol by disseminating information about pedrattare not in active connection with it; as it
introduces the risk of sending addresses of pémishave already left the swarm, in other words
sharing stale addresses. Even further a malicieas may cause poisoning by injecting addresses of
non-existing peers. Many other popular clients cgghange the contacts which they are actively
connected to in order to ensure the distributiopedr addresses that are active in the torrentand
avoid stale peer addresses.

Currently, the PEX protocol does not have an dfisitandard. Multiple versions of PEX protocol

have been implemented and used by different cliedmbsvever peers should conform the same
protocol to be able to exchange contacts. The knthnee versions of the protocol are: AZ PEX

which is implemented by the Azureus client, BC_P#&séd by the BitComet client and UT_PEX

which is preferred by many other clients such B¥dirent, uTorrent, Transmission, Mainline client

and some others. According to the measurement stiud@p], it is observed that 70% of peers support
UT_PEX, 15-20% of peers support AZ_PEX and onlyuals86 of peers support BC_PEX. The peers
that support these three PEX protocol is showrttoant for approximately 95% of all the peers.

Although PEX is widely deployed in BitTorrent syst® comprehensive studies of PEX are not very
common thus there is little knowledge about theavedur of PEX in operational systems. According
to the experiments performed in [20], PEX could iioye the download performance of 40% of the

10

tested torrents and the average reduction of tienldad time was measured to be around 7%. In
addition to that, the authors of [20] point out fheshness of the PEX messages such that 30% of the
PEX messages did not contain any stale addresdeth@amessages that contain at least 50% correct
addresses is over 80% of all. This high ratio etfiness can be explained by the exchange of only
active peers in the connection list. Despite haarggh degree of redundancy, where some addresses
can be delivered to a peer more than once, theagess/erhead of PEX is still at reasonable amounts.

2.1.4.3.1. UT_PEX Protocol

Among various versions of peer exchange protoc®l, REX is the one that is supported by most of
the popular clients thus has been widely used dayts BitTorrent systems. The libTorrent client,
which was selected as BitTorrent client for the exkpents, also implements UT_PEX as peer
exchange protocol.

The UT_PEX protocol has been implemented on toghef BitTorrent Extension Protocol [19].
During the extension protocol handshake, peersnmieach other about the extensions they support
thus clients supporting UT_PEX meet each othernduthe handshake. The rest of the protocol
messages are sent with the extension messagefi@tanthat are specified by the handshake. The
protocol can be enabled or disabled according ¢év'p@eeds. If a certain number of peers are aread
discovered, the protocol can be disabled to avoitkaessary overhead.

The peer exchange protocol has three importantrpeteas to trade off between exchange efficiency
and communication overhead. The parameters alaws$:

» Time interval between peer exchang€ke libTorrent client waits 2 minutes between two
consecutive peer exchange messages. If the intervialo short the spread speed of the
protocol will increase intuitively, however morengavidth will be wasted with redundant
messages. Although there is no official specifaratf PEX, most of the known clients have a
waiting interval of at least one minute in orderakmid excessive increase in communication
overhead.

* Number of peers to exchange contddte number of peers that the client does pednange
simultaneously is limited to 8 in default libTortdmplementation. It is also possible to have
no limitation on the number of PEX candidates texshange contacts with everyone in the
connection list. Although high number of candidateseases the efficiency of the protocol,
the increase in the efficiency is marginal when thember of candidates goes over a
reasonable limit but the increase in traffic igln by the number of candidates.

* Number of contacts sent in a PEX messdie PEX messages sent by libTorrent client are
limited to have 200 contacts at maximum whereasesother clients limit 50 contacts per
message. The PEX message stores the contactsairy ibimmat thus one contact requires 6
bytes of space which means that 200 contacts csily dse piggybacked to an already
outgoing packet without causing much increase érotrerhead.

In order to exchange peers, the client tries pgkip 8 candidates that also support the UT_PEX
protocol. The candidate selections are made unifjoramdom among the peers in connection list that
are enabled for peer exchange. Unless the seleatetidates violate the protocol specificationsythe
remain unchanged until they leave the system @btlispeer exchange. If a candidate slot becomes
available, a new peer is picked at random befarenéixt peer exchange.

Tablel: UT_PEX protocol in libTorrent

upon event (Init) do

11

end event

peer_exchange_interval2 mins
max_pex_candidates8
max_pex_message_siz00
last_saved_list @
ut_pex_initial=@

ut_pex_delta=@

upon event { Tick | every peer_exchange_intervaldo

end event

while selected_pex_candidatesnax_pex_candidates& have_candidates_availabléo

pick a new pex candidate (ut_pex enabled) at ranttom current connection
list

selected_pex_candidates++
end while
for all p Uselected_pex_candidatde
mark p for sending pex message by the next outgoésgage
end for
added = current_connection_list — last_saved_list
removed = last_saved_list — current_connection_list
ut_pex_delta = added & removed peers / difference of connection list between two ticks
ut_pex_initial = current_connection_list as addeskps, no removed peers

last_saved_list = current_connection_list

upon event { Sending any message to peér go

end event

if p is marked for sending pex messtuy
if initial pex message tothen
send ut_pex_initial to p
else
send ut_pex_delta to p
end if

end if

upon event { Receive pex message from pe¢agded, removed do

end event

insert peer addresses under “added” key to avaigters buffer

Table1: UT_PEX protocoal in libTorrent

12

At every 2 minutes the procedure that manages #er pxchange is executed. As soon as the
candidates for exchange are selected, the PEX gessaae prepared. The types of the PEX messages
that can be sent to the candidates are:

» Initial PEX messageThe initial PEX message is sent if it is thetfireessage sent to a peer.
Initial PEX message contains all the peers in thenection list. If connection list is larger
than the allowed limit of the PEX message, theidistimmed and the rest is sent later.

» Delta PEX messag&ince the PEX candidates are kept constant drecednnection lists are
exchanged, then it can be kept up-to-date withadBEX messages. The delta messages
contain the changes in the connection list betwagnconsecutive peer exchange ticks; the
addresses of peers that are added to and remowedthre connection list after the last
exchange are transferred by the delta messagesisehef delta messages helps reducing the
outgoing bandwidth.

The PEX messages are not sent immediately but etklaptil another message is sent to the PEX
candidate and the contacts to be exchanged arghgigked to the already existing traffic to avoid
causing extra load. However if the traffic betwélem peers is idle the client code is modified tacdo
sending of the PEX messages. This modification lvéldiscussed in detail in following sections.

Upon receiving a peer exchange message, the pdsrtlael contact addresses under tddéed key

to the buffer of available peers. When necessagydthcovered peers are picked randomly from the
buffer and a connection is established. The listrefmoved peers is simply ignored by the libTorrent
client as the client has its own mechanisms foroseng connection with peers. In addition to that,
removing connection depending on suggestions ofrofieers can make the client vulnerable to
malicious attacks.

2.2. Kademlia

Kademlia is a communications protocol for peer¢epnetworks. It is one of many versions of a
distributed hash table (DHT) but the one which isrently deployed and favoured by many
BitTorrent clients.

The participating nodes in Kademlia form a struetupverlay to store and lookup key-value pairs.
The keys are 160-bit quantities usually selectedth@s SHA-1 hash of some larger data. The
participants are identified with a quasi-unique edid in the 160-bit key space generated by the node
itself randomly. The key-value pairs are locatedtmnodes that have ids close to the key regarding
the XOR metric of Kademlia. Each node maintainswing table containing the contact information
of a small number of other nodes in order to be ablperform lookups and route query messages
appropriately.

In Kademlia, the distance between nodes or a nodeadkey is defined as the exclusive or (XOR) of
their identifiers. The longer common prefix shabsdiwo identifiers yields a smaller result of ther x
operation thus meaning closeness. The importaipepties of xor metric are:

» the distance between a node and itself is zero

e itis symmetric, distances from X to Y and Y to ¥ dhe same

» it offers the triangle property: the distance frnto Z is less than or equal to the sum of the
distance from XtoYand Yto Z

The properties above approve that xor is a valdtl@mputationally cheap distance metric.
Every node in Kademlia maintains a routing tablevemtionally named ak-buckets. For each

wherei is 0 < i < 160, a bucket is used to store contact informatiomafles having distance

13

betweer2! and2i*! from the node itselffigure 3represents a node’s routing table with 8-bit idcep
where each bucket stores nodes with correspondstgndes. A node’s contact information is formed
by the IP address UDP port number pair and the ndeetifier. The buckets can store contact
information of at mosk nodes, wheré& is the system-wide replication parameter. It stidag chosen
carefully such that any givdanodes should be unlikely to fail at the same timerval in order to be
able to perform lookups and avoid information lossase of departures and failures as each olgect i
stored ak-closest nodes to the object’s identifier.

KBucksat List

[1,2)
[2, 4)
(4, 8)

[8, 16)
[16, 32)
32, 64)
[64, 128)
[128, 256)

Figure 3: An example Kademlia node routing table with 8-bit id space (Figure from [14])

Considering the structure kfbuckets it can be noticed that the routing taleliss gnore detailed for the
identifiers closer to node’s own identifier. Nodasow more about the closer nodes but have fewer
contacts with far distances.

The routing table is maintained using the informatretrieved only from the direct interactions
between nodes, a node is considered alive onlylifexrt message is received from that node. Kach
bucket is sorted according to the timestamp ofl fim@raction where the least recently seen node is
located as the first element. When a node receaive®ssage from another node, the appropkiate
bucket for the sender’s identifier is updated dives:

» If the sender is already in the bucket, the lasnsemestamp of sender is updated hence
moved to the tail of the bucket.

» If the sender is not in the bucket and if the budaes not hav& entries yet, the sender is
inserted to the tail with fresh information.

» If the bucket is full (hak entries) the first element in the bucket whichhs teast recently
seen is pinged. If a pong is received from old nibdenew node is simply discarded and old
node is updated accordingly. If the old node felsespond, it is removed from the bucket
and the new node is inserted.

There is no restriction on the type of the messagee they can all be considered as the evidence of
aliveness of the sender. In situations where thénmg table is not maintained spontaneously, a node
can periodically perform random lookups in the & inactive buckets or ping the nodes that are

not active for a period of time.

The routing table of a node is maintained withdperoach of removing the least-recently seen node.
It is important to underline that a live node iv@eremoved from the routing table. The prefereice

old contacts arises from the statistical analysisctuding that the longer a node has been alive the
more probability it has to remain live [10]. Thepapach of keeping the oldest live contacts thus

14

increases the chances of avoiding stale nodesirnothiting table. Besides it helps avoiding denfal-o
service attacks since a node’s routing table cabpagolluted by malicious nodes in a short interval

The Kademlia protocol consists of four remote pduce calls (RPC). They are:

* PING: Traditionallyping is used to determine whether a node is onlinedfrtode replies with
apongmessage.

* STORE The store message is used for inserting the key-value maia thode. The node
receivingstoremessage is expected to store the value for furdteevals.

« FIND_NODE The message contains a 160-bit ID as an argunidm. node receiving a
find_nodemessage returns thenodes from its routing table closest to the giVen The
returned list may contain contacts from differentkets if the closest bucket does not contain
k elements.

 FIND_VALUE This message works similar find_nodemessages and takes a 160-bit key as
an argument. The recipient node returns the stemkee for the key if it previously received a
store message with the queried key. If the node doestore the value, it returns thelosest
contacts to the key.

All RPC packets are required to carry an RPC ifientassigned by the sender and echoed back in the
reply. The identifier is a 160-bit random numbed aised to resist network address forgeries.

In order to store values in Kademlia, a node shbeldble to locate theclosest nodes in the system
to the given key. This procedure is named@de lookupand can be considered as the most important
part of Kademlia. The lookup procedure is perforritetatively. A node starts by selectinghodes
closest to the target key, wheatas the concurrency parameter with 3 as the optirale [11]. The
selected nodes are asked for their knowledge akaoldsest nodes to the target key by sending
asynchronous find node messages in parallel. Tpleeseare used to update a temporary list storing
thek-closest nodes to the target. In each iteratiemnthde queries of the nodes from the temporary
list which it has not queried before. The iteratsdops when a round fails to discover a new node th
is closer than the currently known nodes. To faelihe lookup the node queries each ofktasest
nodes that is has not contacted in earlier roufids process results with a setlofctive contacts
closest to the target identifier. During the iteras if a node fails to respond the query, it ciampy

be removed from the temporary list and the iterstimay continue as normal. At each step the search
comes at least one bit closer to the target. A ramfgacts onlyO(log(n)) nodes for lookups in a
system withn nodes. In value lookups, the iterations can teabairearlier if any of the queried nodes
returns a value.

Figure 4represents an example lookup initiation where rgerforms a lookup for the identifier Q.
The nodes A,B and C are the pickedodes that are closest to Q and they are queiitdind node
messages asynchronously.

15

KBuckst List

Lookup Q

e— closest nodes to Q are
stored here

... and select « nodes from
the appropriate kbucket

Figure4: A node lookup initial step (Figurefrom [14])

The following lookup iteration is illustrated iRigure 5 The information received from nodes A,B
and C is inserted into the temporary list and tbet iteration is performed with querying other nede
from the list. The received replies from A,B an@l8o serve the purpose of routing table maintenance
by updating the last seen timestamps of the sendées iteration stops when the temporary list

remains same as the previous round and the lockiipalized by querying the nodes that have not
been queried previously.

KBucket List
When P receives any message from il
another node, it updates the appropriate
kbucket for the sender’s node |D.
Receved information from A, Band C h[| I | | Lh.ﬂ I m | | l fO} | |]

... again select v nodes from
the received information

Figure5: A node lookup iteration (Figure from [14])

To maintain the consistency of the system, nodesldhreplicate some of their information if they
meet a new node that is closer to some of the teysmaintain. A lookup initiator should also store
the key-value pair at the closest node seen iflindt return the value of the lookup.

Each node in the system is expected to re-publtishkéy-value pairs it has periodically in order to
increase the persistency of information. A key-egbair in the system expires after 24 hours and the

original publisher is expected to re-publish. TRpietion rules limit the amount of stale infornaati
in the system.

16

A node can join the network through a known contabich is currently in the system. The node
should insert the existing contact into its routiagle and perform a lookup for its own identifi€he
node should also perform random lookups withinrdmge of eack-bucket. The random lookups will
help populating the joining node’s routing tablel amsert it to other nodes’ tables as necessary.

2.3 Related Work

This section contains information about similaropnivorks to this thesis work that tries to improve
performance of swarming systems. The common pointhe considered works is the aim of
increasing the overall system performance by impigpwvthe system and content availability in
BitTorrent.

Neglia et al. [7] perform a large scale measurenséudy to investigate availability in BitTorrent.
Their experiments show that BitTorrent swarms meyosisly suffer from the tracker unavailability if
trackers are left as a single point of failure loé system. The authors measure the effects of using
multiple or replicated trackers and DHT-based isted trackers. Their measurements show that
both multiple trackers and distributed trackersph@hproving the information availability by
increasing the chances of finding available tragk&he multiple trackers and DHT approach show
complementary behaviour such that a combinatidootth provides high information availability with
low information response latency. Use of multipleckers helps balancing the load among trackers
however it can significantly reduce the connegfiat the overlay formed by peers. The work in this
thesis aims to increase the connectivity amongfit swarms by modifying peer behaviour.

Menasche et al. [15] consider the content unaviithatas a fundamental problem of swarming
systems. The content is considered to be availakither at least one seed is present or sufftgien
many active leechers exist in the swarm to coletyi make all constituent blocks of the content
available. Considering the unpopular contents, ldtely arriving peers may find the content
unavailable since the availability of unpopular temts is mainly limited with presence of a seed or
the publisher. According to their observations 46fswarms have no seeds more than half of the
time. In their work the authors consider BitTorrex® a queuing system and develop a model to
guantify the content availability in swarming syate Using the developed model the authors estimate
the effects of bundling similar contents and vakdsheir results through large-scale controlled
experiments and analysis of real life torrents. @bthors verify that distributing similar conteirisa
single package, for instance distributing entirase@ of a TV series, can significantly improve the
content availability and increase the lifetime ofpopular content. The availability improvement of
bundling may arise from different reasons suchhasging user behaviour. However the model also
suggests the same as bundling increases the brisggédhe length of uninterrupted intervals during
which the content is available, of the system themeducing the dependency on the initial publisher
The authors also find out that in contents withigily unavailable publisher; bundling can reduce th
download time of the unpopular content even thaughe content is downloaded. The download time
improvement can arise when the waiting time, theetspent without downloading content due to
unavailability, highly dominates the service tingethe improved availability by means of bundling
can amortise the download time of the extra contérghould be noted that two different forms of
bundling exist which are pure bundling and mixeadiing. Pure bundling forces the consumer to
have the entire bundle or none whereas mixed bupdjives the chances of selecting parts of the
package. Both forms of bundling can improve conéatilability and increase the lifetime of torrents
however mixed bundling is more common in recenritlistions.

