
Distributed Algorithms for
Overlay Networks and
Programmable Matter

Dissertation

In partial fulfillment of the requirements for the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

Faculty of Computer Science,
Electrical Engineering and Mathematics
Department of Computer Science
Research Group Theory of Distributed Systems

Robert Gmyr

Reviewers: Christian Scheideler, Paderborn University
Friedhelm Meyer auf der Heide, Paderborn University
Andréa W. Richa, Arizona State University

Abstract

This dissertation consists of two parts that are dedicated to the study of
distributed algorithms for overlay networks and programmable matter.

The first part revolves around the topics of robustness against attacks,
recovery from faults, and monitoring network properties in the context of
overlay networks. More specifically, we introduce network protocols that
maintain the connectivity of an overlay network under massive adversarial
churn or denial-of-service attacks, we present a self-stabilizing algorithm for
the construction of metric graphs, and we initiate the study of hybrid networks
by investigating the problem of continuously monitoring properties of an
externally-controlled network with the help of an overlay network.

In the second part we investigate the algorithmic foundations of programma-
ble matter. Programmable matter refers to a substance that can change its
shape or other physical properties in a programmable fashion. We envision
programmable matter consisting of simple computational devices that are able
to self-organize in order to achieve a collective goal without any central control
or external intervention. We present efficient algorithms for the fundamental
problems of leader election and shape formation for programmable matter.

iii

Zusammenfassung

Diese zweiteilige Dissertation widmet sich der Entwicklung und Analyse ver-
teilter Algorithmen für Overlay-Netzwerke und programmierbare Materie.

Der erste Teil besteht aus drei Gruppen von Resultaten, welche sich jeweils
auf die Themen der Robustheit, der Fehlertoleranz und der Überwachung von
Netzwerken konzentrieren: Zunächst stellen wir Netzwerk-Protokolle vor, welche
den Zusammenhang eines Netzwerks unter massivem gegnerischen Churn oder
Denial-of-Service-Attacken aufrecht erhalten. Anschließend präsentieren wir
einen selbststabilisierenden Algorithmus zur Konstruktion metrischer Graphen.
Zuletzt führen wir das Konzept hybrider Netzwerke ein und betrachten eine
Reihe von Problemen, in denen Eigenschaften eines dynamischen Netzwerks
mit Hilfe eines Overlay-Netzwerks überwacht werden sollen.

Im zweiten Teil untersuchen wir die algorithmischen Grundlagen program-
mierbarer Materie. Programmierbare Materie bezeichnet eine Substanz, die
ihre Form oder andere physikalische Eigenschaften auf programmierbare Art
und Weise verändern kann. Wir betrachten programmierbare Materie, die aus
einer Vielzahl gleichartiger einfacher Einheiten besteht. Die Einheiten verfolgen
selbstorganisierend ein gemeinsames Ziel. Dabei unterliegen sie keiner zentralen
Kontrolle, sondern agieren vollständig verteilt. Wir stellen effiziente Algorith-
men für das Leader-Election-Problem und das Shape-Formation-Problem im
Kontext programmierbarer Materie vor.

iv

Acknowledgments

First and foremost I would like to thank my advisor Christian Scheideler for
introducing me to a wealth of fascinating topics in distributed computing and
for guiding me on the way towards this thesis. I would also like to thank
Andréa Richa and Friedhelm Meyer auf der Heide for serving as reviewers for
my thesis and for supporting me at various stages throughout my studies.

I thank all of my co-authors for countless interesting and fruitful discussions.
I was tremendously fortunate to work with such creative, smart, and friendly
people. Special thanks go to my co-author and friend Kristian Hinnenthal for
proofreading every single page of this thesis I put in front of him. Furthermore, I
want to thank all members, both past and current, of the Theory of Distributed
Systems group at Paderborn University for making my time at the office
so enjoyable. I will surely miss our daily lunch discussions on any subject
imaginable.

Finally, I want to thank my family and friends for their support and patience
over these past months. Ganz besonders möchte ich meinen Eltern danken.
Ohne eure Unterstützung auf meinem gesamten Bildungsweg hätte es diese
Dissertation nicht gegeben.

Thank you.

v

Contents

1 Introduction 1

I Overlay Networks 7

2 Churn- and DoS-Resistant Overlay Networks 9

2.1 Related Work . 11
2.2 Model and Problem Statement 14
2.3 Preliminaries . 15
2.4 Rapid Node Sampling . 18

2.4.1 H-Graphs . 18
2.4.2 Hypercubes . 22

2.5 Adversarial Churn . 26
2.6 Adversarial DoS-Attacks . 36
2.7 Outlook . 41

3 Self-Stabilizing Metric Graphs 43

3.1 Related Work . 44
3.2 Model . 45
3.3 Problem Statement . 46
3.4 Algorithm . 48
3.5 Analysis . 52

3.5.1 Directed Cycle Construction 52
3.5.2 Movement of the Test-Pointers 56
3.5.3 Metric Graph Construction 56
3.5.4 Running Time . 59
3.5.5 After Stabilization . 66

3.6 Outlook . 67

4 Hybrid Network Monitoring 69

4.1 Related Work . 71
4.2 Model and Problem Statement 74
4.3 Setup Phase . 74

vii

Contents

4.4 Three Simple Monitoring Problems 79
4.5 Bipartiteness . 80
4.6 Minimum Spanning Tree . 82

4.6.1 Exact MST Weight . 83
4.6.2 Approximate MST Weight 84

4.7 Outlook . 86

II Programmable Matter 89

5 Leader Election for Programmable Matter 91

5.1 The Amoebot Model . 93
5.2 Related Work . 95
5.3 Problem Statement . 100
5.4 Leader Election Algorithm . 100

5.4.1 Boundary Setup . 101
5.4.2 Segment Setup . 104
5.4.3 Identifier Setup . 105
5.4.4 Identifier Comparison 106
5.4.5 Solitude Verification . 108
5.4.6 Boundary Identification 110

5.5 Analysis . 111
5.5.1 Correctness . 111
5.5.2 Running Time . 114

5.6 Variants of the Leader Election Problem 121
5.6.1 Expanded Particles . 121
5.6.2 Termination for All Particles 121
5.6.3 Almost-Sure Leader Election 122
5.6.4 General Graphs . 123

5.7 Outlook . 124

6 Shape Formation with Programmable Matter 127

6.1 Problem Statement . 129
6.2 Movement Primitives . 131
6.3 Intermediate Structure . 135
6.4 Shape Formation Algorithm . 143

6.4.1 Simplified Algorithm . 144
6.4.2 Full Algorithm . 145

6.5 Outlook . 149

Bibliography 153

viii

Chapter 1

Introduction

The theory of distributed computing is a diverse field of research that thrives
on the investigation of a wide variety of models for distributed systems. It is
only fitting, then, that this thesis revolves around two vastly different types of
systems and models. The structure of this thesis reflects this fact in that it is
subdivided into two independent parts.

In the first part we present distributed algorithms for overlay networks.
The distinguishing feature of an overlay network is that it is reconfigurable,
i.e., the topology of the network is not static but can be controlled by the
network protocol. Large-scale and highly decentralized overlay networks have
become increasingly popular since the rise of peer-to-peer systems. Well-known
examples of peer-to-peer systems in practice are the file-sharing protocol
BitTorrent and the digital currency Bitcoin, which relies on a distributed
ledger called the blockchain to keep track of the transactions performed by
its users. We investigate the topics of robustness and recovery from faults
in the context of overlay networks, both of which are of critical importance
when it comes to maintaining the availability of a distributed system or service.
Beyond our results on pure overlay networks, we also initiate the study of
hybrid networks, which are networks that combine an overlay network with an
externally-controlled dynamic network.

The second part of this thesis is dedicated to the study of the algorithmic
foundations of programmable matter. Programmable matter refers to a sub-
stance that can change its shape or other physical properties in a programmable
fashion. We envision programmable matter consisting of simple computational
devices that are able to self-organize in order to achieve a collective goal
without any central control or external intervention. While some of the basic
ideas behind programmable matter are already more than two decades old,
rigorous algorithmic research on the subject is still quite sparse. Our goal
is to contribute to the theoretical foundations of programmable matter by
presenting efficient algorithms for fundamental problems in this domain.

1

Chapter 1 Introduction

Thesis Overview

The first part of this thesis consists of three chapters that revolve around
the topics of robustness against attacks, recovery from faults, and monitoring
network properties in the context of overlay networks. More specifically,
Chapter 2 introduces network protocols that maintain the connectivity of an
overlay network under massive adversarial churn or denial-of-service attacks,
Chapter 3 presents a self-stabilizing algorithm for the construction of metric
graphs, and Chapter 4 initiates the study of hybrid networks by investigating
the problem of continuously monitoring properties of an externally-controlled
network with the help of an overlay network. The chapters of this part are
mostly self-contained and can be read in any order.

In the second part of this thesis we investigate fundamental problems in
the area of programmable matter. Specifically, we consider the leader election
problem in Chapter 5 and the shape formation problem in Chapter 6. In
contrast to the first part, the chapters of the second part are not self-contained.
For readers that are interested in our results on shape formation but want
to skip the details of the leader election algorithm, we recommend to read
Chapter 5 up to Section 5.3 before turning to Chapter 6.

In the following, we give a brief summary of the results presented in each
chapter and list the publications on which the chapters are based.

Chapter 2: Churn- and DoS-Resistant Overlay Networks We begin the first
part of this thesis by presenting two algorithms that maintain the connectivity
of a network under adversarial attacks. The first algorithm organizes the nodes
into an expander graph and maintains connectivity under adversarial churn by
an omniscient adversary with a constant churn rate, i.e., the network remains
connected even when nodes join and leave at a rapid rate. The second algorithm
uses a network that is based on the hypercube and maintains connectivity
under adversarial denial-of-service attacks (or DoS-attacks). A node under a
DoS-attack is blocked from communicating with any other node. In a network
of n nodes, the adversary is allowed to block (1− ε) · n nodes for any constant
0 < ε ≤ 1, and it can change the set of blocked nodes in every round. We
assume the adversary to be t-late in that it only has access to topological
information that is at least t = Θ(log log n) rounds old. Both algorithms gain
their robustness by randomizing the topology of the overlay network at regular
intervals. The algorithms use networks of polylogarithmic degree and require
polylogarithmic communication work at each node in every round.

Underlying the algorithms is a novel node sampling technique for regular
expander graphs and hypercubes that allows each node to sample a logarithmic
number of nodes uniformly at random in O(log log n) communication rounds.
This technique is specific to overlay networks and its optimal running time
represents an exponential improvement over known techniques. The results

2

presented in this chapter have a wide range of applications, for example in the
area of scalable and robust peer-to-peer systems. The chapter is based on the
following publication.

M. Drees, R. Gmyr, and C. Scheideler. “Churn- and DoS-
resistant Overlay Networks Based on Network Reconfiguration”.
In: Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), see [DGS16].

Chapter 3: Self-Stabilizing Metric Graphs While the goal of Chapter 2 is
to maintain the topology of an overlay network (or at least its connectivity),
the objective of Chapter 3 is to recover the topology from a corrupted state.
Specifically, this chapter introduces an algorithm for the self-stabilizing con-
struction of the graph corresponding to a given metric specified via a distance
oracle. The graph corresponding to a metric (or just metric graph) is the
unique minimal undirected graph such that for any pair of nodes the length of
a shortest path between the nodes corresponds to the distance between the
nodes according to the metric. To the best of our knowledge, our algorithm is
the first self-stabilizing algorithm for the construction of general metric graphs.
The algorithm works for both synchronous and asynchronous activations of
the nodes. In the synchronous case, the algorithm constructs the metric graph
in linear time and it guarantees that after stabilization the memory overhead
and the number of messages sent and received per round at every node drop
to a constant within a linear number of rounds. The chapter is based on the
following publication and a corresponding journal article [GLS17] that will
appear in Theory of Computing Systems.

R. Gmyr, J. Lefèvre, and C. Scheideler. “Self-stabilizing Metric
Graphs”. In: Proceedings of the 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems
(SSS), see [GLS16].

Chapter 4: Hybrid Network Monitoring In the last chapter of the first part
we broaden our focus beyond pure overlay networks by investigating a class
of networks that we refer to as hybrid networks. In a hybrid network a set of
nodes is connected by an external network and an internal network. While the
external network cannot be controlled by the network algorithm and might be
exposed to continuous change, the internal network is an overlay network that
is fully under the control of the network algorithm. As an example, consider
a set of wireless devices with access to the cell phone infrastructure that are
dispersed over a limited area such as a city center. The devices can form a
wireless ad-hoc network using their WiFi capabilities to establish an external
network. The topology of this external network depends on the position of the
devices and cannot be controlled by the network algorithm. At the same time,

3

Chapter 1 Introduction

the devices can use the cell phone infrastructure to form an overlay network,
which is an internal network that can be modified by the network algorithm.

We investigate the problem of continuously monitoring properties of the
external network with the help of the internal network. We present scalable
distributed algorithms that efficiently monitor the number of edges, the average
node degree, the clustering coefficient, the bipartiteness, and the weight of a
minimum spanning tree. Their performance bounds demonstrate that moni-
toring the external network with the help of an internal network can be done
much more efficiently than by just using the external network. The chapter is
based on the following publication.

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler. “Dis-
tributed Monitoring of Network Properties: The Power of Hy-
brid Networks”. In: Proceedings of the 44th International Col-
loquium on Automata, Languages, and Programming (ICALP),
see [Gmy+17].

Chapter 5: Leader Election for Programmable Matter In Chapter 5, we
leave the domain of overlay networks and shift our attention to the algorithmic
foundations of programmable matter, which is the topic of the second part of
this thesis. Our investigation of programmable matter is based on the amoebot
model, which facilitates rigorous algorithmic research on programmable matter
in the Euclidean plane. In the amoebot model, programmable matter consists
of a uniform set of simple computational units called particles that can move
and bond to other particles and that use their bonds to exchange information.
The particles act asynchronously and achieve locomotion by expanding and
contracting, which resembles the amoeboid movement performed by certain
biological cells. To achieve a collective goal, the particles have to self-organize
in a distributed fashion without any central control.

The topic of Chapter 5 is the leader election problem, which requires a set of
particles to select one particle as its unique leader. Leader election is a central
and classic problem in distributed computing. Many problems such as the
consensus problem (all particles have to agree on some output value) can easily
be solved once a leader has been elected. We present a local-control algorithm
that elects a leader in O(n) asynchronous rounds with high probability, where
n is the number of particles. Our algorithm relies only on local information
(e.g., particles do not have unique identifiers, they do not know n, and they do
not have a global coordinate system) and requires only a constant-size memory
at each particle.

As we mentioned above, the individual chapters of the second part of this
thesis are not independent but rather form a single coherent unit. Accordingly,
some important aspects are covered by only one of the two chapters. Specifically,
Chapter 5 contains the definition of the amoebot model and gives an overview of

4

the related work, whereas Chapter 6 provides an outlook of potential directions
for future research on the subject of programmable matter.

Chapter 5 is based on the following publications.

Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. A. Bazzi,
A. W. Richa, and C. Scheideler. “Leader Election and Shape
Formation with Self-organizing Programmable Matter”. In:
Proceedings of the 21st International Conference on DNA Com-
puting and Molecular Programming (DNA), see [Der+15b].

J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Improved Leader Election for Self-Organizing
Programmable Matter”. In: Proceedings of the 13th Interna-
tional Symposium on Algorithms and Experiments for Wireless
Networks (ALGOSENSORS). To appear, see [Day+17].

Chapter 6: Shape Formation with Programmable Matter The final chapter
of this thesis considers the problem of shape formation with programmable
matter. On the basis of the amoebot model, we present an algorithm that
allows the particles to construct a large class of shapes composed of a constant
number of unit-size equilateral triangles that are arranged on a grid. We assume
that the particles are well-initialized in that they initially form a triangle and
the memory of each particle holds a representation of the desired shape. Under
these assumptions, the algorithm constructs a scaled version of the given shape
that includes all particles. The construction of the shape takes O(

√
n) rounds,

which is optimal in the sense that for any shape deviating from the initial
triangle, any shape formation algorithm requires Ω(

√
n) rounds in the worst

case. As in Chapter 5, the algorithm relies exclusively on local information
and requires only a constant-size memory per particle. The chapter is based
on the following publication.

Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Universal Shape Formation for Programmable
Matter”. In: Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), see [Der+16b].

5

Part I

Overlay Networks

7

Chapter 2

Churn- and DoS-Resistant
Overlay Networks

Large-scale and highly decentralized overlay networks have become increasingly
popular since the rise of peer-to-peer systems and social networks. Issues such
as churn (the membership rapidly changes over time) and adversarial attacks
pose significant challenges for these networks, so a considerable amount of work
has been invested in recent years to find effective ways of protecting overlay
networks against these influences. A standard approach is to continuously
refresh the topology of an overlay network so that defects in the network
caused by churn or attacks are repaired. Early attempts in practice go back
to solutions such as JXTA (see, e.g., [Gon01; Tra+03]), where at the core
the peers continuously exchange random neighbors with their neighbors in an
attempt to keep the network well-connected. In theory, it is already known
that there are simple rules for randomly switching edges in a local fashion so
that eventually a random graph emerges (e.g., [MS06]). However, the running
time bounds shown so far for these rules are fairly large, and a rigorous analysis
showing that such a rule would be sufficient to get to a random graph in
polylogarithmically many parallel rounds seems to be out of reach at this time,
even if there is no churn. An alternative approach is to keep the nodes in some
hypercubic topology and to perform load balancing under churn in order to
make sure that all places of the hypercubic topology are kept well-occupied
by the nodes (e.g., [KSW05]). However, here the best result known so far is a
solution that can just tolerate a logarithmic churn per round.

Currently, the most promising approach to rigorously handle high churn is to
use random walks to continuously reorganize the network (see, e.g., [Aug+15]),
which is also the approach we use in this chapter. However, instead of just
using random walks in a standard fashion, which would take Ω(log n/ log log n)
communication rounds in graphs of polylogarithmic degree in order to sample
nodes uniformly at random, we combine random walks with pointer jumping,

9

Chapter 2 Churn- and DoS-Resistant Overlay Networks

which exponentially improves the running time needed for random walks to
sample nodes uniformly at random. Pointer jumping (i.e., a node introduces
its neighbors to its neighbors) is a well-known technique in the area of parallel
computing [JáJ92], but to our great surprise, it seems that it has never been
combined with random walks so far. We refer to the technique of combining
random walks with pointer jumping to sample nodes from a network as rapid
node sampling. We present two rapid node sampling algorithms in this chapter,
one for hypercubes and one for regular expander graphs. Both algorithms allow
each node in a network to sample a logarithmic number of nodes uniformly at
random in O(log log n) communication rounds.

On the basis of rapid node sampling, we develop algorithms that maintain
the connectivity of a network under heavy churn and denial-of-service attacks
(or DoS-attacks). Our first algorithm organizes the nodes of a network into an
expander and maintains connectivity under adversarial churn by an omniscient
adversary with constant churn rate. An important assumption underlying this
result is that a node that is prescribed to leave the network by the adversary
does not have to leave immediately, but can remain in the network for another
O(log log n) rounds. Our second algorithm uses a network that is based on
the hypercube and maintains connectivity under adversarial DoS-attacks. A
node under a DoS-attack is blocked from communicating with any other node.
The adversary is allowed to block (1− ε) · n nodes for any constant 0 < ε ≤ 1,
and it can change the set of blocked nodes in every round. For this result,
we assume the adversary to be t-late in that it only has access to topological
information that is at least t = Θ(log log n) rounds old. Both of our algorithms
are based upon the idea of switching the topology of an overlay network to a
new topology that is independent of the old topology at regular intervals. The
algorithms use networks of polylogarithmic degree and require polylogarithmic
communication work at each node in every round.

Underlying Publication This chapter is based on the following publication.

M. Drees, R. Gmyr, and C. Scheideler. “Churn- and DoS-
resistant Overlay Networks Based on Network Reconfiguration”.
In: Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), see [DGS16].

