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Abstract—The problem of distributed learning and channel ac-
cess is considered in a cognitive network with multiple secondary
users. The availability statistics of the channels are initially
unknown to the secondary users and are estimated using sensing
decisions. There is no explicit information exchange or prior
agreement among the secondary users and sensing and access
decisions are undertaken by them in a completely distributed
manner. We propose policies for distributed learning and ac-
cess which achieve order-optimal cognitive system throughput
(number of successful secondary transmissions) under self play,
i.e., when implemented at all the secondary users. Equivalently,
our policies minimize the sum regret in distributed learning and
access, which is the loss in secondary throughput due to learning
and distributed access. For the scenario when the number of
secondary users is known to the policy, we prove that the total
regret is logarithmic in the number of transmission slots. This
policy achieves order-optimal regret based on a logarithmic lower
bound for regret under any uniformly-good learning and access
policy. We then consider the case when the number of secondary
users is fixed but unknown, and is estimated at each user through
feedback. We propose a policy whose sum regret grows only
slightly faster than logarithmic in the number of transmission
slots.

Index Terms—Cognitive medium access control, multi-armed
bandits, distributed algorithms, logarithmic regret.

I. INTRODUCTION

THERE has been extensive research on cognitive radio
network in the past decade to resolve many challenges not

encountered previously in traditional communication networks
(see e.g., [2]). One of the main challenges is to achieve
coexistence of heterogeneous users accessing the same part of
the spectrum. In a hierarchical cognitive network, there are two
classes of transmitting users, viz., the primary users who have
priority in accessing the spectrum and the secondary users who
opportunistically transmit when the primary user is idle. The
secondary users are cognitive and can sense the spectrum to
detect the presence of a primary transmission. However, due
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to resource and hardware constraints, they can sense only a
part of the spectrum at any given time.
We consider a slotted cognitive system where each sec-

ondary user can sense and access only one orthogonal channel
in each transmission slot (see Fig. 1). Under sensing con-
straints, it is thus beneficial for the secondary users to select
channels with higher mean availability, i.e., channels which
are less likely to be occupied by the primary users. However,
in practice, the channel availability statistics are unknown to
the secondary users at the start of the transmissions.
Since the secondary users are required to sense the medium

before transmission, can these sensing decisions be used to
learn the channel availability statistics? If so, using these
estimated channel availabilities, can we design channel access
rules which maximize the transmission throughput? Designing
provably efficient algorithms to accomplish the above goals
forms the focus of our paper. Such algorithms need to be
efficient, both in terms of learning and channel access.
For any learning algorithm, there are two important perfor-

mance criteria: consistency and regret bounds [3]. A learning
algorithm is said to be consistent if the learnt estimates
converge to the true values as the number of samples goes
to infinity. The regret1 of a learning algorithm is a measure
of the speed of convergence, and is thus meaningful only for
consistent algorithms. In our context, the users need to learn
the channel availability statistics consistently in a distributed
manner. The regret in this case is defined as the loss in
secondary throughput due to learning when compared to the
ideal scenario where the channel statistics are known perfectly
(see (2)). It is thus desirable to design distributed learning
algorithms with small regret.
Additionally, we consider a distributed framework where

there is no information exchange or prior agreement among
the secondary users. This introduces additional challenges:
it results in loss of throughput due to collisions among the
secondary users, and there is now competition among the
secondary users since they all tend to access channels with
higher availabilities. It is imperative that the channel access
policies overcome the above challenges. Hence, a distributed
learning and access policy experiences regret both due to
learning the unknown channel availabilities as well as due
to collisions under distributed access.

1Note that the sum regret is a finer measure of performance of a
distributed algorithm than the time-averaged total throughput of the users
since any sub-linear regret (with respect to time) implies optimal average
throughput. On the other hand, regret is equivalent to total throughput and
hence, optimal regret is equivalent to achieving optimal total throughput.

0733-8716/11/$25.00 c© 2011 IEEE
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Primary User
Secondary User

Fig. 1. Cognitive radio network with U = 4 secondary users and C = 5
channels. A secondary user is not allowed to transmit if the accessed channel
is occupied by a primary user. If more than one secondary user transmits in
the same free channel, then all the transmissions are unsuccessful.

A. Our Contributions

The main contributions of this paper are two fold. First,
we propose two distributed learning and access policies under
multiple secondary users in a cognitive network. Second, we
provide performance guarantees for these policies in terms of
regret. Overall, we prove that one of our proposed algorithms
achieves order-optimal regret and the other achieves nearly
order-optimal regret, where the order is with respect to the
number of transmission slots.
The first policy we propose assumes that the total number

of secondary users in the system is known while our second
policy removes this requirement. We provide bounds on the
total regret experienced by the secondary users under self
play, i.e., when implemented at all the secondary users. For
the first policy, we prove that the regret is logarithmic, i.e.,
O(log n) where n in the number of transmission slots. For the
second policy, the regret grows slightly faster than logarithmic,
i.e., O(f(n) log n), where we can choose any function f(n)
satisfying f(n) → ∞, as n → ∞. Hence, we provide
performance guarantees for the proposed distributed learning
and access policies.
A lower bound on regret under any uniformly-good dis-

tributed learning policy has been derived in [4], which is also
logarithmic in the number of transmission slots (See (6) for
definition of uniformly-good policies). Thus, our first policy
(which requires knowledge of the number of secondary users)
achieves order-optimal regret. The effects of the number of
secondary users and the number of channels on regret are
also explicitly characterized and verified via simulations.
The exploration-exploitation tradeoff for learning, com-

bined with the cooperation-competition tradeoffs among mul-
tiple users for distributed medium access have not been
sufficiently examined in the literature (see Section I-B for a
discussion). Our analysis in this paper provides important en-
gineering insights towards dealing with learning, competition,
and cooperation in practical cognitive systems.

Remark on Model Assumptions: We note some of the
limitations of our approach. We prove order-optimal regret for
our proposed algorithms under an i.i.d. primary transmission
model2, where the probability of a channel being occupied
by any primary user in any slot is assumed to be i.i.d.
This is indeed is idealistic and in practice, a Markovian
model may be more appropriate [5], [6]. The i.i.d. model
leads to simple learning schemes for channel availabilities
but is not crucial towards deriving regret bounds for our
proposed schemes. Extensions of the classical multi-armed
bandit problem to a Markovian model are considered in [7].
In principle, our results on achieving order-optimal regret for
distributed learning and access can be similarly extended to
a Markovian channel model but this entails more complex
estimators and rules for evaluating the exploration-exploitation
tradeoffs of different channels and is a topic of interest for
future investigation.

B. Related Work

Several results on the multi-armed bandit problem will be
used and generalized to study our problem. Detailed discussion
on multi-armed bandits can be found in [8]–[11]. Cognitive
medium access is a topic of extensive research; see [12]
for an overview. The connection between cognitive medium
access and the multi-armed bandit problem is explored in
[13], where a restless bandit formulation is employed. Under
this formulation, indexability is established, Whittle’s index
for channel selection is obtained in closed-form, and the
equivalence between the myopic policy and the Whittle’s
index is established. However, this work assumes known
channel availability statistics and does not consider competing
secondary users. The work in [14] considers allocation of two
users to two channels under a Markovian channel model using
a partially observable Markov decision process (POMDP)
framework. The use of collision feedback information for
learning, and spatial heterogeneity in spectrum opportunities
were investigated. However, the difference from our work
is that [14] assumes that the availability statistics (transition
probabilities) of the channels are known to the secondary users
while we consider learning of unknown channel statistics. The
works in [15], [16] consider centralized access schemes in
contrast to distributed access here, the work in [17] considers
access through information exchange and studies the optimal
choice of the amount of information to be exchanged given
the cost of negotiation. The work in [18] considers access
under Q-learning for two users and two channels where users
can sense both the channels simultaneously. The work in
[19] discusses a game-theoretic approach to cognitive medium
access. In [20], learning in congestion games through multi-
plicative updates is considered and convergence to weakly-
stable equilibria (which reduces to the pure Nash equilibrium
for almost all games) is proven. However, the work assumes
fixed costs (or equivalently rewards) in contrast to random
rewards here, and that the players can fully observe the actions
of other players.