Peterson et al. [16] introduce a new content tistion system that differs from BitTorrent with its
capability of managing swarm. Antfarm tries to oy the performance of content distribution by

17

viewing it as a global optimization problem, whereoordinator directs bandwidth allocation at each
peer considering the bandwidth constraints and rwdynamics in order to reduce the download
latencies of participants. The main idea of Antfdo@comes clearer when peers contribute in different
contents’ distribution so that the coordinator chstribute peer bandwidth among multiple swarms
effectively to avoid content unavailability in eaclwarm. The BitTorrent protocol, having an
unmanaged swarming architecture, may perform wadlugh within a single torrent. However the
local bandwidth allocation algorithms of BitTorrently lead to starvation in multi-torrent settings a
it does not consider the varying swarm dynamicrtier to make it possible to evidently determine
the swarm dynamics by the coordinator, Antfarm grot makes use of unforgeable tokens that forces
the participants to divulge their upload contribn8. While the coordinator allocates bandwidth
among competing swarms; the peers are still alloiwagse local optimizations similar to BitTorrent
protocol such as tit-for-tat policy, optimistic umaking or rarest-first pieces selection policy. The
evaluation results show that Antfarm and BitTorrgm@rform similar when a single swarm is
considered. However when distributing multiple emts, Antfarm successfully distributes available
bandwidth among swarms whereas unpopular swarms staalye using BitTorrent protocol. One
drawback of the Antfarm is the scalability of theofocol where the coordinator can become a
bottleneck as it requires more resources thannaatd BitTorrent tracker in order to determine swar
dynamics and direct bandwidth allocation among swsarThe protocol is designed to enable
hierarchically distributed coordinators in order &fleviate the bandwidth demands placed on
coordinator.

Dan et al. [17] in their work, point out the eficicy degradation in small swarms with few
participating peers due to the low availability.céecding to their measurement, thousands of swarms
are detected whose performance can significantlyripeoved using distributed swarm management
algorithms. The authors introduce two algorithmet thim to improve performance of multiple small
swarms of the same content by increasing the cdtinitgcof disjoint swarms. The first algorithm
presented is dynamic swarm management (DSM) whictksvat the tracker level. DSM achieves
performance improvement by identifying and mergsngall swarms of the same content, however it
also supports splitting considerably large swammsrder to ensure load sharing among trackers. In
order to enable swarm management, each trackedpeaily picks another tracker in order to perform
pairwise load balancing. In load balancing algorittrackers exchange information of the contents
that they both manage and determine which trackeuld be responsible from which peers. The
second algorithm discussed in the paper is randmhzer migration (RPM) where a small fraction
of peers migrate between different swarms and clisgge contact information of peers from different
swarms using PEX protocol. RPM only requires madiion of peer behaviour and the
communication overhead is increased only by théstedunregister messages used for migrating
between trackers. The migrating peers increase exbnity among multiple swarms, virtually
increasing the size of small swarms thus improvmgoverall throughput. Both algorithms are shown
to help improving the performance of small swarnmighwnly a modest increase in communication
overhead. Random peer migration will be observedl evaluated in more detail in the following
sections.

18

3. DISTRIBUTED ALGORITHMS DESIGN

This section contains design details of the dynasmiarm management algorithms. It first discusses
implemented lightweight algorithms for increasimgormation availability, Random Peer Migration
(RPM) and Random Multi Tracking (RMT). Additiondbarithms such as Baseline and Pick Biggest
Swarm (PBS) are also discussed as a criterion aluation purposes. Later the improved PEX
protocol whose main aim is to facilitate better mg<among swarms is mentioned.

Table 2contains the notations that are frequently usednimdelling BitTorrent systems in following
sections.

x(t) number of peers in torrent at tirhe

I(t) number of leechers in torrent at titne

s(t) number of seeds in torrent at tilne

A the arrival rate of peers

the uploading bandwidth of peees$uming all peers have same upload bandwyidth

the downloading bandwidth of peeasguming all peers have same download bandwidtrdang)

average time required for download completion

average time that seeds stay in swarm aftenth@d completion

T > 4 o =

set of trackers that track the torrent

=

number of trackers that track the torr€hR|)
willingness parameter for performing swarm nggmaent

maximum number of peers that a peer can conodsize of the connection I[jst

O T ™

maximum number of peer exchange candidates

Table 2: The frequently used notation for modelling BitTorrent systems

3.1. Swarm Management Algorithms

In order to relieve the load on a single tracked @mcrease resilience against tracker failures,
BitTorrent protocol allows a single torrent to bracked by multiple trackers. To have the load
distributed fairly and avoid excessive overheadraokers, a peer is allowed to contact with onlg on
tracker per content. Therefore the peers interaatedme torrent may form disjoint swarms resulting
with a split overlay in which peers in different anmns are not aware of each other. According to
previous measurements increasing the size of ansvigrknown to increase performance of the
BitTorrent protocol if other parameters are lefnstant. Consequently the clustering due to use of
multiple trackers causes the protocol to performmse&dhan the peers were in a single swarm. Despite
causing performance degradation, use of multiglekers is inevitable since it increases the system
availability against tracker failures and relietes heavy load on trackers.

The swarm management algorithms aim to increasepthwmcol efficiency while preserving the
resilience and load balancing properties offeredisy of multiple trackers. Basically the algorithms
introduce peers from different swarms to each othevugh peer exchange protocol thus increasing
swarm sizes virtually and performance correlatively

Random Peer Migration (RPM) and Random Multi TragkiRMT) require modification only to peer
behaviour. In order to achieve mixing of swarmdyaction of peers interact with more than one
swarm and distribute contact information among swgausing the PEX protocol. The algorithms do

19

not require trackers to maintain extra state infitiom and simply take place between the existing
traffic between peers. The only increase in comeation overhead is due to interaction between
peers running the algorithms and trackers suchegsster, unregister and scrape messages. The
number of peers that perform the mixing is indegendf the swarm size and can be controlled by the
protocol parameter therefore the mixing can be esdd with only a modest increase in
communication overhead.

To gain better understanding of swarm managemgnotitims two additional peer behaviours should
also be mentioned. First is the baseline, namatyllaapeer behaviour which is the default behawiou
of BitTorrent clients and second is Picking Bigg8starm (PBS) whose behaviour is obvious from
the name. These two algorithms can be consideregssite ends that represent pure load balancing
and maximum performance respectively. The miximggpalhms can be placed between the two where
they aim to increase performance as much as pessihlle preserving the load balancing and
resilience against tracker failures.

3.1.1. Baseline

The vanilla peer represents the default behavipecifed in BitTorrent protocol. Given a set of
trackers, one tracker is picked uniformly randond éime peer sticks to that tracker until departure
unless the tracker fails.

With vanilla behaviour the swarms are expected ¢oehually sized on long term average thus
achieving fair load distribution. However as men#d earlier the download performance of the
torrent is at minimum, especially for small torentdue to partitioning of the overlay. The
communication overhead of baseline peer is at mimmvhen compared to other algorithms as each
peer only associates with a single tracker.

The swarm management algorithms are developed lmestte vanilla behaviour however depending
on the defined protocol parameters peers may exdifbérent behaviour to mix the swarms.

3.1.2. Picking Biggest Swarm

With PBS protocol, a peer scrapes all trackersivarglist before associating with one of them. The
scrape queries are similar to tracker announcesWemscrapes are replied only with state infornmatio
of the swarm, number of leechers and seeds invilaens instead of a subset of peers. Scraping all
trackers, the peer can decide to join to the biggesrm so that it can maximize the download
performance. In larger swarms a peer has highdrability of receiving pieces as piece diversity and
peer contribution is higher when compared with senawarms.

The size of a swarm is simply defined as the nundiepeers in it, sum of seeds and leechers.
Alternative approaches such as prioritizing the benof seeds can also be considered as available
seed capacity is an important factor on downloatbpmance. Currently the available seed capacity is
considered only as tie-breaking condition for elyusited swarms. If swarms are still equal, a teack
can be picked with a pre-determined approach suaclpieking the first tracker in the list. This
selection is in general performed by the publigt®eit picks one from the set of empty swarms.

If all peers exhibit the PBS behaviour, it is olmsahat all peers will be grouped in a single swarm
which is selected by the publisher at start. Gnog@ll the peers in a single swarm, the pick bigges
swarm algorithm achieves to maximize the downloadgomance. On the contrary the load balancing
and resilience properties are sacrificed.

Upon failure of the biggest swarm, all peers angeeted to migrate to another swarm which is empty
at that time. The first peer that detects the faificks another swarm with the deterministic appho

20

The deterministic approach is favoured to avoithades such as peers joining to different swarms at
the same time even though it has a low probabifig/soon as a single peer joins a swarm, which is
enough to make it the biggest, remaining peersjuiifi the same swarm with PBS algorithm. This
approach is similar to back-up trackers.

When considered for a single content the load loatgrproperty is totally diminished as all overhead
is loaded on a single tracker. However lookinghat bigger picture with multiple contents, the load
will be fairly distributed among trackers since tants will be associated with different trackers.

When compared with the vanilla behaviour, the omigrease in communication overhead is the
tracker scrapes. The load increase on each traxkee scrape per peer which is reasonable.

It is obvious that using pick biggest algorithme tBitTorrent performance can be maximized.
However use of PBS does not ensure system aviyadoid load balancing among trackers.

3.1.3. Random Peer Migration

The random peer migration protocol achieves mixamgong swarms by means of the peers that
migrate between swarms. According to the protoaiameters some share of the peers migrate
between swarms at random. Upon migration, theiagipeer distributes the contact information of
peers in the previous swarm to the peers in thdynarsived swarm over the peer exchange protocol.
The peer migration between swarms is a simple,chetan effective way of swarm mixing.

The RPM protocol is an extension of the vanilla éebur. Different from vanilla, peers decide
whether to migrate or not periodically. Upon dovwadg or uploadingl/(B(|R| — 1)) portion of

the whole content the peer performs probabilitycghfer migration wherd represents the migration
willingness of peers. For instance consideringreetd with 2 swarms anl value set to 2, peers will
perform migration check upon transferring, sumatélt upload and download, half of the content. If
upload and download rates of peers are assumes éguml, the probability check will be performed
approximately 3-4 times before completing downlo&tis approach removes the dependency of
migration frequency from content size. Increasfhglecreases the portion size thus increases the
frequency of probability checks for migration, dagspeers to migrate more often.

Upon transferring data with size of the determipedion, a peer decides to migrate to another swarm
with probability 1/x,. wherer represents the current swarm thwss the number of peers in current
swarm. The peers migrate at a similar rate for wadege of swarm sizes by the protocol design thus
making the protocol overhead independent of thersvgize.

If the peer decides to migrate, another trackes picked uniformly random from the set of remagi
trackers, or in other words from the set of alckexs except. The tracken’ is scraped to avoid
migrating to empty swarms. {f is empty the migration is cancelled otherwise peer migrates to
swarmr’. The migration process is simple such as unregigtérom tracker and registering to'.

While migrating from swarnt to r’, the peer’'s connection list is filled with addresof peers in
swarmr. Upon registering to trackef, a set of peers in swarmis also obtained. Knowing peers
from different swarm, the migrating peer can mixasws through peer exchanges. With a slight
modification on existing PEX protocol, the migratipeer may either decide to introduce peers from
previous swarm to the peers in the new swarm @ w&sa. It is also possible to leave the direabdion
exchanges random. The improved PEX protocol thawiges control on the direction of the
information flow will be discussed in Section 3.2.

21

The connection list size or the number of peer$ ¢hanigrating peer carries representedpbys
another important property that affects the efficie of mixing. As it is obvious transferring more
peers per migration or increasipgincreases the mixing efficiency of the protocol.

» Protocol Overhead The only overhead increase caused by RPM is whenspdecide to
migrate. For each migration, a peer performs akémacscrape and two announces for
unregistering and registering. The increase in lee@d is positively correlated with the
migration frequency therefore directly proportiortal(|R| —1). As the load increases
linearly with the willingness parameter it should tetermined suitably to avoid excessive
overhead while achieving good mixing.

Assuming that the performances of different swamams equivalent, peers will perform
migration checks with same frequency as they wéhsfer the defined amount of data at
similar durations. Having the same willingness peeter, the outgoing number of peers from
each swarm will be the same on long time averagenigsation checks are performed at
similar rate. It should be re-stated that the phdlg check for migration makes the protocol
independent from the swarm sizes. As the seledi@warm to migrate is uniformly random,
the outgoing peers will be distributed fairly teetbwarms. Since each swarm has the same
number of outgoing peers distributed equally oreaththe number of outgoing and incoming
peers of each swarm will be equivalent. Consequentke can observe that RPM protocol
does not cause a load imbalance on existing swlantnsimply achieves mixing.

Even though mixing the swarms through peer mignatiseems a trivial solution, the protocol rules
should be defined suitably to be able to apply arious torrents with different parameters such as
swarm size or file size and under changing swamaudycs.

The RPM algorithm is compatible with existing BitTfent protocol and it can simply be disabled by
setting willingness parameter to O if the clierdasates with private trackers.

3.1.4. Random Multi Tracking

The random multi tracking protocol achieves mixarmgong swarms by associating some peers with
more than one tracker upon arrival. According @ photocol parameters some share of the peers join
several swarms at random upon arrival and performmamong swarms through peer exchanges by
sending contact information of peers in a swaritihépeers in other swarms.

Alternatively if all peers associate with all track the protocol performance can be maximized while
preserving the resilience property. However the tioeed aggressive approach causes the overall
tracker load to increase proportionalxte (|[R| — 1). Therefore the number of multi-tracking peers
should be suitably determined such that the mikigigveen swarms is achieved at a low overhead.

The RMT protocol works as follows. Upon joiningarent, the peer scrapes all available trackers to
determine the number of peers in the torrent, sspred with variable. Considering the special case
of publisher, where = 0, the peer can either join one of the trackeramatlom or register to all. If the
torrent is not empty so that> 0, the peer can decide to associate Wwittandomly picked trackers

from availablen trackers with a probability oﬁin(l,g). Otherwise a single tracker is selected at

random which is the same as vanilla behaviour. grb&col parametds is now used to represent the
willingness of peers to multi-track, similar to magjon willingness of RPM protocol. The probability
check generates close number of multi-tracking pémrwide range of swarm sizes thus making the
protocol overhead independent from the swarm size.

Upon deciding for multi-tracking, the number of peeequested from trackers is dividedkogo that
equal number of peers is obtained from each swarm swulti-tracking peer connects pgk peers

22

from each swarm on the average wheis the size of connection list. Knowing peers frdifferent
swarms, the multi-tracking peer can mix swarms ubhopeer exchanges by introducing peers of
different swarms to each other. The connectionsiizt,p, obviously affects the efficiency of mixing
as exchanged addresses increase proportionafly by

* Protocol OverheadThe overhead increase caused by RMT is due tedfapes performed by
each peer on start-up and the overhead caused lbytracking peers. When the system is in
steady state, the average number of multi-tracgi®ys in the system is expected tofg¢k.
Each multi-tracking peer associates wittnackers therefore the load caused by multi-tiragki
peers is directly proportional tg8. The protocol overhead can be adjusted by theéngiiess
parameter however it should be determined suitablgtvoid excessive load increase as the
overhead increases linearly by willingness. It $tidae noted that the increase in overhead is
fairly distributed among trackers as multi-trackjpeers pickk trackers at uniformly random.

Even though mixing the swarms through associatiegrg with multiple swarms seems a trivial
solution, the protocol rules should be definedahlit so that excessive increase in communication
overhead can be avoided while good mixing is atithieved. In addition to that the protocol can be
applied to wide range of torrents with differentgaeters such as torrent size or number of swarms.