Outline We begin with an overview of the related literature in Section 2.1.
In Section 2.2 we define the network model and the exact nature of the attacks
we consider. We then introduce some fundamental concepts such as the
network topologies underlying our algorithms in Section 2.3. The three sections
following Section 2.3 constitute the main part of this chapter. In Section 2.4 we
present the rapid node sampling algorithms for overlay networks that form the
foundation of our technical contribution, in Section 2.5 we present an algorithm

10

2.1 Related Work

that maintains the connectivity of a network under adversarial churn, and
in Section 2.6 we present an algorithm that maintains the connectivity of a
network under adversarial DoS-attacks. We conclude this chapter in Section 2.7
by discussing possible directions for future research.

2.1 Related Work

One of the central ideas in this chapter is to switch the topology of an overlay
network to a new topology that is independent of the old topology at regular
intervals. Various ways of achieving this have already been studied in the
literature. One way is to use random local edge-switching rules in order
to eventually obtain a random graph (see, e.g., [Fed+06; MS06; CDH09]).
However, as we stated in the introduction, the running time bounds shown so
far for these rules are fairly large, and a rigorous analysis showing that such a
rule would be sufficient to get to a random graph in polylogarithmically many
parallel rounds seems to be out of reach at this time, even without churn.

Another approach is to use routing or sorting with the goal of randomly
reordering the nodes in an overlay network. To illustrate this, consider the
skip graph, which is known to be an expander with high probability [AW09].
Suppose that the skip graph is formed by nodes with labels that are chosen
uniformly at random from the interval [0, 1]. Then the formation of a new,
independent skip graph can essentially be reduced to a routing problem in the
old skip graph where each node v sends a message to the node w closest to
a randomly chosen x ∈ [0, 1], which is supposed to be v’s new label. Once
the routing is complete, it is not hard to use the old skip graph to establish
a skip graph on the new labels in altogether just O(log n) communication
rounds. However, it is not clear how to reduce this running time below
O(log n) for overlay networks of polylogarithmic degree and while just allowing
a polylogarithmic communication work at each node in every round, which
prohibits the application of this approach in this work.

There are various further approaches for maintaining connectivity under
churn. A standard approach in practice is to use a multi-tier architecture where
the older, more stable peers form the actual overlay network while the young
peers just connect to one or more of the stable peers (see, e.g., [Sut+13] and
the references therein). Another way is to keep the nodes in some hypercubic
topology and to perform local load-balancing in order to make sure that all
places of the hypercubic topology are kept well-occupied by nodes under churn
(e.g., [Abr+03; KSW05]). However, just eventual recovery from adversarial
churn, or adversarial churn allowing only a logarithmic number of arrivals and
departures per round has been considered here. Various other solutions have
been proposed in theory that can handle either stochastic churn or adversarial
churn that does not cause disconnectivity in a round, either by using a high
enough degree or by constraining the adversary (e.g., [AS07b; NW07; JP13]).

11

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Also, self-healing networks (e.g., [ST08; HST12; PRT16]) have been proposed,
but in these networks each insertion or deletion of a constant number of nodes
is followed by some process of repairing the network. Finally, self-stabilizing
overlay networks can be used to handle churn (see, e.g., [Jac+09; BGP13;
For+14]), but no concrete bounds on the churn rate are known for these.

Currently, the most promising approach to handle high levels of churn
is to use random walks to continuously reorganize a network, which is the
approach taken in this chapter. Interestingly, this approach was also used by
Augustine et al. [Aug+15] in a publication that appeared only few months
before the publication underlying this chapter [DGS16]. In this impressive
work, Augustine et al. present a randomized distributed protocol that maintains
a constant degree expander under levels of adversarial churn that are on
par with those considered here. While the goals and the abstract approach
of Augustine et al. are similar to ours, there are distinct differences in the
underlying assumptions. For example, Augustine et al. consider an adversary
that is oblivious to the random choices made by the algorithm while we assume
an omniscient adversary for churn but allow the nodes to remain in the network
for an additional O(log log n) rounds, which is not a standard assumption.
Furthermore, Augustine et al. allow high levels of churn but assume that the
overall number of nodes remains static. In contrast, we allow the number of
nodes in the network to change within certain limits, see Section 2.5. Maybe
most strikingly, the approach of Augustine et al. requires a two-step protocol
that allows pairs of nodes to communicate without interference by the adversary
(i.e, the adversary cannot churn out any nodes during two consecutive rounds).
They formally prove that this protocol is necessary to achieve such high levels of
churn in their model. In our model, no such protocol is required. Besides these
differences in the setting, there are also significant differences in the conceptual
ideas behind the respective algorithms: On an abstract level, our approach
could be called discrete in that the topology of the network is kept mostly
static over certain intervals of time and is then replaced completely by a new,
independent topology while the protocol of Augustine et al. is more continuous
in that the network changes in every round. A more detailed comparison of
these works and a full analysis of the implications of the different underlying
assumptions is a non-trivial task that we leave for future research. We think
that further investigation might reveal that certain aspects of both approaches
could be combined to reap new advantages.

Some of the solutions above not only handle churn but also limited DoS-
attacks (e.g., [KSW05; AS07b; Sut+13]). Within our model, DoS-attacks are
more severe than churn in a sense that if an adversary decides to block a
node, it is instantly blocked without warning. If the adversary is not aware
of the network topology, a standard approach to prevent disconnectivity is to
randomly spread nodes in an overlay network and use redundant connections.

12

2.1 Related Work

However, once the adversary knows the topology, nothing can be done to
prevent disconnectivity unless the degree (defined as the maximum number of
edges originating at or leading to a node) is higher than the maximum number
of nodes that the adversary can block at the same time: If an adversary wants
to isolate a node u, it simply blocks all nodes v that can either send a message
to u or receive a message from u. In this chapter, we use the concept of a t-late
adversary that has access to topological information that is at least t rounds
old. Thereby, we consider an adversary that lies between the two extremes of
having complete, up-to-date knowledge and having no knowledge at all about
the topology. A similar adversary has been used in [Ahm+15], for example,
albeit in a different context. Next to the approaches mentioned above, there
have also been several works on protecting distributed hash tables (DHTs)
against DoS-attacks from outsiders [KMR02], past insiders [AS07a], or even
insiders [ES15], but for past insiders and insiders the nodes are assumed to
form a clique to avoid disconnectivity problems. Finally, apart from blocking
nodes also other attacks on the connectivity of an overlay network have been
studied, such as Sybil-attacks [Dou02] and Eclipse-attacks [Sin+06].

Our algorithms are based on rapid node sampling, which combines random
walks with pointer jumping. Pointer jumping (which is also known as pointer
doubling or simply the doubling technique) is a well-known technique in the
area of parallel computing [JáJ92]. It has originally been applied to rapidly
contract trees by letting each node continuously introduce its current parent as
the new parent to its children. In this way, a tree of depth D can be contracted
in O(log D) parallel rounds to a tree of depth 1. Another application of pointer
jumping is to rapidly form a clique: If in a graph of diameter D every node
continuously introduces its neighbors to each other, then it just takes O(log D)
communication rounds until a clique is formed. However, the communication
work per round when using message passing is huge towards the end for both
cases, which is one of the main technical difficulties we have to overcome to
apply pointer jumping in this work.

The rapid node sampling algorithms for hybercubes and regular expander
graphs presented in Section 2.4 allow each node in the network to sample
a logarithmic number of nodes uniformly at random using only O(log log n)
communication rounds. These algorithms are specific to overlay networks, i.e.,
they exploit the fact that a node can send a message to any other node whose
identifier it knows. For static networks Das Sarma et al. [SNP09; Sar+13]
provide distributed algorithms for different variations of the problem of creating
random walks. When considering the problem of letting each node sample a
logarithmic number of nodes via random walks of length O(log n), our rapid
node sampling algorithms represent an exponential improvement in running
time over to the algorithm of Das Sarma et al. This suggests a fundamental
difference in the difficulty of this problem in the two models.

13

Chapter 2 Churn- and DoS-Resistant Overlay Networks

2.2 Model and Problem Statement

We consider a node set V that can potentially change over time. The nodes
are organized into an overlay network: Every node u has a unique identifier
id(u), which is a bit string of size O(log n) where n = |V |. We simply write u
instead of id(u) when it is clear from the context that we refer to the identifier
of u. A node u can send a message to a node v if u stores id(v) in its local
memory. We define the edge set of the overlay network as

E = { (u, v) | u ∈ V stores id(v) in its local memory }.

We use the synchronous message passing model, which means that all nodes
operate in synchronous rounds. Each round consists of three steps. In the
first step, a node receives all messages sent to it in the previous round. In the
second step, a node can perform any kind of local computation. In the third
step, a node u can send a distinct message to each node v such that (u, v) ∈ E.
We define the communication work of a node in a specific round as the total
number of bits that it receives and sends in that round.

We investigate the problem of maintaining connectivity in overlay networks
under large-scale adversarial churn and adversarial DoS-attacks using only
polylogarithmic communication work for each node in each round. Connectivity
can be interpreted as a minimum requirement for a network to be resistant
against attacks. The algorithms presented in this chapter actually provide
stronger guarantees, which we will discuss in the corresponding sections. In
general, the algorithms aim at maintaining a certain topology for the overlay
network. We assume that the edges forming this topology are marked to be
distinguishable from other overlay edges. Let E′ be the set of marked edges.
The subgraph induced by E′ will always be a bidirected graph, i.e., if (u, v) ∈ E′

then also (v, u) ∈ E′. Therefore, we can consider the graph induced by E′ to
be undirected for simplicity.

In the following, we define the exact nature of the attacks we consider. For
adversarial churn we assume that an omniscient adversary prescribes a node
set Wi for each round i. The adversary has a churn rate of r if

|Wi|
r
≤ |Wi+1| ≤ r · |Wi|

for all i. For each node u ∈ Wi \Wi−1 (i.e., a new node joining the network
in round i) we require that it is introduced to exactly one node in Wi ∩Wi−1

(i.e., a node staying in the network in round i− 1). Futhermore, we require
that altogether at most ⌈r⌉ new nodes are introduced to any node in a round.
Formally, if a node u is introduced to a node v then v learns id(u). A node u
is leaving in round i if u ∈ Wi−1 \Wi. For simplicity, we assume that every
node is prescribed to join and leave the system only once and, therefore, every

14

2.3 Preliminaries

identifier is used at most once. The decisions of the adversary can be based on
any information about the past and current state of the network.

The network has some flexibility in adapting to the Wi’s. Specifically, a node
that is prescribed to leave the network is allowed to remain in the network for
an additional T rounds where T should be as small as possible. So formally, if
Vi is the set of nodes in the network in round i, we require

Wi ⊆ Vi ⊆
i
⋃

j=i−T

Wj .

For adversarial DoS-attacks we allow an r-bounded adversary to block r · n
nodes in every round. A blocked node cannot send or receive messages.
Therefore, a message sent by a node u to a node v in round i is successfully
delivered if and only if u is not blocked in round i and v is not blocked in
round i + 1. Messages that do not satisfy these conditions are simply dropped
from the network. Note that for a protocol to make progress, it is crucial that
nodes that are not blocked in round i can send messages to nodes that are not
blocked in round i + 1 for any i.

In the context of DoS-attacks, we restrict the knowledge of the adversary
to topological information regarding the overlay network, i.e., the adversary
can inspect the node set and the edge set. The adversary cannot inspect
the internal state of nodes, the contents of messages, or even the number of
messages sent along an edge. We say an adversary is t-late if it only has access
to information that is at least t rounds old. We say that an overlay network
is connected under a DoS-attack if the network restricted to its non-blocked
nodes is weakly connected. Recall that in an overlay network in which the sum
of the in- and out-degree of each node is bounded by d, we cannot maintain
connectivity under DoS-attacks by an r-bounded 0-late adversary if r ≥ d/n
since such an adversary can isolate individual nodes. Therefore, we need t > 0
to achieve non-trivial values for r in a network of small degree.

2.3 Preliminaries

Before we get to the main part of this chapter, we introduce some basic tools,
network topologies, and node sampling techniques.

Chernoff Bounds We extensively use the following bounds, which are known
as Chernoff bounds.

Lemma 2.1. Suppose that X1, X2, . . . , Xn are independent binary random
variables. Let X =

∑n
i=1 Xi and µ = E[X]. Then it holds for all δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤ e− min{δ2,δ}·µ/3.

Furthermore, it holds for all 0 < δ < 1 that

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2.

15

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Network Topologies We use two network topologies throughout this chapter,
namely the well-known hypercube and a graph class we refer to as H-graphs,
following the notation used in [LS03]. A d-dimensional hypercube is an undi-
rected, simple graph G = (V, E) where V = {0, 1}d is the set of all d-tuples
with elements from {0, 1} and E is such that two vertices are connected if and
only if they differ in exactly one coordinate.

An H-graphs is an undirected multigraph G = (V, E) with E =
⋃d/2

i=1 Ci

where d ≥ 8 is an even number and each Ci is a set of edges that form a
Hamilton cycle over the nodes in V . Note that the union in the definition of
the edge set E is a multiset union. Even though an H-graph is an undirected
graph, we assume that each Ci has an orientation, i.e., a node u stores the
identifier of its predecessor and its successor in Ci. By definition, an H-graph
is a connected d-regular multigraph that can have parallel edges but no loops.

Node Sampling Our algorithms heavily rely on the ability of the nodes to
efficiently sample nodes (almost) uniformly at random from a network. In
the d-dimensional hypercube we can achieve uniform node sampling using
the following well-known random walk technique: A node u in the hypercube
creates a token containing id(u) that traverses the graph for d rounds. Let
v = (b1, b2, . . . , bd) be the node that holds the token at the beginning of round
i. The node v flips a fair coin. If the coin comes up tails, v keeps the token.
Otherwise, v forwards the token to the neighboring node

ni(v) = (b1, . . . , bi−1, 1− bi, bi+1, . . . , bd).

The node w that holds the token at the end of the random walk sends id(w)
to u. It is not hard to see that w is chosen uniformly at random from V .
Therefore, a node in a d-dimensional hypercube can perform uniform node
sampling in d = O(log n) rounds.

We can also use random walks to perform node sampling on randomly
generated H-graphs. To generate an H-graph G, we choose d/2 directed
Hamiltonian cycles independently and uniformly at random from the set of
all directed Hamiltonian cycles over n nodes. The graph G is formed by
interpreting each of these cycles as being undirected and taking the union of the
cycles. As we discussed above, we assume that the nodes know the direction
of the cycles for technical reasons. Consider the simple random walk over G,
i.e., at a node u the random walk chooses an edge incident to u uniformly
at random and then moves along that edge to another node. Intuitively, the
graph G is an expander graph. Therefore, the simple random walk on G quickly
converges towards the stationary distribution of the corresponding Markov
chain. Since G is a regular graph, the stationary distribution is the uniform
distribution over V . As a consequence, short random walks are sufficient to
sample nodes from V according to a distribution that is close to uniform.

16

2.3 Preliminaries

Formally, we have the following arguments, which resemble the arguments
given in [LS03]. The randomly chosen graph G satisfies the following theorem,
which was shown by Friedman [Fri08].

Theorem 2.2 (Friedman [Fri08]). For any fixed real ǫ > 0 there is a constant
c such that

Pr
[

∀i > 1 : |λi| ≤ 2
√

d− 1 + ǫ
]

≥ 1− c

nτ
,

where λi are the eigenvalues of the adjacency matrix of G in descending order
and τ = ⌈

√
d− 1⌉ − 1.

We say an event occurs with high probability (abbreviated as w.h.p.) if it
occurs with probability at least 1−n−c for a given constant c ≥ 1. Theorem 2.2
implies the following corollary.

Corollary 2.3. For d and n sufficiently large we have |λi| ≤ 2
√

d for all i > 1,
w.h.p.

Furthermore, we have the following lemma, which is a consequence of Theo-
rem 5.1 in [Lov93].

Lemma 2.4. Let G be a d-regular multigraph with |λi| ≤ 2
√

d for all i > 1
and let t ∈ N such that t ≥ 2α logd/4 n for some constant α ≥ 1. Consider the
simple random walk of length t starting at a node u. Then for any node v ∈ V ,
we have

∣

∣

∣

∣

Pr [random walk ends at v]− 1

n

∣

∣

∣

∣

≤ n−α.

Proof. According to Theorem 5.1 in [Lov93], we have

∣

∣

∣

∣

Pr[random walk ends at v]− 1

n

∣

∣

∣

∣

≤
(

2
√

d

d

)2α logd/4 n

= n2α logd/4(2/
√

d)

= nα logd/4(4/d)

= n−α.

We refer to the probability distribution given in Lemma 2.4 as almost uniform.
Corollary 2.3 and Lemma 2.4 imply that for n and d sufficiently large, a node
in a random H-graph can perform almost uniform node sampling in O(log n)
communication rounds, w.h.p.

17

Chapter 2 Churn- and DoS-Resistant Overlay Networks

2.4 Rapid Node Sampling

In this section, we show how pointer jumping can be used to achieve an
exponential speed-up over the node sampling techniques presented in the
previous section. Our goal is to let each node in a network sample log n nodes
independently and (almost) uniformly at random from the set of all nodes in
the network. The rapid node sampling algorithms presented in this section
achieve this in O(log log n) rounds for both H-graphs and hypercubes. The
core idea underlying these algorithms is to iteratively combine shorter random
walks to create longer random walks. This strategy intuitively corresponds
to performing pointer jumping along a random walk that was generated in
a distributed fashion. The rapid node sampling algorithms introduced in
this section form the foundation for the churn- and DoS-resistant networks
presented in the following sections.

Before we present the algorithms, we show that a running time of O(log log n)
rounds is asymptotically optimal.

Lemma 2.5. Consider an overlay network that is structured according to an
undirected graph G = (V, E) of diameter D. An algorithm that allows every
node u to sample a node from V (almost) uniformly at random requires Ω(log D)
rounds.

Proof. Let u, v ∈ V be such that the shortest path between the nodes has
length D. Consider the following algorithm, which can be interpreted as an
extreme application of pointer jumping: In each round every node mutually
introduces all its neighbors by sending all identifiers it stores to all nodes it
knows. This algorithm requires Ω(log D) rounds to introduce v to u. Clearly,
no algorithm can introduce v to u faster than this algorithm. Hence, for any
algorithm that samples a node from V and stores it at u in o(log D) rounds,
we must have Pr[u chooses v] = 0. Therefore, no algorithm that uses o(log D)
rounds can perform (almost) uniform node sampling over V .

Both H-graphs and hypercubes are constant-degree graphs, which implies
that their diameter is Ω(log n). Hence, Lemma 2.5 implies that a running time
of O(log log n) rounds is indeed asymptotically optimal.

Throughout this section we assume that all nodes know n.

2.4.1 H-Graphs

In the rapid node sampling algorithms, the nodes collaborate to construct
random walks of length Θ(log n) in O(log log n) rounds. For H-graphs, each
node locally executes Algorithm 2.1. The algorithm is divided into four phases.
Phase 1 is executed only once. The remaining phases are executed in a loop.
The execution of a phase in this algorithm corresponds to one round. The

18

2.4 Rapid Node Sampling

variable T in Line 5 determines the length of the generated random walks. To
generate random walks of length at least 2α logd/4 n, we choose

T = ⌈log(2α logd/4 n)⌉ = log log n + O(1).

Each node stores a multiset M of identifiers. During the execution of the
algorithm, M is repeatedly emptied and then filled to a certain size. Specifically,
the size of M before the first iteration of the loop in Line 5 is defined as m0

and the size of M after the i-th iteration of the loop is defined as mi. After the
execution of the algorithm, M contains identifiers of nodes that were chosen
almost uniformly at random from the set of nodes in the network.