2By i.i.d. primary transmission model, we do not mean the presence of
a single primary user, but rather, this model is used to capture the overall
statistical behavior of all the primary users in the system.
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Recently, the work in [21] considers combinatorial bandits,
where a more general model of different (unknown) channel
availabilities is assumed for different secondary users, and a
matching algorithm is proposed for jointly allocating users
to channels. The algorithm is guaranteed to have logarithmic
regret with respect to the number of transmission slots and
polynomial storage requirements. A decentralized implemen-
tation of the proposed algorithm is proposed but it still
requires information exchange and coordination among the
users. In contrast, we propose algorithms which removes this
requirement albeit in a more restrictive setting of identical
channel availabilities for all users.
Recently, Liu and Zhao [4] proposed a family of distributed

learning and access policies known as time-division fair share
(TDFS), and proved logarithmic regret for these policies. They
established a lower bound on the growth rate of system regret
for a general class of uniformly-good decentralized polices.
The TDFS policies in [4] can incorporate any order-optimal
single-player policy while our work here is based on the
single-user policy proposed in [11]. Another difference is
that in [4], the users orthogonalize via settling at different
offsets in their time-sharing schedule, while in our work here,
users orthogonalize into different channels. Moreover, the
TDFS policies ensure that each player achieves the same time-
average reward while our policies here achieve probabilistic
fairness, in the sense that the policies do not discriminate be-
tween different users. In [22], the TDFS policies are extended
to incorporate imperfect sensing.
In our prior work [1], we first formulated the problem

of decentralized learning and access for multiple secondary
users. We considered two scenarios: one where there is initial
common information among the secondary users in the form of
pre-allocated ranks, and the other where no such information
is available. In this paper, we analyze the distributed policy in
detail and prove that it has logarithmic regret. In addition, we
also consider the case when the number of secondary users is
unknown, and provide bounds on regret in this scenario.
Organization: Section II deals with the system model,

Section III deals with the special case of single secondary
user and of multiple users with centralized access which
can be directly solved using the classical results on multi-
armed bandits. In Section IV, we propose distributed learning
and access policy with provably logarithmic regret when the
number of secondary users is known. Section V considers the
scenario when the number of secondary users is unknown.
Section VI provides a lower bound for distributed learning.
Section VII includes some simulation results for the proposed
schemes and Section VIII concludes the paper. Most of the
proofs are found in the Appendix.
Since Section III mostly deals with a recap of the clas-

sical results on multi-armed bandits, those familiar with the
literature (e.g., [8]–[11]) may skip this section without loss of
continuity.

II. SYSTEM MODEL & FORMULATION

Notation: For any two functions f(n), g(n), f(n) =
O(g(n)) if there exists a constant c such that f(n) ≤ cg(n)
for all n ≥ n0 for a fixed n0 ∈ N. Similarly, f(n) = Ω(g(n))
if there exists a constant c′ such that f(n) ≥ c′g(n) for all

n ≥ n0 for a fixed n0 ∈ N, and f(n) = Θ(g(n)) if f(n) =
Ω(g(n)) and f(n) = O(g(n)). Also, f(n) = o(g(n)) when
f(n)/g(n)→ 0 and f(n) = ω(g(n)) when f(n)/g(n)→ ∞
as n→∞.
For a vector µ, let |µ| denote its cardinality, and let

µ = [μ1, μ2, . . . , μ|µ|]T . We refer to the U highest entries
in a vector µ as the U -best channels and the rest as the U -
worst channels, where 1 ≤ U ≤ |µ|. Let σ(a; µ) denote
the index of the ath highest entry in µ. Alternatively, we
abbreviate a∗:=σ(a; µ) for ease of notation. Let B(μ) denote
the Bernoulli distribution with mean μ. With abuse of notation,
let D(μ1, μ2):=D(B(μ1); B(μ2)) be the Kullback-Leibler
distance between the Bernoulli distributions B(μ1) and B(μ2)
[23] and let Δ(1, 2):=μ1 − μ2.

A. Sensing & Channel Models

Let U ≥ 1 be the number of secondary users3 and C ≥ U
be the number4 of orthogonal channels available for slotted
transmissions with a fixed slot width. In each channel i and
slot k, the primary user transmits i.i.d. with probability 1 −
μi > 0. In other words, letWi(k) denote the indicator variable
if the channel is free

Wi(k) =
{

0, channel i occupied in slot k

1, o.w,

and we assume that Wi(k) i.i.d.∼ B(μi).
The mean availability vector µ consists of mean availabil-

ities μi of all channels, i.e., is µ:=[μ1, . . . , μC ], where all
μi ∈ (0, 1) and are distinct. µ is initially unknown to all the
secondary users and is learnt independently over time using
the past sensing decisions without any information exchange
among the users. We assume that channel sensing is perfect
at all the users.
Let Ti,j(k) denote the number of slots where channel i is

sensed in k slots by user j (not necessarily being the sole
user to sense that channel). Note that

∑C
i=1 Ti,j(k) = k for

all users j, since each user senses exactly one channel in every
time slot. The sensing variables are obtained as follows: at the
beginning of the kth slot, each secondary user j ∈ U selects
exactly one channel i ∈ C for sensing, and hence, obtains the
value of Wi(k), indicating if the channel is free. User j then
records all the sensing decisions of each channel i in a vector
Xk

i,j :=[Xi,j(1), . . . , Xi,j(Ti,j(k))]T . Hence, ∪C
i=1X

k
i,j is the

collection of sensed decisions for user j in k slots for all the
C channels.
We assume the collision model under which if two or

more users transmit in the same channel then none of the
transmissions go through. At the end of each slot k, each
user j receives acknowledgement Zj(k) on whether its trans-
mission in the kth slot was received. Hence, in general, any
policy employed by user j in the (k + 1)th slot, denoted by
ρ(∪C

i=1X
k
i,j ,Z

k
j ), is based on all the previous sensing and

feedback results.

3A user refers to a secondary user unless otherwise mentioned.
4When U ≥ C, learning availability statistics is less crucial, since all

channels need to be accessed to avoid collisions. In this case, design of
medium access is more crucial.
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Algorithm 1 Single User Policy ρ1(g(n)) in [10].
Input: {X̄i(n)}i=1,...,C : Sample-mean availabilities after n
rounds, g(i; n): statistic based on X̄i,j(n),
σ(a;g(n)): index of ath highest entry in g(n).
Init: Sense in each channel once, n← C, Curr_Sel← C.
Loop: n← n + 1
Curr_Sel← channel corresponding to highest entry in g(n)
for sensing. If free, transmit.

B. Regret of a Policy

Under the above model, we are interested in designing
policies ρ which maximize the expected number of successful
transmissions of the secondary users subject to the non-
interference constraint for the primary users. Let S(n; µ, U, ρ)
be the expected total number of successful transmissions after
n slots under U number of secondary users and policy ρ.
In the ideal scenario where the availability statistics µ are

known a priori and a central agent orthogonally allocates the
secondary users to the U -best channels, the expected number
of successful transmissions after n slots is given by

S∗(n; µ, U):=n

U∑
j=1

μ(j∗), (1)

where j∗ is the j th-highest entry in µ.
It is clear that S∗(n; µ, U) > S(n; µ, U, ρ) for any policy

ρ and any finite n ∈ N. We are interested in minimizing the
regret in learning and access, given by

R(n; µ, U, ρ):=S∗(n; µ, U)− S(n; µ, U, ρ) > 0. (2)

We are interested in minimizing regret under any given µ ∈
(0, 1)C with distinct elements.
By incorporating the collision channel model assumption

with no avoidance mechanisms5, the expected throughput
under the policy ρ is given by

S(n; µ, U, ρ) =
C∑

i=1

U∑
j=1

μ(i)E[Vi,j(n)],

where Vi,j(n) is the number of times in n slots where user
j is the sole user to sense channel i. Hence, the regret in (2)
simplifies as

R(n; ρ) =
U∑

k=1

nμ(k∗)−
C∑

i=1

U∑
j=1

μ(i)E[Vi,j(n)]. (3)

III. SPECIAL CASES FROM KNOWN RESULTS

We recap the bounds for the regret under the special cases
of a single secondary user (U = 1) and multiple users with
centralized learning and access by appealing to the classical
results on the multi-armed bandit process [8]–[10].