The RMT algorithm is also compatible with currentT®rrent protocol as vanilla behaviour can be
obtained by setting willingness to 0 when necesshryaddition to that a peer can be forced to
associate with trackers through parameter settings for experiaterse.

3.1.4.1. Deciding a Suitable k value for RMT

As the overhead is independentkpthe protocol can be evaluated to determine thienapvalue ofk
that provides the maximum mixing while keeping t®tocol overhead constant. Considering a
torrent withn swarms, the mixing contribution of multi-trackipgers can be calculated as follows.
Assuming that a peer is allowed to connect up fpeers, it is known that a multi-tracking peer
maintains information op/k peers per each swarm. Letepresent the maximum number of peer
exchange candidates per interval then a multi-tngcpeer exchanges contacts withk peers from
each swarm as the candidates are picked at randomtlie set of available peers. Then the amount of
external contact information injected to a singleasn by a single multi-tracking peer can be
calculated as:

¢ (k=Dp o)

k k
as the contacts known from remainifig— 1) swarms are sent &yk peers in the particular swarm.
Since a multi-tracking peer connects koswarms, the total amount of inter-swarm informatio
transferred by a single multi-tracking peer woutd b

c (k—1)p

Kk
As it is obvious changinlg also changes the overhead caused by a singletnadlting peer, however
the protocol keeps the overhead constant by vatfieghumber of peers that apply multi-tracking. If
the overhead of a vanilla peer associating witingle tracker is assumed as 1 unit of load, a multi
tracking peer that connectsrdrackers generatesunits of tracker load and consequently connecting
to k trackers causes units of load. Therefore for evekgn multi-tracking peer, one can haugk
peers that connect totrackers. For instance in a torrent with 3 swamiing the swarms using 3
peers that associate with 2 trackers causes the emarhead with 2 peers associating with 3 of the

k (2)

23

trackers. Therefore the total amount of inter-swarfarmation transfer under the same load can be
calculated as:

c (k—=Dp n
— % ——— %

P)
Simplifying the equation (3) the protocol perforroarcan be evaluated as below:
k—1
cxprnx % 4)

The equation (4) shows that the protocol perforreaimcreases ak value is lowered therefore
selectingk as 2 is optimal for mixing.

k=2 peer c/2 pex candidates /2 pex candidates k=2 peer
p/2 p/2
peers per peers per
swarm Swarm

c/3 pex
i candidates

k=3 peers

/2 pex candidates c/2 pex candidates

¢/3 pex pr
candidates .~ p/3 ., /3 pex
REeks P . candidates
o swarm e,

c/2 pex candidates /2 pex candidates

P2
peers per
SWarm

Figure 6: Multi-tracking peersin a torrent with 3 swarms

Figure 6 illustrates the developed model on a tdrvéth 3 swarms. Each edge between peers and
swarms represents an inter-swarm information exgalRork=2 peers each edge carrgesg contact

. 2
addresses whereas for3 the amount |§ * ?p as information from 2 swarms are injected to glsin

swarm. It can be noticed that whiex? the number of multi-tracking peers is 3 howedeek=3 only 2
peers can be used to preserve the overall load.

The model discussed above is based on two assuraptio

24

i. The connection list size is limited so that inciegk decreases the number of peers known
per swarm.

ii. The maximum number of candidates for peer exchaagkmited so that increasing
decreases the spread speed of peer exchange per. swa

The assumptions above can be relaxed as follows:

i. If pis much greater than torrent spze> torrent size, changingk would not affect the
number of contact addresses known per swarm. Tdrerefqual number of peers can be
known from each swarm independenkof

il. If ¢ is much greater than torrent size> torrent size, changingk would not affect the
number of peer exchange candidates selected pemswgwever the maximum number of
PEX candidates is still bounded pyas peer exchange is only performed between agtivel
connected peers. On the other hand consideringedp®nential dissemination of PEX
messages, changing may not dramatically harm the spread speed of itber-swarm
information for small torrents. Algebraically, tispread speed of the newly injected contact
information can be approximated %13 ct wherei represents the number of PEX iterations, if

redundancy in peer exchanges are ignored optimilsticAccording to equation for small
torrents thek parameter can be avoided as all peers in swarhreuiéive the new contacts
after a small number of iterations. Therefore depanon the size of the torrent, the effect of
k on the speed of information spreading can bevetie

Relaxation of the assumptions above, the resulti@hpby the model can change. Considering
assumptioni, the number of peers known per swarm should bexgdth top instead op/k. If
assumptioni is relaxed, the amount of inter-swarm informatiojected to each swarm should be
calculated with factor instead ot /k. Relaxing one of the assumptions above the equbBgoomes:

k—1
c*p*n*(") (5)

On contrary with equation (4), equation (5) incemawithk therefore setting to n maximum mixing
can be achieved.

The information derived from the model can be sunied as follows. For small torrents or highk
should be maximized hence should be set ©On the contrary for large torrents or Ipwsettingk to
2 might be the right choice.

3.2. Improved PEX Protocol

The swarm management protocols such as Random Miigeation (RPM) and Random Multi
Tracking (RMT) leverage the peer exchange prottzalistribute peers’ contact information among
different swarms. However the plain peer exchamgéopol fails to fully utilize the mixing efficierc
when multiple swarms exist for a single torrentcsi the protocol does not take swarm memberships
into account while exchanging peers. In order twdase connectivity among multiple swarms when
combined with the algorithms, an improved peer erge protocol that considers swarm membership
during peer exchange has been developed. The iegrBEX protocol is given the name LT_PEX
where the extension name is prefixed by abbreviatib libTorrent client to prevent collisions in
extension names as mentioned in protocol spedditat

When multiple swarms exist, a peer discovers pé&ers own swarm via tracker queries. When
algorithms that pioneer interaction among disjewarms are used, the peers find the opportunity to
meet peers from other swarms, nametyernal peersin order to make it possible for algorithms to

25

distribute information between different swarmse theer exchange protocol should be capable of
differentiating peers according to their swarms aodtrolling the direction of information flow
among swarms. In addition to that it is even bdtieordinary peers to prioritize discovery of axia
peers during peer exchange since peers in samensvear already be discovered via tracker queries
meanwhile. The improved PEX protocol, taking adagetof swarm membership awareness, provides
a framework to swarm management algorithms to lsawérol over the peer exchange and effectively
mix the peer information between disjoint swarms.

In order to gain awareness of swarm membershipexbension protocol handshake has been slightly
modified such that the peers notify each other aimiswarms they belong to during the handshake.
In current implementation of LT_PEX, the announdéswf the trackers are used to uniquely identify
the swarms. A new item, with key namedarmid has been added to the extension handshake
message that transfers the swarm information. Aamgke extension protocol handshake message
carrying swarm information between peers can berwks inFigure 7.

Extension Handshake
m Dictionary
UT_PEX 1
LT_PEX 2
p 50529
% “libTorrent-0.12.6”
swarmid| “http://10.254.1.1:6969/announce”

Figure 7: An example of extension protocol handshake message carrying swarm information

Considering the handshake message above, the @eding the message supports two extensions
which are UT_PEX and LT_PEX. The key p is usedefwresent the local TCP listen port of the peer.
The key v is an alternative way to transfer cliestne and version. The swarm identifier is transférr
under the swarmid key. It should be noted thatatiditional keys such as p, v and swarmid are
optional and may not be supported hence discargedibe clients.

The swarm membership discovery is not only limiteith the extension protocol handshake since
some clients may not support the new protocol. ddeeloped client leverages two additional ways to
discover the swarm that peers belong to:

» Tracker queriesThe tracker queries can be used as an alterredivee for gathering swarm
membership information without showing any extri@if The peer set sent in a tracker reply
is simply marked with the tracker’s announce urresswarm of the peers is apparent.

» Improved peer exchange messagks another source of peer discovery, the peehange
can additionally transfer swarm membership inforamat The clients supporting LT_PEX
protocol classify the peers according to their smegaduring exchange. Thus the receiving end
of the peer exchange gets the peer set taggedheithswarm information.

An additional property of methods mentioned abavéhe swarm information of the peer is learned
without initiating a connection thus facilitatiniget client to develop strategies while selectinger to
connect from the list of available peers.

26

In cases where the peer's swarm cannot be leapegls swarm field is marked asmknown
temporarily. If the swarm information of the pesrcollected with the additional ways, theknown
field is updated. However if the swarm informatioiha peer cannot be gathered by any means, the
unknown peer is behaved as a member of swarm namiatbwn The unknownswarm is neither
different from nor the same with any given swarrar Fstance, if the peers from own swarm are
requested theinknownpeers are behaved the same with the external.piéezsternal peers are
requested, the unknown peers are considered aseneoftown swarm.

Table3: LT_PEX protocol

upon event { Receive extension protocol handshake msg fromplswarm_id) do
p.swarm_id = msg.swarm_id

end event

upon event { Init) do
peer_exchange_interval 2mins
max_pex_candidates8
max_pex_message_siz00
peer_exchange_direction = either prefer_own_swarravmid_own_swarm or random
for all p Lcurrent_connection_lisfio
p.peer_transfer_history = {p}
end for

end event

upon event { Tick | every peer_exchange_intervaldo

if prefer_own_swarnthen

try picking all pex candidates (8) (It_pex enabled)random from current
connection list but prioritizing the peers from oswarm

elseif avoid_own_swarrthen

try picking all pex candidates (8) (It_pex enabled)random from current
connection list but prioritizing the external peépgers from other swarms)

end if

for all p Uselected_pex_candidatde
possible_peers_to_send = current_connection_liz{peer_transfer_history
pick peers from possible_peers_to_send but fictipg peers external to p
p.peer_transfer_history = p.peer_transfer_histdry picked_peers
bencode picked_peers as p.lt_pex_message
mark p for sending pex message by the next outgoassage

end for

end event

27

upon event (Sending any message to peer go
if p is marked for sending pex messtuy
send p.lt_pex_message to peer p
end if

end event

upon event { Receive pex message from pe¢agded, removed do

p.peer_transfer_history = p.peer_transfer_histdry added
insert added peers to available peer buffer //pddrs from buffer at random if peers needed

end event

Table3: LT_PEX protocol

Different from the UT_PEX protocol, a new parametatled peer_exchange_directiohas been
added. While selecting candidates for peer exchamgeeer may prefer peers from own swarm or
external peers that can be set by parameter vgloefer own_swarmand avoid_own_swarm
respectively. If no value is assigned for exchadigection the candidate selection is pure random.

In the beginning of every peer exchange interva, REX candidates are picked randomly from the set
of peers if specified by the peer_exchange_ diractiarameter. If the preferred set does not have
enough members to fulfil available slots for peechange, remaining candidates are picked from the
whole connection list. Since PEX candidates ardacepl at every interval the spread speed and
efficiency of the protocol is expected to be higtlean UT_PEX protocol. The protocol limits the
number of outgoing PEX messages but not the incpnmessages. Fortunately the number of
incoming messages per interval is equal to the muraboutgoing messages on the average since the
candidate selections are uniformly random. Possibldions such as disconnecting peers that cause
excessive peer exchange traffic can be consideradaid malicious peers.

In order to avoid sending redundant addressestoahdidates, a transfer history is kept for eadr.p
The addresses that are sent to or received froeeagre inserted to the transfer history of thatr pe
Before sending an exchange message to a partipedar the transfer history is subtracted from the
current connection list. Firstly the peers that exéernal to the receiving peer are picked randomly
from the remaining set and inserted into messdgavdilable space is left, contacts from the same
swarm are appended. In other words the selectiboygor which peers to send in a PEX message is
prioritizing the peers that are in different swanwith the remote end. This selection policy incesas
the connectivity among different swarms. As merdgibmbove, the PEX messages are also used for
transferring swarm membership information therefttre peers are sent in groups by their swarm
identifiers. It should be highlighted that PEX negss sent to each peer are generated separately by
considering swarm membership of each candidateitively sending different contacts to each
candidate increases the entropy of the system elpthg faster dissemination of contacts.

As mentioned earlier if the size of the connectiish goes above a certain limit peer exchange
protocol is disabled to prevent unnecessary traffowvever different from UT_PEX, LT_PEX client
only stops receiving messages but continues dissgimg peer addresses even after the protocol is
disabled. The idea behind this modification is hejpother peers altruistically even though the peer
itself does not need to discover any other peeppakently this modification increases the efficignc
of the protocol but also causes extra communicat@rhead.

28

When a peer receives a peer exchange messagegctieed peers undaddedkey are inserted to the
buffer of available peers. Also received peersaatged to the transfer history of the peer to avoid
redundancy. Different from UT_PEX messages, an [HX Ihessage contains swarm identifier and
peer set pairs under the added key. The peer etnaoded as strings in compact form. Optionally
the peers can append their own swarm informatiothéoPEX message withics (update current
swarm)key in case any updates are necessary.

Improved PEX Message

added Dictionary

“http://10.254.1.2:7070/announcg0.0.0.1:50001
10.0.0.2:50002

10.0.0.3:50003

“http://10.254.1.1:6969/announc¢™0.0.1.10:50260
10.0.1.11:50261

10.0.1.14:50264

ucs “http://10.254.1.1:6969/announce”

Figure 8: An example of improved PEX message

An example of improved peer exchange message cardmined irFigure 8 Theucskey carries the
swarm identifier of the message sending peer. Eng peers are grouped by their swarm identifiers
and peers that are external to the receiving gielg@oritized. The set of peers are sent as a aocmp
string where each address and port pair is repiexdéry 6 bytes.

In order to efficiently use in coordination withgatithms like Random Peer Migration and Random
Multi Tracking, the peer exchange direction istegpick candidates from own swarm. The policy for
selecting peers to include in the PEX message a@a hegligible effect with the current parameters
since the size of a PEX message is much higherttigagize of connection list. However the policies
for candidate selection are still important by ligating better mixing of disjoint swarms.

29

4. FRAMEWORK IMPLEMENTATION

Evaluating BitTorrent performance is hard becatise not easy to perform repeatable large-scale
experiments that can be a representative of rddloBent systems. On the other hand, BitTorrent
simulations may show poor accuracy when compareddbsystems as simulation assumptions may
fail to capture all the protocol details.

This section discusses the design of the framewehlere the controlled content distribution

experiments with BitTorrent are performed on midtipomputers. It contains key modifications on a
BitTorrent client and notable techniques that mégmssible to run experiments that are similar to
real life. This section can be considered as tlagl moap to be followed in order to perform content
distribution experiments with a BitTorrent clierfinally the implementation details of testbed
components are given.

4.1. Selecting BitTorrent Client

In order to make it possible to run many instarafethe BitTorrent client on each computer involved
in the experiments, a light-weight client has tochesen. libTorrent [18], developed by Jari Sundell
is a BitTorrent library written in C++ for *nix faging on high performance and good code. The
library increases performance by transferring dhatectly from file pages to the network stack that
puts the client one step ahead of other implemiensatThe rTorrent client developed on libTorrent
runs on the terminal screen by making use of theses library. When combined with the screen
application in Linux, multiple instances of rTortecan easily be run and controlled on a single
computer while keeping the resource consumptioa egasonable level. Running rTorrent client in
screen application also makes it suitable to peeparipts that remotely controls the client using t
SSH tool. The generic design of rTorrent enablessuto control variety of parameters without the
need for code modification. For instance a userlogrdown torrent statistics (e.g. download time,
average download rate) or modify client behaviaing predefined events by adjusting the option file
of the client. In addition to that, readable soutode and loosely coupled design of libTorrent help
the developers to modify the client behaviour aditwy to their needs with modest amount of effort.

Despite being an appropriate client to be usedoiment distribution experiments, libTorrent and
rTorrent contain some defects and features tha¢ bawe removed to increase the validity of the
experiments. The necessary modifications to use@hbin experiments are as follows:

» The piece selection policy of libTorrent favoursdmwvnload pieces of same rarity sequentially
and randomizes the selection process at 16 piecetheo average. The rationale for this
behaviour is to decrease the cost of /O acceds autessing the disk sequentially. However
it significantly reduces the overall performancdhd system if all participating clients exhibit
the same behaviour; causing the piece diversitghef swarm to be less than expected.
Considering a distribution scenario with a singeds the sequential piece selection policy
causes all participants to request the same piteesame time which fails to utilize upload
bandwidth of peers due to reduced piece diversityliamits the download performance by the
upload bandwidth of the seed. To avoid this perforce degradation the selection process is
set to be randomized at every new piece, consdgugateasing the entropy of pieces in the
swarm.