Algorithm 2.1 Rapid node sampling in H-graphs

Phase 1:

1: M ← ∅
2: for j ← 1 to m0 do

3: choose neighbor v in H-graph uniformly at random
4: M ←M ∪ {v}
5: for i← 1 to T do

Phase 2:

6: for j ← 1 to mi do

7: choose and remove v ∈M uniformly at random
8: send request to v

Phase 3:

9: for each request received from a node v do

10: choose and remove w ∈M uniformly at random
11: send response w to v

Phase 4:

12: M ← set of received responses

The correctness of the algorithm depends on the choice of the values mi: An
inappropriate choice might lead to M being empty when an element should
be extracted in Line 7 or 10. We say the algorithm succeeds for node u in
iteration i if during the i-th iteration of the loop in Line 5 in the execution
of the algorithm by u, the set M is never empty when an element should be
extracted. We say the algorithm succeeds if it succeeds for all nodes and for all
iterations. Before we turn to the choice of the mi, we show that the algorithm
is correct under the assumption that it succeeds. Specifically, we show that
after the execution of the algorithm, M contains identifiers of nodes that were
chosen by following independent random walks of length at least 2α logd/4 n.

19

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Lemma 2.6. Consider a node u. After the i-th iteration of the loop in Line 5,
M only contains identifiers of nodes that were chosen by following independent
simple random walks of length 2i that started at u.

Proof. We show the lemma by induction on i. Consider a node u. For i = 0
(i.e., before the first iteration) M contains nodes that were chosen independently
and uniformly at random from the neighbors of u in the H-graph. Therefore,
the statement of the lemma holds in this case. Now suppose that the statement
holds after iteration i. We consider iteration i + 1 and show that the statement
also holds after this iteration. In Phase 2, u sends requests to nodes that were
chosen by following simple random walks of length 2i starting at u according
to the induction hypothesis. A node v that receives such a request replies in
Phase 3 with an identifier of a node that was chosen by following a simple
random walk of length 2i starting at v. In Phase 4, u sets M to the set of
received responses. Each identifier received as a response in Phase 4 belongs to
a node that was chosen by following the concatenation of two simple random
walks of length 2i. Such a concatenation corresponds to a simple random
walk of length 2i+1. Since the algorithm never reuses an element of M , the
constructed random walks are independent. Therefore, the statement holds
after iteration i + 1.

In Lemma 2.8 we establish a choice for the mi such that the algorithm
succeeds, w.h.p., and after the algorithm terminates, M contains at least log n
identifiers. The proof of Lemma 2.8 requires the following auxiliary lemma.

Lemma 2.7. Consider a d-regular undirected multigraph G = (V, E). Suppose
that each node in V creates k ∈ N tokens. The tokens traverse G in synchronous
rounds according to independent simple random walks. For v ∈ V and t ∈ N

let X be the number of tokens at node v after t rounds. Then X is a sum of
independent binary random variables and E[X] = k.

Proof. Let v ∈ V and t, k ∈ N. For a node u let the binary variable Xu,i be
such that Xu,i = 1 if and only if the i-th token created by u is at v after t steps.
We have E[Xu,i] = pud−t where pu is the number of distinct (not necessarily
simple) paths of length exactly t from u to v. Let Xu =

∑k
i=1 Xu,i. Then

E[Xu] =
k
∑

i=1

E[Xu,i] = kpud−t.

Finally, let X =
∑

u Xu. By definition, X is a sum of independent binary
random variables. Furthermore, we have

E[X] =
∑

u

E[Xu] = kd−t ·
∑

u

pu = k.

20

2.4 Rapid Node Sampling

Lemma 2.8. For any 0 < ε ≤ 1 there is a constant c ≥ 1 such that with

mi = (2 + ε)T −ic log n

the algorithm succeeds, w.h.p.

Proof. Consider the i-th iteration of the loop in Line 5 for some i ≥ 1. Let X
denote the number of requests received by a node u in Phase 3. It is not hard
to see that the algorithm succeeds for u in iteration i if mi + X ≤ mi−1. By
the definition of mi we have

Pr[mi + X > mi−1] ≤ Pr[mi + X ≥ (2 + ε)mi] = Pr[X ≥ (1 + ε)mi].

According to Lemma 2.6 we can apply Lemma 2.7 to deduce that X is a sum
of independent binary random variables and E[X] = mi. Therefore, we can
apply Chernoff bounds to get

Pr[X ≥ (1 + ε)mi] ≤ e−ε2mi/3 ≤ e−ε2c log n/3,

where the second inequality holds because mi ≥ c log n by definition. The
lemma follows by applying the union bound over all nodes and all iterations.

The following theorem concludes our analysis.

Theorem 2.9. For any 0 < ε ≤ 1 the algorithm lets each node sample at
least log n nodes almost uniformly at random from the set of all nodes in the
network in O(log log n) rounds, w.h.p. The communication work for every node
in every round is O(log2+log(2+ε) n).

Proof. According to Lemma 2.8, the algorithm succeeds, w.h.p., and the number
of sampled nodes at each node after termination is mT = c log n for some c ≥ 1.
By Lemma 2.6 and the arguments given in Section 2.3, the sampled nodes are
chosen almost uniformly at random from the set of all nodes in the network.
The upper bound on the running time follows from our choice of T . Finally,
since mi ≤ m0 for all i, the number of identifiers sent and received by a node
in every round is at most

O(m0) = O
(

(2 + ε)T log n
)

= O
(

log1+log(2+ε) n
)

.

According to our assumptions, each identifier is a bit string of length O(log n).
Therefore, the given bound on the communication work holds.

Note that the above analysis does not use any properties of H-graphs aside
from their regularity and their expansion. Therefore, the proposed algorithm
works for arbitrary regular graphs with appropriate expansion properties.

21

Chapter 2 Churn- and DoS-Resistant Overlay Networks

2.4.2 Hypercubes

Conceptually, rapid node sampling on hypercubes works analogously to rapid
node sampling on H-graphs in that the algorithm combines short random walks
to form longer random walks. However, the algorithm for hypercubes and its
analysis are technically more involved. Consider a d-dimensional hypercube.
Note that by definition d = log n. Each node of the hypercube executes
Algorithm 2.2. We refer to the node executing the algorithm as u in the
pseudocode.

Algorithm 2.2 Rapid node sampling in hypercubes

Phase 1:

1: for j ← 1 to log n do

2: Mj ← ∅
3: for k ← 1 to m0 do

4: flip a fair coin
5: if coin flip comes up heads then

6: Mj ←Mj ∪ {nj(u)}
7: else

8: Mj ←Mj ∪ {u}
9: for i← 1 to ⌈log log n⌉ do

Phase 2:

10: for j ← 1 to log n with step-size 2i do

11: if j + 2i−1 − 1 ≥ log n then

12: break

13: for k ← 1 to mi do

14: choose and remove v ∈Mj uniformly at random
15: send request (u, j) to v

Phase 3:

16: for each received request (v, j) do

17: j′ ← j + 2i−1

18: choose and remove w ∈Mj′ uniformly at random
19: send response (w, j) to v

Phase 4:

20: for j ← 1 to log n with step-size 2i do

21: if j + 2i−1 − 1 ≥ log n then

22: break

23: Mj ← ∅
24: for each received response (v, j) do

25: Mj ←Mj ∪ {v}

22

2.4 Rapid Node Sampling

As in the previous section, the correctness of the algorithm depends on the
choice of the values mi. We assume for now that the mi are large enough so that
whenever the algorithm attempts to take an element from a set Mj , it succeeds.
The following lemma characterizes the core idea behind the algorithm. Under
the given assumption, the lemma implies that once the algorithm terminates,
the set M1 at any node contains only identifiers of nodes that were chosen
uniformly at random from the hypercube.

Lemma 2.10. Consider a node u. After the i-th iteration of the loop in
Line 9 of the algorithm the following statement holds. For any j such that
1 ≤ j ≤ log n and j ≡ 1 (mod 2i), and any node v ∈Mj, the coordinates

j, . . . , min{j + 2i − 1, log n}

of v were chosen independently and uniformly at random while the remaining
coordinates of v are identical to the corresponding coordinates of u.

Proof. We show the lemma by induction on i. For i = 0 (i.e., before the first
iteration) it is not hard to check that Phase 1 of the algorithm initializes the
sets Mj of the nodes in such a way that the statement holds for all nodes.
So suppose that the statement holds for all nodes after iteration i − 1. We
consider a node u and an iteration i and show that the statement holds for u
after iteration i.

Let j be such that 1 ≤ j ≤ log n and j ≡ 1 (mod 2i). Consider a set Mj . By
the induction hypothesis, at the beginning of the iteration each node v ∈Mj

is such that the coordinates

j, . . . , min{j + 2i−1 − 1, log n}

were chosen independently and uniformly at random while the remaining coor-
dinates of v coincide with the corresponding coordinates of u. We distinguish
two cases.

If j + 2i−1 − 1 ≥ log n then the algorithm does not send out requests for the
nodes in Mj in Phase 2 and it does not replace the nodes in Mj in Phase 4.
Since j +2i−1−1 ≥ log n implies j +2i−1 ≥ log n, the statement of the lemma
is satisfied after iteration i in this case.

If j + 2i−1 − 1 < log n then the algorithm sends requests to mi nodes taken
from Mj during Phase 2. Let v ∈Mj be a node to which u sends a request. In
Phase 3, v replies to this request with a node w chosen uniformly at random
from the set Mj′ in the memory of v where j′ = j + 2i−1. Note that j′ ≤ log n
and, therefore, the set Mj′ exists. By the induction hypothesis, the coordinates

j′, . . . , min{j′ + 2i−1 − 1, log n}

23

Chapter 2 Churn- and DoS-Resistant Overlay Networks

of w were chosen independently and uniformly at random while the remaining
coordinates correspond to v. The interval of randomly chosen coordinates of w
equals the interval

j + 2i−1, . . . , min{j + 2i − 1, log n}.

When combining this argument with the argument concerning the coordinates
of v given above, we get that in relation to u the coordinates

j, . . . , min{j + 2i − 1, log n}

of w were chosen independently and uniformly at random while the remaining
coordinates of w coincide with the corresponding coordinates of u. In Phase 4,
u removes all elements from Mj and then fills Mj with nodes that satisfy the
property given for the node w above. Thereby, also in this case the statement
of the lemma holds, which completes the induction.

We now turn to the choice of the values mi. Similarly to the previous section,
we say the algorithm succeeds for node u and index j in iteration i if during
the i-th iteration of the loop in Line 9 in the execution of the algorithm by
u, the set Mj is never empty when an element should be extracted. We say
the algorithm succeeds if it succeeds for all nodes, all j, and all iterations. We
have the following lemma.

Lemma 2.11. For 0 < ε ≤ 1 there is a constant c ≥ 1 such that with

mi = (2 + ε)⌈log log n⌉−ic log n

the algorithm succeeds, w.h.p.

Proof. We first establish a simple observation. Consider iteration i of the loop
in Line 9 during the execution by a node u, and let j be such that 1 ≤ j ≤ log n.
If the algorithm removes a node from Mj in Phase 2 then we must have j ≡ 1
(mod 2i). If the algorithm removes a node from Mj in Phase 3 then we must
have j ≡ 2i−1 + 1 (mod 2i). Since 1 6≡ 2i−1 + 1 (mod 2i), the algorithm cannot
remove nodes from Mj in both Phase 2 and Phase 3 during the same iteration.

To prove the lemma, we show the following statement by induction on i:
In iteration i we have that for every node u and every index j the algorithm
succeeds, and at the end of the iteration it holds |Mj | ≥ mi for all j. For i = 0
(i.e., before the first iteration) the statement holds since no nodes are taken
from the sets Mj before the algorithm enters the loop in Line 9, and Phase 1
adds exactly m0 elements to each Mj . So suppose the statement holds for
iteration i− 1. We show that, w.h.p., the statement also holds for iteration i.

Consider a node u and an index j. We distinguish three cases. For the first
case suppose that u does not remove any nodes from Mj in iteration i. In this

24

2.4 Rapid Node Sampling

case, the algorithm cannot fail, which shows the first part of the statement.
Furthermore, the induction hypothesis implies that |Mj | ≥ mi−1 at the end of
iteration i− 1. Since mi−1 ≥ mi, also the second part of the statement holds.

For the second case suppose that u takes a node from Mj in Phase 2 of
iteration i. According to the observation given at the beginning of the proof,
this implies that the algorithm does not take any nodes from Mj in Phase 3
of the current iteration. By the induction hypothesis, we have |Mj | ≥ mi−1

at the end of iteration i− 1. During Phase 2 of the algorithm, u removes mi

nodes from Mj and sends a request to each of these nodes. Since mi−1 ≥ mi,
the algorithm succeeds. As we will argue in the third case below, all requests
of u will be answered. In Phase 4, u discards the remaining elements of Mj

and then fills the set with the mi nodes received as responses to the previously
sent requests. Therefore, the second part of the statement holds.

For the third and final case suppose that u removes a node from Mj in
Phase 3 of iteration i. According to the observation given at the beginning of
the proof, this implies that the algorithm does not remove any nodes from Mj

in Phase 2 of the current iteration. Let X be the number of requests received
by u such that the reply to the request should contain a node from Mj . By
the induction hypothesis, we have |Mj | ≥ mi−1 at the end of iteration i− 1.
Therefore, if X +mi ≤ mi−1 then the algorithm succeeds and at least mi nodes
remain in Mj . By the definition of mi we have

Pr[X + mi > mi−1] ≤ Pr[X + mi ≥ (2 + ε)mi] = Pr[X ≥ (1 + ε)mi].

As we argued in the previous case, the algorithm succeeds for nodes that take
elements from Mj in Phase 2 of iteration i. Together with Lemma 2.10 and
arguments analogous to those given in Lemma 2.7, this implies that X is a
sum of independent binary random variables such that E[X] = mi. Therefore,
we can apply Chernoff bounds to get

Pr[X ≥ (1 + ε)mi] ≤ e−ε2mi/3 ≤ e−ε2c log n/3,

where the second inequality holds because mi ≥ c log n by definition.
Overall, the inductive statement holds for u and j, w.h.p. Applying the

union bound shows that the statement holds for all nodes and all j, w.h.p.,
which concludes the induction. Applying the union bound another time over
all iterations shows the lemma.

Theorem 2.12. For any 0 < ε ≤ 1 the algorithm lets each node sample at
least log n nodes uniformly at random from the set of all nodes in the network
in O(log log n) rounds, w.h.p. The communication work for every node in every
round is O(log3+log(2+ε) n).

25

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Proof. According to Lemma 2.11, the algorithm succeeds, w.h.p., and the
number of sampled nodes at each node after termination is m⌈log log n⌉ = c log n
for some c ≥ 1. By Lemma 2.10 and the arguments given in Section 2.3, the
sampled nodes are chosen uniformly at random from the set of all nodes in the
network. The upper bound on the running time follows from the fact that the
algorithm executes ⌈log log n⌉ iterations of the loop in Line 9. Finally, since
mi ≤ m0 for all i, the number of identifiers sent and received by a node in
every round is at most

O(m0 log n) = O
(

(2 + ε)⌈log log n⌉ log2 n
)

= O
(

log2+log(2+ε) n
)

.

According to our assumptions, each identifier is a bit string of length O(log n).
Therefore, the given bound on the communication work holds.

2.5 Adversarial Churn

The rapid node sampling algorithms introduced in the previous sections will
be our primary tools throughout the remainder of this chapter. In this section,
we use rapid node sampling to quickly update an H-graph in order to include
joining nodes and exclude leaving nodes. Thereby, we get a network that is
resistant against adversarial churn.

Intuitively, the main idea behind our approach is to keep the network topology
fixed over certain intervals of time and keep track of which nodes want to join
and leave during these intervals. At the end of an interval, joining nodes are
included into the H-graph and leaving nodes are excluded. We achieve this
by executing an instance of Algorithm 2.3 for each of the d/2 Hamiltonian
cycles in the H-graph. In contrast to Section 2.4.1, in which we implicitly
treated the Hamiltonian cycles as being undirected, we explicitly interpret the
cycles as being directed throughout this section. Executed locally by each
node, Algorithm 2.3 transforms an existing Hamiltonian cycle into a new
Hamiltonian cycle that is chosen close to uniformly at random from the set of
all possible directed Hamiltonian cycles over the nodes staying in the network.
By iterating the algorithm, we get a network that constantly adapts to the
node sets prescribed by the adversary.

As in the previous sections, the algorithm is divided into phases. However,
in contrast to the previous sections, a phase of Algorithm 2.3 can take multiple
communication rounds. We require the nodes to have some knowledge about
the size of the network. Specifically, we need estimates on log log n and log n
as both are required for the rapid node sampling algorithm for H-graphs. Since
polynomial changes in n only cause additive changes in log log n and for all
realistic values of n, log log n is very small, we assume for simplicity that the
nodes know an upper bound k on log log n that is precise up to some additive
deviation of at most some constant c, i.e., k−c ≤ log log n ≤ k. Accordingly, we

26

2.5 Adversarial Churn

can use 2k as an estimate for log n that is precise up to a constant multiplicative
factor. Furthermore, we assume that the number of nodes in the network as
prescribed by the adversary never falls below a threshold N . All statements
said to hold with high probability in this section do so with respect to N .

Algorithm 2.3 Update a single Hamiltonian cycle of an H-graph

Phase 1:

1: U ← set of nodes for which this node is responsible
2: for each u ∈ U do

3: choose node v ∈ V via rapid node sampling in H-graph
4: send id(u) to v

Phase 2:

5: U ← set of received identifiers
6: m← |U |
7: if U 6= ∅ then

8: (u1, u2, . . . , um)← permutation of U chosen uniformly at random

Phase 3:

9: if U 6= ∅ then

10: send u1 to closest active predecessor
11: send um to closest active successor
12: receive u0 from closest active predecessor
13: receive um+1 from closest active successor

Phase 4:

14: for i = 1 to m do

15: send (ui−1, ui+1) to ui

16: receive (v, w)
17: predecessor ← v
18: successor ← w

We now describe in detail how Algorithm 2.3 is used to update the network.
We say an H-graph G is suitable if the eigenvalues λi of the adjacency matrix
of G are such that |λi| ≤ 2

√
d for all i > 1. Otherwise, we say G is unsuitable.

We assume that initially the nodes in W1 are organized into a suitable H-graph.
We divide time into intervals of Θ(log log n) rounds. Consider three consecutive
intervals I1, I2, and I3. During I1, the nodes keep track of the changes to
the node set prescribed by the adversary. During I2, Algorithm 2.3 is used
to construct new Hamiltonian cycles that reflect the changes prescribed in
I1. The construction of these new Hamiltonian cycles is based on the current
Hamiltonian cycles in the H-graph. Finally, at the beginning of the first round
of I3, the nodes switch to the new Hamiltonian cycles and, thereby, form a new

27

Chapter 2 Churn- and DoS-Resistant Overlay Networks

suitable H-graph. This process is executed iteratively in an interleaved fashion,
i.e., while the cycles are restructured in I2, the nodes keep track of further
changes to the network, which are then incorporated during I3, and so on.

A node u that is prescribed to join the network during I1 is introduced to a
node v that is already present in the network. We define a node to be available
if it is part of the H-graph during I2. If v is available then it keeps id(u) in its
local memory and sends its own identifier to u. If v is not available then it must
have joined during I1. The node v then forwards id(u) to an available node w
and sends id(w) to u. It holds inductively that v must know an available node.