A. Single Secondary User (U = 1)
When there is only one secondary user, the problem of

finding policies with minimum regret reduces to that of a

5If the users employ CSMA-CA to avoid collisions then the regret is
reduced. The bounds derived in this paper are applicable for this case as
well.

multi-armed bandit process. Lai and Robbins [8] first analyzed
schemes for multi-armed bandits with asymptotic logarithmic
regret based on the upper confidence bounds on the unknown
channel availabilities. Since then, simpler schemes have been
proposed in [10], [11] which compute a statistic or an index for
each arm (channel), henceforth referred to as the g-statistic,
based only on its sample mean and the number of slots where
the particular arm is sensed. The arm with the highest index is
selected in each slot in these works. We summarize the policy
in Algorithm 1 and denote it ρ1(g(n)), where g(n) is the
vector of scores assigned to the channels after n transmission
slots.
The sample-mean based policy in [11, Thm. 1] proposes an

index for each channel i and user j at time n is given by

gMEANj (i; n):=X̄i,j(Ti,j(n)) +

√
2 log n

Ti,j(n)
, (4)

where Ti,j(n) is the number of slots where user j selects
channel i for sensing,

X̄i,j(Ti,j(n)):=
Ti,j(n)∑

k=1

Xi,j(k)
Ti,j(n)

is the sample-mean availability of channel i, as sensed by user
j.
The statistic in (4) captures the exploration-exploitation

tradeoff between sensing the channel with the best predicted
availability to maximize immediate throughput and sensing
different channels to obtain improved estimates of their avail-
abilities. The sample-mean term in (4) corresponds to exploita-
tion while the other term involving Ti,j(n) corresponds to
exploration since it penalizes channels which are not sensed
often. The normalization of the exploration term with log n
in (4) implies that the term is significant when Ti,j(n) is
much smaller than log n. On the other hand, if all the channels
are sensed Θ(log n) number of times, the exploration terms
become unimportant in the g-statistics of the channels and the
exploitation term dominates, thereby, favoring sensing of the
channel with the highest sample mean.
The regret based on the above statistic in (4) is logarithmic

for any finite number of slots n but does not have the optimal
scaling constant. The sample-mean based statistic in [10,
Example 5.7] leads to the optimal scaling constant for regret
and is given by

gOPTj (i; n):=X̄i,j(Ti,j(n)) + min

[√
log n

2Ti,j(n)
, 1

]
. (5)

In this paper, we design policies based on the gMEAN statistic
since it is simpler to analyze than the gOPT statistic. This is
because gMEAN is a continuous function in Ti,j(n) while gOPT

has a threshold on Ti,j(n).
We now recap the results which show logarithmic regret in

learning the best channel. In this context, we define uniformly
good policies ρ [8] as those with regret

R(n; µ, U, ρ) = o(nα), ∀α > 0, µ ∈ (0, 1)C . (6)
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Theorem 1 (Logarithmic Regret for U = 1 [10], [11]):
For any uniformly good policy ρ satisfying (6), the expected
time spent in any suboptimal channel i �= 1∗ satisfies

lim
n→∞ P

[
Ti,1(n) ≥ (1 − ε) logn

D(μi, μ1∗)
; µ

]
= 1, (7)

where 1∗ is the channel with the best availability. Hence, the
regret satisfies

lim inf
n→∞

R(n; µ, 1, ρ)
log n

≥
∑

i∈1-worst

Δ(1∗, i)
D(μi, μ1∗)

. (8)

The regret under the gOPT statistic in (5) achieves the above
bound.

lim
n→∞

R(n; µ, 1, ρ1(gOPT
j ))

log n
=

∑
i∈1-worst

Δ(1∗, i)
D(μi, μ1∗)

. (9)

The regret under gMEAN statistic in (34) satisfies

R(n; µ, 1, ρ1(gMEAN
j )) ≤

∑
i�=1∗

Δ(1∗, i)
[

8 log n

Δ(j∗, i)2
+ 1 +

π2

3

]
.

B. Centralized Learning & Access for Multiple Users

We now consider multiple secondary users under centralized
access policies where there is joint learning and access by a
central agent on behalf of all the U users. Here, to minimize
the sum regret, the centralized policy allocates the U users to
orthogonal channels to avoid collisions. Let ρCENT(X k), with
X k := ∪U

j=1 ∪C
i=1 Xk

i,j , denote a centralized policy based
on the sensing variables of all the users. The policy under
centralized learning is a simple generalization of the single-
user policy and is given in Algorithm 2. We now recap the
results of [9].
Theorem 2 (Regret Under Centralized Policy ρCENT [9]):

For any uniformly good centralized policy ρCENT satisfying
(6), the expected times spent in a U -worst channel i satisfies

lim
n→∞ P

⎡⎣ U∑
j=1

Ti,j(n) ≥ (1− ε) log n

D(μi, μU∗)
; µ

⎤⎦ = 1, (10)

where U∗ is the channel with the U th best availability. Hence,
the regret satisfies

lim inf
n→∞

R(n; µ, 1, ρCENT)
log n

≥
∑

i∈U-worst

Δ(U∗, i)
D(μi, μU∗)

. (11)

The scheme in Algorithm 2 based on gOPT achieves the above
bound.

lim
n→∞

R(n; µ, 1, ρCENT(gOPT)
log n

=
∑

i∈U-worst

Δ(U∗, i)
D(μi, μU∗)

. (12)

The scheme in Algorithm 2 based on the gMEAN satisfies for
any n > 0,

R(n; µ, U, ρCENT(gMEAN))

≤
U∑

m=1

∑
i∈U-worst

U∑
k=1

Δ(m∗, i)
U

[
8 log n

Δ(m∗, i)2
+ 1 +

π2

3

]
.

(13)

Proof: See Appendix A. �

Algorithm 2 Centralized Learning Policy ρCENT in [9].

Input: Xn := ∪U
j=1 ∪C

i=1 Xn
i,j : Channel availability after n

slots, g(n): statistic based on Xn,
σ(a;g(n)): index of ath highest entry in g(n).
Init: Sense in each channel once, n← C
Loop: n← n + 1
Curr_Sel ← channels with U -best entries in g(n). If free,
transmit.

Notice that for both the single user case U = 1 (Theorem 1)
and the centralized multi-user case (Theorem 2), the number
of time slots spent in the U-worst channels is Θ(log n) and
hence, the regret is also Θ(log n).

IV. MAIN RESULTS

Armed with the classical results on multi-armed bandits, we
now design distributed learning and allocation policies.

A. Preliminaries: Bounds on Regret

We first provide simple bounds on the regret in (3) for any
distributed learning and access policy ρ.
Proposition 1 (Lower and Upper Bounds on Regret): The

regret under any distributed policy ρ satisfies

R(n; ρ) ≥
U∑

j=1

∑
i∈U-worst

Δ(U∗, i)E[Ti,j(n)], (14)

R(n; ρ) ≤μ(1∗)

⎡⎣ U∑
j=1

∑
i∈U-worst

E[Ti,j(n)] + E[M(n)]

⎤⎦, (15)

where Ti,j(n) is the number of slots where user j selects
channel i for sensing, M(n) is the number of collisions faced
by the users in the U -best channels in n slots, Δ(i, j) =
μ(i)− μ(j) and μ(1∗) is the highest mean availability.
Proof: See Appendix B. �

In the subsequent sections, we propose distributed learning
and access policies and provide regret guarantees for the
policies using the upper bound in (15). The lower bound in
(14) can be used to derive lower bound on regret for any
uniformly-good policy.
The first term in (15) represents the lost transmission

opportunities due to selection of U -worst channels (with lower
mean availabilities), while the second term represents the
performance loss due to collisions among the users in the
U -best channels. The first term in (15) decouples among the
different users and can be analyzed solely through the marginal
distributions of the g-statistics at the users. This in turn, can
be analyzed by manipulating the classical results on multi-
armed bandits [10], [11]. On the other hand, the second term
in (15), involving collisions in the U -best channels, requires
the joint distribution of the g-statistics at different users which
are correlated variables. This is intractable to analyze directly
and we develop techniques to bound this term.
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Algorithm 3 Policy ρRAND(U, C,gj(n)) for each user j under
U users, C channels and statistic gj(n).