* In default implementation of libTorrent some of thetocol messages, such HAVE and
PEX messages, are piggybacked to the data transfesagess in order to reduce the
communication overheaddAVE and PEX messages never force the client to send a new
packet but instead they are delayed until a dataster or heartbeat message is sent. When a

30

pair of peers that do not have active transfer wihh other is considered AVE messages
will be delayed until the next heartbeat messagietwWill cause the peers to be unaware of
the newly available pieces possessed by its neighfioo approximately 2 minutes. The effect
of this blackout period among peers is negligibleewthe content download time is around an
hour; however for an experiment in which the dowadldime is around 10-20 minutes, this
effect would certainly harm the system performasioee the peers that are not interested in
each other will not be able to share the new pidtegdownload with each other for around 2
minutes, which is a considerable amount of timembempared to the total download time.
In order to overcome this problerAVE and PEX messages are forced to be sent if the
connection between two peers is idle. Otherwisegrwthere is an active transfer between
peers, these messages are anyhow piggybacked tpidbe messages. This modification
preventsHAVE messages from being delayed, thus the piece hil#ylaof the system
increases as all the peers are updated with frédstmation about the pieces available in their
neighbourhood. The modification yields an improvemef the system throughput. The
instantaneous transfer 6fEX messages increases the spread speed and efficértbge
protocol intuitively. Even though this modificatiamauses an increase in the communication
overhead of the whole system, it is necessary amlites the effects of swarm size and PEX
protocol more visible for the downscaled experirment

The Extension Protocol [19] in rTorrent containdedect such that a peer can be considered as
supporting an extension although it does not algtulal Extension Protocol, each extension is
assigned an extension number where a value ofr@genpts that the protocol is disabled/not
supported by the client. However libTorrent codésfe handle the case where the number of
an extension is set to 0, assuming the client ppau the extension without checking the
assigned number. The client has been modified tefuly handle the extension numbers
where the extensions having an extension numbedo seaire considered as not supporting or
currently disabled the extension. The defect wassiog performance degradation in peer
exchange protocol (PEX), which is built on the Esien Protocol, by decreasing the chances
of peers exchanging contact information with eatttelo The peer exchange only takes place
between two peers both having the protocol enalledever accidentally reserving slots for
peers that do not support/disabled the protocoredses the efficiency by wasting the
available slots intuitively. With the current fithe PEX candidates are selected only from the
peers that surely have their PEX protocol enabled.

The libTorrent client removes a piece from its iiegt list as soon as a block of the piece is
requested for download. However this early remmfad piece from the interest list can be
problematic if the block transfer is cancelled doeleparture of the remote peer. During the
experiments, some peers have been noticed to gt with having 99% of the content and
only missing a single piece to complete the dowshioBhe problem of getting stuck was
caused by the wrong policy of the libTorrent, whangiece was removed from the interest list
without completely being received. When a blocksfar is cancelled, the libTorrent client
fails to re-request it from other peers, despiténmit available in its neighbourhood, as the
piece is no more marked as interested. The pe#tisgystuck at 99% can be considered as an
altruistic seed remaining in the system after catimh, making it harder to define a fixed
seed/leecher ratio during the experiment thus ngudeviations from the expected results. In
order to overcome this problem, firstly the intémesnoval policy has been changed such that
a piece is considered as not needed if and ordyl the blocks of the particular piece have
been completely transferred. Secondly, if a tranisfeancelled the piece is immediately re-
requested if it is available in the neighbourhotidshould be noted that a block is still
requested only from a single peer at a time exitepénd game mode.

31

Applying the modifications above, rTorrent becomgssuitable candidate to be used in the
experiments. Considering the low resource consumgif the client, an average computer in recent
days can run approximately hundred clients conatlgrevithout observing dramatic performance

loss; however the number of clients running in pelratill affects the overall system performance.

Besides libTorrent, Mainline and Transmission dbemvere also considered appropriate for the
experiments. Unfortunately the Mainline client, wlnis written in Python, has been eliminated due to
seldom failures on tracker connection. Despite dpedm appropriate client for the experiments,
Transmission is selected as the backup nhominetoduevious experience on libTorrent.

4.2. Selecting BitTorrent Tracker

In order to perform BitTorrent experiments, a Bitfemt tracker should be deployed on the

framework. As the tracker behaviour is not the n@incern of this thesis, any application performing
the default tasks of a BitTorrent tracker can beduspentracker [23], developed by Dirk Engling,

which is an open source and free BitTorrent trackeised during the experiments. The tracker rélate
parameters such as announce interval and numbmzen$ in a tracker reply can simply be adjusted
through the easy to use configuration file of opsrker.

4.3. Experimental Setup

In order to evaluate the algorithms described ia tork, a private testbed for performing content
distribution experiments has been developed. Tiperaxents could also be performed by connecting
a public torrent with a single peer; however it Wboot be possible to collect measurements about
overall performance of the system through the simpgler. Besides allowing extensive measurements
per peer and overall system, the private testbemViges a fully controlled environment for
experimentation thus facilitating evaluation of #ystem under artificial scenarios.

The rest of this section is organized as followisstFimportant properties of the framework that
enable faster and reliable experiments are merdidoater the boundaries on system resources and
possible methods to relieve them are discussed.

4.3.1. Running Experiments in Steady State

In steady state a system has numerous propertiearth unchanging in time. For swarming systems,
steady state can refer to the state where thentosize doesn’t change radically with the evolving
time. While peers are arriving and departing, theber of leechers and seeds hence the ratio of seed
and leechers (S/L ratio) remain constant if therswig in steady state. Hence running experiments in
steady state provides the opportunity predefinesiierm size and S/L ratio.

The Little’s Law can be applied to the swarmingteyss if they are in steady state. According to the
theorem, the long-term average number of leechees stable swarn(t) is equal to the long-term
average peer arrival ratg, multiplied by the long-term average of downloasnpletion time, T, or
expressing algebraically:

I(t)= AT (D

The theorem can also be applied to the seedezechérs do not leave the swarm without completely
receiving the file and stay for some time altraisliy after download completion. Left) to represent
seeders in the swarm andor average seeding time of seeds then the belpatmn also holds.

s(t) = AA 2)

32

In order to estimate the download completion tiethe average download rate of peers should be
calculated. For the experiments the download ratélse peers are set as unlimited thus the system i
only bounded by the available upload bandwidth. |Le¢present the uploading bandwidth of a peer
then the maximum value of average download rapefsd, can be calculated as:

WX

d=" 3)

Given file size and upload rate, the average dosthimompletion time, T, can be calculateddazan
be calculated. The estimation gives the lower bdiandhe download time since it assumes that all
peers fully utilize their upload bandwidths.

Before starting an experiment the number of leexheerd seeders, consequently S/L ratio, are
determined by the users. In addition to that if tpdoad rate of peers are given, the download rate
hence average download time of peers can be estimaing (3). Finally the required parameter for
the experiments, mean arrival rate of péermsan be found using (1). The average holding tifnde
seeds), is determined according to total download time dasired S/L ratio.

As the parameters are determined the initializastmp bootstraps the swarm from the steady state.
The peers that start up the swarm, namely thelmigers, are started as seeds or leechers aatodin
the given S/L ratio. In addition to that the inlitieechers start as some share of the contentdgirea
downloaded. The fraction of content that each leegtill start with is generated uniformly random.
Also the pieces to be possessed by each peerckedpiiniformly. Therefore the leechers start with
possessing half of the content on average and i in swarm are distributed uniformly thus
equally available. It should be highlighted thatsiteady state of a BitTorrent swarm, the overall
average content availability of peers should beelm 50% and the availability of pieces should be
equal as aimed by the rarest-first piece selegasicy.

A remarkable result that can be derived from LH#tleaw is that the peer arrivals are entirely
independent of its distribution but simply meanivar rate is considered. Therefore various arrival
patterns can be used for the experiments as lotigeasiean arrival rate is kept constant. By default
the peer arrivals are generated according to tles®oprocess. However sometimes it can be tough to
find the suitable peer arrival rate that keeps siistem in steady state. In order to find a good
estimation of arrival rate the arrival-per-depagtyrattern has been used. In arrival-per-departure
method, a new peer joins the system only if anofiesr leaves the system thus the swarm size is
always kept constant. It should be noted that atigrarrival-per-departure pattern can only be u$ed
S/L ratio is set to 0 or in other words the leesHernve the swarm as soon as download completes.
However it can be modified to force a seed for depa and start a new peer when a leecher finishes
downloading in order to keep ratio of seeds andheers constant.

According to the results collected with arrivalqumparture pattern, a better estimation for pe@radr
rate can be determined rather than the value eadmlilusing Little's Law. Later the estimated value
can be applied to Poisson process for generatiaggrévals.Figure 9shows the distribution of peer
inter-arrival times when arrival-per-departure eattis used. Fortunately the inter-arrival times ar
distributed exponentially same as the Poisson pedCEhe peer inter-arrival times’ distribution of
swarms with 60 and 150 peers fit well with exporardistribution with mean values 22.3 and 8.75
respectively. The generated values also hold wippheal to Equation (1) if download time is kept
constant.

33

Swarm with 60 peers Swarm with 150 peers

140 220
200
120
1801
100 160 4
140
80
120
100
60
80
40 60
40
20
20
0 0 flein
0 50 100 0 20 40 60
inter-arrival times (s) inter-arrival times (s)

Figure 9: Peer inter-arrival times distribution with arrival-per-departure pattern

Upon download completion the leechers may stahénsivarm to help others if seeding time value is
assigned by the user. The assigned seeding timmedbeayenerated exponentially or with normal
distribution according to the user defined meamnedbr seeding time. In most of the experiments
performed, the peers leave the swarm as soon pedngpletely receive the file, namely selfish peers
are preferred for the sake of simplicity.

34

Swarm with 60 peers
90 \ \

Swarm size

i e -

30 | |
0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Swarm with 150 peers

P I —

180

160

140

Swarm size

120 === == mm e m e -

00 F = = = = == == m e e e o -

Time (s)

Figure 10: Swarm size vs. time plot representing steady state behaviour

Figure 10represents the stability of the swarm size in s@parate experiments with swarm size 60

and 150 with peer arrivals according to Poissorcgss. The swarm sizes never show a dramatic
change during the experiment hence implying thadstestate behaviour of the system. In addition to

that the mean values of swarm sizes are calcute®®.1 and 152.3 for the experiments plotted above
which are very close to the user defined value.

35

Swarm with 60 peers
100 \ \

S el —
(9]
()]
IS
= |
Q
o
Q
o
o |
c
o
a

PO et —

0 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Time (s)
Swarm with 150 peers
100 \ \

S e i s —
Q
D
T
=B e, .~ -
Q
o
Q
o
o |
c
o
a

PO i il —

1 1 1 1

| |
0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Figure 11: Done percentage vs. time representing steady state behaviour

Figure 11shows the average of download completion percestag a function of time. As can be
observed in the figure, the overall average contailability flickers between 40% and 60%;
representing the steady state characteristicseasythtem.

4.3.2. Downscaling Experiments

In recent days BitTorrent is mostly used for dovalimg files with size 600MB or more such as

movies or TV episodes. Furthermore high definitiodeo formats that gained popularity recently

increase the size of the downloaded contents. DRidpgron the available bandwidth of users and
swarm dynamics, the download completion time caly #i@m 10 minutes to 2 hours where with a

rough estimation can be rounded as an hour onvitrage. Considering the default BitTorrent settings
used by most of the clients, the peer discovepei$ormed by tracker queries every 30 minutes and
peer exchanges every 2 minutes.

Even though achieving a highly realistic test emwvinent is aimed, it is not feasible to perform

experiments with 600MB file downloaded in an hdtirst of all, the high content size dramatically

decreases the number of clients that can be rumtsineously on a single machine. In addition ta tha

the long download time causes a single experimernake around 5 hours. Since the experiments
contain stochastic behaviour such as random pegalar they need to be repeated multiple times to
increase the confidence of the collected statisticgach experiment is repeated 10 times then
experiments with single parameter change takesndr60 hours which is not feasible. Therefore the
experiments needed to be downscaled while preggtimimportant properties of the system.

36

To increase the number of peers that can be rum gingle machine the content size has been set to
50MB. The download time has been decreased to I@i20tes which is considerably long enough to
observe swarm dynamics and feasible even the enpets are repeated. In order to preserve the ratio
between sources of peer discovery, tracker quéeyvials are set to 1 minute and peer exchanges are
done every 30 seconds. To be able to clearly obgbey effects of peer exchange, the tracker replies
can be limited to contain only half number of peefsthe connection list size. With the current
settings a peer queries the tracker approximatiynies during its lifetime but actually only thest
query is important since peer exchange succesdfuliys the remaining slots until the following
tracker query in most of the scenarios.

4.3.3. Providing Global View to Initial Seed

Despite having very low probability it is still pgible to form a cluster in which none of the pears
this subset have the initial seed in their conoeclist. Such a scenario can end up with a group of
peers getting stuck due to unavailability of sorez@s. In order to avoid such scenarios the pudalish
is set to stay forever in the torrent with a glokabwledge of the swarm.

Different from other peers the publisher does ramehlimitations on size of the connection list reenc
is allowed to connect to as many peers as possibbddition to that the tracker behaviour is digh
modified so that the tracker replies always conthi address of publishers on top of the list. The
publisher can be identified in different ways sashassuming the first peer connecting to tracker as
the publisher or reserving a well-known IP addfesshe publisher. Since the publisher is allowed t
accept any incoming connection every peer is gteeano have at least one source for all the pieces

Despite not being able to serve all peers at theesame, the publisher guarantees aliveness of the
swarm. If a peer fails to get a piece from alltefrieighbours the piece will eventually be leecinech
the publisher upon an optimistic unchoke.

With having global knowledge of the torrent, thévlisher offers a chance to observe swarm dynamics
at run time. Depending on the properties providgthle client’s user interface, users can gatheclqui
insight about the experiment only by the informatshown by the publisher. The evolvement of some
torrent properties can easily be obtained by logighublisher information with regular intervals.
However current implementation of the frameworkgasses log information of each peer separately
after the experiment finishes. To obtain a globabwledge the data obtained from all peers are
combined and processed. Despite being costly tajsof information gathering is preferred to obtain
more reliable test results.

4.3.4. Determining Warm-up Period and Experiment Length

The reliable output data analysis requires cometermination of warm-up period and measurement
length. The warm up period is the time intervalrgpetil the system achieves its steady state.gcorr
determination of warm up period prevents endingwigh results biased by initial conditions. The
challenge in identifying a suitable warm up pensdhat it should be long enough to avoid effedts o
initial settings yet not so long as to avoid exbeswaste of collected data.

The longer measurement of experiments helps regutia effects of stochastic behaviour hence
increases the confidence of the results. Besideger runs help removing the effects of initial
settings since the weight of the steady state asg® as the experiment continues. However a siitabl
length has to be determined to perform the exparisi@ a reasonable amount of time.

As mentioned above current testbed bootstrap tipergrents from the steady state. Therefore no
initial data has to be ignored to avoid effectdrafial settings. However since it is not possibde

37

precisely measure the properties of initial pettrs,peers that start with some share of the comatent
already downloaded, the data collection starts afténitial peers leave the system. In other veottte
system is warmed up until the founders of the swiaawe. It should be noted that the number of peers
that start the swarm tends to remain stable asybtem is in steady state.

In order to perform reliable analysis it is impamtteo collect sufficient data within the shortest
possible time. To determine the suitable measurehlaegth some experiments are performed for very
long duration and the point where experiments cagevés selected as the termination time. The
number of peers departing from the swarm is sedegsetime metric to have a common unit with the
warm-up period. To define a generic metric for eikpents with varying swarm sizes, the time unit is
normalized with the swarm size so the time is messas ratio of departing peers to the swarm size.

1400

1350

©)

1300

ime

1250

Download t

1200 —— 60 peers

—— 150 peers
I

1150 L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

of peers departed / swarm size

1400

1350 - '

©)

ime

1300

1250

Download t

1200 | —— 60 peers

—— 150 peers
L

1150 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

of peers departed / swarm size

Figure 12: Two long experiments for measurement length determination

Figure 12represents the results of experiments performelgtermine the suitable experiment length.
Two experiments with swarm sizes of 60 and 1509agez run until 10 times the swarm size, 600 and
1500 respectively, peers depart from the swarmh line represents different runs of the experiments
As can be seen from the figure, the download tinerage converges after 3 times the swarm size
peers depart. Therefore the experiments are rihutimes swarm size peers leave the system after
the warm up period. For more reliability the expents can be run until 4 swarms depart however the
results of them would not differ.