We say an available node w is responsible for the nodes whose identifier it
learns during I1. Furthermore, w is responsible for itself if it is not prescribed
to leave the network during I1. Since each interval consists of O(log log n)
rounds and in each round at most ⌈r⌉ ≤ r + 1 nodes can join each node in
the network (where r is the churn rate), the number of nodes for which w is
responsible is at most

(r + 2)c log log n = logc log(r+2) n

for some constant c. For future reference, we define ℓ(n) = logc log(r+2) n.
For a node u that is prescribed to leave the network during I1 there are

three cases. First, if u is part of the H-graph then it stores the fact that it
is supposed to leave the network in its local memory, but it remains in the
network for now. It participates in the execution of the algorithm during I2 to
integrate nodes for which it is responsible into the network. Note that since
u is not staying in the network, it is not responsible for itself. The node u
leaves the network in the first round of I3. Second, if u is currently not part of
the H-graph but is scheduled to become part of the H-graph at the beginning
of I2, then u also remains in the network. It becomes part of the H-graph at
the beginning of I2, participates in the algorithm during I2 while not being
responsible for itself, and leaves the network at the beginning of I3. Finally,
if u is not part of the H-graph and it is not scheduled to become part the
H-graph at the beginning of I2, then u must have joined the network in I1. In
this case, u informs the node w responsible for u that it is leaving and then
immediately leaves the network. The node w removes u from the set of nodes
for which it is responsible. Recall that according to the definition given in
Section 2.2, a leaving node is allowed to remain in the network for an additional
T rounds, where T should be as small as possible. For all three cases we have
T = O(log log n).

Consider the execution of Algorithm 2.3 during I2 for a specific Hamiltonian
cycle. In Phase 1, a node sends the identifiers of the nodes for which it is
responsible to randomly chosen nodes in the H-graph. To generate a sufficient
number of random nodes, the algorithm executes a polylogarithmic number

28

2.5 Adversarial Churn

of instances of the rapid node sampling algorithm for H-graphs in parallel.
We say a node is active if at least one identifier is sent to it during Phase 1.
Otherwise, a node is inactive. In Phase 2, an active node locally arranges the
identifiers it received into a random permutation. In Phases 3 and 4, the active
nodes connect these permutations along the direction of the old Hamiltonian
cycle to form a new Hamiltonian cycle. Thereby, the changes prescribed by the
adversary during I1 are reflected in the H-graph at the beginning of I3. Note
that implementing Phase 3 of the algorithm in an efficient way requires some
additional considerations. We will come back to this point when we analyze
the running time of the algorithm.

The set of nodes in the H-graph at the beginning of interval I3 corresponds
to the prescribed node set Wi where i is the last round of I1. Similarly, the
set of nodes in the H-graph at the beginning of interval I2 corresponds to the
prescribed node set Wj where j is the last round of the interval before I1. Let
n = |Wj | and m = |Wi|. According to our assumptions, we have m ≥ N and
n ≥ N . Hence, to show that a statement holds w.h.p. with regard to N , it is
sufficient to show that it holds w.h.p. with regard to n or m. Furthermore, our
model for churn implies the following relationship between n and m

n/ℓ(n) ≤ n/rc log log n ≤ m ≤ n · rc log log n ≤ n · ℓ(n).

With these observations in place, we are now ready to begin our analysis of
the algorithm.

First, we show that the running time of the algorithm is indeed O(log log n).
Phase 1 takes O(log log n) rounds according to Theorem 2.9, and Phase 2 and 4
require only a constant number of rounds. The critical part of the algorithm
is Phase 3 in which we have to bridge the distance between two active nodes
on a cycle. We define an inactive segment to be a sequence of consecutive
inactive nodes on a cycle. Consider the execution of Algorithm 2.3 on a specific
Hamiltonian cycle. We have the following lemma.

Lemma 2.13. There is a constant c such that each inactive segment has length
at most 2c log n · ℓ(n), w.h.p.

Proof. Consider a node u. According to Lemma 2.4, the probability that a
specific random walk used in Phase 1 chooses u among the n nodes of the
H-graph is at least

1

n
− 1

nα
≥ 1

2n
,

where the inequality holds for n ≥ 2 and α ≥ 2. Now consider a segment s of
2c log n · ℓ(n) consecutive nodes on a cycle of n nodes. The probability that a
specific random walk chooses a node in s is at least

2c log n · ℓ(n)

2n
.

29

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Hence, for m independent random walks we have

Pr[s inactive] ≤
(

1− c log n · ℓ(n)

n

)m

.

Since m ≥ n/ℓ(n), we have

(

1− c log n · ℓ(n)

n

)m

≤
(

1− c log n · ℓ(n)

n

)n/ℓ(n)

≤ e−c log n,

where the last inequality uses the well-known inequality (1− 1/x)x ≤ 1/e with
x = n/(c log n · ℓ(n)). Applying the union bound over the n possible empty
segments of length 2c log n · ℓ(n) in the Hamiltonian cycle implies that there
is no such empty segment, w.h.p. Therefore, there is also no longer empty
segment, w.h.p.

Applying the union bound over all d/2 Hamiltonian cycles implies that
Lemma 2.13 holds for all Hamiltonian cycles in the H-graph, w.h.p. Thereby,
the distance between two active nodes on a cycle is at most polylogarithmic.
Using pointer jumping, this distance can be bridged in O(log log n) rounds.
Thereby, the overall running time of the algorithm is indeed O(log log n).

Next, we turn to the communication work induced by the algorithm. The
parallel executions of the rapid node sampling algorithm require polylogarithmic
communication work according to Theorem 2.9. To bound the communication
work in the remaining parts of the algorithm, we have to bound the number of
messages sent to a node in Phase 1. Consider the execution of Algorithm 2.3
on a specific Hamiltonian cycle. We have the following lemma.

Lemma 2.14. There is a constant c such that at most c log n · ℓ(n) many
messages are sent to each node in Phase 1, w.h.p.

Proof. Consider a node u. According to Lemma 2.4, the probability that a
specific random walk used in Phase 1 chooses u among the n nodes of the
H-graph is at most

1

n
+

1

nα
≤ 2

n
,

where the inequality holds for α ≥ 1. Let X be the number of messages sent
to u in Phase 1. It is not hard to see that X is a sum of independent binary
random variables such that

E[X] ≤ 2m

n
≤ 2ℓ(n),

where the inequality holds since m ≤ n · ℓ(n). Define

β =
2ℓ(n)

E[X]
.

30

2.5 Adversarial Churn

Note that β ≥ 1. Hence, we can apply Chernoff bounds to get

Pr[X ≥ (1 + cβ log n) · E[X]] ≤ e−cβ log n·E[X]/3

= e−2c log n·ℓ(n)/3.

Thereby, w.h.p. we have

X < (1 + cβ log n) · E[X]

≤ 2ℓ(n) + 2c log n · ℓ(n)

≤ c′ log n · ℓ(n)

for a constant c′. Applying the union bounds over all nodes in the H-graph
shows the lemma.

By applying the union bound over all d/2 Hamiltonian cycles, it follows that
the overall number of messages sent to a node in Phase 1 is polylogarithmic,
w.h.p. It is not hard to see that thereby the overall communication work of
the algorithm is polylogarithmic for each node.

Finally, we establish a series of lemmas to show that applying Algorithm 2.3
to each Hamiltonian cycle in a suitable H-graph results in a new H-graph
that is suitable, w.h.p. We begin with a lemma that allows us to bound the
probability of each outcome of the random experiment collectively performed
by the nodes in Phase 1 of the algorithm. Such an outcome is an assignment of
the m nodes that should form the new H-graph to the n nodes in the current
H-graph.

Lemma 2.15. Let G be a d-regular multigraph with |λi| ≤ 2
√

d for all i > 1.
For any α ≥ 1 and any k such that k ≤ nα−1 consider k independent simple
random walks of length t ≥ 2α logd/4 n. For any sequence of nodes v1, v2, . . . , vk

it holds

Pr [∀i : random walk i ends at vi] ≤
(

1 + 2kn1−α
) 1

nk
.

Proof. Lemma 2.4 implies

Pr [∀i : random walk i ends at vi] ≤
(

1

n
+

1

nα

)k

.

By applying the binomial theorem we get

(

1

n
+

1

nα

)k

=
k
∑

i=0

(

k

i

)

(

1

n

)k−i (1

nα

)i

=
k
∑

i=0

(

k

i

)

(

1

n

)k+(α−1)i

.

31

Chapter 2 Churn- and DoS-Resistant Overlay Networks

To establish an upper bound on this sum, we show the following relationship
between the (i + 1)-th and the i-th term of the sum for i ≥ 1:

(

k

i + 1

)

(

1

n

)k+(α−1)(i+1)

≤ 1

2

(

k

i

)

(

1

n

)k+(α−1)i

(2.1)

⇐⇒
(

k

i + 1

)

(

1

n

)α−1

≤ 1

2

(

k

i

)

⇐⇒ k − i

i + 1
≤ 1

2
nα−1

⇐⇒ k ≤ 1

2
nα−1(i + 1) + i.

Note that the last inequality is satisfied since k ≤ nα−1 and i ≥ 1 according to
our assumptions. Equation 2.1 implies

k
∑

i=0

(

k

i

)

(

1

n

)k+(α−1)i

≤
(

1

n

)k

+
k
∑

i=1

(

1

2

)i−1

k

(

1

n

)k+α−1

=

(

1

n

)k

+

(

1

n

)k

kn1−α ·
k−1
∑

i=0

(

1

2

)i

≤
(

1 + 2kn1−α
) 1

nk
.

In the remainder of this section, we assume that α ≥ 3. For n sufficiently
large, this assumption implies

m ≤ n · ℓ(n) ≤ n2 ≤ nα−1.

Therefore, we can apply Lemma 2.15 with k = m to bound the probability of
an outcome of Phase 1 of the algorithm.

Consider a cycle of the H-graph before the execution of Algorithm 2.3. Let
u1, u2, . . . , un be the nodes of the cycle where we pick u1 arbitrarily and ui+1

is the successor of ui for all i such that 1 ≤ i ≤ n− 1. We define

X =

{

(x1, x2, . . . , xn) | ∀i : xi ∈ Z≥0 and
∑

i

xi = m

}

.

For x ∈ X with x = (x1, x2, . . . , xn) let Ex be the event that in Phase 1 of
the algorithm, xi messages are sent to node ui. Let EC be the event that
Algorithm 2.3 generates the directed cycle C. We have the following lemma.

32

2.5 Adversarial Churn

Lemma 2.16. For a cycle C and an x ∈ X with x = (x1, x2, . . . , xn) we have

Pr[EC ∩ Ex] ≤
(

1 + 2mn1−α
)

· m

nm
· 1

x1! · x2! · · · · · xn!
.

Proof. The cycle constructed by the algorithm is determined by the outcome
of Phase 1 and 2 of the algorithm. Let Ω1 be the set of possible outcomes of
Phase 1 and let Ω2 be the set of possible outcomes of Phase 2 when considering
all nodes. As we argued above, an outcome in Ω1 is an assignment of the m
nodes that should form the new H-graph to the n nodes in the current H-graph.
An outcome in Ω2 determines the random permutations generated at the nodes
in the current H-graph. Note that Ω1 can be interpreted in isolation as a
sample space of a probability space while Ω2 cannot directly be interpreted
in this way because the exact nature of the random experiment collectively
performed by the nodes in Phase 2 depends on the outcome of Phase 1. The
overall random experiment performed by the nodes over both Phase 1 and 2
produces an outcome from the sample space Ω1 × Ω2.

Define
X∗ = { (x1, x2, . . . , xn) ∈ X | ∃i : xi = m } .

We distinguish two cases. First, suppose x ∈ X \ X∗. Let Ω′
1 be the set

of outcomes ω1 ∈ Ω1 for which there is an outcome ω2 ∈ Ω2 such that
(ω1, ω2) ∈ EC ∩ Ex. We have |Ω′

1| = m. To see this, consider some index j
such that xj > 0, and let V (uj) be the set of identifiers sent to uj in Phase 1.
For ω1 to lie in Ω′

1, the set V (uj) must consist of xj consecutive nodes from C.
Hence, there are m possible choices for the set V (uj). Since x is fixed, each of
these choices directly implies the assignment of the remaining nodes in C to
the nodes in the current cycle. Therefore, there are exactly m outcomes in Ω′

1.
Let E1 = Ω′

1 × Ω2. Lemma 2.15 implies

Pr[E1] ≤ m ·
(

1 + 2mn1−α
)

· 1

nm
.

For each outcome in ω1 ∈ Ω′
1 there is exactly one outcome ω2 ∈ Ω2 such that

(ω1, ω2) ∈ EC ∩Ex: Each node ui that receives at least one identifier in Phase 1
has to pick one specific permutation among the xi! possible permutations of
the xi identifiers ui received. Therefore, we have

Pr[EC ∩ Ex | E1] =
1

x1! · x2! · · · · · xn!
.

Overall, we have

Pr[EC ∩ Ex] = Pr[(EC ∩ Ex) ∩ E1]

= Pr[E1] · Pr[EC ∩ Ex | E1]

≤
(

1 + 2mn1−α
)

· m

nm
· 1

x1! · x2! · · · · · xn!
.

33

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Now suppose x ∈ X∗. In this case, there is exactly one outcome ω1 ∈ Ω1

for which there exists an outcome ω2 ∈ Ω2 such that (ω1, ω2) ∈ EC ∩ Ex.
Specifically, ω1 must be such that the node ui with xi = m receives all m
identifiers sent in Phase 1. Let E1 = {ω1} × Ω2. According to Lemma 2.15 we
have

Pr[E1] ≤
(

1 + 2mn1−α
)

· 1

nm
.

Additionally to the occurrence of ω1, we need the outcome ω2 of Phase 2 to
be such that the node ui chooses one of the m permutations that results in C
among the m! permutations of the m identifiers ui received. Hence, we have

Pr[EC ∩ Ex | E1] =
m

m!
.

Overall, we have

Pr[EC ∩ Ex] = Pr[(EC ∩ Ex) ∩ E1]

= Pr[E1] · Pr[EC ∩ Ex | E1]

≤
(

1 + 2mn1−α
)

· 1

nm
· m

m!

=
(

1 + 2mn1−α
)

· m

nm
· 1

x1! · x2! · · · · · xn!
,

where the last equality follows from the definition of X∗.

We can now bound the probability that the algorithm generates a specific
directed cycle.

Lemma 2.17. For a cycle C it holds

Pr [EC] ≤
(

1 + 2mn1−α
) 1

(m− 1)!
.

Proof. By Lemma 2.16 and the law of total probability we have

Pr[EC] =
∑

x∈X

Pr[EC ∩ Ex]

≤
∑

x∈X

(

1 + 2mn1−α
)

· m

nm
· 1

x1! · x2! · · · · · xn!

=
(

1 + 2mn1−α
)

· m

nm ·m!
·
∑

x∈X

m!

x1! · x2! · · · · · xn!

=
(

1 + 2mn1−α
)

· m

nm ·m!
·
∑

x∈X

(

m

x1, x2, . . . , xn

)

=
(

1 + 2mn1−α
)

· m

nm ·m!
· nm

=
(

1 + 2mn1−α
)

· 1

(m− 1)!
,

34

2.5 Adversarial Churn

where the penultimate line follows from the multinomial theorem and the
definition of X.

Finally, we can show that the algorithm generates a suitable H-graph.

Lemma 2.18. The execution of Algorithm 2.3 on each Hamiltonian cycle of
a suitable H-graph results in a suitable H-graph, w.h.p.

Proof. An H-graph is a combination of d/2 Hamiltonian cycles. According to
Corollary 2.3, an H-graph generated by choosing d/2 directed Hamiltonian cy-
cles over m nodes independently and uniformly at random is suitable w.h.p. for
d and m sufficiently large. Let K be the set of tuples (C1, C2, . . . , Cd/2), where
each Ci is a directed Hamiltonian cycle over m nodes, such that the H-graph
corresponding to the combination of the cycles Ci is unsuitable. Corollary 2.3
implies that for directed cycles chosen uniformly at random, we have

Pr[G unsuitable] =
∑

(C1,C2,...,Cd/2)∈K

(

1

(m− 1)!

)d/2

≤ m−c (2.2)

for a given constant c. According to Lemma 2.17, Algorithm 2.3 chooses the
cycles such that

Pr[G unsuitable] ≤
∑

(C1,C2,...,Cd/2)∈K

(

(

1 + 2mn1−α
)

· 1

(m− 1)!

)d/2

≤
(

1 + 2mn1−α
)d/2
·

∑

(C1,C2,...,Cd/2)∈K

(

1

(m− 1)!

)d/2

≤
(

1 + 2mn1−α
)d/2
·m−c,

where the last inequality follows by the inequality given in Equation 2.2. For
n sufficiently large, we have

m ≤ n · ℓ(n) ≤ n2.

Hence, for α ≥ 3 we have

(

1 + 2mn1−α
)d/2

≤ 3d/2,

which implies
Pr[G unsuitable] ≤ 3d/2 ·m−c.

Since d is a constant, the lemma holds for m sufficiently large.

35

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Note that as long as the algorithm succeeds to update the H-graph into a
new suitable H-graph, the overall network remains weakly connected. The
above arguments concerning the running time and the communication work
induced by the algorithm together with an inductive application of Lemma 2.18
imply the following theorem.

Theorem 2.19. For any constant r the algorithm maintains the connectivity
of the network under adversarial churn with a churn rate of r for a polynomial
number of rounds in N . The communication work for every node in every
round is polylogarithmic.

As we argued throughout this section, the algorithm actually guarantees
stronger properties than just weak connectivity. Most notably, the network
always contains an H-graph over a large subset of the nodes as a subgraph.
At any point in time, the nodes in this H-graph correspond to a node set Wi

prescribed by the adversary at most O(log log n) rounds ago. Furthermore, the
degree of a node in the overlay network remains polylogarithmic at all times.

2.6 Adversarial DoS-Attacks

Next we present an overlay network based on the hypercube that is resistant
against constantly changing DoS-attacks. We assume that the node set is
static. For a given ε such that 0 < ε ≤ 1 we consider a (1 − ε)-bounded
t-late adversary where t = Θ(log log n). We organize the nodes of the network
into groups of logarithmic size and let each group simulate one node of a
hypercube. Specifically, if we are given a network of n nodes, we use a d-
dimensional hypercube where d is the largest integer such that 2d ≤ n/(c log n)
for some constant c that is chosen in the analysis. To distinguish the nodes
of the hypercube from the physical nodes in the network, we refer to them as
supernodes. We denote the number of supernodes in the hypercube as N = 2d.
For a supernode u we use R(u) to refer to the group of nodes simulating u.
Each physical node is part of exactly one group. We say that two groups are
neighbors if their corresponding supernodes are neighbors. The topology of
the overlay network is derived from the hypercube as follows: The nodes in
a group are connected to a clique, and nodes of neighboring groups form a
complete bipartite graph.

It is not hard to see that as long as the adversary does not block an
entire group, the network induced by the non-blocked nodes remains strongly
connected. Therefore, our goal is to make it difficult for the adversary to block
all nodes in a group. To achieve this goal, we randomly reassign the physical
nodes to the groups every Θ(log log n) rounds so that a t-late adversary for
t = Θ(log log n) never knows which nodes currently form a group. We assume
that initially the network is such that each node chose its group independently

36

2.6 Adversarial DoS-Attacks

and uniformly at random and that the nodes are connected as described above.
We reassign the nodes to the groups in the following way.

First, the groups simulate the rapid node sampling algorithm on the hyper-
cube. We denote the state of the rapid node sampling algorithm for a supernode
u as s(u). The state s(u) contains all variables used by the algorithm and a
counter that represents the current iteration and phase. It further contains
the identifiers of all nodes in R(u) and the identifiers of all nodes in R(v)
for every supernode v stored by u. The simulation proceeds in steps. One
step corresponds to one round in the execution of the rapid node sampling
algorithm on the hypercube. The execution of a step takes two rounds. At the
beginning, all nodes in R(u) are assumed to know the initial state of u. A step
for a supernode u is performed as follows.

• Simulation round: First, all non-blocked nodes in R(u) receive messages
containing the current state s(u) of the supernode. The nodes adopt
the state given in these messages. Furthermore, the nodes receive the
messages that u is supposed to receive at the beginning of the round of
the rapid node sampling algorithm corresponding to the current step.
Naturally, the message reception is skipped in the step corresponding to
the first round of the rapid node sampling algorithm.

After receiving all messages, each non-blocked node x simulates the local
computation of u and sends a message mx to all nodes in R(u) containing
the new state of u from the viewpoint of x, including all messages that u
is supposed to send out in that round. Note that the messages mx might
differ between nodes in a group because of different random decisions.