Input: {X̄i,j(n)}i=1,...,C : Sample-mean availabilities at
user j after n rounds, gj(i; n): statistic based on X̄i,j(n),
σ(a;gj(n)): index of ath highest entry in gj(n).
ζj(i; n): indicator of collision at nth slot at channel i
Init: Sense in each channel once, n← C, Curr_Rank ← 1,
ζj(i; m)←0
Loop: n← n + 1
if ζj(Curr_Sel; n− 1) = 1 then
Draw a new Curr_Rank ∼ Unif(U)
end if
Select channel for sensing. If free, transmit.
Curr_Sel← σ(Curr_Rank;gj(n)).
If collision ζj(Curr_Sel; m)← 1, Else 0.

B. ρRAND : Distributed Learning and Access

We present the ρRAND policy in Algorithm 3. Before de-
scribing this policy, we make some simple observations. If
each user implemented the single-user policy in Algorithm 1,
then it would result in collisions, since all the users target
the best channel. When there are multiple users and there
is no direct communication among them, the users need to
randomize channel access in order to avoid collisions. At
the same time, accessing the U -worst channels needs to be
avoided since they contribute to regret. Hence, users can avoid
collisions by randomizing access over the U -best channels,
based on their estimates of the channel ranks. However, if the
users randomize in every slot, there is a finite probability of
collisions in every slot and this results in a linear growth of
regret with the number of time slots. Hence, the users need
to converge to a collision-free configuration to ensure that the
regret is logarithmic.
In Algorithm 3, there is adaptive randomization based

on feedback regarding the previous transmission. Each user
randomizes only if there is a collision in the previous slot;
otherwise, the previously generated random rank for the user
is retained. The estimation for the channel ranks is through
the g-statistic, along the lines of the single-user case.

C. Regret Bounds under ρRAND

It is easy to see that the ρRAND policy ensures that the
users are allocated orthogonally to the U -best channels as
the number of transmission slots goes to infinity. The regret
bounds on ρRAND are however not immediately clear and we
provide guarantees below.
We first provide a logarithmic upper bound6 on the number

of slots spent by each user in any U -worst channel. Hence, the
first term in the bound on regret in (15) is also logarithmic.
Lemma 1 (Time Spent in U -worst Channels): Under the

ρRAND scheme in Algorithm 3, the total time spent by any user

6Note that the bound on E[Ti,j(n)] in (16) holds for user j even if the
other users are using a policy other than ρRAND. But on the other hand, to
analyze the number of collisions E[M(n)] in (19), we need every user to
implement ρRAND.

j = 1, . . . , U , in any i ∈ U -worst channel is given by

E[Ti,j(n)] ≤
U∑

k=1

[ 8 logn

Δ(i, k∗)2
+ 1 +

π2

3

]
. (16)

Proof: The proof is similar along the lines of Theorem 2,
given in Appendix A. The only difference is that here, we
need to consider the probability of transmission of each user
in each U -worst channel while in Appendix A, the probability
of transmission by all users is considered. �

We now focus on analyzing the number of collisions M(n)
in the U -best channels. We first give a result on the expected
number of collisions in the ideal scenario where each user has
perfect knowledge of the channel availability statistics µ. In
this case, the users attempt to reach an orthogonal (collision-
free) configuration by uniformly randomizing over the U -best
channels.
The stochastic process in this case is a finite-state Markov

chain. A state in this Markov chain corresponds to a con-
figuration of U number of (identical) users in U number of
channels. The number of states in the Markov chain is the
number of compositions of U , given by

(
2U−1

U

)
[24, Thm. 5.1].

The orthogonal configuration corresponds to the absorbing
state. There are two other classes of states in the Markov
chain. One class consists of states in which each channel either
has more than one user or no user at all. The second class
consists of the remaining states where some channels may
have just one user. For the first class, the transition probability
to any state of the Markov chain (including self transition and
absorption probabilities) is uniform. For a state in the second
class, where certain channels have exactly one user, there are
only transitions to states which have identical configuration of
the single users and the transition probabilities are uniform.
Let Υ(U, U) denote the maximum time to absorption in the
above Markov chain starting from any initial distribution. We
have the following result
Lemma 2 (No. of Collisions Under Perfect Knowledge):

The expected number of collisions under ρRAND scheme in
Algorithm 3, assuming that each user has perfect knowledge
of the mean channel availabilities µ, is given by

E[M(n); ρRAND(U, C, µ)] ≤ UE[Υ(U, U)]

≤ U

[(
2U − 1

U

)
−1

]
. (17)

Proof: See Appendix C. �

The above result states that there is at most a finite number
of expected collisions, bounded by UE[Υ(U, U)] under perfect
knowledge of µ. In contrast, recall from the previous section,
that there are no collisions under perfect knowledge of µ
in the presence of pre-allocated ranks. Hence, UE[Υ(U, U)]
represents a bound on the additional regret due to the lack
of direct communication among the users to negotiate their
ranks.
We use the result of Lemma 2 for analyzing the num-

ber of collisions under distributed learning of the unknown
availabilities µ as follows: if we show that the users are
able to learn the correct order of the different channels with
only logarithmic regret then only an additional finite expected
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number of collisions occur before reaching an orthogonal
configuration.
Define T ′(n; ρRAND) as the number of slots where any one

of the top U -estimated ranks of the channels at some user is
wrong under the ρRAND policy. Below we prove that its expected
value is logarithmic in the number of transmissions.
Lemma 3 (Wrong Order of g-statistics): Under the ρRAND

scheme in Algorithm 3,

E[T ′(n; ρRAND)] ≤ U

U∑
a=1

C∑
b=a+1

[
8 logn

Δ(a∗, b∗)2
+1+

π2

3

]
. (18)

Proof: See Appendix D. �

We now provide an upper bound on the number of collisions
M(n) in the U -best channels by incorporating the above result
on E[T ′(n)], the result on the average number of slots E[Ti,j ]
spent in the i ∈ U -worst channels in Lemma 1 and the average
number of collisions UE[Υ(U, U)] under perfect knowledge
of µ in Lemma 2.
Theorem 3 (Logarithmic Number of Collisions Under ρRAND):

The expected number of collisions in the U -best channels
under ρRAND(U, C,gMEAN) scheme satisfies

E[M(n)] ≤ U(E[Υ(U, U)] + 1) E[T ′
j(n)]. (19)

Hence, from (16), (18) and (17), M(n) = O(log n).
Proof: See Appendix E. �

Hence, there are only a logarithmic number of expected
collisions before the users settle in the orthogonal channels.
Combining this result with Lemma 1 that the number of
slots spent in the U -worst channels is also logarithmic, we
immediately have one of the main results of this paper
that the sum regret under distributed learning and access is
logarithmic.
Theorem 4 (Logarithmic Regret Under ρRAND): The policy

ρRAND(U, C,gMEAN) in Algorithm 3 has Θ(log n) regret.
Proof: Substituting (19) and (16) in (15). �

Hence, we prove that distributed learning and channel
access among multiple secondary users is possible with log-
arithmic regret without any explicit communication among
the users. This implies that the number of lost opportunities
for successful transmissions at all secondary users is only
logarithmic in the number of transmissions, which is negligible
when there are a large number of transmissions.
We have so far focused on designing schemes that maximize

system or social throughput. We now briefly discuss the
fairness for an individual user under ρRAND. Since ρRAND does
not distinguish any of the users, in the sense that each user
has equal probability of “settling" down in one of the U -best
channels while experiencing only logarithmic regret in doing
so. Simulations in Section VII (in Fig. 4) demonstrate this
phenomenon.
We also note that the bound on regret under ρRAND grows

rapidly with the number of users U , due to the bound in
(17). This is due to uniform channel access by the users
without any coordination or information exchange. It is of
interest to explore better distributed access schemes, which
when combined with learning algorithms yield low regret in
the number of users.