4.3.5. Emulating Real Network Characteristics

In order to evaluate the BitTorrent system withréalistic environment, a network emulator named
ModelNet [21] has been deployed on the computetseMprovided a network topology and routing

information, ModelNet enables testing of distrililitgystems across various networking scenarios.
Within a private network ModelNet can be used teate a high number of virtual nodes to emulate
large-scaled networks with realistic charactersstifthe emulator can introduce network latency

38

between two virtual nodes running on the same macbi machines in the same local area network
(LAN). Consequently, the BitTorrent behaviour orglrscale systems can simply be evaluated under
realistic network characteristics in a small preveAN by running a single peer on each virtual node

On the contrary in their work [22], the authors m@a the impact of network latency on download
completion time in BitTorrent. According to theindings the network latency has a marginal effect
on the download time, which is less than 15%; heheenecessity of network emulation in a testbed
can be relieved.

The developed testbed allows enabling and disaltiegietwork emulation by setting a parameter in
the configuration file. According to experiments dieveloped environment, the results with and
without network emulation did not seem to differ ghuas mentioned in [22]. In addition to that
current work mainly focuses on increasing connégti@among swarms rather than throughput
measurements. Therefore ModelNet emulator has $eteas disabled during the rest of this work.

4.3.6. Boundaries on System Resources

The developed testbed aims to allow running expamtsiwith as many peers as possible however it is
bounded with system resources. The testbed isrtlyr@eployed on a dedicated platform consisting
of 6 computers in which one of them is reservethasnmaster computer to control the execution of the
experiments and the rest are used as slaves fomguBitTorrent clients. The master computer has
qguad-core Intel Xeon 2.83GHz CPU and 4GB memorye 3lave machines are equipped with dual-
core Intel Xeon 3.40 GHz CPU and 8GB memory. Thepmaers are connected to each other through
100Mbit/s Fast Ethernet. The computers are usedrdoning a single experiment at a time to
maximize the scale of the experiments.

The boundaries limiting the maximum number of dligrstances that can be used in the experiments
are discussed as follows. Also some key modificatithat help relieving these limitations are
mentioned.

* The delays caused by hard disk 1/O waits increagseenumber of clients running on a single
machine increases. To avoid performance degradatiento disk delays with increasing
number of clients, a partition has been mountethéomemory for client use. Although this
approach removes the boundary caused by excesskaatess delays, the maximum number
of clients gets limited by the available memory evhiis smaller than the disk drive. To
efficiently use the limited RAM disk, the space di®y a client is de-allocated upon departure
hence only the number of clients that can be ramulaneously is bounded. The current
settings reserve 4GB of available 8GB memory fa&r BAM disk hence 60 clients can
simultaneously download a content of 50MB withouailable space or /O boundaries. A
space of 1GB is reserved for the proper functiowithe framework.

» The available network bandwidth is another resothiae limits the number of clients running
on machines. In order to determine limitations adtwork resources, the bandwidth
requirement of the experiments are increased gligdadher by varying number of clients or
the rate limitations, and the network utilizatiohcomputers are monitored by tifeop tool.
The utilization measured by thitop tool increased as expected until the bandwidth
requirement reached around 30Mbit/s. The experirparameters are set accordingly so that
the aggregated upload capacity per machine neves geyond 30Mbit/s, for instance 60
clients per machine with 40KB/s rate limitation 8@ clients per machine with 80KB/s
requiring 19.2Mbit/s per machine, to ensure thhbfthe clients can achieve the maximum
rates they are assigned without running out of lalpki bandwidth. For experiments that
mainly aim to measure the relationship among swarims required bandwidth can be

39

doubled, 60 clients with 80KB/s rate limit requgif8.4Mbit/s at total, to half the duration of
the experiments without badly harming the downlpadormance.

» Basically the address resolution protocol (ARPused for determining a network host’s
hardware address when only its IP address is kn@MRP is most frequently used for
translating IPv4 addresses into Ethernet MAC ada®therefore it is crucial for transmission
in local area networks. By default in Linux kermalplementations the ARP cache is limited
to store 512 entries. However for networks with entlhan 512 nodes it is mandatory to
increase the kernel’s internal ARP cache size todafailures on packet delivery due to table
overflow. To overcome this problem /etc/sysctl.céild in all machines has been edited to
allow up to 16384 entries in the ARP cache whichuige sufficient for the experiments. Also
cache size thresholds are updated accordinglydw axcessive calls for garbage collection.
The updated settings can be observegigure 13

'y
o
'y
o
'y
o
'y
o

m

Figure 13: ARP cache parametersin /etc/sysctl.conf file

* Upon download completion the client performs hasleck to whole file which heavily
consumes the CPU and I/O resources. The delay addmgefinal hash check increases
exponentially if the number of clients goes aboveesdain limit. To overcome this situation
final hash checking is disabled by adjusting cligaatameters. Fortunately hash checks are still
performed upon piece completion without causingeesive delays.

Although it is obvious it should be re-stated tinateasing the number of clients per machine caases
notable performance decrease on the system daeraising consumption of resources.

4.4. System Components

The goal of this section is to briefly discuss thectionality of the deployed components and teegiv
insight to the reader about how the system worke 3ection is organized according to execution
order of components during the experiments.

4.4.1. Initializing Computers

The testbed requires at least 2 computers to fumgioperly however there is no upper limit on the
number of computers that can be used for the expets. One of the computers is reserved as the
masterto run trackers and original seed (publisherfdotrol the experiments and to perform analysis
of the log files. The remaining computers are uasdlavesand are used to run the peers for the
experiments. In order to register a slave compatehe testbed, the configuration file on the maste
computer should be edited by adding the IP addreaBas of the new computer to the list of slaves.

It should be noted that it isot mandatory to use all the registered slaves fagxaeriment. A subset

of available slaves can be assigned for an expatirmidis flexibility provides the chance to perform
the experiments under equal load, running the sameer of peers on each computer. For instance if
the load is set as 30 peers per machine, torrettis3@, 60, 90, 120 and 150 peers uses 1, 2, 8dba
slaves respectively. For the rest of the repod,wlordslavescan be used interchangeably either to

40

represent all the slaves registered to the testbade slaves reserved for the experiment whes it i
clear from the context.

All communication among the computers is performesihg the SSH and SCP tools. To avoid
automated scripts from getting blocked, the pasdvesrquiry of protocols should be removed. In
order to do so, a public-private key pair has togbeerated and located undsshdirectory on all
machines. Having same username and password oaomafluters, any machine in testbed can invoke
SSH and SCRn every other without entering the password mapu®b avoid establishing a new
SSH connection for each remote command execut@mections from master computer to all slaves
are created and stored in background using streen command as long as computers keep
functioning properly. The remote calls through doanections in background are asynchronous; no
clue is given about the termination of the commsainde the return values are not collected from the
background connection. When a command block isirediuo execute sequentially, the commands
should be invoked synchronously by creating a nemnection for the particular set of commands.
The SSH tool blocks the execution until the issaesthmand terminates if the protocol is used with
the syntax below:

ssh machine_address “remote command”

However asynchronous calls are performed by sirtyping the command through the connections
running in background and continuing execution wuthwaiting the result of the command.

As mentioned in earlier sections the clients madeaf RAM disk to avoid I/O delays due to slowness
of hard disk drive. Therefore a script that mouthis RAM disk on all computers has to be started
before using the computers. The script executesctimemand below on all slaves and the master
itself:

sudo mount —t tmpfs none /var/ramdisk —o size=${1}m

The script requires the size of the RAM disk in ai®ges as a parameter since available hardware on
machines can be different. The RAM disk is volagitel is removed when the computers are restarted.

In order to avoid any IP address conflicts, eachr ;g assigned a unique IP address and port pair.
Some clients are capable of running multiple instanon same IP address when different ports are
assigned however there still can be conflicts ents$ or trackers. In order to make it secure gumi

IP address is reserved for each peer by dynamicedigting a new ethernet interface usingifibenfig
command. However this task requires super useilggir thus requires a password to be entered
manually. To automate this task the line

username ALL=NOPASSWD:/shin/ifconfig

has been added to the “/etc/sudoers” file on althimes so that the command no longer requires
authentication. Although modifying the privilegesavery user can be considered as not secure, this
modification can be considered harmless for theeoirdeployment as the computers are behind a
firewall.

The files to distribute is stored under the diregtdefined by the shell variabl@ONTENTS Any
content can be used for experimentation, howevertduegal issues the testbed currently uses text
files of various sizes containing random printedreleters. The meta-info files containing informatio
about the torrent, such as tracker announce addrestsould be created manually and placed under the
same directory with the content. Thktorrentapplication under Linux can be used for meta-iiléo
creation. TheCONTENTSirectory should be replicated on every slavés fireferable to locate this
directory on RAM disk for faster access.

41

Each client is assigned a separate directory uh@d?EERSdirectory which is also located on RAM
disk. The clients use the assigned directoriesdégsion management, storing the downloaded file and
logging down statistics.

Finally a directory calleRUNShas to be present on the master computer to thtengrocessed results
of the experiments.

Each computer should possess the applicationsamissrequired for testbed execution. In addition
to that the client application should be instakedall computers and the master computer should be
able to start a tracker application.

4.4.2. Initializing Experiments

The initialization script is an automated tool take the experiments ready for bootstrapping
according to the given parameters. As mentionedh edient is assigned a workspace under the
PEERSdirectory. The client workspace is organized istraicture formed by¥ILES, SESSIONNd
STATSdirectories which are used for storing contengpikeg session data and logging statistics
respectively.

The number of trackers, publishers and peers intdhent is determined by the user prior to the
experiments. The whole content is copied underdiectories of publishers running on the master
computer. If swarms are expected to have equal aumibpublishers, meta-info files containing the
address of swarms one-by-one should be used teteeghe publishers in different swarms. An
alternative way used for fair seed power distrifautis running a single publisher that registeralto
existing swarms using a modified client.

As mentioned earlier, the initial peers start wsitme content as already downloaded in order to
bootstrap the system from steady state. An applités executed on the master computer in order to
assign the clients to run on the reserved slavek wiistributing the workload equally on the slave
computers. The program also calculates the pemerah content that each peer will start with as
downloaded already. A temporary script is generéte@ach slave that initializes the peers assigned
to that particular slave. Running the temporarypscslaves are notified through SSH to initialthe
peers assigned to itself. The applicatioeate ContentWithGivenPieceNumligexecuted by slaves to
generate partly downloaded contents where the dmagleld fraction for each peer is already
determined by the master computer. However theepiassigned to each peer are picked randomly by
the file generator. Additionally the Ethernet ifiétees are created on the slaves during peer
initialization to reserve a unique IP address fwhepeer. A random value for time to seed is geeera
for each peer if peers are set to continue seeadtegdownload completion.

The execution in the master computer is blocked the peer initialization on slaves is finished to
ensure that experiments do not start before thialination phase completes successfully. The
initialization phase results in a swarm in steadyes in compliance with the parameters given lgy th
user in terms of torrent size and S/L ratio.

4.4.3. Running Experiments

As soon as the initialization phase is accomplistied script for starting the experiment can be
invoked. Depending on the number of swarms defimethe user, trackers are started with different
announce addresses on the master computer. At deastpublisher is available to each swarm
however this number can be adjusted by the uses. pgublishers are also started on the master
computer. As mentioned earlier the testbed alloulsliphers to have the global knowledge of the
torrent therefore the connection list size of pslidirs are set as infinite. Having contact infororabf

42

every peer in the torrent, the publishers can laavery high impact on mixing of the swarms which
can hide the actual performance of the algoriththerefore the publishers are not allowed to perform
peer exchanges. The remaining settings of pubistrer kept same with other peers.

As soon as publishers are started, the slave meslaire instructed to start the initial peers. Ausal
terminal is created witlscreencommand for each peer. To avoid address conféetsh peer is
assigned a unigue IP and port pair. The settingofithe libTorrent clientstorrent.rc, is distributed

on all machines with same parameter values. Howswge parameters such as upload and download
rates, connection list size, number of simultanaqisads, time to seed etc. can easily be ovepsritt
via the testbed settings file. This property faaifs running experiments with heterogeneous peers.
The script first types the commands for startingheelient in the terminal screens then all cliears
started simultaneously by just sending @merkey to screens to execute the typed commands. By
means of this approach it takes no more than léhsiscto have all the peers joined to the system.

In order to control the experiments thentroller application runs on the master computer and the
reportersrun on the slaves. These tools continuously colldormation about the experiment status
and control the flow of the experiment. Tlkentroller establishes a TCP connection with each
reporter for communication purposes. As known TCP connastiprovide communication on both
directions. Peers notify the testbed upon 3 immbraents:

* Joining a swarm
* Download completion
* Leaving the torrent

The peers communicate with theporter running on the same machine via named pipes ¢alited
FIFO). A named pipe is a special type of file tisatised for inter-process communication. Using pipe
the output of one process can be used as inputdilveér process. The reason for using named pipes
instead of regular files is that the file descripteferring to pipes allow synchronous 1/0O mu#iphg
using the Linuxselect()function. With theselect()function an application can wait and monitor a set
of file descriptors until a change occurs in thenitwred descriptors. Considering the testbed, waen
peer performs one of the mentioned important eviergtsecutes a shell script to notify the contnolle
about the event. The script simply writes the ey@maimeters to the named pipe created on the slave
computer. Due to the change in the pipe, the repgsts notified and receives the event. The report
simply redirects this message to the controller &P sockets. The peer's message is processed by
the controller and state variables of the experiraes updated accordingly.

Throughout the experiment controller may decidentmipulate the swarm. For instance a new peer
can be added to the torrent or the experiment eaerminated. These commands are sent to reporter
to be executed on the slaves.

As mentioned earlier two different arrival patter®eisson process and arrival-per-departure, can be
used. In order to generate peer arrivals with Baigsrocess a separate process is forked by the
controller after all initial peers join the torrenthe Poisson arrival process creates exponentially
distributed peer inter-arrival times accordinghe user given mean arrival rate. The arrival messag
are transferred to the controller through the éxgshamed pipe. In arrival-per-departure patteen th
controller itself decides to start a new peer upameiving a peer departure event. To start a new, pe
the controller picks the slave with lowest load arahsmits a peer start event to the corresponding
reporter. Upon receiving the command, the repanerkes the shell script that initializes and start
the new peer.

43

Master

Publishers Arrival
Cenerator

Peer events Arrival event

adid

Controller ‘

Peer events

Arrival event Arrival event Arrival event l Arrival event

Slave 1 Slave 2 Slave n
Reporter Reporter Reporter

[=]

5
"

)

Peer events Peer events Peer events Peer events Peer events Peer events

Peer 1 Peer 2 Peer n Peer 1 Peer 2 Peer n Peer 1 Peer 2 Peer n

Figure 14: Communications between components

Figure 14represents the communications and delivered e\mitgeen the components. As can be

seen from the figure the peers notify the reportereugh unidirectional channels implemented by

named pipes. The peer events are transferred frmmreporters to the controller via the TCP

connection between them. The controller can alsd semmands to the reporters through the same
channels.

To avoid waste of disk space, the reporters rentiogecontent downloaded by peers upon departure
therefore the disk space allocated by peers c&eitsconstant through the experiment.

In order to have a globally synchronized clock, toatroller measures the drift between itself and
slaves by calculating the difference between tiamaps of the first messages received. The time
difference between the master and each slave lisdsia a table and all incoming messages from
slaves are updated according to the differenchaiffiarticular slave. Using this time synchronizati
method, it is possible to achieve loose synchraimzaduring the experiments at a low overhead.
Loose synchronization is sufficient for our purpmsas a drift of one second can be tolerated in the
statistical calculations.

If realistic network emulation with ModelNet is died, clients and trackers are executed in
encapsulation ofnrunhostprocesses. Each peer and tracker is assignedgaeuid in ModelNet
where each id represents a virtual node in the defared network topology.

The controller provides an interface to the usegdther information about an ongoing experiment.
The user can watch the current state of the tomrdtobserve the calculated statistics till thaueti
Also users can terminate the experiments earli@nwiecessary through this interface.