• Synchronization round: Every non-blocked node x in R(u) first receives
all messages sent in the simulation round and chooses among these the
message my of the node y of lowest identifier. Note that y is unique
and it is the same node for all non-blocked nodes in R(u). The node x
adopts the new state s(u) as given in my and for each message m that u
is supposed to send to some supernode v, x sends m to all nodes in R(v).
Then, x sends the state s(u) to all nodes in R(u).

We perform the given simulation of the rapid node sampling algorithm k
times in parallel for a constant k ∈ N determined in the analysis. It follows
from Theorem 2.12 that at the end of the simulation, the collective states
of a supernode u over all k instances contain at least k log n supernodes
(represented by their groups) that were chosen uniformly at random from the
hypercube. Suppose that for every supernode u we have |R(u)| ≤ k log n. Let
R(u) = {x1, x2, . . . , xℓ} where we assume id(xi) < id(xj) if i < j, and let
v1, v2, . . . , vℓ be the first ℓ supernodes that were chosen. We reorganize the
physical nodes into groups using four additional rounds.

37

Chapter 2 Churn- and DoS-Resistant Overlay Networks

• First, every non-blocked node in R(u) assigns xi to R(vi) for every i by
sending messages to all nodes in R(vi) informing them about xi.

• Then, every non-blocked node in R(u) collects the nodes sent to it in the
previous round to form the set R′(u), which is the new group representing
u. It then sends R′(u) to all nodes in R(u) and to all nodes in R(v)
where v is a neighbor of u.

• After collecting R′(u) and R′(v) for all neighbors v of u, each non-blocked
node in R(u) sends R′(u) and R′(v) for all neighbors v of u to all nodes
in R′(u).

• Finally, each non-blocked node x collects R′(u′) of the new supernode u′

that was assigned to x and also R′(v) for all neighbors v of u′.

Note that in the last round, a non-blocked node x that was newly assigned to
a supernode u learns the identifiers of the nodes in R(u) and the identifiers of
the nodes in R(v) for every neighbor v of u.

Overall, it is not hard to see that if |R(u)| ≤ k log n for every supernode u
and each group contains at least one non-blocked node in every round then
the algorithm can correctly simulate the random node sampling algorithm
and reassign the nodes to the groups. The simulation of the node sampling
algorithm takes at most twice as many rounds as the original algorithm, and
the reassignment of the nodes to the groups takes a constant number of rounds.
Thereby, it follows from Theorem 2.12 that the algorithm takes O(log log n)
rounds to reorganize the groups such that each node is assigned to a group
independently and uniformly at random.

Let t be the exact number of rounds required by the algorithm. We constantly
reorganize the groups every t rounds by iteratively executing the algorithm.
Thereby, a 2t-late adversary has no knowledge pertaining to the execution
of the algorithm that led to the current composition of the groups. As a
consequence, the assignment of nodes to groups at any given time is completely
random from the perspective of the adversary. This observation represents the
main insight required for the following analysis of the algorithm.

First, we establish bounds on the size of a group. The following lemma holds
both before the first execution of the algorithm and after an execution of the
algorithm.

Lemma 2.20. For any δ such that 0 < δ < 1 and every supernode u we have
w.h.p. that

(1− δ)
n

N
< |R(u)| < (1 + δ)

n

N
.

Proof. Initially, the network is such that each node chose its group indepen-
dently and uniformly at random by assumption. For a subsequent reorganiza-
tion of the groups by the algorithm, Theorem 2.12 implies that each node is

38

2.6 Adversarial DoS-Attacks

assigned to a group independently and uniformly at random. Therefore, we
have for each supernode u that E[|R(u)|] = n/N . Recall that we choose N
to be the largest power of 2 such that N ≤ n/(c log n). We use this inequality
together with Chernoff bounds to get

Pr

[

|R(u)| ≤ (1− δ)
n

N

]

≤ e− δ2n
2N ≤ e−δ2c log n/2

and
Pr

[

|R(u)| ≥ (1 + δ)
n

N

]

≤ e− δ2n
3N ≤ e−δ2c log n/3.

Therefore, the group size |R(u)| is bounded as claimed, w.h.p. Applying the
union bound over all supernodes implies the lemma.

Recall that we defined t as the number of rounds required by the algorithm
to reorganize the groups. We now show that a 2t-late adversary cannot block
an entire group.

Lemma 2.21. For any ε such that 0 < ε ≤ 1, a (1 − ε)-bounded 2t-late
adversary does not block all nodes of a group in any round during a single
execution of the algorithm, w.h.p.

Proof. If ε = 1 then the adversary cannot block any nodes and the lemma
holds trivially. So suppose ε < 1. For each of the t = Θ(log log n) rounds
of the execution of the algorithm, the adversary can block a subset of the
nodes of size (1 − ε)n. As we argued above, the assignment of the nodes to
the groups is random from the perspective of the adversary. Thereby, also the
assignment of the blocked nodes to the groups is random. Consider one round
of the execution of the algorithm and let u be a supernode. Define Xi to be a
binary random variable such that Xi = 1 if and only if the i-th blocked node is
in group R(u). We have E[Xi] = 1/N . Let X be the number of blocked nodes
in R(u). Then

X =

(1−ε)n
∑

i=1

Xi,

which implies

E[X] =

(1−ε)n
∑

i=1

E[Xi] = (1− ε)
n

N
.

Define
δ =

ε

2(1− ε)

so that
Pr

[

X ≥
(

1− ε

2

)

n

N

]

= Pr

[

X ≥ (1 + δ)(1− ε)
n

N

]

.

39

Chapter 2 Churn- and DoS-Resistant Overlay Networks

Note that δ > 0. Therefore, we can apply Chernoff bounds to get

Pr

[

X ≥ (1 + δ)(1− ε)
n

N

]

= e− min{δ2,δ}·(1−ε)n/(3N)

≤ e− min{δ2,δ}·(1−ε)c log n/3,

where the inequality holds because N ≤ n/(c log n). Since both δ and ε are
positive constants, this equation implies that we can choose the constant c
such that, w.h.p, it holds

X <

(

1− ε

2

)

n

N
.

According to Lemma 2.20, we have that for any 0 < δ′ < 1 it holds, w.h.p.,
that

|R(u)| > (1− δ′)
n

N
.

Therefore, the number of non-blocked nodes in R(u) is

|R(u)| −X >

[

(1− δ′)−
(

1− ε

2

)]

n

N

=

(

ε

2
− δ′

)

n

N

≥
(

ε

2
− δ′

)

c log n,

where the first inequality holds w.h.p. and the last inequality again follows
because N ≤ n/(c log n). Hence, if we choose δ′ < ε/2, we get |R(u)| −X > 0
so that the adversary does not block all nodes in R(u), w.h.p. Applying the
union bound over all nodes and all t = O(log log n) rounds of the execution of
the algorithm shows that the adversary does not block an entire group in any
round of the execution, w.h.p.

We conclude our analysis with the following theorem.

Theorem 2.22. For any ε such that 0 < ε ≤ 1 the algorithm maintains
the connectivity of the network under DoS-attacks by a (1− ε)-bounded t-late
adversary where t = Θ(log log n) for a polynomial number of rounds. The
communication work for every node in every round is polylogarithmic.

Proof. For the algorithm to work correctly, we have to choose the constant c
according to the applications of Chernoff bounds throughout this section. Our
choice of N implies that N > n/(2c log n). Together with Lemma 2.20, this
implies that |R(u)| < 4c log n for every supernode u, w.h.p. Therefore, we can
choose k = 4c. With the choices of these parameters in place, the theorem
follows by inductively applying Lemmas 2.20 and 2.21. The bound on the
communication work follows from the upper bound on |R(u)| given above and
Theorem 2.12.

40

2.7 Outlook

The presented algorithm guarantees stronger properties than just weak
connectivity among the non-blocked nodes. Specifically, the non-blocked nodes
actually form a strongly connected graph in every round. Furthermore, the
algorithm allows the nodes in the network to simulate a hypercube in a
DoS-resistant manner. We can execute any given algorithm on this hypercube
through simulation in a way similar to the simulation of the rapid node sampling
algorithm described above. Thereby, the presented approach can be used to
make the execution of a distributed algorithm resistant against DoS-attacks at
the cost of a constant-factor slow-down and increased communication work.

2.7 Outlook

The idea of constantly reorganizing an overlay network with the help of random
walks in order to make the network robust against adversarial attacks seems to
be quite powerful. While this work and the work of Augustine et al. [Aug+15]
represent a first foray into leveraging this idea, both works leave ample room
for future research in this direction. As a direct extension of the results
presented in this chapter, one can envision designing networks that are robust
against attacks beyond adversarial churn and DoS-attacks such as Eclipse-
attacks [Sin+06], for example. Also a combination of different attacks could
be considered: While we investigated churn and DoS-attacks separately in this
chapter, the publication underlying this work [DGS16] already presented a
first result on algorithms that can endure both kinds of attacks at the same
time. One could also investigate the application of the presented techniques
to related problems in the general area of overlay networks. For example,
it is conceivable to use these techniques to improve current constructions of
DoS-resistant DHTs [ESS14] or to make anonymous routing systems such
as Tor [DMS04] robust against DoS-attacks. Finally, as we already stated
in Section 2.1, it would be interesting to further investigate the relationship
between this work and the work of Augustine et al. [Aug+15].

One of the fundamental operations used by the algorithms presented in this
chapter is to sample nodes uniformly at random from a network by performing
random walks. The rapid node sampling algorithms presented in Section 2.4
achieve this task in a running time that is exponentially faster than standard
random walks. Since sampling nodes from a network is a widely used operation
in network algorithms, this improvement in running time could translate to
other works on overlay networks. The low running time of the rapid node
sampling algorithms stems from their use of pointer jumping. We think that
this technique from parallel computing could inspire further, new algorithms in
the area of overlay networks. In fact, we present another application of pointer
jumping in overlay networks in Chapter 4 of this thesis.

41

Chapter 3

Self-Stabilizing Metric Graphs

The results of the previous chapter and similar results from the literature
demonstrate that it is possible to design algorithms for overlay networks that
maintain a certain topology even under massive adversarial attacks. Still, the
question remains, what should be done if attacks or faults are so severe that a
given algorithm cannot endure them. In this case it would be desirable to have
an algorithm that eventually recovers the network topology from the state left
behind by a transient fault or a serious attack without outside intervention.
This is the fundamental idea behind topological self-stabilization.

For an algorithm to construct a topology in a self-stabilizing manner, it
has to guarantee that when starting from an arbitrary network state in which
all nodes form a single weakly-connected component, the network eventually
returns to the desired topology (convergence) and then remains in the desired
topology (closure). Thereby, the network eventually recovers from any fault
that leaves the network weakly connected as long as no further faults occur.

There is a plethora of work on the self-stabilizing construction of specific
network topologies from simple structures such as line graphs and rings to
more complex topologies such as De Bruijn graphs and Skip graphs. Next
to these topology-specific results, there has also been some work on generic
approaches for the self-stabilizing construction of overlay networks like the
Transitive Closure Framework by Berns et al. [BGP13], which can construct a
wide array of topologies that are locally checkable.

In this chapter, we present a new algorithm in the domain of topological
self-stabilization: Our algorithm constructs the graph corresponding to a
given metric specified via a distance oracle. The graph corresponding to a
metric (or just metric graph) is the unique minimal undirected graph such
that for any pair of nodes the length of a shortest path between the nodes
corresponds to the distance between the nodes according to the metric. Since
every undirected graph corresponds to a metric, our algorithm can be seen as a
universal approach to self-stabilizing graph construction for situations in which

43

Chapter 3 Self-Stabilizing Metric Graphs

the graph can be efficiently encoded as a metric. To the best of our knowledge,
our algorithm is the first self-stabilizing algorithm for the construction of
general metric graphs.

Our algorithm works for both synchronous and asynchronous activations
of the nodes. By modifying the algorithm slightly for the synchronous case,
we achieve a linear running time for the construction of the metric graph.
Furthermore, the modified version of the algorithm guarantees that after
stabilization in the synchronous case, the memory overhead and the number
of messages sent and received per round at every node drop to a constant
within a linear number of rounds. At the core of our algorithm lies a technique
that uses a directed cycle covering all nodes to guide the construction of the
metric graph. We think that this underlying technique could potentially have
applications beyond the construction of metric graphs and, therefore, could be
of independent interest.

Underlying Publications This chapter is based on the following publication
and a corresponding journal article [GLS17] that will appear in Theory of
Computing Systems.

R. Gmyr, J. Lefèvre, and C. Scheideler. “Self-stabilizing Metric
Graphs”. In: Proceedings of the 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems
(SSS), see [GLS16].

Outline We begin in Section 3.1 with a brief overview of the related work
in the area of topological self-stabilization. We then present our model in
Section 3.2 and formally define the problem of constructing a metric graph in a
self-stabilizing manner in Section 3.3. In Section 3.4 we describe an algorithm
that solves this problem under both synchronous and asynchronous executions.
We then analyze the algorithm in Section 3.5. Finally, we conclude the chapter
in Section 3.6 with some remarks on further applications of the general ideas
underlying this work.

3.1 Related Work

The concept of self-stabilization was first introduced in the seminal work
of Dijsktra [Dij74]. Since then, a rich body of research on self-stabilizing
algorithms has been established. In the area of topological self-stabilization
there is an abundance of work on the construction of specific network topologies.
For example, there are algorithms for the self-stabilizing construction of line
graphs [ORS07], rings [CF05; SR05], spanning trees [AK93; Gär03], De Bruijn
graphs [RSS11], Chord graphs [KKS14], and Skip graphs [Jac+09; CNS12].

Besides these topology-specific approaches, Berns et al. [BGP13] introduced
the Transitive Closure Framework, which is a general framework for the

44

3.2 Model

self-stabilizing construction of locally-checkable network topologies. Locally-
checkable topologies have the property that when the network is not in the
desired topology, there always exists a node that can locally detect this fact.
Such a node can then initiate the recovery of the desired topology. Unfortu-
nately, a metric graph is in general not locally checkable, so we cannot apply
the Transitive Closure Framework to solve the problem at hand.

For certain metrics there are algorithms in the literature that can be used
for the construction of graphs that approximate that metric. For example,
the two-dimensional Euclidean metric can be approximated using Delaunay
triangulations: Consider a finite set of points in the Euclidean plane together
with the Delaunay triangulation of these points. The length of a shortest path
in the Delaunay triangulation between any two points is at most 2.42 times the
Euclidean distance between the two points, see [KG89; KG92]. Constructing
the graph corresponding to the Delaunay triangulation of a set of points in a self-
stabilizing manner can be achieved using the algorithm of Jacob et al. [Jac+12].
While this example demonstrates that there are, in fact, algorithms that offer
an approximate solution for certain metrics, we are not aware of any previous
algorithm for the construction of the exact metric graph of an arbitrary metric.

3.2 Model

We represent an overlay network as a directed graph G = (V, E) and define
n = |V |. Each node u has a unique identifier u.id ∈ [0, 1). Identifiers are
immutable and cannot be corrupted. We simply write u instead of u.id when
it is clear from the context that we refer to the identifier of u. The edge set E
is defined as

E = { (u, v) | u ∈ V stores v.id in its local memory }.
We use a variant of the standard message-passing model that allows for a clean
presentation of both the algorithm and the proofs. The computation proceeds
in rounds. In each round a subset of the nodes is activated. An activated
node u can execute an arbitrary local computation and send a message to
each node v such that (u, v) ∈ E. Messages are received at the end of a round.
All nodes (including the nodes that are not activated) receive messages and
update their local memories accordingly at the end of a round. In the presented
algorithm, received messages only cause simple changes on local variables; a
received message never triggers new messages to be sent immediately. In their
computation, the nodes can use the variables stored in their local memory
and a distance oracle that provides access to a prescribed metric d. Given
two identifiers u and v, the oracle returns the distance d(u, v) between the
corresponding nodes.

We consider both synchronous and asynchronous executions. In a syn-
chronous execution, each node is activated in every round. In an asynchronous

45

Chapter 3 Self-Stabilizing Metric Graphs

execution, in each round some non-empty subset of the nodes is activated.
We assume that the activation in an asynchronous execution is fair in that,
starting at any round, each node is activated eventually. We formally specify
an algorithm as a set of rules. A rule has the form

〈label〉 : 〈guard〉 −→ 〈commands〉.

A 〈label〉 constitutes the unique name of a rule, a 〈guard〉 is a Boolean pred-
icate over variables of the node, and 〈commands〉 consists of a sequence of
instructions. Upon activation, a node sequentially checks the guards of all rules
in the given order. If a guard is satisfied, the corresponding commands are
executed. Additionally, we allow a node to execute rules whenever it receives a
message. A rule can be executed multiple times during an activation of a node.

The configuration of the network ci in round i consists of the contents of the
local memories of the nodes at the beginning of round i. Since the messages
sent during a round are received and processed at the end of that round, there
are no messages in transit between rounds. Consequently, we do not have
to consider messages in the definition of a configuration. Let C be the set
of all configurations in which G is weakly connected and in which no node
stores an invalid identifier. An algorithm is self-stabilizing with respect to a
set of legal configurations L ⊆ C if starting from any configuration c ∈ C the
computation eventually reaches a configuration in L (convergence) and then
stays in L (closure).

3.3 Problem Statement

We assume that the network contains a set of directed marked edges. We define
D to be the set of undirected edges induced by the directed marked edges,
i.e., D contains an edge {u, v} whenever the network contains the directed
marked edges (u, v) and (v, u). We say D is valid if for every directed marked
edge (u, v), the edge (v, u) is also marked. Let d : V × V → R

+ be a finite
metric and let D be the set of undirected edges of the graph corresponding to
the metric d. Starting from any configuration in which G = (V, E) is weakly
connected and in which no node stores any invalid identifiers, the network has
to reorganize such that eventually D is valid and D = D.

To formally define D, we introduce some notation. Let (u0, u1, . . . , uk) be
a sequence of nodes. We write (u0, u1, . . . , uk) ∈ D

∗ whenever the sequence
of nodes forms a path with respect to D, i.e., when {ui, ui+1} ∈ D for all
0 ≤ i ≤ k − 1. Furthermore, we define

d(u0, u1, . . . , uk) =
k−1
∑

i=0

d(ui, ui+1).

We formally require D to satisfy the following two conditions.

46

3.3 Problem Statement

1. Metric Graph: For all u, v ∈ V it holds

∃(u, u1, . . . , uk, v)k≥0 ∈ D
∗

: d(u, u1, . . . , uk, v) = d(u, v).

2. Minimality: For all u, v ∈ V it holds
[

∃(u, u1, . . . , uk, v)k≥1 ∈ D
∗

: d(u, u1, . . . , uk, v) = d(u, v)
]

⇒ {u, v} /∈ D.

The first condition means that for any pair of nodes in the graph there exists
a path between the nodes whose length corresponds to the distance between
the nodes according to the metric. We refer to this condition as the Metric
Graph condition. The second condition implies that the graph has to be the
smallest for the inclusion. Accordingly, we refer to the second condition as
the Minimality condition. Note that the graph defined by these conditions
corresponds to the classical definition of a metric graph where the weights of
the edges of the graph are implicitly defined by the pairwise distances given by
the metric. It is not hard to prove that such a graph exists and is unique. We
define the set L of legal configurations as the set of configurations such that D
is valid and D = D.

While the above definition is close to the intuition of what it means for a
graph to represent a metric, the equivalent condition given in Lemma 3.1 below
will prove more useful.

Lemma 3.1. The Metric Graph condition and the Minimality condition to-
gether are equivalent to the following condition. For all u, v ∈ V it holds

{u, v} /∈ D ⇐⇒ ∃w ∈ V \ {u, v} : {u, w} ∈ D ∧ d(u, w, v) = d(u, v).