Algorithm 4 Policy ρEST(n, C,gj(m), ξ) for each user j under
n transmission slots (horizon length), C channels, statistic
gj(m) and threshold function ξ.

1) Input: {X̄i,j(n)}i=1,...,C : Sample-mean availabilities
at user j, gj(i; n): statistic based on X̄i,j(n),
σ(a;gj(n)): index of ath highest entry in gj(n).
ζj(i; n): indicator of collision at nth slot at channel i

Û : current estimate of the number of users.
n: horizon (total number of slots for transmission)
ξ(n; k): threshold functions for k = 1, . . . , C.

2) Init: Sense each channel once, m ← C, Curr_Sel ←
C, Curr_Rank ← 1, Û ← 1, ζj(i; m) ← 0 for all
i = 1, . . . , C

3) Loop 4 to 6: m← m+1, stop when m = n or Û = C.
4) If ζj(Curr_Sel; m− 1) = 1 then
Draw a new Curr_Rank ∼ Unif(Û). end if
Select channel for sensing. If free, transmit.
Curr_Sel← σ(Curr_Rank;gj(m))

5) ζj(Curr_Sel; m)← 1 if collision, 0 o.w.

6) If
∑m

a=1

∑Û
k=1 ζj(σ(k;gj(m)); a) > ξ(n; Û)) then

Û ← Û + 1, ζj(i; a) ← 0, i = 1, . . . C, a = 1, . . . , m.
end if

V. DISTRIBUTED LEARNING AND ACCESS UNDER
UNKNOWN NUMBER OF USERS

We have so far assumed that the number of secondary
users is known, and is required for the implementation of
the ρRAND policy. In practice, this entails initial announcement
from each of the secondary users to indicate their presence in
the cognitive network. However, in a truly distributed setting
without any information exchange among the users, such an
announcement may not be possible.
In this section, we consider the scenario, where the number

of users U is unknown (but fixed throughout the duration of
transmissions and U ≤ C, the number of channels). In this
case, the policy needs to estimate the number of secondary
users in the system, in addition to learning the channel
availability statistics and designing channel access rules based
on collision feedback. Note that if the policy assumed the
worst-case scenario that U = C, then the regret grows linearly
since there is a positive probability that the U -worst channels
are selected for sensing in any time slot.

A. Description of ρEST Policy

We now propose a policy ρEST in Algorithm 4. This policy
incorporates two broad aspects in each transmission slot, viz.,
execution of the ρRAND policy in Algorithm 3, based on the
current estimate of the number of users Û , and updating of
the estimate Û based on the number of collisions experienced
by the user.
The updating is based on the idea that if there is under-

estimation of U at all the users (Ûj < U at all the users j),
collisions necessarily build up and the collision count serves
as a criterion for incrementing Û . This is because after a long
learning period, the users learn the true ranks of the channels,
and target the same set of channels. However, when there is
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under-estimation, the number of users exceeds the number of
channels targeted by the users. Hence, collisions among the
users accumulate, and can be used as a test for incrementing
Û .
Denote the collision count used by the ρEST policy as

Φk,j(m) :=
m∑

a=1

k∑
b=1

ζj(σ(b;gj(m)); a). (20)

which is the total number of collisions experienced by user j
so far (till the mth transmission slot) in the top Ûj-channels,
where the ranks of the channels are estimated using the g-
statistics. The collision count is tested against a threshold
ξ(n; Ûj), which is a function of the horizon length7 and
current estimate Ûj . When the threshold is exceeded, Ûj is
incremented, and the collision samples collected so far are
discarded (by setting them to zero) (line 6 in Algorithm 4).
The choice of the threshold for incrementing Ûj is critical; if
it is too small it can result in over-estimation of the number
of users. On the other hand, if it is too large, it can result in
slow learning and large regret. Threshold selection is studied
in detail in the subsequent section.

B. Regret Bounds under ρEST

We analyze regret bounds under the ρEST policy, where the
regret is defined in (3). Let the maximum threshold function
for the number of consecutive collisions under the ρEST policy
be denoted by

ξ∗(n; U):= max
k=1,...,U

ξ(n; k). (21)

We prove that the ρEST policy has O(ξ∗(n; U)) regret when
ξ∗(n; U) = ω(log n), and where n is the number of transmis-
sion slots.
The proof for the regret bound under the ρEST policy consists

of two main parts: we prove bounds on regret conditioned
on the event that none of the users over-estimate U . Second,
we show that the probability of over-estimation at any of the
users goes to zero asymptotically in the horizon length. Taken
together, we obtain the regret bound for the ρEST policy.
Note that in order to have small regret, it is crucial that none

of the users over-estimate U . This is because when there is
over-estimation, there is a finite probability of selecting the
U -worst channels even upon learning the true ranks of the
channels. Note that regret is incurred whenever a U-worst
channel is selected since under perfect knowledge this channel
would not be selected. Hence, under over-estimation, the regret
grows linearly in the number of transmissions.
In a nutshell, under the ρEST policy, the decision to increment

the estimate Û reduces to a hypothesis-testing problem with
hypotheses H0: number of users is less than or equal to the
current estimate and H1: number of users is greater than
the current estimate. In order to have a sub-linear regret,
the false-alarm probability (deciding H1 under H0) needs to
decay asymptotically. This is ensured by selecting appropriate

7In this section, we assume that the users are aware of the horizon length
n for transmission. Note that this is not a limitation and can be extended
to case of unknown horizon length as follows: implement the algorithm by
fixing horizon lengths to n0, 2n0, 4n0 . . . for a fixed n0 ∈ N and discarding
estimates from previous stages.

thresholds ξ(n) to test against the collision counts obtained
through feedback.
Conditional Regret: We now give the result for the first

part. Define the “good event” C(n; U) that none of the users
over-estimates U under ρEST as

C(n; U):={
U⋂

j=1

Û EST
j (n) ≤ U}. (22)

The regret conditioned on C(n; U), denoted by
R(n; µ, U, ρEST)|C(n; U), is given by

n
U∑

k=1

μ(k∗)−
C∑

i=1

U∑
j=1

μ(i)E[Vi,j(n)|C(n; U)],

where Vi,j(n) is the number of times that user j is the sole
user of channel i. Similarly, we have conditional expectations
of E[Ti,j(n)|C(n; U)] and of the number of collisions in U -
best channels, given by E[M(n)|C(n; U)]. We now show that
the regret conditioned on C(n; U) is O(max(ξ∗(n; U), log n)).
Lemma 4: (Conditional Regret):When all the U secondary

users implement the ρEST policy, we have for all i ∈ U -worst
channel and each user j = 1, . . . , U ,

E[Ti,j(n)|C(n)] ≤
U∑

k=1

[
8 log n

Δ(i, k∗)2
+ 1 +

π2

3

]
. (23)

The conditional expectation on number of collisions M(n) in
the U -best channel satisfies

E[M(n)|C(n; U)] ≤ U

U∑
k=1

ξ(n; k) ≤ U2ξ∗(n; U). (24)

From (15), we have R(n)|C(n; U) is O(max(ξ∗(n; U), log n))
for any n ∈ N.
Proof: See Appendix F. �

Probability of Over-estimation: We now prove that none
of the users over-estimates8 U under the ρEST policy, i.e., the
probability of the event C(n; U) in (22) approaches one as
n → ∞, when the thresholds ξ(n; Û) for testing against
the collision count are chosen appropriately (see line 6 in
Algorithm 4). Trivially, we can set ξ(n; 1) = 1 since a single
collision is enough to indicate that there is more than one user.
For any other k > 1, we choose function ξ satisfying

ξ(n; k) = ω(log n), ∀k > 1. (25)

We prove that the above condition ensures that over-estimation
does not occur.
Recall that T ′(n; ρEST) is the number of slots where any

one of the top U -estimated ranks of the channels at some
user is wrong under the ρEST policy. We show that E[T ′(n)] is
O(log n).
Lemma 5 (Time spent with wrong estimates): The

expected number of slots where any of the top U -estimated

8Note that the ρEST policy automatically ensures that all the users do not
under-estimate U , since it increments Û based on collision estimate. This
implies that the probability of the event that all the users under-estimate U
goes to zero asymptotically.