4.4.4. Terminating Experiments

The experiments are terminated after the experin@mjth determined by the user passes. The
experiment length is currently defined by the numbé departed peers over swarm size thus
providing the opportunity to measure experimentsh wiifferent sizes of swarms for equal time. In

measurements performed the experiments are shoveorteerge after three generations of peers
depart hence departure of three swarms is sekeadeflault parameter for experiment length. Another

44

alternative for experiment length is setting a measent time interval in seconds. Lastly, the user
can terminate the experiment manually through tmeroller’'s user interface.

Once controller decides to terminate the experimalhtinter-process communications towards the
controller are closed to ignore any other incomimgssages. Later a script for terminating all reléva
applications on slave computers is executed. Tdriptskills the reporters and clients running oe th
slaves.

Before terminating itself, the controller fetchdspeer logs from slaves and stores them together i
the master computer. The controller processes allected log files to calculate the results of the
experiments. The processing of the log files wdldiscussed in more detail in the following section
As the output generation completes the controeminates and the script for killing the remaining
applications such as trackers and arrival geneyadarxecuted.

4.4.5. Processing Collected Data

During the experiments each peer records the tinj@ring, download completion and departure. In

addition to that all events performed on trackeihsas registering or leaving a swarm, announces an
scrapes are logged for load measurement on trackarthermore peers periodically, at every 10
seconds, log the addresses in their connectiosdishat connectivity relationship among swarms can
be observed.

Upon experiment termination the controller fetclmsfiles on slave machines recorded by the peers.
For each peer, the log files are matched with tfeemessages received during runtime to verify the
correctness of the system. If a mismatch is dedetke user is warned and the data in log filesiaesl

as they are more reliable.

The logs of each peer are processed separateistatGiven the joining, completion and departure
times of a peer the download and seeding timesbeatalculated easily. It should be noted that the
time values in log files are local to the slave hiaes thus they are adjusted according to the drift
between computers.

All peer events are inserted to a global queuetl@cevents are processed according to chronological
order. In other words the experiment is re-tratedugh events from log files to generate outputfro
the collected data. Only the events relevant taekalts of interest are recorded. While simulathey
experiment the state information maintained bydbwetroller is updated according to the events. The
mentioned events and state variable maintenancasdmdlows:

» Joining to the torrentWhen a peer join event is received, a new pegrcols created and
inserted as a leecher.

» Download completionUpon download completion of a peer, the peereimaved from
leechers and inserted as a seed.

* Leaving the torrentThe peer is deleted from the seeds. It shoulddted that peers are not
allowed to abort download and leave the torrerdument implementation thus any departing
peer is guaranteed to be a seed.

* Registering to a trackerThe peer object gets associated with the givearswA register
event is the first announce sent to the particuéanker.

* Unregistering from a trackerThe peer object is removed from its swarm. A pegty
unregister either to join another swarm or leaettirent.

* Announcing to a trackeAnnounces are only processed to measure theolo&@ckers.

» Scraping a tracker Scrapes are special types of announces suchthibatracker returns
number of peers and seeds in the swarm and nunhltienes the content has been snatched

45

instead of returning a set of active peers. Dedpteg cheaper than announces scrapes should
also be considered as load on a tracker.

* Update connection listThe peers log down the addresses of peers in tiegjhbourhood
every 10 seconds thus connection list updatesrigigeted periodically by each peer. Upon
this event the neighbourhood of the peer is simghjaced with the new set of peers.

» Calculate output variableCalculateevents are dispatched every 10 seconds manuathyeby
controller. When this artificial event is triggeretie global swarm dynamics are calculated.
This can be considered as capturing instantane@mpskots of the torrent in order to measure
the dynamics through the whole experiment. Theanpeiof these parameters are calculated
and presented to the user.

The events are processed from the start of theriexpet however thealculate events are only
scheduled after the warm-up period hence the warmariod effects are avoided in measurements.
The peer statistics measured always consider thes @dter the warm-up period unless initial peer
measurements are requested.

Various torrent statistics can be obtained thropgitessing the above events. It is also possible to
output the statistics by grouping the peers acogrth their swarms, the machines they run on agroth
distinguishing properties such as grouping theiahipeers or special peers that exhibit mixing
behaviour. Currently the measured properties are:

» Average number of leechers and seeds in torrent

* Peer arrival rate

» Download time and seeding time of peers

» Download rate and upload rate of peers

* Average node degree of peers (average size of cbondist)

* Number of peers that completely received the file

» Total number of announce and scrapes performeeéssgoverall communication overhead)

» Peer exchange traffic

» Connectivity among swarms

» Total number of peers running mixing algorithms

» Properties of peers running mixing algorithms

* Swarm based statistics: Average size of swarml, not@ber of scrapes and announces on the
tracker

» Computer specific statistics: Overall performanteeaers grouped according to the machines
they run

In addition to that performance of every peer imtpd to the output file. This file can be observed
manually by users or processed by applicationsine meaningful data.

4.4.6. Resetting Experiment

In order to prepare the experiments for anotherthentestbed workspace has to be cleaned. A bash
script is run by the master to reset all the expenital setup. The script first removes the diréesor
used by the peers located underRiERSdirectory. In addition to that the temporary fifes global
logging and communication purposes such as nanpb @re removed. The script is also invoked
synchronously by SSH tool to reset the slave coerpuDifferent from the master, the reserved IP
addresses are cleared on the slave computers theiifgonfig command. The reset script blocks the
execution until all slaves are reset.

46

4.4.7. Automating Set of Experiments

The testbed can be used to run a set of experimétitdifferent settings without user intervention.
Users can place different settings files underde&sttories and run an automated script to perfiven
experiments. The number of repetitions for expenithean also be specified by the user.

The automated script simply combines the scrippdagxed above. Apart from the scripts above, the
settings files are replaced at each experimentth@dutput of the experiment is saved under the
corresponding experiment’s folder with an assigngdnumber.

SLAVE MASTER SLAVE

Get setting files of
following experiment

Fetch settings from the
master

Fetch settings from the
master

Initialize publishers

=
v

For each peer create
party downloaded
content and reserve
ip address

Initialize peers Initialize peers —|-

Start Reporter and Start Controller, Start Reporter and
peers trackers and publishers peers
Trace the

Run experiment experiments based
commanded by ————— = — = t- | on peer events,
Controller insert new peers

"
5

when necessary

[If Experiment
Length Passed|

Stop components on Stop components on) | | Stop the reporter
Slave Slave and running peers

Fetch log files from
laves

Process logs and save
the results

Stop components an
aster

. 'g ' 'm

Remove directories
Reset Slave Reset Master Reset Slave — 1+ | and release
ip addresses
If more
[¥es] runs
[No]

47

Figure 15: Running multiple experiments with different settings automated

Figure 15contains an activity diagram representing the etiea order of the script that can be used
for performing various experiments with multiplensu The script successfully automates the task of
running consecutive experiments by simply combinitools mentioned above.

48

5. EVALUATION

This chapter presents an evaluation of the algosttiscussed in Section 3. The evaluation is dgne b
analyzing the algorithms performance on the privegstbed. First the metrics for quantifying
performance of algorithms are described. Then #fault settings for experiments are mentioned.
Finally performed experiments and the obtainedlteswe presented and discussed.

5.1. Evaluation Metrics

The effectiveness of the swarm management algasitienquantified in terms of the following
metrics:

» Download TimeThe success of the algorithms is evaluated biy tmprovement in terms of
overall download time. The mean download time darpehat join the torrent after warm-up
period and completely receive the file are cal@adat

* Mixing Efficiency The performance of the algorithms is evaluatetth &inew metric, mixing
efficiency, which is defined as the average nunifeexternal peers known by a particular
swarm normalized with the torrent size. Mixing ency of swarnt is calculated as:

_ Xy + Zr’ER\{r}yr,r’

r
X

wherey, represents the average number of external pedrarhaegistered to swarmbut
known by swarnr. The average mixing efficiency of the overall gystcan be expressed as

the weighted average:
1
M= —z XM,
X TER T

It should be noted that without mixing algorithme external peers exist in swarms,
algebraicallyy, ., = 0 for every swarm pair andr’; however the mixing efficiency may not

be computed as 0. As it is obvious the efficientynixing increases as mixing efficienayi,

gets closer to 1. The virtually increased sizeamfheswarm can be estimated by reversing the
processx * M, gives an estimation of increased size of swarm

The mixing efficiency is calculated at periodic entals by processing the 10 seconds
shapshots of the system. For the sake of consisteasurements, the multi-tracking peers
that associate witk swarms are calculated kslistinct peers registering to one single swarm
each.

5.2. Default Experiment Parameters

All the experiments are performed with steady stgtgems as mentioned earlier. The experiment is
initialized so that initial peers in the swarm staith some share of the content hence emulating a
steady system just after bootstrapping.

The peers are assumed to stay in the system engiving a complete copy of the content. Upon
download completion the peers may decide to staiéntorrent or leave instantly depending on the
seeding time parameter. Only one publisher exnstea torrent and registers to all of the track&éhe
publisher stays connected to the system duringwthele experiment so all of the swarms are
guaranteed to avoid starvation due to missing pieeers have limited upload bandwidth but their
download bandwidth is unlimited. The peers join $getem according to a Poisson process or to an
arrival-per-departure pattern.

49

The following default parameters are used for tkgeements unless otherwise specified. Peers share
a single file of 50MB that is split into 200 piecesth 256kB size each. The peers are allowed to
upload with maximum 80KB/s rate. Although downlaatks are unlimited, the peers will be able to
download at approximately 80KB/s when only leeclexist in the swarm as the available bandwidth
is bounded by upload capacities. Peers are alltavegload to 6 peers simultaneously but can receive
from as many peers as they can. The upload ratedinpublisher can vary between experiments to
provide seed power fairly to each experiment. Rstance if the publisher is allowed to upload with
30KB/s to 6 peers in an experiment with 30 pedrgan upload by 60KB/s to 12 peers for the
experiment with 60 peers therefore the effect ddligsher is similar for each experiment.

The peer arrivals are generated with the arriveldeparture method in most of the experiments as it
decreases the effects of randomization while géngraxponentially distributed inter-arrival times.
The peers are set to leave the system as soomryaeetteive the file. Use of selfish peers setstes

to leecher ratio to 0 hence keeping things simpler.

The peers are allowed to connect up to 50 peerdelfigult. However connection list size can be
adjusted according to the size of the experimélitie. peers announce to the trackers every 1 minute.
The number of peers requested from the trackesstiso 20 in order to increase the weight of peer
exchange in peer discovery. The peer exchangepesfermed every 30 seconds, 8 candidates for
exchange are picked. A single PEX message is allawetransfer at most 200 contact addresses;
however size of messages is also bounded by thebizonnection list as addresses are selected from
connection list. The direction of the peer exchaisgeet to random, however the migrating peers can
be forced to prefer candidates from own swarm ab e information from previous swarm can be
injected to the newly arrived swarm.

The peers log their statistics every 10 secondstwbiovides high accuracy in measurement while not
generating excessively large log files. The netwerkulator, ModelNet, is disabled for all the
experiments.

The experiments are performed by varying numbewafrms, size of the torrent and migration/multi-
tracking willingness of the peers. The load per goter is kept equal for the experiments whenever
possible, especially for throughput measuremertis. flumber of slaves used increases as the torrent
size increases while running the same number aspeeach machine.

The experiments with Poisson process are repedietinfes to avoid misinterpretation due to
stochastic behaviour or longer runs are prefe@dthe other hand when arrival-per-departure patter
is used 3-4 repetitions are considered sufficienatcurate measurement.

Table 4 represents the most frequently used expeatiparameters so readers can get familiar with the
setups and parameter abbreviations.

Table 4 : Default Experiment Parameters

content size= 50MB

piece size= 2718bytes

torrent size= vary from15to 300peers

number of swarms 1 to 8swarms

number of publishers 1 (registering to all swarms)

publisher capacity: adjusted with torrent size to have fair capacity

migration/multi-tracking willingnesssj = vary from1to 8

50

arrival pattern= arrival-per-departure (some experiments use Poissoinals)

mean inter-arrival-time= estimated by Little’s law or arrival per departufer each different
setup if Poisson arrivals are used

mean seeding time & (peers leave upon completion hence Seed/Leectier=®)
number of slaves torrent size / load per machine (if equal load eipents are aimed)
number of runs: 5 (can be increased if Poisson arrivals is used)

upload rate= 40-80KB/s

download rate= oo (unlimited)

max uploads 6 (maximum number of simultaneous uploads)

connection list size 50peers(can vary between 20 and 50)

tracker announce interval 1 minute

tracker numwant 20peers (can vary between 20 and 50)

peer exchange interval 30seconds

max pex candidates 8

max pex message siz00

direction of peer exchangerandom(migrating peers can be forced to prefer own swarm)
peer log statistics interval 20 seconds

ModelNet= disabled

Table 4: Default Experiment Parameters

The swarm management algorithms are representBd/as(p, B, k) and RPM g, B) wherep is the
size of the connection lish, is the willingness parameter akds the number of trackers that a multi-
tracking peer associates with. Th@arameter can be setmowvhich means the peer connects to all
available trackers.

5.3. Results

The swarm management algorithms are evaluated enasios where existing swarms are self-
sufficient so that none of them heavily sufferarirpiece unavailability and consequently from peer
contribution. Considering torrents in which swarhmve different properties such as one swarm
starving from piece unavailability due to publish@existence while the other swarm possessesall th
pieces, mixing algorithms will help the swarms twid starvation. Furthermore considering swarms
with different sizes where small swarms suffer frpaer participation, discovering peers from other
swarm would certainly improve performance of théesing swarm.

It is clear that mixing algorithms help increasimgerall performance if at least one swarm succeeds
perform well while some others are suffering bytuatly integrating the suffering peers to the well
performing swarm. The swarm management causesegase in protocol overhead however it can be
tolerated when the gain in stumbling swarms aresidened. The decreasing download time amortises
the cost of swarm management in some of the cAsethere is no need to restate the obvious, the
experiments in which performance increase is egsidictable are not performed. Instead the
algorithm performances are evaluated in torrenth wguivalent swarms where each swarm can
survive by itself.

The experiments focus on two metrics: mixing efficdy and download times while varying the size
of the torrent or number of trackers. It is easyltserve the mixing efficiency; however to be dble

51

observe download performance two important paramseteimber of peers running per machine and
average node degree of peers should be kept sBadile parameters are important as they are directly
related with the load on computers hence affediivegoverall performance of the system. Running
more peers on a machine decreases the performaade thcreasing load. On the other hand, a peer
interacting with more peers consumes more resouhezefore increases the load on computers. The
effect of average node degree gets more visibfeaxs peers are running on computers. In general the
BitTorrent protocol is known to perform better withicreasing node degree [24]; where maximum
performance can be observed with a clique like layerin other words when all peers know each
other. However under heavy load the opposite casde observed due to insufficient resources.

Running equal number of peers per machine carydasihandled by adding new slaves for increasing
torrent sizes with equal steps. However keepingatlezage node degree can be troublesome in some
cases. The average node degree of peers is strmomgbtated with two parameters, the maximum size
of connection list and speed of peer discoveryrtier to keep the average node degree similar while
changing the swarm size, the speed of peer disg@hauld be determined accordingly. A possible
solution is to limit the size of connection listttee size of smallest swarm and adjust the number o
peers requested from tracker and frequency of éragkeries. For instance one can observe torrent
sizes of 20, 40, 60 etc. by limiting the connectishto 20. With mentioned settings, the experitaen
will end up with an average node degree close tas26onnection lists of all peers will be keptyull
utilized during the experiment by tracker queriep@er exchanges.

Unfortunately if the connection list is limited Wwithe size of smallest swarm, the observable rahge
mixing efficiency narrows down. Considering a totrgvith 3 equally sized swarms where peers are
allowed to connect up to a single swarm of pedes maximum value of mixing efficiency is around
0.67 according to the definition of mixing effic®n the case when peers only connect to external
peers which is highly unrealistic.

The limited number of available computers obviousbnstrains the scale of experiments. The

sensitivity of experiments to average node degemzedses if the number of peers running on each
machine decreases. If computers are not fully ldadiés easier to observe performance improvement
as the performance loss due to load increase caadlected.