Proof. We first assume that the Metric Graph condition and the Minimality
condition hold and show that the condition given in the lemma holds. Let
u, v ∈ V . Suppose that {u, v} /∈ D. The Metric Graph condition implies the
existence of a path (u, u1, . . . , uk, v)k≥0 ∈ D

∗ such that d(u, u1, . . . , uk, v) =
d(u, v). So we have u1 ∈ V \ {u, v}, {u, u1} ∈ D, and d(u, u1, v) = d(u, v).
Therefore, the condition given in the lemma holds. Now suppose {u, v} ∈ D.
The Minimality condition implies that for any path (u, u1, . . . , uk, v)k≥1 ∈ D

∗

we have d(u, u1, . . . , uk, v) > d(u, v). So we have d(u, u1, v) > d(u, v) for all
u1 ∈ V \ {u, v}. Therefore, again the condition given in the lemma holds.

We now assume that the condition given in the lemma holds. We first show
that the Metric Graph condition holds, i.e., for any pair of nodes u, v there is a
path of length d(u, v) between u and v. If {u, v} ∈ D then this trivially holds.
If {u, v} /∈ D then there is a node w ∈ V \ {u, v} such that {u, w} ∈ D and
d(u, w, v) = d(u, v). We have d(u, v) = d(u, w, v) = d(u, w) + d(w, v) > d(w, v).
Therefore, the Metric Graph condition holds by an inductive argument. Finally,

47

Chapter 3 Self-Stabilizing Metric Graphs

we show that the Minimality condition holds. So suppose there is a path
(u, u1, . . . , uk, v)k≥1 ∈ D

∗ such that d(u, u1, . . . , uk, v) = d(u, v). This implies
in particular that there is a node u1 ∈ V \ {u, v} such that {u, u1} ∈ D and
d(u, u1, v) = d(u, v). It follows that {u, v} /∈ D and, therefore, the Minimality
condition holds.

3.4 Algorithm

The algorithm consists of three parts. The first part organizes the nodes into
a directed cycle in which the nodes are ordered by increasing identifier. The
rules for this part are specified in Algorithm 3.1. It uses the Pure Linearization
algorithm presented in [ORS07] to form a sorted list and transforms this sorted
list into a directed cycle by establishing a directed edge from the node with
the highest identifier to the node with the lowest identifier. The approach for
constructing this cycle-edge resembles the approach presented in [KKS14].

The second part of the algorithm serves as a tool for the construction of the
metric graph. The rules of this part are given in Algorithm 3.2. Intuitively,
the second part of the algorithm does the following. Suppose the construction
of the directed cycle is complete. Every node u maintains a pointer (i.e., a
variable containing an identifier) u.test to some node in V . The specified rules
cause the test-pointers of all nodes to traverse the cycle in a common direction.

Note that in Algorithm 3.2 some rules and some lines within the commands
of certain rules are marked with a star. These rules are only executed in
the synchronous case; in the asynchronous case the respective rules and lines
are simply ignored. Furthermore, the second part of the algorithm contains
two variables that are only used in the synchronous case, namely u.last and
u.round. These additional rules and variables are used to achieve a linear
running time in the synchronous case and to bound the communication work
and memory requirement at each node after stabilization. Finally, consider the
first line in the commands of the ReceiveResponse rule. Here, the statement
x ∈ [a, b] means that node x lies between the nodes a and b in the directed
cycle. Formally, we have x ∈ [a, b] if and only if (a < x < b) or (b < a < x) or
(x < b < a).

The third and final part of the algorithm is responsible for the actual
construction of the metric graph. Its rules are given in Algorithm 3.3. In this
part, a node u uses the pointer u.test to check whether the edge (u, u.test)
should be marked. Additionally, every node checks for each of its outgoing
edges in the current state of the metric graph whether it can be removed from
the graph.

It is important to note that since the algorithm is self-stabilizing, all three
parts have to be executed at the same time. Specifically, in the overall algorithm
an activated node checks the guards of the rules sequentially for all three parts

48

3.4 Algorithm

Algorithm 3.1 Directed cycle construction
The rules are applied by a node u.

Establish an edge that closes the sorted list to a directed cycle:
InitCycle: u.Nℓ = ∅ −→ if u.cycle 6= null ∧ u.cycle 6= u

u.N ← u.N ∪ {u.cycle}
u.cycle← u

ForwardCycle: u.cycle 6= null ∧ −→ for v ∈ u.Nr

u.Nr 6= ∅ v.sendCycle(u.cycle)

Organize the nodes into a sorted list, see [ORS07]:
LeftLinearization: u.Nℓ 6= ∅ −→ pred← max(u.Nℓ)

assume u.Nℓ = {w1, . . . , wk},
where wi < wj if i < j
for 1 ≤ i ≤ k − 1

wi.N ← wi.N ∪ {wi+1}
wi+1.N ← wi+1.N ∪ {wi}

u.N ← u.Nr ∪ {pred}
pred.N ← pred.N ∪ {u}

RightLinearization: u.Nr 6= ∅ −→ succ← min(u.Nr)
assume u.Nr = {w1, . . . , wk},
where wi < wj if i < j
for 1 ≤ i ≤ k − 1

wi.N ← wi.N ∪ {wi+1}
wi+1.N ← wi+1.N ∪ {wi}

u.N ← u.Nℓ ∪ {succ}
succ.N ← succ.N ∪ {u}

The following rule is applied for each new cycle-value v that u receives at the
end of a round:
ReceiveCycle: true −→ if u.cycle 6= null ∧ u.cycle 6= v

u.N ← u.N ∪ {u.cycle}
u.cycle← v

49

Chapter 3 Self-Stabilizing Metric Graphs

Algorithm 3.2 Cycle traversal
The rules are applied by a node u. Rules and lines marked with a star are only
executed in the synchronous case.

Get to an admissible state:
Reset: true −→ u.Req.removeDuplicates()

if u.test = null
u.test← u

* if u.last 6= null
* u.N ← u.N ∪ {u.last}
* u.last← null

Update the round counter:
* UpdateCounter: true −→ if u.round = 2

u.N ← u.N ∪ u.M ∪ {u.test}
u.round← min{u.round + 1, 2 }

Move the test-pointers:
Request: true −→ u.test.Req.enqueue(u)

Respond: u.Req 6= ∅ ∧ −→ v ← u.Req.dequeue()
(u.Nr 6= ∅ ∨ u.cycle 6= null) * u.last← v

if u.Nr = ∅
succ← u.cycle

else

succ← min(u.Nr)
v.sendResponse(succ)

The following rule is applied when u receives a response succ from a node v:
ReceiveResponse: true −→ if ∃w ∈ u.M ∪ {u} : w ∈ [u.test, succ]

u.N ← u.N ∪ u.M ∪ {u.test}
if v = u.test

u.test← succ
* u.round← 0

else

u.N ← u.N ∪ {v}

The following rule is applied after all messages have been received:
* ProcessLast: u.last 6= null −→ u.Req.remove(u.last)

u.last← null

50

3.4 Algorithm

Algorithm 3.3 Metric graph construction
The rules are applied by a node u.

The following rule removes superfluous edges from the metric graph and is
executed repeatedly until its guard becomes false:
Delegate: ∃v, w ∈ u.M : −→ u.M ← u.M \ {w}

v 6= w ∧ d(u, v, w) = d(u, w) v.M ← v.M ∪ {w}
u.N ← u.N ∪ {w}

The following rule is applied after every execution of the ReceiveResponse rule
in the second part of the algorithm:
Add: u.test /∈ u.M ∪ {u} ∧ −→ u.M ← u.M ∪ {u.test}

∀v ∈ u.M : d(u, v, u.test) > d(u, u.test)

in the specified order. A rule for receiving messages is executed once for each
message of the corresponding type at the end of every round. The remaining
rules are executed only once per activation with the exception of the rules in
the third part, which are executed as specified in Algorithm 3.3.

The algorithm associates the following variables with each node u: The
variable u.id ∈ [0, 1) stores the identifier of u. The set of identifiers u.N
represents the neighbors of u in the sorted list, see [ORS07]. We use u.Nℓ

to refer to the set of left neighbors of u, i.e., the subset of identifiers in u.N
that are strictly smaller than u.id. Similarly, we use u.Nr to refer to the set
of right neighbors of u, i.e., the subset of identifiers in u.N that are strictly
larger than u.id. The variable u.cycle is used to close the sorted list to a cycle
by connecting the node with the highest identifier to the node with the lowest
identifier. Once the construction of the cycle is complete, u.cycle contains
the identifier of the node with the lowest identifier for every node u. The
variable u.test specifies an outgoing edge that has to be tested in the metric
graph construction. The queue u.Req contains all nodes that requested to
be informed about the successor of u in the directed cycle. We assume that
a value is stored at most once in this queue (i.e., if an already-present value
is enqueued, the queue is not modified). The variable u.last stores the last
node to which u sent a response. This variable is only used in the synchronous
case. We elaborate more on the role of this variable in the last paragraph
of this section. Similarly, the variable u.round ∈ {0, 1, 2} is only used in the
synchronous case. This variable is used to keep track of the number of rounds
that have passed since the value of u.test changed. Finally, u.M is a set of
identifiers that defines the marked edges originating at u. Formally, the edge
(u, v) is marked if and only if v ∈ u.M . Thereby, the sets u.M encode the
current state of the metric graph under construction in a distributed manner.

51

Chapter 3 Self-Stabilizing Metric Graphs

We define the set of undirected marked edges as

D = { {u, v} | u ∈ v.M ∧ v ∈ u.M }.

Note that throughout the algorithm some messages are sent and received
explicitly, e.g., by the rules ForwardCycle and ReceiveCycle. However, some
messages are sent and received implicitly: For example, in the last line of the
LeftLinearization rule the node u adds its own identifier to the set u.pred.N .
This assignment actually means that u sends a message containing its identifier
to u.pred so that when this message is received at the end of the round, u.pred
adds u to u.pred.N . We assume that implicit messages are received before
explicit messages.

Finally, the variable u.last has a special role. The variable is used to correctly
handle the case in which a node v sends a request to a node u in the same round
as u responds to a previous request by v: If u responds to v in some round i, it
stores the identifier of v in the variable u.last. After receiving the requests at
the end of round i, u removes u.last from u.Req in the ProcessLast rule and
thereby ignores the superfluous request sent by v. The variable u.last is then
set to null so that only one request is ignored. This mechanism is required to
achieve a linear running time in a synchronous execution. The variable u.last
and the mechanism described above are not used in asynchronous executions.

3.5 Analysis

We now turn to the analysis of the algorithm. This section is structured as
follows. We first show that the algorithm constructs the graph corresponding
to the given metric in a self-stabilizing manner in both the synchronous and the
asynchronous case. For this we show in Section 3.5.1 that the first part of the
algorithm organizes the nodes into a directed cycle. In Section 3.5.2 we show
that once the cycle has been constructed, the second part of the algorithm
causes the test-pointers to traverse the cycle. On the basis of this result we
then show in Section 3.5.3 that the third part of the algorithm constructs
the metric graph. In the remaining two sections, we provide a more detailed
analysis of the algorithm for the synchronous case. Specifically, we analyze the
running time of the algorithm in Section 3.5.4 and present results concerning
the behavior of the algorithm after stabilization in Section 3.5.5.

3.5.1 Directed Cycle Construction

Define GN = (V, EN) where EN = { (u, v) | u ∈ V and v ∈ u.N }. Consider a
weakly-connected component C of GN . We assume that C = {u1, u2, . . . , uk}
such that ui < uj if i < j. We say C contains a sorted list if ui ∈ ui+1.N and
ui+1 ∈ ui.N for all i such that 1 ≤ i ≤ k − 1. We say C contains a directed
cycle if it contains a sorted list and ui.cycle = u1 for all i such that 1 ≤ i ≤ k.

52

3.5 Analysis

The goal in this section is to show that eventually all nodes form a single
weakly-connected component in GN that contains a directed cycle.

Lemma 3.2. The nodes in a weakly-connected component of GN remain weakly
connected.

Proof. Note that the only rules that can remove elements from u.N are the
LeftLinearization rule and the RightLinearization rule. A node u that executes
these rules organizes its neighborhood in GN into a bidirected sorted list. So if
(u, v) ∈ EN at the beginning of round i then there is a directed path from u to
v in GN at the beginning of round i + 1.

Lemma 3.3. Let C be a weakly-connected component of GN . Suppose that
C never merges with another weakly-connected component. Then C eventu-
ally contains a directed cycle. Once this condition is true, it remains true
indefinitely.

Proof. If we consider only the LeftLinearization rule and the RightLinearization
rule, it follows from the analysis of the Pure Linearization algorithm presented
in [ORS07] that C eventually contains a sorted list and that this sorted list is
maintained. The remaining rules of the algorithm might add new edges to GN .
Since C never merges with another component, we must have that if some
rule adds an identifier v to u.N for some u ∈ C, then v ∈ C. Adding such an
identifier to u.N does not hinder the construction of the sorted list.

It remains to show that C eventually contains a directed cycle. Suppose
that C already contains a sorted list. We show by complete induction that
eventually ui.cycle = u1 for 1 ≤ i ≤ k and from that point on, the values of
the variables ui.cycle do not change anymore. The node u1 has the lowest
identifier among the nodes in C. Therefore, we have u1.Nℓ = ∅ at all times.
This implies that u1 eventually executes the InitCycle rule, upon which it sets
u1.cycle to u1. Furthermore, since u1 is the node with the lowest identifier
in C, it can never receive a new cycle-value through the ReceiveCycle rule.
Thereby, the value of u1.cycle remains unchanged from that point on.

Now suppose that uj .cycle = u1 for all j such that 1 ≤ j < i and the values
of the variables uj .cycle do not change anymore. We show that eventually
ui.cycle = u1 and from that point on, the value of ui.cycle does not change
anymore. Since C contains a sorted list, we have ui ∈ ui−1.Nr. Eventually,
ui−1 is activated and executes the ForwardCycle rule. Thereby, ui−1 sends
u1 to ui as a new cycle-value. Upon receiving the message, ui sets ui.cycle to
u1. Since ui can only receive new cycle-values from nodes uj with 1 ≤ j < i
and for all of these nodes it holds ui.cycle = u1, the value of ui.cycle does not
change from that point on.

53

Chapter 3 Self-Stabilizing Metric Graphs

Lemma 3.4. Eventually, all nodes in V form a single weakly-connected com-
ponent in GN .

Proof. We first consider the asynchronous case. Suppose for the sake of
contradiction that the algorithm eventually forms k ≥ 2 weakly-connected
components in GN such that none of these components ever merge. Recall that
initially the graph G was weakly connected according to our model. Therefore,
there must be a component C1 and a node u ∈ C1 such that u initially stored
the identifier of a node v in a component C2 6= C1. We distinguish five cases
depending on which variable in the local memory of u initially contained the
identifier of v and show that each case leads to a contradiction.

1. v ∈ u.N : In this case Lemma 3.2 implies v ∈ C1, which is a contradiction.

2. v = u.cycle: By Lemma 3.3, C1 eventually contains a directed cycle.
Once this is the case, we have u.cycle 6= v by definition. Hence, the initial
value of u.cycle must have been replaced at some point. The only rules
that can set the value of u.cycle are InitCycle and ReceiveCycle. Both
rules add the replaced value to u.N . This implies that v ∈ C1, which is
a contradiction.

3. v = u.test: Note that the only rules that can change the value of u.test
are Reset and ReceiveResponse. The Reset rule changes the value of
u.test only if it is null, which is never the case since the ReceiveResponse
rule cannot set u.test to null. Thereby, only the ReceiveResponse rule
changes the value of u.test.

We first show by induction that u.test ∈ C2 for all rounds. The statement
holds initially by definition. So suppose the value of u.test changes from
w ∈ C2 to w′ through an application of the ReceiveResponse rule. For
the value of u.test to change, w must have sent w′ to u as a response in
an execution of the Respond rule. Therefore, we must have w′ ∈ w.N or
w′ = w.cycle at the time w sends its response. If w′ ∈ w.N then w′ ∈ C2

by Lemma 3.2. If w′ = w.cycle and w.cycle /∈ C2 then we can apply the
arguments from Case 2 above to show that eventually C2 merges with
another component, which is a contradiction. So overall we must have
w′ ∈ C2, which concludes the induction.

By Lemma 3.3, C2 eventually contains a directed cycle and this cycle
is maintained indefinitely. For a node w let w.succ be the successor of
w in the cycle, i.e., w.succ is the node with the lowest identifier among
the nodes in C2 that have a higher identifier than w or, if there is no
such node, w.succ is the node with the lowest identifier in C2. When the
construction of the cycle is complete, we still have u.test ∈ C2 by the
inductive argument above. From that point on, we have the following

54

3.5 Analysis

property: If u.test = w then eventually u.test = w.succ. To see this, first
note that u only sets a new value for u.test if it receives a response from
w in the ReceiveResponse rule. It remains to show that w will eventually
send such a response and that this response is in fact w.succ. Since the
execution is fair, u is eventually activated and enqueues its identifier to
w.Req due to the Request rule. Once w has been activated a sufficient
number of times, it dequeues u from w.Req and sends a response to u
during an application of the Respond rule. Is it not hard to see that
since C2 contains a sorted cycle, w responds with w.succ.

Finally, since u /∈ C2 there is a node z ∈ C2 such that u ∈ [z, z.succ].
By the arguments above and since C2 is finite, u eventually receives
the response z.succ from z while u.test = z in an activation of the
ReceiveResponse rule. Therefore, u detects that u ∈ [z, z.succ] and adds
z to u.N . Thereby, C1 and C2 merge, which is a contradiction.

4. v ∈ u.Req: In this case, u eventually sends a response w to v due to the
Respond rule. Consider the execution of the ReceiveResponse rule by v in
which this response is received. If at this point v.test 6= u then v adds u
to v.N , which is a contradiction. So we must have v.test = u. Therefore,
v sets v.test to w. By the arguments given at the beginning of Case 3,
we must have w ∈ C1. Thereby, we can apply the entire argument from
Case 3 with v taking on the role of u and w taking on the role of v to
get a contradiction.

5. v ∈ u.M : If v is removed from u.M at some point due to an activation of
the Delegate rule then v is added to u.N and thus C1 and C2 merge, which
is a contradiction. Since no other rule can remove v from u.M , v remains
in u.M indefinitely. Eventually, every weakly-connected component of GN

contains a directed cycle. Consider the value of u.test once this point has
been reached. After one activation of u we have u.test 6= null according to
the Reset rule. Since no rule can set u.test to null, this condition remains
satisfied. Therefore, we have u.test ∈ C for some weakly-connected
component C of GN . Note that by the arguments given in Case 3, u.test
traverses the cycle contained in C, i.e., if u.test = w then eventually
u.test = w.succ. If C 6= C1 then the arguments given in Case 3 imply a
contradiction. So consider the case that C = C1. Since v /∈ C1, there is a
node z ∈ C1 such that v ∈ [z, z.succ]. Because C1 is finite, u eventually
receives the response z.succ from z while u.test = z in an activation of
the ReceiveResponse rule. Therefore, u detects that v ∈ [z, z.succ] and
adds all nodes from u.M to u.N . Since v ∈ u.M this means that C1 and
C2 merge, which is a contradiction.

Finally, we turn to the synchronous case. All statements above still hold.

55

Chapter 3 Self-Stabilizing Metric Graphs

However, one has to consider the possibility that the ProcessLast rule removes
an identifier from a queue. It is not hard to check that this does not invalidate
the given arguments. Additionally, we have to consider the case that v = u.last
initially. In this case, the Reset rule adds v to u.N , which is a contradiction.

Combining Lemmas 3.3 and 3.4 gives us the following corollary.

Corollary 3.5. Eventually, all nodes form a single weakly-connected com-
ponent in GN that contains a directed cycle. Once this condition is true, it
remains true indefinitely.