ANANDKUMAR et al.: DISTRIBUTED ALGORITHMS FOR LEARNING AND COGNITIVE MEDIUM ACCESS WITH LOGARITHMIC REGRET 739

ranks of the channels at any user is wrong under the ρEST

policy satisfies

E[T ′(n)] ≤ U

U∑
a=1

C∑
b=a+1

[
8 logn

Δ(a∗, b∗)2
+1+

π2

3

]
. (26)

Proof: The proof is on the lines of Lemma 3 �

Recall the definition of Υ(U, U) in the previous section,
as the maximum time to absorption starting from any initial
distribution of the finite-state Markov chain, where the states
correspond to different user configurations and the absorbing
state corresponds to the collision-free configuration. We now
generalize the definition to Υ(U, k), as the time to absorption
in a new Markov chain, where the state space is the set of
configurations of U users in k channels, and the transition
probabilities are defined on similar lines. Note that Υ(U, k)
is almost-surely finite when k ≥ U and ∞ otherwise (since
there is no absorbing state in the latter case).
We now bound the maximum value of the collision count

Φk,j(m) under the ρEST policy in (20) using T ′(m), the total
time spent with wrong channel estimates, and Υ(U, k), the

time to absorption in the Markov chain. Let
st≤ denote the

stochastic order for two random variables [25].
Proposition 2: The maximum collision count in (20) over

all users under the ρEST policy satisfies

max
j=1,...,U

Φk,j(m)
st≤ (T ′(m) + 1)Υ(U, k), ∀m ∈ N. (27)

Proof: The proof is on the lines of Theorem 3. See Ap-
pendix G. �

We now prove that the probability of over-estimation goes
to zero asymptotically.
Lemma 6 (No Over-estimation Under ρEST): For threshold

function ξ satisfying (25), the event C(n; U) in (22) satisfies

lim
n→∞ P[C(n; U)] = 1, (28)

and hence, none of the users over-estimates U under the ρEST

policy.
Proof: See Appendix H. �

We now give the main result of this section that ρEST has
slightly more than logarithmic regret asymptotically and this
depends on the threshold function ξ∗(n; U) in (21).
Theorem 5 (Asymptotic Regret Under ρEST): With

threshold function ξ satisfying conditions in (25), the
policy ρEST(n, C,gj(m), ξ) in Algorithm 4 satisfies

lim sup
n→∞

R(n; µ, U, ρEST)
ξ∗(n; U)

<∞. (29)

Proof: From Lemma 4 and Lemma 6. �

Hence, the regret under the proposed ρEST policy is
O(ξ∗(n; U)) under fully decentralized setting without the
knowledge of number of users when ξ∗(n; U) = ω(log n).
Hence, O(f(n) log n) regret is achievable for all functions
f(n) → ∞ as n → ∞. The question of whether logarithmic
regret is possible under unknown number of users is of
interest.
Note the difference between the ρEST policy in Algorithm 4

under unknown number of users with the ρRAND policy with
known number of users in Algorithm 3. The regret under ρEST

is O(f(n) log n) for any function f(n) = ω(1), while it is
O(log n) under the ρRAND policy. Hence, we are able to quantify
the degradation of performance when the number of users is
unknown.

VI. LOWER BOUND & EFFECT OF NUMBER OF USERS

A. Lower Bound For Distributed Learning & access

We have so far designed distributed learning and access
policies with provable bounds on regret. We now discuss the
relative performance of these policies, compared to the optimal
learning and access policies. This is accomplished by noting
a lower bound on regret for any uniformly-good policy, first
derived in [4] for a general class of uniformly-good time-
division policies. We restate the result below.
Theorem 6 (Lower Bound [4]): For any uniformly good

distributed learning and access policy ρ, the sum regret in
(2) satisfies

lim inf
n→∞

R(n; µ, U, ρ)
log n

≥
∑

i∈U-worst

U∑
j=1

Δ(U∗, i)
D(μi, μj∗)

. (30)

The lower bound derived in [9] for centralized learning and
access holds for distributed learning and access considered
here. But a better lower bound is obtained above by consid-
ering the distributed nature of learning. The lower bound for
distributed policies is worse than the bound for the centralized
policies in (11). This is because each user independently learns
the channel availabilities µ in a distributed policy, whereas
sensing decisions from all the users are used for learning in a
centralized policy.
Our distributed learning and access policy ρRAND matches

the lower bound on regret in (15) in the order (log n) but the
scaling factors are different. It is not clear if the regret lower
bound in (30) can be achieved by any policy under no explicit
information exchange and is a topic for future investigation.

B. Behavior with Number of Users

We have so far analyzed the sum regret under our policies
under a fixed number of users U . We now analyze the behavior
of regret growth as U increases while keeping the number of
channels C > U fixed.
Theorem 7 (Varying Number of Users): When the number

of channels C is fixed and the number of users U < C is
varied, the sum regret under centralized learning and access
ρCENT in (12) decreases as U increases while the upper bounds
on the sum regret under ρRAND in (15) monotonically increases
with U .
Proof: The proof involves analysis of (12) and (15). To
prove that the sum regret under centralized learning and access
in (12) decreases with the number of users U , it suffices to
show that for i ∈ U -worst channel,

Δ(U∗, i)
D(μi, μU∗)

decreases as U increases. Note that μ(U∗) and D(μi, μU∗)
decrease as U increases. Hence, it suffices to show that

μ(U∗)
D(μi, μU∗)



740 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 4, APRIL 2011

decreases with U . This is true since its derivative with respect
to U is negative.
For the upper bound on regret under ρRAND in (15), when U

is increased, the number of U -worst channels decreases and
hence, the first term in (15) decreases. However, the second
term consisting of collisions M(n) increases to a far greater
extent. �

Note that the above results are for the upper bound on regret
under the ρRAND policy and not the regret itself. Simulations in
Section VII reveal that the actual regret also increases with U .
Under the centralized scheme ρCENT, as U increases, the number
of U -worst channels decreases. Hence, the regret decreases,
since there are less number of possibilities of making bad
decisions. However, for distributed schemes although this
effect exists, it is far outweighed by the increase in regret
due to the increase in collisions among the U users.
In contrast, the distributed lower bound in (30) displays

anomalous behavior with U since it fails to account for
collisions among the users. Here, as U increases there are
two competing effects: a decrease in regret due to decrease
in the number of U -worst channels and an increase in regret
due to increase in the number of users visiting these U -worst
channels.

VII. NUMERICAL RESULTS

We present simulations for the algorithms developed in
the paper, varying the number of users and channels to
verify the performance of the algorithms detailed earlier. We
consider C= 9 channels (or a subset of them when the num-
ber of channels is varying) with probabilities of availability
characterized by Bernoulli distributions with evenly spaced
parameters ranging from 0.1 to 0.9.

Comparison of Different Schemes: Fig. 2a compares the
regret under the centralized and random allocation schemes in
a scenario with U = 4 cognitive users vying for access to the
C = 9 channels. The theoretical lower bound for the regret
in the centralized case from Theorem 2 and the distributed
case from Theorem 6 are also plotted. The upper bounds on
the random allocation scheme from Theorem 4 is not plotted
here, since the bounds are loose especially as the number of
users U increases. Finding tight upper bounds is a subject of
future study.
As expected, centralized allocation has the least regret.