Another solution applied to overcome problem ofdléabalance between experiments is to include
all available computers to the experiment and fzagenstant torrent size. Then one can adjust Hee si
of swarms by changing the number of available #exkAs peers with vanilla behaviour pick swarms
uniformly at random, swarms will be equally sized average. Then the mean values of per swarm
statistics can be collected for various swarm sizigige keeping the load balanced for experiments.

Therefore observing the mixing efficiency and dave times as a function of torrent size can be
considered challenging. Our experiments were paddrsuch that the two metrics could be observed.
Some of the experiments only focus on the mixirfgiehcy as showing the increase in swarm sizes
one can assume the performance improvement.

It should be mentioned that the willingness paransetf the initial peers are always set to 0 ag the
join the system in a very short interval. If initi@eers were assigned a willingness value, morespee
than expected would exhibit mixing behaviour aspbers will observe smaller values for torrent size
during the bootstrap process.

5.3.1. Protocol Performance as a Function of the Torrent Size

These experiments aim to show that BitTorrent perémce improves with increasing torrent size.
Figure 16represents the average download time of the peerdorrent as a function of torrent size.

52

The data points are collected through running erpats with torrent sizes 30, 45, 60 and 75 and a
single tracker is used. The connection list sizesds to 50. The loads of experiments are kept
equivalent by increasing the number of slave mahiior larger swarms while running 15 peers per
machine. The results show that larger torrentoperbetter than smaller ones.

625

624.5- f

624 - .

623.5 f

623 - B

622.5 f

Download times (s)

622 - B

621.5- B

621+ f

620.5 - B

620 I I I I I ! !
25 30 35 40 45 50 55 60 65 70 75 80

Torrent Size (Number of peers)

Figure 16: Protocol Performance vs. Torrent Size with Arrival-per-Departure Pattern

The experiment is also performed with peer arrigalsording to Poisson process. The upload capacity
of peers is decreased to 40KB/s for this experineritave longer runs so that effects of stochastic
arrivals can be avoided. The swarm sizes are 380,880, 120 and 150. The mean inter-arrival times
for Poisson process are calculated by running dineessetup with arrival-per-departure arrivals and
they are calculated as 22.3, 14.95, 11.15 and €&®nsls respectively. The peers are allowed to
connect to at most 50 peefSgure 17 shows the average download time of peers as aidanof
swarm size when Poisson arrivals are used.

53

1375

1370+ -

1365+ B

1360+ -

=
w
[4)]
(4]
T
|

1350+ -

Download times (s)

1345+ 4

1340+ i

1335+ B

1330+ -

1325 I I I \ I I I \ I I
50 60 70 80 90 100 110 120 130 140 150 160

Torrent Size (Number of peers)

Figure 17: Protocol Performance vs. Torrent Size with Poisson Process Arrivals

The protocol performance as a function of swarrasstan also be evaluated by varying the number of
trackers. For a torrent of 250 peers, setting tmaber of trackers to 1, 2, 4, 6 and 8 the perforaan
of swarms with an average size of 250, 125, 6215%4and 31.25 can be evaluated. With this setup,
all experiments are guaranteed to be performedruhdesame load while the swarm sizes are varied
as the same set of machines (preferably all availedmputers for lowest load) are used for each
experiment. Figure 18 shows the average downlgadstiof peers in a torrent with 250 peers as a
function of swarm size which is varied by adjustihg number of trackers.

54

800

780 - B

760 - f

740 - B

Download times (s)

720 - f

700 B

680 | | | | |
0 50 100 150 200 250 300

Awerage size of swarms (Number of peers)

Figure 18: Protocol Performance vs. Swarm size as a function of number of swarms

Figure 18again shows a performance improvement with thersvgze. As can be seen the protocol
performs best when all peers are in a single swahich can be achieved by e.g. using the pick
biggest swarm algorithm. The significant performamiegradation in swarms having approximately
30 peers can be explained by the low piece avéilaln the swarm. Due to small number of peers, it
is possible that some pieces are only possessdtiebpublisher. In such situations, the available
pieces in the swarm are easily exchanged among pegle missing pieces should be sent to the
swarm by the publisher hence limiting the overgditem performance by the publisher’s capacity.

Another important result that can be of interesthigt the download times of peers are normally
distributed which implies that homogeneous peesdfairly served in BitTorrent. As an example, the
distribution of peer download times of experimentth Poisson process is given kigure 19 The
download time distributions are tested with Arenput Analyzer tool and they are suggested to best
fit to normal distribution. The results successfuflassed the Kolmogorov-Smirnov [25] test at
significance level 0.05 performed by the tool. Tigeire represents the download time distribution of
two sample runs with 60 peers and 150 peers as pl@QQ@ersus standard normal.

55

Swarm with 60 peers Swarm with 150 peers
1800 \ \ O 1900 \ \ \

47
/ +
1700} / 1800 i
+ +
7
v

1700

&/
i &
A

¥

1600

=

[

o

o

T
=
o]
o
o
T

1500 -

1400
1400

1300
1300

Quantiles of Download Times (s)
Quantiles of Download Times (s)

=
N
o
o

T

=

N

o

o

T

i,
1100 - + s
/ 1100+ s
+ iﬁ*
1000 - 8 1000 - fis |
' /+
900 | | | 900 + | | |
-4 -2 0 2 4 -4 -2 0 2 4
Standard Normal Quantiles Standard Normal Quantiles

Figure 19: QQ Plots of Download Times vs. Standard Normal

The experiments in this section were performedrdento verify the correctness of the testbed. The
results indicate that increasing the swarm sizgmores the performance. This observation justifies
the use of swarm management algorithms, becausensmanagement algorithms aim at virtually
increasing the size of swarms via mixing peerdfiier@nt swarms.

5.3.2. Experiments with 2 Swarms

The swarm management algorithms, RPM and RMT, eatuated in a torrent with 2 swarms. The
torrent size is varied as 15, 30, 60, 120, 180,&#D300 and peers are allowed to connect at nfost 5
peers. The tracker queries are performed everynitmiand 20 peers are requested from the tracker.
The tracker numwant parameter is decreased to afder to increase the weight of PEX protocol in
peer discovery so that mixing of swarms can bervbsebetter.

This experiment only focuses on mixing efficientje download performances of peers are ignored
as the experiments could not be run under equél blae torrents with at least 60 peers run 60 peers
per computer however smaller ones have to be exmmimder lower load. The peers have their
upload bandwidths limited at 80KB/s. The willingegsarameterf} is set to 1, 2, 4 and 8 and we
measure the mixing performance of the algorithms.

56

RPM Experiments

[

T T
—— RPM(50,1)
0.9 RPM(50,2) 8
? - - - RPM(50,4)
2 08l — RPM(50,8) | |
i
207r]
=
=
0.6 8
0.5 =
50 100 150 200 250 300
Torrent Size
RMT Experiments
1 T T T
7 —— RMT(50,1)
0.9+ RMT(50,2) | -
§ - - - RMT(50,4)
— RMT(50,8
2 o8+ (508 | |
i
207r]
=
=
0.6 -
05 I == = -
0 50 100 150 200 250 300

Torrent Size

Figure 20: Average mixing efficiency as a function of torrent sizefor RPM and RMT with changing willingness

Figure 20shows that both algorithms can achieve a very miting efficiency, around 0.95 for small
torrents meaning that peers nearly discover altropleers in different swarms. The mixing efficiency
decreases with increasing torrent size, becaussitieeof the connection list limits the number of
peers that can be discovered. For torrents withf##s the mixing efficiency is close to 0.51 which
is almost negligible as without mixing, a torrerithmtwo equally sized swarms will have the average
mixing efficiency calculated as 0.5.

Increasing the willingness parameter obviously éases the efficiency of the algorithms but with a
decreasing gain. Therefore the willingness paranstteuld not be set very high as the gain may not
be worth the linearly increasing load.

The deviations in RMT experiments with small totseare simply due to the stochastic behaviour. In
experiments with 15 or 30 peers it is probable tmafti-tracking peers arrive much later than
expected thus decreasing the mixing efficiency o dverage. But with longer experiments these
artefacts could easily be avoided as effects ahststic behaviour will be decreased.

57

x 10°

15+

Baseline
—— RMT(50,1)
- -~ RMT(50,8)
—— RPM(50,1)
) — RPM(50,8)
0 | | | | |

0 50 100 150 200 250 300
Torrent Size

Total Number of Announces
=]
T

4000

3000 (- _— B

2000 - .
Pt —— RMT(50,1)

— -~ - RMT(50,8)
1000 — —— RPM(50,1)
et — RPM(50,8)

Total Number of Scrapes

Figure 21: Tracker Load vs. Torrent Size

Figure 21represents the total number of announces and sceapa function of torrent size. The total
number of announces increases linearly with thebmunof peers intuitively. Although it is hard to
observe in the figure due to large scale, cargfaseshould notice that baseline algorithms gengrate
more overhead for small torrents. The reason fizr ithsimply the longer download times in small
swarms without mixing in which the overhead duentixing algorithms is amortised by the
performance improvement. The load of algorithmss geigher with the increasing willingness.
Although the difference is very small, it should meted that the load of RMT is more than that of
RPM. The scraping overhead of RMT increases wighttiirent size as each peer scrapes all trackers
upon arrival. However RPM'’s scraping overhead resa@onstant as the number of migrating peers
does not change with torrent size. The numberrafpss for baseline algorithm is ignored as it i®ze

5.3.3. Experiments with 3 Swarms

The algorithms were also evaluated in torrents Widwarms. The experiments are performed as an
extension of 3 swarm experiments and focus on theéng performance of the algorithms. The
experiments are performed with torrent sizes a680p90, 150, 210 and 300 and the connection list
size is set to 50, same as in the previous expatinide tracker query interval is 1 minute and 20
peers are requested just like in the 2 swarm exgeris. The willingness parametgj (s set to 1 and

8. The number of trackers that a multi-trackingrpegistersK) is set to 3.

58

—— Baseline
‘. —— RMT(50,1,3)
N - - - RMT(50,8,3)
0.9+ LA — RPM(50,1)
\\ ' — RPM(50,8)
0.8+
>
2o0.7t
k]
o
m
o
c
< 0.6
s
0.5+
0.4+
0.3 | | | | |
0 50 100 150 200 250 300

Torrent Size

Figure 22: Mixing efficiency vs. Torrent Size

Figure 22shows the mixing performances of algorithms. Téwiits of baseline experiment are added
to show the lower bounds as no mixing is performéti baseline algorithm. The mixing decreases
with the increasing torrent size due to limited mection list size. As mentioned earlier, the mixing
improves with the willingness parameter but witldecreasing marginal gain so setting it too high
should be avoided.

59

725

—— Baseline
—— RMT(50,1,3)
720 - - - RMT(50,8,3) [
—— RPM(50,1)
— RPM(50,8)
715 o
710 —
@® 705 &
(4]
£
= 700 _
o
=
3
A 695 J
690 &
685 —
T T i*
——
680 e T .
675 | | | |
100 150 200 250 300

Torrent Size

Figure 23: Download performance of algorithms as a function of torrent size

Although the experiments are not performed under shme exact loadsigure 23 shows the
download performance of algorithms where the load@mputers can be considered as close. In most
of the cases, the mixing algorithms help improuilogvnload performance but the effect is much more
visible for smaller swarms. As can be seen, thellresalgorithm shows poor performance for small
torrents.

60

15

=

0,

PEX traffic (bytes)

— Baseline
—— RMT(50,1,3)
--- RMT(50,8,3)
— RPM(50,1)
— RPM(50,8)

0 | | | | |
0 50 100 150 200 250 300
Torrent size

Figure 24: PEX traffic per peer vs. Torrent Size

Figure 24represents the average peer exchange traffic ageneby a single peer. The PEX traffic is
higher when mixing algorithms are used as theyzatihe PEX messages, more peers are appended in
messages. The PEX traffic increases with the isangaswarm size but it converges due to the
connection size limitations.

61

x 10°

15

Total Number of Announces
=]

Baseline |
—— RMT(50,1,3)
- - - RMT(50,8,3)
05 —— RPM(50,1) |
: — RPM(50,8)
0 | | | | |
0 50 100 150 200 250 300
Torrent Size
6000
@ 5000 "
g //
& 4000 o .
S T
— /
3000 B
é // —— RMT(50,1,3)
2 2000 o - -~ RMT(50,8,3) | |
3 ﬁ/ —— RPM(50,1)
2 1000 o — RPM(0,8) | |
0 = - r— - -/ - —7)T - — - —— = - - - - 77— - — - — - — - — 7
0 50 100 150 200 250 300
Torrent Size

Figure 25: Tracker load vs. Torrent Size

Figure 25represents the load on trackers as a functioheofdrrent size. The results are very similar
to the experiments with 2 swarms. The load whengugiie baseline algorithm is higher than when
using mixing algorithms for small torrents due tghhdownload times. The tracker load on a swarm
with 3 torrents is slightly higher than the 2 swaimrent. The effect of swarm size on tracker load
will also be examined in following sections.

5.3.4. Performance as a Function of the Number of Swarms

The performance of swarm management algorithmsvéduated against the number of available
trackers. Given a fixed torrent size, performantdaseline behaviour, RPM and RMT algorithms
with different willingness are observed as a fumtdf number of swarms.

Firstly the algorithms are evaluated with a torrein100 peers while setting the number of swarms to
1, 2, 4, 6 and 8. All available computers are dsethe experiments thus the average number ofpeer
running on each machine is set to 20. As the tosige remains stable the experiments are performed
under same amount of load. The connection listisizet to 50 and tracker replies contain 20 peers
increase the weight of peer exchange in peer disgmo that mixing can be observed better.

62

1 \

A — Baseline
\ —— RMT(50,8,N)
0.9+ \ --- RPM(50,8)
9
\
[N
0.8 \ .
) Lo
N
LN

T . f
: Vo T
(_) \ \\\\
= T T
= o6l \ T — 7
g) \ ‘*’*“E\iﬁ},bﬁiﬁiii
= \
= N

0.5+ N B

AN
N\
0.4+ “ N
\ -
S~ _
0.3} —-]
0.2 | | | | | |
1 2 3 4 5 6 7 8

Number of trackers

Figure 26: Mixing Efficiency vs. Number of Trackersfor 100 peerstorrent

Figure 26 represents the mixing efficiency of the algorithassa function of the number of swarms.
The baseline experiment is added to show the |I®weands of mixing efficiency when no mixing is
performed. The mixing efficiency is set to 1 forsimgle swarm and it decreases with increasing
number of swarms.

63

1200 T
— Baseline
—— RMT(50,8,N)
- - - RPM(50,8)
1100 y .
Vs
/
1000 - Ve -
@ e
[%]
Q
£ . 7
= 900+ -
3 Ve
2 14
S S
E S
800 - nd .
//
e
,—"// .
700 I e —C
600 | | | | | |
1 2 3 4 5 6 7 8

Number of trackers

Figure 27: Average download times of peersvs. Number of trackers

In Figure 27the average download times of peers are showméoeasing number of swarms. The
baseline algorithm starts performing poorly asdize of the swarms gets smaller (increasing number
of trackers). The dramatic increase in downloacktfor 6 and 8 trackers shows that the protocotsstar
suffering from piece unavailability and peer cdmiition when average size of swarms drops under 25
peers. The algorithms perform very similar whenrpese in a single swarm as expected. Use of
mixing algorithms successfully prevents performaloss even when the average size of swarms gets
smaller. However slight performance degradatiostils observed with increasing number of swarms
due to decreasing mixing efficiency.

64

14

W‘ﬂa?hig
12+ > 1

N
\\ — Baseline
ol . —— RMT(50,8,N) -
\ - - - RPM(50,8)
N
/u? \
[}
581 A |
8 \
2 N
E \
= \
\
\
N
4 N 1
\\
~
S

2 - 1

0 ! ‘ . : ; :

1 2 3 ° ! °

4 5
Number of trackers

Figure 28: Average PEX traffic per peer vs. Number of trackers

Figure 28shows the average PEX traffic generated per gder.PEX traffic in baseline algorithm
decreases when the swarms are smaller as the ldgadantact addresses to exchange decreases.
However RPM and RMT algorithms keep the PEX tradficimilar amounts as peers are introduced to
each other via mixing. Therefore they can exchaeggs as if they were in a single swarm. The small
decrease in PEX traffic with increasing numberwaéisns is due to decreasing mixing efficiency as
the size of virtual swarm decreases.