3.5.2 Movement of the Test-Pointers

In this section, we investigate the sequence of values the variable u.test takes
on after the construction of the directed cycle has been completed. Intuitively,
a test-pointer traverses the directed cycle one node after the other. As a
consequence, the variable u.test eventually takes on the value v for every v ∈ V .
Note that this statement holds at any point in time. Thereby, u.test takes on
any value v ∈ V infinitely often. Formally, we have the following lemma.

Lemma 3.6. For all nodes u, v ∈ V it holds that eventually u attempts to
execute the Add rule while u.test = v.

Proof. By Corollary 3.5, eventually all nodes form a single weakly-connected
component in GN that contains a directed cycle. We consider the execution
of the algorithm from that point on. After the first activation of u, we have
u.test 6= null according to the Reset rule. Since no rule can set u.test to
null, this condition remains true. The node u eventually adds its identifier
to u.test.Req in an execution of the Request rule. After a sufficient number
of activations, the node u.test eventually dequeues the identifier of u from
u.test.Req and sends its successor in the cycle as a response to u in an execution
of the Respond rule. Upon receiving the response in the ReceiveResponse
rule, u sets u.test to the successor of u.test. Then u immediately attempts to
execute Add rule. Since the cycle is finite, the lemma holds by induction.

Note that in the synchronous case, the identifier of u can be removed from
u.test.Req by the ProcessLast rule. However, this can happen only if u.test
already sent a response to u so that this case does not invalidate the lemma.

3.5.3 Metric Graph Construction

We now show that the overall algorithm constructs the metric graph corre-
sponding to the given metric in a self-stabilizing manner. We begin with some
basic properties concerning the Add rule and the Delegate rule from the third
part of the algorithm. We refer to a directed edge (u, v) as a final edge if the
corresponding undirected edge {u, v} lies in D, i.e., if it is part of the graph
corresponding to the given metric.

56

3.5 Analysis

Lemma 3.7. The Delegate rule never removes a final edge.

Proof. Suppose that the Delegate rule removes a final edge (u, w) from the
metric graph, i.e., it removes w from u.M . For this to happen, the guard of
the Delegate rule must be satisfied. Therefore, there must be a node v ∈ u.M
such that d(u, v, w) = d(u, w). According to the Metric Graph condition given
in Section 3.3, there is a node t such that {u, t} ∈ D and d(u, v) = d(u, t, v)
where we might have t = v. Therefore, we have

d(u, w) = d(u, v, w) = d(u, t, v, w) ≥ d(u, t, w),

which implies d(u, w) = d(u, t, w). It follows from Lemma 3.1 that (u, w) is
not a final edge, which is a contradiction.

Lemma 3.8. The length of a shortest directed path from a node u to a node v
in the metric graph under construction can only decrease.

Proof. Recall that the current state of the metric graph is induced by the sets
u.M . The only rules that can change u.M are the Add rule and the Delegate
rule. The addition of an edge by the Add rule can only create shorter paths.
When the Delegate rule removes an edge (u, v), it creates an alternative path
of equal length from u to v.

Lemma 3.9. The Add rule never adds an edge that was previously removed
by the Delegate rule.

Proof. Suppose that a node u has delegated the edge (u, w) to a node v. This
implies that d(u, v, w) = d(u, w). Since v ∈ u.M , we know by Lemma 3.8 that
there will always be a path between u and v of length at most d(u, v). This
means there will always be a node t ∈ u.M such that d(u, t, v) = d(u, v) where
we might have t = v. Therefore, we have

d(u, w) = d(u, v, w) = d(u, t, v, w) ≥ d(u, t, w),

which implies d(u, t, w) = d(u, w). Accordingly, the predicate

∃t ∈ u.M : d(u, t, w) = d(u, w)

is always true. Therefore, the guard of the Add rule is never satisfied for the
edge (u, w).

We are now ready to tackle the analysis of the overall algorithm.

Lemma 3.10. Eventually, the set u.M does not change anymore for every
node u ∈ V .

57

Chapter 3 Self-Stabilizing Metric Graphs

Proof. The only rules that can change the set u.M of a node u are the Add
rule and the Delegate rule. According to Lemma 3.9, the Add rule can add
each edge at most once and, therefore, it eventually stops adding edges to the
graph. It remains to show that the Delegate rule eventually stops delegating
edges. By Lemma 3.7, a final edge is never delegated. So consider a non-final
edge. The delegation of such an edge removes the edge from the graph and
adds an edge to the graph that has a strictly smaller weight according to the
metric. Since the metric is finite, this implies that the delegation of edges
eventually ceases.

Theorem 3.11. The algorithm is self-stabilizing with respect to the set L
defined in Section 3.3.

Proof. Recall that

D = { {u, v} | u ∈ v.M ∧ v ∈ u.M }

and we say D is valid if v ∈ u.M implies u ∈ v.M . On the basis of the
statement concerning D given in Lemma 3.1 it is not hard to see that if D = D
and D is valid then the guards of the Delegate rule and the Add rule cannot
be satisfied and, thereby, the metric graph does not change. Therefore, the
algorithm satisfies the closure-condition.

It remains to show that the algorithm satisfies the convergence-condition.
According to Lemma 3.6 and the arguments given in Lemma 3.10, we have
that, eventually, the guards of the Delegate rule and the Add rule are false for
every node u and for any t = u.test. Therefore, for all nodes u, t ∈ V we have

¬∃v, w ∈ u.M : v 6= w ∧ d(u, v, w) = d(u, w) (3.1)

and
¬ (t /∈ u.M ∪ {u} ∧ ∀v ∈ u.M : d(u, v, t) > d(u, t)) . (3.2)

Consider a node v /∈ u.M such that v 6= u. Equation 3.2 implies

v ∈ u.M ∨ ∃w ∈ u.M : d(u, w, v) ≤ d(u, v).

By definition, we have v /∈ u.M . Therefore, we can use the triangle inequality
to deduce that

∃w ∈ u.M : d(u, w, v) = d(u, v).

Hence, we have that for all nodes u, v ∈ V it holds

v /∈ u.M =⇒ ∃w ∈ u.M \ {u, v} : d(u, w, v) = d(u, v).

Now consider a node v ∈ u.M such that v 6= u. Equation 3.1 implies

¬∃w ∈ u.M : v 6= w ∧ d(u, w, v) = d(u, v).

58

3.5 Analysis

Hence, we have that for all nodes u, v ∈ V it holds

v ∈ u.M =⇒ ¬∃w ∈ u.M \ {u, v} : d(u, w, v) = d(u, v).

In summary, we have that for all nodes u, v ∈ V it holds

v /∈ u.M ⇐⇒ ∃w ∈ u.M \ {u, v} : d(u, w, v) = d(u, v).

Note that this equation corresponds to the condition given in Lemma 3.1.
Thereby, the constructed metric graph contains the directed edge (u, v) if and
only if {u, v} ∈ D. This implies that D = D and that D is valid.

3.5.4 Running Time

We now retrace our steps so far and provide a more thorough analysis of the
synchronous case that incorporates the running time of the algorithm. Recall
that GN is the directed graph induced by the identifiers stored in the sets u.N .
Our first goal is to show that after a linear number of rounds, all nodes in V
form a single weakly-connected component in GN .

Lemma 3.12. Let V = {u1, . . . , un} where ui < uj if i < j. For a node ui it
holds that at the beginning of every round j > i we have ui.cycle 6= null and
the nodes ui and ui.cycle lie in the same weakly-connected component in GN .

Proof. We show the statement by complete induction. Since u1 has the lowest
identifier, we have u1.Nℓ = ∅ at all times. Therefore, u1 executes the InitCycle
rule in every round and sets u1.cycle to its own identifier. Because u1 has
the lowest identifier, it can never receive a cycle-value from another node.
Therefore, we have u1.cycle = u1 at the beginning of each round j > 1.

Now suppose that the statement holds for the nodes u1, u2, . . . , ui−1. We
show that it also holds for ui. First suppose that ui does not receive a new
cycle-value in round i. Then the induction hypothesis implies that ui /∈ uk.N
at the beginning of round i for all k such that 1 ≤ k < i . Therefore, we must
have ui.Nℓ = ∅ at the beginning of round i − 1. This implies that ui must
have executed the InitCycle rule in round i− 1. Furthermore, we must have
ui /∈ uk.N at the beginning of round i−1 for all k such that 1 ≤ k < i according
to Lemma 3.2. This implies that ui does not receive a new cycle-value in round
i− 1. Therefore, we have ui.cycle = ui at the beginning of round i. Since ui

does not receive a new cycle-value in round i, we still have ui.cycle = ui at the
beginning of round i + 1. So in this case, ui and ui.cycle indeed lie in the same
weakly-connected component at the beginning of round i + 1.

If ui does receive a new cycle-value v in round i then this value must have
been sent by a node uk with k < i at the beginning of round i. By the
induction hypothesis, v and uk lie in the same weakly-connected component

59

Chapter 3 Self-Stabilizing Metric Graphs

in GN . Since uk sent the cycle-value to ui, we must have ui ∈ uk.N at the
beginning of round i. Therefore, ui and uk lie in the same weakly-connected
component in GN at that time. By transitivity, also ui and v lie in the same
weakly-connected component. According to Lemma 3.2, the nodes remain in
the same weakly-connected component. Therefore, again ui and ui.cycle lie in
the same weakly-connected component at the beginning of round i + 1.

If u receives a new cycle-value v in some round j > i then, by arguments
that are analogous to those given above, u and v must lie in the same weakly-
connected component.

Lemma 3.12 implies the following corollary.

Corollary 3.13. Consider a round i > n and a node u. At the beginning of
round i we have u.cycle 6= null and the nodes u and u.cycle lie in the same
weakly-connected component in GN .

The following lemma is analogous to Lemma 3.4.

Lemma 3.14. After O(n) rounds, all nodes in V form a single weakly-
connected component in GN .

Proof. Suppose for the sake of contradiction that at the beginning of round
4n + 1 the graph GN contains k ≥ 2 weakly-connected components C1, . . . , Ck.
We consider the identifiers stored by the nodes at the beginning of round n + 1.
Note that the nodes in V form a single weakly-connected component in G at
the beginning of each round because otherwise we would have a contradiction
to Lemma 3.4. Therefore, there must be a component Ci and a node u ∈ Ci

such that at the beginning of round n + 1, u stores the identifier of a node v in
a component Cj such that i 6= j. We distinguish six cases depending on which
variable in the local memory of u contains the identifier of v.

1. v ∈ u.N : In this case Lemma 3.2 implies v ∈ Ci, which is a contradiction.

2. v = u.cycle: Corollary 3.13 implies that u and u.cycle = v lie in the same
weakly-connected component in GN , which is a contradiction.

3. v = u.test: First, note that for the value of u.test to change, v must
send a response to u in an application of the Respond rule. The value
of u.test is then set to the identifier sent along with the response. This
identifier either belongs to a node from v.N or to the node v.cycle. In the
former case the new value of u.test is a node from Cj by definition and
in the latter case the new value is from Cj according to Corollary 3.13.
This argument holds inductively so that u.test ∈ Cj at the beginning
of each round k where n + 1 ≤ k ≤ 3n. Within these rounds there
cannot be two consecutive rounds such that u does not receive a response

60

3.5 Analysis

from u.test, because if this were the case, u would add u.test ∈ Cj to
u.N in the following round due to the UpdateCounter rule, which is
a contradiction. So during this interval of time, u receives a response
from u.test at least every second round. Since the interval consists of 2n
rounds and |Cj | < n by definition, u.test must assume the same value
twice during this interval. Since u /∈ Cj , this implies that at some point
during the interval the condition of the if-statement in the first line of
the ReceiveResponse rule must be satisfied. As a consequence, u adds
u.test to u.N , which is a contradiction.

4. v ∈ u.Req: Note that according to Corollary 3.13, u.cycle 6= null. There-
fore, the guard of the Respond rule is satisfied for u as long as u.Req 6= ∅.
Since u.Req can contain at most n elements, u sends a response to v
within n rounds. When this response is received we must have v.test = u
because otherwise v would add u to v.N , which is a contradiction. From
this point on, we can apply the arguments from Case 3 above with the
roles of u and v interchanged. Note that in applying these arguments,
the time interval under consideration has to be shifted back by at most
n rounds. Since we consider the weakly-connected components at the
beginning of round 4n + 1, this does not cause any problems.

5. v ∈ u.M : The only rule that can remove v from u.M is the Delegate
rule. However, when this rule removes v from u.M , it adds v to u.N .
Therefore, v is not removed from u.M up to round 4n + 1. According
to the arguments given in Case 3, we have that u.test stays within
the same weakly-connected component. If u.test ∈ Cj then, by the
arguments given in Case 3, within 2n rounds the condition of the if-
statement in the first line of the ReceiveResponse rule is satisfied because
u /∈ Cj . Therefore, all nodes in u.M are added to u.N , which is a
contradiction. If u.test ∈ Ck 6= Cj then the value of u.test must change
at least every second round because otherwise v ∈ u.M would be added
to u.N . Therefore, within 2n rounds the condition of the if-statement in
the first line of the ReceiveResponse rule is satisfied because v ∈ u.M
but v /∈ Ck. Again, this implies that all nodes in u.M are added to u.N ,
which is a contradiction.

6. v = u.last: At the beginning of each round r > 1 we have u.last = null
due to the ProcessLast rule, which is a contradiction.

We now show that the first part of the algorithm organizes all nodes into a
directed cycle in linear time.

61

Chapter 3 Self-Stabilizing Metric Graphs

Lemma 3.15. After O(n) rounds, GN contains a directed cycle.

Proof. Lemma 3.14 together with the analysis of the Pure Linearization algo-
rithm given in [ORS07] imply that after O(n) rounds the network contains a
sorted list. Using the arguments given in the proof of Lemma 3.3 while keeping
in mind that in a synchronous execution each node is activated in every round,
it is not hard to see that, once the sorted list has been established, it takes
O(n) rounds until the network contains a directed cycle.

Next we take a closer look at the second part of the algorithm. Our goal is
to characterize the way the test-pointers traverse the cycle in the synchronous
case. For a node u ∈ V , we define

Tu(i) = { v ∈ V | v.test = u at the beginning of round i }.

We first provide a series of lemmas that together show that eventually |Tu| ≤ 2
for every node u. From this we can then deduce that each test-pointer traverses
the entire cycle in linear time.

Lemma 3.16. At the beginning of round i > 2n we have u.Req ⊆ Tu(i) for
every node u.

Proof. Consider a node v ∈ u.Req at the beginning of round i > 2n. We show
that v.test = u at the beginning of round i. For this, we first show that there is
a round k ≤ 2n such that v was added to u.Req in round k. If there is no such
round k then we must have v ∈ u.Req at the beginning of round 1. Recall that,
by definition, each node can occur at most once in u.Req. Therefore, u.Req can
contain at most n elements at the beginning of round 1. Furthermore, we have
u.cycle 6= null for each round i′ > n, according to Corollary 3.13. Therefore, if
u.Req 6= ∅ at the beginning of a round i′ then u dequeues one element from
u.Req due to the Respond rule. It follows that v must have been removed from
u.Req in some round j ≤ 2n. Hence, for v to be in u.Req at the beginning of
round i > 2n, there must be a round k with j ≤ k < i such that v was added
to u.Req in round k, which is a contradiction. So, indeed, there is a round
k ≤ 2n such that v was added to u.Req in round k.

We choose k to be as large as possible, i.e., k is the last round before round
i in which v is added to u.Req. Recall that next to the Respond rule also the
ProcessLast rule can remove an element from u.Req. In fact, this rule can
remove an element in the same round as it was added. By our choice of k, we
know that the ProcessLast rule does not remove v from u.Req in round k and
neither of the two rules removes v from u.Req in any round ℓ with k < ℓ < i.

The only rule that can add a node to u.Req is the Request rule. For this
rule to add v to u.Req in round k, we must have v.test = u at the beginning
of round k. The value of v.test changes only when v receives a response from

62

3.5 Analysis

u that is sent in the Respond rule. Suppose that v receives such a response in
round k. Then u must have set u.last to v in round k. Consequently, u would
have removed v from u.Req in the ProcessLast rule at the end of round k,
which is a contradiction. So suppose that v receives a response from u in some
round ℓ such that k < ℓ < i. Thereby, u must have dequeued v from u.Req in
the Respond rule in round ℓ, which is again a contradiction. So overall we still
have v.test = u at the beginning of round i.

Suppose that the network contains a directed cycle. We use u.succ to refer
to the successor of a node u in the directed cycle and we use u.pred to refer to
the predecessor of u. The following lemma shows that when we observe the
variable v.test of a node v at the beginning of each round, its value never skips
a node in the directed cycle.

Lemma 3.17. There is a round i0 = O(n) such that for every round i ≥ i0

and every node v the following statement holds: If v.test = u at the beginning
of round i then at the beginning of round i + 1 we have either v.test = u or
v.test = u.succ.

Proof. We define i0 to be the smallest round such that i0 > 2n and the
network contains a directed cycle at the beginning of round i0. According to
Lemma 3.15, we have i0 = O(n). Consider a node v at the beginning of round
i ≥ i0 and let u = v.test. If v does not receive a response from u in round
i then v.test = u at the beginning of round i + 1 and the lemma holds. So
assume that v does receive a response from u in round i. Lemma 3.16 implies
that if v.test 6= w for a node w then v /∈ w.Req. It follows that u is the only
node that stores the identifier of v in its queue u.Req at the beginning of round
i. Therefore, v cannot receive a response from u.succ in round i, which implies
v.test = u.succ at the beginning of round i + 1.

We are now ready to show that after a linear number of rounds we have
|Tu| ≤ 2 for every node u.

Lemma 3.18. There is a round i0 = O(n) such that for every round i ≥ i0

and every node u it holds |Tu(i)| ≤ 2.

Proof. We define i′
0 to be the smallest round such that i′

0 > 2n and the network
contains a directed cycle at the beginning of round i′

0. We start with two
simple observations that hold for every node u. First, at most one new node
joins Tu in every round i ≥ i′

0. This observation holds because u.pred responds
to at most one node per round. Second, in each round i such that i ≥ i′

0 + 1
and |Tu(i)| ≥ 2, u responds to a request. This is observation holds because for
u not to respond to a request, the queue u.Req must be empty at the beginning
of round i. However, if at least two nodes point at u at the beginning of round

63

Chapter 3 Self-Stabilizing Metric Graphs

i, at least one of these nodes must have already pointed at u at the beginning
of round i− 1, according to our first observation. Therefore, this node is added
to u.Req at the end of round i − 1. Together, these two observations imply
that if |Tu(i)| ≤ 2 for some round i ≥ i′

0 + 1 then |Tu(j)| ≤ 2 for all j ≥ i.
It remains to show that there is a round i0 = O(n) such that i0 ≥ i′

0 + 1
and |Tu(i0)| ≤ 2. Suppose that |Tu(i′

0 + 1)| > 2 for some node u. Lemma 3.17
implies that for every node v ∈ Tu(i′

0 + 1) it holds that when v is removed from
Tu it takes at least n rounds until the test-pointer of v traversed the entire
cycle and comes back to u. Therefore, during the next n− 1 rounds starting at
round i′

0 + 1, at most n− |Tu(i′
0 + 1)| nodes join Tu. This implies that among

these n− 1 rounds there are at at least

(n− 1)− (n− |Tu(i′
0 + 1)|) = |Tu(i′

0 + 1)| − 1

rounds in which no node joins Tu. In each of these rounds as long as |Tu| ≥ 2
the value of |Tu| decreases by 1, according to our second observation. Hence,
we have |Tu(i0)| ≤ 2 for i0 = i′

0 + n + 1. According to Lemma 3.15, we have
i′
0 = O(n) so that also i0 = O(n).

Next, we show that the test-pointers completely traverse the directed cycle
within O(n) rounds.

Lemma 3.19. There is a round i0 = O(n) such that for every round i ≥ i0

and every node v the following statement holds: If v.test = u at the beginning of
round i then v.test = u.succ at the beginning of round i + 1 or at the beginning
of round i + 2.