Another important observation is the gap between the lower
bounds on the regret and the actual regret in both the dis-
tributed and the centralized cases. In the centralized scenario,
this is simply due to using the gMEAN statistic in (34) instead
of the optimal gOPT statistic in (5). However, in the distributed
case, there is an additional gap since we do not account for
collisions among the users. Hence, the schemes under con-
sideration are O(log n) and achieve order optimality although
they are not optimal in the scaling constant.

Performance with Varying U and C: Fig. 3a explores the
impact of increasing the number of secondary users U on the
regret experienced by the different policies with the number
of channels C fixed. With increasing U , the regret decreases
for the centralized schemes and increases for the distributed
schemes, as predicted in Theorem 7. The monotonic increase
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Fig. 2. Simulation Results. Probability of Availability µ =
[0.1, 0.2, . . . , 0.9].

of regret under random allocation ρRAND is a result of the
increase in the collisions as U increases. On the other hand,
the monotonic decreasing behavior in the centralized case is
because as the number of users increases, the number of U -
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Fig. 3. Simulation Results. Probability of Availability µ =
[0.1, 0.2, . . . , 0.9].

worst channels decreases resulting in lower regret. Also, the
lower bound for the distributed case in (30) initially increases
and then decreases with U . This is because as U increases
there are two competing effects: decrease in regret due to

decrease in number of U -worst channels and increase in regret
due to increase in number of users visiting these U -worst
channels.
Fig. 3b evaluates the performance of the different algorithms

as the number of channels C is varied while fixing the number
of users U . The probability of availability of each additional
channel is set higher than those already present. Here, the
regret monotonically increases with C in all cases. When the
number of channels increases along with the quality of the
channels, the regret increases as a result of an increase in the
number of U -worst channels as well as the increasing gap in
quality between the U -best and U -worst channels.
Also, the situation where the ratio U/C is fixed to be 0.5

and both the number of users and channels along with their
quality increase is considered in Fig. 3c and we find that
the regret grows in this case as well. Once again, this is in
agreement with theory since the number of U -worst channels
increases as U and C increase while keeping U/C fixed.

Collisions and Learning: Fig. 2c verifies the logarithmic
nature of the number of collisions under the random alloca-
tion scheme ρRAND. Additionally, we also plot the number of
collisions under ρRAND in the ideal scenario when the channel
availability statistics µ are known to see the effect of learning
on the number of collisions. The low value of the number
of collisions obtained under known channel parameters in
the simulations is in agreement with theoretical predictions,
analyzed as UE[Υ(U, U)] in Lemma 2. As the number of
slots n increases, the gap between the number of collisions
under the known and unknown parameters increases since the
former converges to a finite constant while the latter grows as
O(log n). The logarithmic behavior of the cumulative number
of collisions can be inferred from Fig. 2a. However, the curve
in Fig. 2c for the unknown parameter case appears linear in
n due to the small value of n.

Difference between gOPT and gMEAN: Since the statistic gMEAN

used in the schemes in this paper differs from the optimal
statistic gOPT in (5), a simulation is done to compare the perfor-
mance of the schemes under both the statistics. As expected, in
Fig. 2b, the optimal scheme has better performance. However,
the use of gMEAN enables us to provide finite-time bounds, as
described earlier.

Fairness: One of the important features of ρRAND is that
it does not favor any one user over another. Each user has
an equal chance of settling down in any one of the U -best
channels. Fig. 4 evaluates the fairness characteristics of ρRAND.
The simulation assumes U = 4 cognitive users vying for
access to C = 9 channels. The graph depicts which user
asymptotically gets the best channel over 1000 runs of the
random allocation scheme. As can be seen, each user has
approximately the same frequency of being allotted the best
channel indicating that the random allocation scheme is indeed
fair.

VIII. CONCLUSION

In this paper, we proposed novel policies for distributed
learning of channel availability statistics and channel access
of multiple secondary users in a cognitive network. The first
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Fig. 4. Simulation Results. Probability of Availability µ =
[0.1, 0.2, . . . , 0.9]. No. of slots where user has best channel vs. user. U = 4,
C = 9, n = 2500 slots, 1000 runs, ρRAND.

policy assumed that the number of secondary users in the
network is known, while the second policy removed this
requirement. We provide provable guarantees for our policies
in terms of sum regret. By noting the lower bound on regret for
any uniformly-good learning and access policy, we find that
our first policy achieves order-optimal regret while our second
policy is also nearly order optimal. Our analysis in this paper
provides insights on incorporating learning and distributed
medium access control in a practical cognitive network.
The results of this paper open up an interesting array of

problems for future investigation. Simulations suggest that our
lower and upper bounds are not tight in terms of the scaling
constant and that better bounds are needed. Our assumptions
of an i.i.d. model for primary user transmissions and perfect
sensing at the secondary users need to be relaxed. Our policy
allows for an unknown but fixed number of secondary users,
and it is of interest to incorporate users dynamically entering
and leaving the system. Moreover, our model ignores dynamic
traffic at the secondary nodes and extension to a queueing-
theoretic formulation is desirable. We consider the worst-case
scenario that there is no information exchange among the sec-
ondary users. Extension to the case with limited information
exchange is of interest. The proposed schemes are designed
to be simple and tractable for mathematical analysis. It is
desirable to obtain more robust schemes with additional design
considerations for real-world deployment.
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APPENDIX

A. Proof of Theorem 2

The result in (13) involves extending the results of [11,
Thm. 1]. Define Ti(n):=

∑U
j=1 Ti,j(n) as the number of times

a channel i is sensed in n rounds for all users. We will show
that

E[Ti(n)] ≤
∑

k∈U-best

[
8 log n

Δ(k∗, i)2
+ 1 +

π2

3

]
, ∀i ∈ U -worst.

(31)
We have

P[Tx. in i in nth slot] = P[g(U∗; n) ≤ g(i; n)],
=P[A(i; n) ∩ (g(U∗; n) ≤ g(i; n))]

+ P[Ac(i; n) ∩ (g(U∗; n) ≤ g(i; n))],

where

A(i; n):=
⋃

k∈U-best

(g(k; n) ≤ g(i; n))

is the event that at least one of the U -best channels has g-
statistic less than i. Hence, from union bound we have

P[A(i; n)] ≤
∑

k∈U-best

P[g(k; n) ≤ g(i; n)].

We have for C > U ,

P[Ac(i; n) ∩ (g(U∗; n) ≤ g(i; n))] = 0,

Hence,

P[Tx. in i in nth round] ≤
∑

k∈-best
P[g(k; n) ≤ g(i; n)].

On the lines of [11, Thm. 1], we have ∀k, i :
k is U -best, i is U -worst

n∑
l=1

I[g(k; l) ≤ g(i; l)] ≤ 8 log n

Δ(k∗, i)2
+ 1 +

π2

3
.

Hence, we have (31). For the bound on regret, we can break
R in (2) into two terms

R(n; µ, U, ρCENT) =
∑

i∈U-worst

[ 1
U

U∑
l=1

Δ(l∗, i)
]
E[Ti(n)]

+
∑

i∈U-best

[ 1
U

U∑
l=1

Δ(l∗, i)
]
E[Ti(n)].

For the second term, we have

∑
i∈U-best

[ 1
U

U∑
l=1

Δ(l∗, i)
]
E[Ti(n)]

≤ E[T ∗(n)]
∑

i∈U-best

[ 1
U

U∑
l=1

Δ(l∗, i)
]

= 0,

where T ∗(n):= max
i∈U-best

Ti(n). Hence, we have the bound.
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B. Proof of Proposition 1

For convenience, let Ti(n) :=
∑U

j=1 Ti,j(n), Vi(n) :=∑U
j=1 Vi,j(n). Note that

∑C
i=1 Ti(n) = nU, since each user

selects one channel for sensing in each slot and there are U
users. From (3),

R(n) =n

U∑
i=1

μ(i∗)−
C∑

i=1

μ(i)E[Vi(n)],

≤
∑

i∈U-best

μ(i)(n− E[Vi(n)])

≤μ(1∗)(nU −
∑

i∈U-best

E[Vi(n)]) (32)

=μ(1∗)(E[M(n)] +
∑

i∈U-worst

E[Ti(n)]), (33)

where Eqn.(32) uses the fact that Vi(n) ≤ n since total number
of sole occupancies in n slots of channel i is at most n, and
Eqn.(33) uses the fact that M(n) =

∑
i∈U-best(Ti(n)−Vi(n)).