65

x 10

1.4 T
— Baseline
§ —— RMT(50,8,N) P
g l2r ~__ RPM(50,8) e
o e
g e
?_: 1+ 7 —
o —
— e
(] -
g ~ —
3 08f - ==
3 R B
— — I
(o] L~ ﬂ,gf—/, - ——
'_O_Grff”’*’ﬁifﬁ | | | | |
1 2 3 4 5 6 7 8
Number of trackers
5000 T
- H —
4 FBQ:IASTelflsT)eSN -
%40007 — (50,8,N) o _ B
(;,7 - RPM(SO,B)/// -
5 3000 - .
© -
2 _——
€ 2000 - —— il
5 e
Z J_/_,_,—/
T -~
5 1000 - / e i
[e I
OZi;7:¢—ff****];’f]
1 2 3 6 7 8

4 5
Number of trackers

Figure 29: Aggregate Load on Trackersvs. Number of trackers

Figure 29 shows the total number of announces and scrapésriped by the peers regarding the
number of swarms. The baseline algorithm causegrlawerhead when it performs close to the
mixing algorithms. However when it starts to penfiopoorly, the overhead caused by baseline peers
can be higher than others as the total time spethiei system increases which causes an incredse in
number of queries sent by each peer. The basdtetam does not cause any scraping traffic. The
traffic caused by RPM is directly related with tm@mber of migrations as each migration performs a
scrape and unregister/register messages. As knmvfraquency of migration checks increases with
number of available swarms since the portion Szdefined ag/(B(|R| — 1)) of the total content. In
addition to that the average number of peers migydtom a particular swarm is independent of its
size. Therefore increasing number of swarms camees peer to migrate consequently increasing the
load on trackers in terms of both announces arapsst As mentioned earlier the load increase caused
by RMT algorithm is proportional tag as in steady state the system is expected to#@yk peers
connected tdk trackers. In the figure the tracker announces MTRlecreasingly increases with the
number of trackers. The decrease in increase sedaby the difference in torrent sizes between the
experiments. Although the experiments are knowrbegoperformed with 100 peers, every multi-
tracking peer increases the torrent size Witlequal ton for this experiment). The increasing torrent
size lowers the probability of new multi-trackingey arrivals as they are indirectly proportional.
Therefore with increasing, the number of peers that multi-track decreasetewine load caused by
them increases. The scraping overhead of RMT iserastraightforward. Upon arrival, each peer
scrapes all available trackers hence the scrapdilasarly increases with number of trackers.

The experiment above is also repeated with a tookR50 peers by increasing the load per machine
to 50 peers. Different from the experiment above éxperiment focuses on determining a suit&ble

66

value for random multi tracking. The number of kexs (hence, the average size of swarms) is varied
for algorithms RMT(50,1,2), RMT(50,8,2), RMT(50h)L.and RMT(50,8)).

0.65 ‘
—— RMT(50,1,2)
— RMT(50,8,2)
061 —— RMT(50,1N) ||
: - -~ RMT(50,8,N)
0.55, -
Y
\ A
N
\
W\,
05} \\ i
> N\ N\
3 .
5 AN
S \
5045 N\ a
2 A\
2 N
= AN \\\
0.4+ .
R
N
N
0.35} - T -
~—~— \\“‘\y
Qqﬁ{\b‘
0.3F T T T
. T
e ——
0.25 | | | | |
2 3 4 5 6 7 8

Number of trackers

Figure 30: Effect of k on mixing efficiency

Figure 30shows the effect df on the mixing efficiency. RMT performs very closeen for two ends
of k value, 2 andh. However in most of the cases maximizingeems to provide better mixing. The
only situation where setting to 2 performs better is runs with 2 swarms in Whactually both
algorithms are same. Therefore according to thalteesf experiments, maximizirigfor RMT can be
suggested. Considering the developed analyticabimode can conclude that PEX is efficient enough
so that increasing does not have effect on the efficiency of mixikgjith this assumption, the model
also suggests maximization kaf Another benefit of maximizing is ensuring the connectivity among
all swarms even when the number of multi-trackiregns is very low. Setting to 2 may fail to
connect all swarms if multi-tracking peers are gkily assigned to redundant pairs of swarms when
is low.

67

x 10°

1.8 —
i I
3 —— RMT(50,1,2) P -
sL75r | RMT(5082) T =
S — RMT(50,1,N) T -
£ 17/ |--- RMT(50,8,N) o L= .
5
g
S 1.65
=]
2
T 1.6
(e}
'_
1.55 | | | | | |
2 3 6 7 8
Number of trackers
12000
$10000- | RMT(50,1,2)
— RMT(50,8,2)
80001 | — RMT(50,1,N) i
-~ RMT(50,8,N)

6000

4000

Total Number of Scrap

N
o
o
o

o

4 5
Number of trackers

Figure 31: Effect of k on tracker load

Figure 31shows the effect dk on the number of announces and scrapes. As medtiearlier the
load on trackers caused by RMT is proportionahfband independent & For =1, the results
strongly hold with the model as there is not amlent difference between algorithms. Be8, setting

k to n seems to cause more overhead then sdttind which is an unexpected result. This result ca
be explained by the deviations in total number aifitirtracking peers in the torrent where even a
single multi-tracking peer can increase the totahber of announces by approximately 10.*The
total number of multi-tracking peers will also beegented below. The total number of scrapes is
almost same for each algorithm as it is actualtgmheined by the number of peers in torrent which is
very similar for the experiments.

68

150 F——————— "

T T m——— T T
i I i I I i
| | | | | | B
| | | | | | e
| | | | | | P
| | | | | [
1 1 1 1 1 A
| | | | Nt
| | | | v |
1 1 1 1 /1 1
| | | | 2 |
| | | | P - | |
| |
8100 -------- R N [Lol [P b -
3 | | | [| |
o
> 1 1 1 A 1 :
E | | | y I | — RMT(50,1,2)
g | | | . | | — RMT(50,8,2)
= : : : ~ : : —— RMT(50,1,N)
= 7 - - - RMT(50,8,N
5 | | A | | ITEO.8N)
| | . | | | |
5 : T : : :
2 | L 7 | | | |
E 1 4 L 1 4 '
2 50 777777777777777 7 777777777 [T T N
: ‘ : :
| |

4 5
Number of trackers

Figure 32: Effect of k on number of multi-tracking peers

The RMT protocol by its nature adjusts the numbkiemalti-tracking peers accordingly so that the
protocol overhead is independent lof According to the protocol definition, the numbar multi-
tracking peers whek is set to 2 should be/2 times the number of multi-trackers whins n.
However due to stochastic behaviour, the multikeas in k=n experiments is higher than the
expected, or the number of multi-trackersKe® is lower, for some of the experiments which can b
the reason for the load difference between experisnédditionally wherk is set ton, the number of
multi-tracking peers is independent of number o&isms whereas the number of multi-tracking peers
increases linearly witm for k=2. Figure 32 shows the number of multi-tracking peers for the
algorithms as a function of number of trackers. mbmber of multi-tracking peers that associate with
n swarms remains constant whereas the peers thoati@eswith 2 trackers increase linearly with

5.3.5. Discussion

The results presented above show that both randeen migration and random multi tracking
successfully increase the connectivity between mwaespecially for small torrents. Increasing the
sizes of swarms virtually, the algorithms incredseoverall performance of the protocol. The gain i
download times is estimated to be around 5% onatlezage for self-sufficient torrents. But when
small torrents that starve from piece availabilitg considered the gain can be up to 40% as mixing
can rescue these swarms from starvation.

Both algorithms perform very close in most casesdwer for increasing it can be said that random
multi-tracking (RMT) performs slightly better thaandom peer migration (RPM). The increase in
protocol overhead as shown is kept at a modest &k even in some cases the protocol overhead
due to mixing is amortised by the performance inaproent. Even there is not much difference in

69

RMT’s performance for varying; it is suggested to be maximized as the protoetd Bpss vulnerable

to stochastic behaviour whehis low. Having a single peer that associates \ithtrackers can
perform quite well whereas settikgo 2 may fail to connect all swarms when the nurndfemulti-
tracking peers is low. Thg value should not be chosen too high as it incretise overhead linearly
which does not worth the gain. The algorithms Yadtistribute the overhead increase among trackers
by their design hence mixing algorithms are showh to cause an excessive load increase on a
particular tracker.

The multi-tracking peers are noticed to perforngldlly better when compared to vanilla peers. The
reasoning behind this is simple. Registering toemawarms, multi-tracking peers become part of a
larger swarm hence they always keep their connmedgbutilized. Fork=n, the performance of multi-

tracking peers increases Iy as registering to more swarms increases theincgsato receive

connection requests from other peers. As an expaetsult, the average PEX traffic generated by
multi-tracking peers is above the average as tleep kntroducing peers in different swarms to each
other by sending utilized PEX messages withoutmddocy. Interestingly, the download performance
of migrating peers does not change determinisyidalit instead they behave like normal peers. The
average PEX traffic generated by migrating peerslightly below the average unexpectedly. The
reason for this can be the imbalance between tha&euof peers known from each swarm. Upon
migration, the list of migrating peer is mosthdd with peers from old swarm and only a few peers
are known from the new swarm. As redundancy chac&sperformed, it is possible for the peer to
send PEX messages with a few contacts to the peeld swarm which decreases the overall average.

Even if the multi-tracking peers start performinglstly better than other peers, the download time
distribution of peers still best fits the normastdibution. This implies that the mixing algorithrde
not harm the fairness of the BitTorrent protocollfomogenous peers.

70

6. CONCLUSION and FUTURE WORK

This thesis presents the design and implementatidavo dynamic swarm management algorithms
Random Peer Migration and Random Multi Trackingie@fve approaches to improve overall
BitTorrent performance with low cost. The discussscarm management algorithms increase the
protocol performance close to the optimum (whenpalkkrs are registered in a single swarm), but
without sacrificing the load balancing and resitierproperties offered by multi tracker extension at
the expense of only a small increase in commuminativerhead.

In order to measure the BitTorrent efficiency araihgof swarm management algorithms, a testbed
was developed. The testbed allows performing ctetroBitTorrent experiments by efficiently
utilizing a set of computers. The experiments ameed to be performed under realistic conditions as
much as possible.

The algorithms are shown to improve download pemnforce of the protocol around 5% on the
average. However the gain can even be around 4084 stlarving small swarms exist. The algorithms
are evaluated for various torrent sizes and nurobdrackers. The experiments show that mixing
algorithms simply improve the protocol without hamm other properties such as load balancing on
trackers and robustness. Even the overhead incisaseown to be amortised by the gain in
performance for small torrents.

Due to low number of available computers, the perémce of algorithms could not be evaluated in

larger scale experiments. As mentioned earlierjdahd defined in terms of average node degree and
number of peers per machine, should be balancedaft experiment which is not possible in some

scenarios due to limited number of available commutin order to keep the load balanced among
experiments, the torrent sizes should be select@aludtiples of load per machine.

With a slight modification the testbed can be dgptbon a large scale platform such as PlanetLab or
Emulab. With the available computers in those ptatf, users can run large scale torrents by only
running a single peer on each machine. In suctsthed, the algorithms can be evaluated in more
detail as there would not be any resource consstdimcreasing the number of computers for thepsetu
allows performing larger scale experiments whilerdasing the load on the individual machines.
Having more computers, the users can also expetriwigna larger content which helps observing the
protocol characteristics better.

The algorithms should also be evaluated in scemasibere peers exhibiting different behaviours
coexist in the torrent. As peers perform the mixobehaviour with a probability correlated with the
number of peers downloading the same content, tingbar of mixing peers would be less than the
expected but the efficiency of them is still a diggs After all the controlled experiments, the
performance of the algorithms should also be asdaashe wild.

71

REFERENCES

[1] Cohen, Bram. "The Bittorrent protocol specifioa." 28 Feb 2008. Web. 10 Feb 2010.
<http://www.bittorrent.org/beps/bep_0003.html>.

[2] "BitTorrent Still King of P2P Traffic" 18 Feb2009. Web. 10 Feb 2010.
<http://torrentfreak.com/bittorrent-still-king-of2p-traffic-090218/>.

[3] Yang, Xiangying, and Gustavo de Veciana. "Penfance of Peer-to-Peer Networks: Service
Capacity and Role of Resource Sharing PoliciesPrivc. of IEEE INFOCOM, 2004

[4] "Bittorrent Protocol Specification v1.0." 7 Feb2010. Web. 11 Feb 2010.
<http://wiki.theory.org/index.php?title=BitTorreni8cification&oldid=3392>.

[5] Cohen, Bram. "Incentives Build Robustness iriTBirent.". In Proc. of the 1st Workshop on
Economics of Peer-to-Peer Syster2903

[6] A.-L. Barabasi. “Linked: The New Science of Metrks”, Perseus Publishing, 2002.

[7] Neglia, Giovanni, Giuseppe Reina, Honggang ffiddon Towsley, and Arun Venkataramani.
“Availability in BitTorrent Systenisin Proc. of IEEE INFOCOM, 2007.

[8] Pouwelse, Johan, Pawel Garbacki, Dick Epemd, Henk Sips. "The Bittorrent P2P File-sharing
System: Measurements and Analysis." in Proc. oPi®T2005.

[9] "P2P:Protocol:Specifications:Multitracker." Web 12 Feb 2010.
<http://wiki.depthstrike.com/index.php?title=P2Rateicol: Specifications:Multitracker&oldid=2304>.

[10] Maymounkov, Petar, and David Mazieres. "Kadamh Peer-to-peer Information System Based
on the XOR Metric." in Proc. of IPTPS, 2002.

[11] Stutzbach, Daniel, and Reza Rejaie. "Improvirmgkup Performance over a Widely-Deployed
DHT." in Proc. of IEEE INFOCOM, 2006.

[12] "Kademlia: A Design Specification.” Web. 16 e 2010.
<http://xlattice.sourceforge.net/components/prolit@demlia/specs.html>.

[13] Loewenstern, Andrew. "DHT Protocol." 28 Feb 080 Web. 17 Feb 2010.
<http://bittorrent.org/beps/bep_0005.html>.

[14] Payberah, Amir, and Seif Haridi. "Kademlia: Peertopeer Information System Based on the
XOR Metric." Class Lecture, 23 Mar 2009. Web. 18r4a10.

[15] Menasche, Daniel S., Antonio A.A Rocha, Bin Don Towsley, and Arun Venkataramani.
"Content Availability and Bundling in Swarming Sgsts." in Proc. of CONEXT, Dec 2009.

[16] Peterson, Ryan S., and Emin Gun Sirer. "AntfaEfficient Content Distribution with Managed
Swarms." in Proc. of USENIXISDI, 2009.

[17] Gyorgy Dan, Niklas Carlsson, llias Chatzidmss'Improving BitTorrent Performance using Peer
Migration and Swarm Management,”, Technical RepB+-E-LCN 2010:010, May 2010.

[18] Sundell, Jari. "The libTorrent and rTorrent ofct” Web. 31 May 2010.
<http://libtorrent.rakshasa.no/>.

[19] Norberg, Arvid, Ludvig Strigeus, and Greg HaZ&xtension Protocol.”, 28 Feb 2008. Web. 31
May 2010. <http://www.bittorrent.org/beps/bep_0bittni>.

72

[20] Wu, Di, Prithula Dhungel, Xiaojun Hei, Chao aify, and Keith W. Ross. "Understanding Peer
Exchange in BitTorrent Systems." in Proc. of IEE#ePto-Peer Computing (P2P), 2010.

[21] Modelnet UCSD Systems and Networking, Web. 225ep 2010.
<https://modelnet.sysnet.ucsd.edu/>.

[22] Rao, Ashwin, Arnaud Legout, and Walid DabbotBitTorrent Experiments on Testbeds: A
Study of the Impact of Network Latencies." INRIAaRce, in Proc. of JDIR, 2010.

[23] Engling, Dirk . "opentracker — An open anddfr8itTorrent tracker." Web. 19 Nov 2010. <
http://erdgeist.org/arts/software/opentracker >

[24] Bharambe, Ashwin R., Cormac Herley, and Veak&#f. Padmanabhan. "Analyzing and
Improving a BitTorrent Network’s Performance Mecisams." in Proc. of IEEE INFOCOM, 2006.

[25] N.V. Smirnov "Tables for estimating the goodseof fit of empirical distributions"Annals of
Mathematical Statisticvol. 19, num. 2., pp. 279-281, 1948

73

	titlepage.pdf
	anil-MSc_thesis-1.pdf