For the lower bound, since each user selects one channel
for sensing in each slot,

∑C
i=1

∑U
j=1 Ti,j(n) = nU . Now

Ti,j(n) ≥ Vi,j(n).

R(n; µ, U, ρ) ≥ 1
U

⎡⎣ U∑
k=1

U∑
j=1

C∑
i=1

Δ(U∗, i)E[Ti,j(n)]

⎤⎦ ,

≥
U∑

j=1

∑
i∈U-worst

Δ(U∗, i)E[Ti,j(n)].

C. Proof of Lemma 2

Although, we could directly compute the time to absorption
of the Markov chain, we give a simple bound E[Υ(U, U)] by
considering an i.i.d process over the same state space. We term
this process as a genie-aided modification of random allocation
scheme, since this can be realized as follows: in each slot, a
genie checks if any collision occurred, in which case, a new
random variable is drawn from Unif(U) by all users. This is
in contrast to the original random allocation scheme where a
new random variable is drawn only when the particular user
experiences a collision. Note that for U = 2 users, the two
scenarios coincide.
For the genie-aided scheme, the expected number of slots to

hit orthogonality is just the mean of the geometric distribution
∞∑

k=1

k(1− p)kp =
1− p

p
<∞, (34)

where p is the probability of having an orthogonal configura-
tion in a slot. This is in fact the reciprocal of the number of
compositions of U [24, Thm. 5.1], given by

p =
(

2U − 1
U

)−1

. (35)

The above expression is nothing but the reciprocal of number
of ways U identical balls (users) can be placed in U different
bins (channels): there are 2U − 1 possible positions to form
U partitions of the balls.

Now for the random allocation scheme without the genie,
any user not experiencing collision does not draw a new
variable from Unif(U). Hence, the number of possible config-
urations in any slot is lower than under genie-aided scheme.
Since there is only one configuration satisfying orthogonality9,
the probability of orthogonality increases in the absence of the
genie and is at least (35). Hence, the number of slots to reach
orthogonality without the genie is at most (34). Since in any
slot, at most U collisions occur, (17) holds.

D. Proof of Lemma 3

Let cn,m:=
√

2 log n
m .

Case 1: Consider U = C = 2 first. Let

A(t, l):={gMEANj (1∗; t− 1) ≤ gMEANj (2∗; t− 1), T ′
j(t− 1) ≥ l}.

On lines of [11, Thm. 1],

T ′(n) ≤ l +
n∑

t=2

I[A(t, l)],

≤ l +
∞∑

t=1

t∑
m+h=l

I
(
X̄1∗,j(h) + ct,h ≤ X̄2∗,j(m) + ct,m

)
.

The above event is implied by

X̄1∗,j(h) + ct,h ≤ X̄2∗,j(h) + ct,h+m

since ct,m > ct,h+m.
The above event implies at least one of the following events

and hence, we can use the union bound.

X̄1∗,j(h) ≤ μ1∗ − ct,h,

X̄2∗,j(m) ≥ μ2∗ + ct,h+m,

μ1∗ < μ2∗ + 2ct,h+m.

From the Chernoff-Hoeffding bound,

P[X̄1∗,j(t) ≤ μ1∗ − ct,h] ≤ t−4,

P[X̄2∗,j ≥ μ2∗ + ct,h+m] ≤ t−4,

and the event that μ1∗ < μ2∗ + 2ct,h+m implies that

h + m <

⌈
8 log t

Δ2
1∗,2∗

⌉
.

Since ∞∑
t=1

t∑
m=1

t∑
h=1

2t−4 =
π2

3
,

,

E[T ′(n; U = C = 2)] ≤ 8 logn

Δ2
1∗,2∗

+ 1 +
π2

3
.

Case 2: For min(U, C) > 2, we have

T ′(n) ≤ U

U∑
a=1

C∑
b=a+1

n∑
m=1

I(gMEANj (a∗; m) < gMEANj (b∗; m)),

where a∗ and b∗ represent channels with ath and bth highest
availabilities. On lines of the result for U = C = 2, we can
show that

n∑
m=1

EI[gMEANj (a∗; m) < gMEANj (b∗; m)] ≤ 8 log n

Δ2
a∗,b∗

+ 1 +
π2

3
.

Hence, (18) holds.

9since all users are identical for this analysis.
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E. Proof of Theorem 3

Define the good event as all users having correct top U -
order of the g-statistics, given by

G(n):=
U⋂

j=1

{Top-U entries of gj(n) are same as in µ}.

The number of slots under the bad event is
n∑

m=1

I[Gc(m)] = T ′(n),

by definition of T ′(n). In each slot, either a good or a bad
event occurs. Let γ be the total number of collisions in U -
best channels between two bad events, i.e., under a run of
good events. In this case, all the users have the correct top
U -ranks of channels and hence,

E[γ|G(n)] ≤ UE[Υ(U, U)] <∞,

where E[Υ(U, U)] is given by (17). Hence, each transition
from the bad to the good state results in at most UE[Υ(U, U)]
expected number of collisions in the U -best channels. The
expected number of collisions under the bad event is at most
UE[T ′(n)]. Hence, (19) holds.

F. Proof of Lemma 4

Under C(n; U), a U -worst channel is sensed only if it is
mistaken to be a U -best channel. Hence, on lines of Lemma 1,

E[Ti,j(n)|C(n; U)] = O(log n), ∀i ∈ U -worst, j = 1, . . . , U.

For the number of collisions M(n) in the U -best channels,
there can be at most U

∑a
k=1 ξ(n; k) collisions in the U -best

channels where a := maxj=1,...,U Ûj is the maximum estimate
of number of users. Conditioned on C(n; U, ), a ≤ U , and
hence, we have (24).

G. Proof of Proposition 2

Define the good event as all users having correct top U -
order, given by

G(n):=
U⋂

j=1

{Top-U entries of gj(n) are same as in µ}.

The number of slots under the bad event is
n∑

m=1

I[Gc(m)] = T ′(n),

by definition of T ′(n). In each slot, either a good or a bad
event occurs. Let γ be the total number of collisions in k-best
channels between two bad events, i.e., under a run of good
events. In this case, all the users have the correct top U -ranks
of channels and hence,

γ|G(n)
st≤ UΥ(U, k),

The number of collisions under the bad event is at most T ′(n).
Hence, (27) holds.

H. Proof of Lemma 6

We are interested in

P[Cc(n); U ] = P[∪U
j=1Û

EST
j (n) > U ],

= P[
n⋃

m=1

U⋃
j=1

{ΦU,j(m) > ξ(n; U)}],

= P[ max
j=1,...,U

ΦU,j(n) > ξ(n; U)],

where Φ is given by (20). For U = 1, we have P[Cc(n); U ] = 0
since no collisions occur.
Using (27) in Proposition 2,

P[
k

max
j=1

Φk,j(n) > ξ(n; k)]

≤ P[kΥ(U, k)(T ′(n) + 1) > ξ(n; k)]

≤ P[k(T ′(n) + 1) >
ξ(n; k)

αn
] + P[Υ(U, k) > αn]

≤ kαn(E[T ′(n)] + 1)
ξ(n; k)

+ P[Υ(U, k) > αn], (36)

using Markov inequality. By choosing αn = ω(1), the second
term in (36), viz., P[Υ(U, k) > αn] → 0 as n → ∞, for
k ≥ U . For the first term, from (26) in Lemma 5, E[T ′(n)] =
O(log n). Hence, by choosing αn = o(ξ∗(n; k)/ log n), the
first term decays to zero. Since ξ∗(n; U) = ω(log n), we can
choose αn satisfying both the conditions. By letting k = U in
(36), we have P[Cc(n); U ]→ 0 as n→∞, and (28) holds.
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