Proof. We choose i0 as specified in the proof of Lemma 3.18 and we consider a
round i ≥ i0. Consider a node v and let u = v.test at the beginning of round i.
According to Lemma 3.17, the variable v.test cannot skip the value u.succ. To
proof the lemma it remains to show that u responds to v in round i or round
i + 1. First suppose that v ∈ u.Req at the beginning of round i. Lemma 3.16
and Lemma 3.18 together imply that |u.Req| ≤ 2. Therefore, u responds to v
in round i or round i + 1.

Now suppose that v /∈ u.Req at the beginning of round i. We know by
Lemma 3.18 that |Tu(i)| ∈ {1, 2}. If |Tu(i)| = 1 then u.Req is empty at the
beginning of round i and v is the only node that is added to u.Req in round i.
Therefore, u sends a response to v in round i + 1. If |Tu(i)| = 2 then there is
another node w pointing at u at the beginning of round i. Since v /∈ u.Req, v
must have set v.test to u at the end of round i−1. As we observed in the proof
of Lemma 3.18, at most one node can join Tu in every round. This implies that
w must have joined Tu in an earlier round. Therefore, w must be in u.Req
at the beginning of round i. This implies that u dequeues w from u.Req in

64

3.5 Analysis

round i and sends a response to w. Both v and w send a request to u in round
i so that both identifiers are added to u.Req. However, the identifier of w
is removed from u.Req by the ProcessLast rule at the end of round i since
u responded to w. Thereby, v is the only node in u.Req at the beginning of
round i + 1, which implies that u responds to v in that round.

Lemma 3.19 implies the following corollary.

Corollary 3.20. For all nodes u, v ∈ V it holds that within O(n) rounds u
attempts to execute the Add rule while u.test = v.

We now turn to the analysis of the third part of the algorithm, which is
responsible for the construction of the metric graph.

Lemma 3.21. After O(n) rounds, the metric graph contains all final edges.

Proof. Consider a final edge (u, v). The Minimality condition given in Sec-
tion 3.3 implies that for all nodes w ∈ V \ {u, v} it holds d(u, w, v) > d(u, v).
Furthermore, by Corollary 3.20 we have that within O(n) rounds u attempts to
execute the Add rule while u.test = v. If v /∈ u.M at this point then the guard
of the Add rule is satisfied so that u adds v to u.M . According to Lemma 3.7,
a final edge is never removed.

The following lemma is analogous to Lemma 3.10.

Lemma 3.22. After O(n) rounds, the set u.M does not change anymore for
every node u ∈ V .

Proof. According to the Lemma 3.21, the metric graph contains all final edges
after O(n) rounds. From that point on, the Delegate rule is the only rule that
can modify the sets u.M . The Delegate rule transforms a non-final edge (u, v)
into a path consisting exclusively of final edges. Each delegation adds one
node to this path. To bound the number of rounds until no further delegation
occurs, we bound the lengths of a longest constructed path where length refers
to the number of nodes on the path.

Consider a longest path (w0 = u, w1, . . . , wk = v). Note that k must be finite
according to Lemma 3.10. By the definition of the Delegate rule, we have

d(u, v) = d(w0, wk) = d(w0, w1, . . . , wk).

Suppose there are indices i < j such that wi = wj . By definition, a final edge
cannot be a loop. Therefore, we have i < j − 1 and wi 6= wi+1. This implies

d(w0, wk) = d(w0, . . . , wi) + d(wi, wi+1, . . . , wj) + d(wj , . . . , wk)

≥ d(w0, wk) + d(wi, wi+1, wj),

65

Chapter 3 Self-Stabilizing Metric Graphs

where d(wi, wi+1, wj) > 0, which is a contradiction. Therefore, each node
can occur at most once on the path, which implies that the length of the
path is bounded by n. This implies that the maximum number of sequential
delegations is bounded by n and, therefore, after O(n) rounds the sets u.M do
not change anymore.

Lemma 3.22 together with the arguments given in the proof of Theorem 3.11
imply the following corollary.

Corollary 3.23. In the synchronous case, the algorithm constructs the graph
corresponding to the given metric in a self-stabilizing manner in O(n) rounds.

3.5.5 After Stabilization

In this section, we analyze the behavior of the algorithm after stabilization
in the synchronous case. Specifically, we show that the number of messages
sent and received by a node in a round becomes constant and the memory
overhead required at each node also becomes constant. These properties do not
necessarily hold immediately after stabilization of the metric graph since even
when the metric graph is stable, the directed cycle used for its construction
might still change. Rather, the properties hold once both the metric graph
and the directed cycle have stabilized. We show this to be the case after an
overall linear number of rounds.

We say the network contains a minimal directed cycle if GN contains a
directed cycle and the set u.N of a node u only contains the immediate
predecessor and successor of u in the sorted list. We have the following lemma.

Lemma 3.24. After O(n) rounds of a synchronous execution, the network
contains a minimal directed cycle and this condition remains true.

Proof. According to Lemma 3.15, the network contains a directed cycle after
O(n) rounds. Consider a node u. We show that u.N contains only the
immediate predecessor and successor of u in the sorted list after an additional
O(n) rounds. Note that once the network contains a directed cycle, the
value of u.cycle does not change anymore. Therefore, the rules InitCycle and
ReceiveCycle do not add any more nodes to u.N . After the first round, the
Reset rule does not add any more nodes to u.N . According to Lemma 3.19,
after O(n) rounds the value of the variable u.test changes at least every second
round. Thereby, the UpdateCounter rule does not add any more nodes to
u.N . Once the network contains a directed cycle, the second line of the
ReceiveResponse rule does not add any more nodes to u.N . By Lemma 3.16,
after O(n) rounds the last line of the ReceiveResponse rule does not add any
more nodes to u.N . Finally, after O(n) rounds the set u.M does not change
anymore according to Lemma 3.22. Thereby, the Add rule and the Delegate
rule do not add any more nodes to u.N .

66

3.6 Outlook

Overall, after O(n) rounds the only rules that modify the set u.N are the
LeftLinearization rule and the RightLinearization rule. It follows from the
analysis of the Pure Linearization algorithm presented in [ORS07] that after
an additional O(n) rounds, u.N only contains the immediate predecessor and
successor of u in the sorted list, and this condition remains true.

Concerning the communication work induced at each node, we have the
following theorem.

Theorem 3.25. After O(n) rounds of a synchronous execution, each node
sends and receives a constant number of messages per round.

Proof. According to Lemma 3.24, the network contains a minimal directed cycle
after O(n) rounds. Once this condition holds, the first part of the algorithm
causes only constant communication work per node. In the second part of
the algorithm, a node sends at most one request and one response per round.
Furthermore, after O(n) rounds each node receives at most |Tu| ≤ 2 requests
according to Lemma 3.18 and at most one response according to Lemma 3.16.
Finally, the third part of the algorithm does not incur any communication
work after the stabilization of the metric graph.

Let deg(u) be the degree of a node u in the metric graph. For the memory
overhead at a node, we have the following theorem.

Theorem 3.26. After O(n) rounds of a synchronous execution, each node u
stores at most deg(u) + 7 identifiers of other nodes in its memory.

Proof. Consider a node u. Once the metric graph is stable, the set u.M
contains deg(u) identifiers. If the network contains a minimal directed cycle,
the set u.N contains at most two identifiers. The queue u.Req contains at
most two identifiers by Lemma 3.16 and Lemma 3.18. Finally, u stores one
identifier in each of the variables u.test, u.cycle, and u.last.

3.6 Outlook

One of the main ideas underlying the algorithm presented in this chapter is that
each node maintains a test-pointer that eventually traverses a directed cycle
covering all nodes. Thereby, each node eventually learns of every other node
in the network. It might be possible to apply this idea to problems beyond the
self-stabilizing construction of metric graphs: The presence of the test-pointers
allows each node to check the validity of the topology using information outside
of its local neighborhood. Thereby, a node might be able to detect a fault in a
topology that is not locally checkable. The node could then initiate a process
to recover the topology.

67

Chapter 3 Self-Stabilizing Metric Graphs

Finally, it could be of interest to modify the algorithm presented in this
chapter to construct a graph that approximates the given metric instead of the
graph that corresponds to the metric. The motivation behind this approach is
that a graph approximating a given metric can have a much lower degree than
the exact metric graph. While we provided a rough sketch of this approach in
the publication underlying this work (see [GLS16]), a formal investigation of
its limits and benefits is still open.

68

Chapter 4

Hybrid Network Monitoring

In this chapter we propose a new model for the study of distributed algorithms
for hybrid networks. In a hybrid network a set of nodes is connected by an
external network and an internal network. While the external network cannot
be controlled by the network algorithm and might be exposed to continuous
change, the internal network is an overlay network that is fully under the
control of the network algorithm. By considering a combination of an overlay
network and a dynamic external network, this chapter slightly broadens the
focus of this part of the thesis in comparison to the previous two chapters.

Hybrid networks can be found both at a physical and a logical level. Consider,
for instance, a set of wireless devices with access to the cell phone infrastructure
that are dispersed over a limited area such as a city center. The devices can
communicate using the cell phone infrastructure. However, this is typically
associated with a certain cost to the users. The devices can also form a
wireless ad-hoc network by establishing local WiFi connections with each
other. While communication via such a network is free, it can have several
disadvantages: The network might experience large message delays and there
might be temporary network partitions.

For certain tasks it might be possible to design protocols that mostly rely on
the wireless ad-hoc network for communication while sending small amounts of
data via the cell phone infrastructure when necessary. Using the wireless ad-hoc
network for most of the communication drastically reduces the cost for the
users when compared to relying exclusively on the cell phone infrastructure. At
the same time, allowing a protocol to sparingly use the cell phone infrastructure
might result in solutions that are much faster and more reliable than using
the wireless ad-hoc network alone. Thereby, combining the two modes of
communication can give us the best of both worlds.

On a logical level, one can envision a peer-to-peer network formed by friend-
ship links in a social network. Communicating just via these friendship links
has the advantage that all interactions are trusted. However, due to the irregu-

69

Chapter 4 Hybrid Network Monitoring

lar structure of the social network it might be hard to perform certain tasks
such as monitoring properties of the network or finding participants efficiently.
Therefore, it might be useful to have a network of untrusted links on top of
the social network in order to expedite such tasks.

A common theme in both of these examples is that there are two communi-
cation modes that significantly differ in the amount of control the algorithm
has over the network topology, and in both examples control comes at a certain
price such as financial cost, acceptance, reliability, or integrity. There is already
a large body of literature on network algorithms for the case of static or dy-
namic networks whose topology is not under the control of the algorithm. On
the other hand, there also exists an abundance of work in which the topology
is fully under the control of the network algorithm, like in peer-to-peer systems.
However, we are not aware of any rigorous results concerning the combination
of such networks into a hybrid network.

We initiate the study of hybrid networks by considering the problem of
network monitoring: In a monitoring problem, a specific node called the
monitor has to continuously observe some property of the external network
such as the number of edges or the weight of a minimum spanning tree. A
monitoring algorithm can use the internal network to update the value of
the property over time as the external network changes. We present scalable
distributed algorithms for several monitoring problems, see Table 4.1 for an
overview of our results. Since the delays given in Table 4.1 trivially increase
to Ω(n) in the worst case when just using an external network, our results
demonstrate that with the help of hybrid networks, monitoring can be done
exponentially faster in comparison to just having an external network.

Underlying Publication This chapter is based on the following publication.

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler. “Dis-
tributed Monitoring of Network Properties: The Power of Hy-
brid Networks”. In: Proceedings of the 44th International Col-
loquium on Automata, Languages, and Programming (ICALP),
see [Gmy+17].

Outline After we survey the related literature in Section 4.1, we begin the
technical part of this chapter in Section 4.2 by introducing the hybrid network
model and the concept of network monitoring problems. In Section 4.3 we
present an algorithm that constructs a low-diameter tree overlay from a given
graph. This algorithm is used as a fundamental tool throughout the remainder
of this chapter. In the next three sections we describe and analyze several
network monitoring algorithms ordered by increasing algorithmic complexity:
We begin in Section 4.4 with a simple approach for monitoring problems that
can be solved by aggregating values stored at the nodes. We demonstrate the

70

4.1 Related Work

Monitoring Problem Setup Time Delay

Number of Edges O(log2 n) O
(

log n
log log n

)

Average Node Degree O(log2 n) O
(

log n
log log n

)

Clustering Coefficient O(log2 n) O
(

log n
log log n

)

Bipartiteness 0 O(log2 n)

Exact MST Weight 0 O(log2 n)

Approximate MST Weight O(log2 n) O
(

1
ε · log2

(

W
ε

)

+ log n
log log n

)

Table 4.1: Results presented in this chapter. The variable W is the maximum
edge weight in the external network. The exact algorithm for moni-
toring the MST weight requires W to be at most polylogarithmic
in n. The approximation algorithm requires W to be at most poly-
nomial in n and it computes the MST weight M up to an additive
term of ±εM .

usefulness of this approach by applying it to monitor the number of edges, the
average node degree, and the clustering coefficient of the external network. In
Section 4.5 we present an algorithm that monitors whether the external network
forms a bipartite graph. Finally, in Section 4.6 we consider the problem of
monitoring the weight of a minimum spanning tree of the external network.
We present both an exact algorithm for this problem and a more efficient
approximation algorithm. We close the chapter in Section 4.7 with a brief
outlook.

4.1 Related Work

In the networking community the term hybrid network has been used to refer to
networks containing equipment from multiple vendors, networks using different
networking technologies or standards, and networks incorporating both peer-
to-peer and client-server approaches. These topics are not related to our work,
so we do not consider them.

There is a large body of literature on overlay networks, especially in the
context of peer-to-peer systems. Whereas most of the proposed overlay networks
do not take the underlying network into consideration, there is also a number
of proposals for so-called locality-aware overlays with prominent examples such
as Tapestry [Zha+04] and Pastry [RD01]. However, these constructions are

71

Chapter 4 Hybrid Network Monitoring

only concerned about adapting or optimizing the overlay to the underlying
network and do not aim at monitoring properties of the underlying network
with the help of the overlay.

In the dynamic graph model introduced by Kuhn et al. [KLO10] a set of
nodes is connected by a network that lies completely under the control of an
adversary in that the adversary can change the edge set in every round. The
authors investigate whether the network can perform certain tasks despite
the presence of such a strong adversary. Specifically, the authors focus on
the counting and the token dissemination problem. Further research in this
direction has been conducted in [HK11] and [Dut+13], for example. Abshoff and
Meyer auf der Heide use a similar model to study the continuous aggregation
problem in dynamic networks [AM14]. For a more general overview of models
and algorithms for dynamic networks see [APR16]. Some of the problems
investigated in this line of work are related to the monitoring problems we
consider in this chapter. This especially holds for the work of Abshoff and
Meyer auf der Heide [AM14]. However, the models used in this line of work
differ significantly from our hybrid network model since in our model the nodes
do not only communicate via an externally controlled network—they also have
access to an overlay network that is controlled by the network algorithm.

Another related model is the congested clique model, which recently received
a considerable amount of attention (see, e.g., [Lot+05; Len13; DKO14; Cen+15;
Heg+15]). As the name suggests, the nodes in this model are connected to
a clique, they communicate via synchronous message-passing, and each edge
in the clique is limited to carry a certain number of bits per round (typically
O(log n) bits). An example of a problem in the congested clique model would
be to compute the minimum spanning tree of a graph that is specified by
marking a subset of the edges in the clique. This example reveals that the
congested clique model and the hybrid network model are similar in that both
models consider two different networks or graphs: The clique in the congested
clique model can be seen as an extreme example of an overlay network in the
hybrid network model; and the graph induced by the marked edges in the
congested clique model can be interpreted as an example of an external graph
in the hybrid network model. However, aside from this high-level similarity
the two models share few commonalities in both their technical properties and
their goals. One of the most striking differences between the models is that
in the hybrid network model a node is restricted to send and receive at most
a polylogarithmic number of bits per round while this number is superlinear
in the congested clique model. As a consequence, we cannot easily adapt
algorithms from the congested clique model to our model.

Some of our algorithms apply techniques particularly known from the field
of parallel computing. For example, we make extensive use of pointer jump-
ing [JáJ92], a technique that is often used in algorithms for parallel random-

72

4.1 Related Work

access machines (or PRAMs) and that already played a major role in Chapter 2
of this thesis. The algorithm presented in Section 4.3 uses pointer jumping in a
way that is similar to its application in [AV84; TV85], e.g., and the algorithm
shares some further similarities with the algorithm presented in [JM95]. There
is an abundance of parallel algorithms for computing minimum spanning trees
on PRAMs, the best of which achieve a running time of O(log n) (see [HZ01]
for an overview). However, we are not aware of any distributed implementation
of such an algorithm with a running time of o(log2 n) that does not cause
high node congestion. Therefore, we cannot directly apply these algorithms to
improve the results on monitoring the weight of a minimum spanning tree we
present in Section 4.6.

The algorithm presented in Section 4.3 transforms a given graph into a
rooted tree of constant degree and depth O(log n). This algorithm is frequently
used as a subroutine by the monitoring algorithms presented in this chapter.
Angluin et al. [Ang+05] proposed a similar algorithm for overlay networks
that achieves the same result and that even works in an asynchronous setting.
However, the algorithm of Angluin et al. is randomized while our algorithm is
deterministic. Since the remaining parts of our monitoring algorithms are also
deterministic, using our new algorithm results in fully deterministic monitoring
algorithms. Even more importantly, our algorithm can also be used for the
efficient construction of a spanning tree of a given graph, which is another
subroutine we use in our monitoring algorithms. This cannot directly be
achieved using the algorithm of Angluin et al.

In the algorithms presented in Section 4.4 the monitor continuously collects
data from the nodes of the network by performing aggregation. There is a large
amount of work on aggregation in the context of sensor networks, but research
in this area has focused on monitoring environmental properties or the state of
systems (such as bridges or airplanes) or facilities (such as warehouses) and not
properties of graphs. Distributed aggregation has also been studied extensively
for conventional, static networks (see, e.g., [AW04; KLW07; KLS08] or [Loc09]
for a comprehensive overview), but not for hybrid forms as considered here.

In Section 4.6 we consider the problem of monitoring the weight of a minimum
spanning tree (or MST). The problem of computing an MST in a distributed
manner is well studied (see, e.g., [PR99; Elk04; Elk06; PRS16]), but the
algorithms in this area do not consider overlay network techniques. The
problem of computing only the weight of an MST instead of the MST itself
has been studied in the field of sequential sublinear algorithms. This line of
research was initiated by Chazelle et al. [CRT05] and continued in [Czu+05;
CS09; BKM14]. Our algorithms for monitoring the weight of an MST apply the
ideas of Chazelle et al. [CRT05] in a distributed context and also incorporate
some ideas from [CS09].

73

Chapter 4 Hybrid Network Monitoring

4.2 Model and Problem Statement

We consider hybrid networks with a static node set and a dynamic edge set.
Time proceeds in synchronous rounds, and for each round i we are given a
set of undirected edges Ei. The external network in round i is represented
by the undirected graph Gi = (V, Ei). An algorithm has no control over the
edges in Ei. However, it can establish additional overlay edges to form an
internal network or overlay network: Each node u has a unique identifier id(u)
which is a bit string of length O(log n) where n = |V |. Let Di(u) be the set of
identifiers stored by a node u at the beginning of round i. We define the set of
overlay edges in round i as Di = { (u, v) | u ∈ V and v ∈ Di(u) }. A node has
immediate access to the identifiers of its neighbors in Gi and can store such an
identifier for future reference. In round i, a node u can send a distinct message
to each node v such that {u, v} ∈ Ei or (u, v) ∈ Di. A message sent in round i
arrives at the beginning of round i + 1. The local memory and computation
of the nodes is unbounded. However, a node can send and receive at most a
polylogarithmic number of bits in each round.

We investigate monitoring problems. In these problems, a designated node s
that we call the monitor node or simply monitor has to continuously observe a
property of the external network such as the number of edges or the weight
of a minimum spanning tree. Formally, a property p is a function from the
set of undirected graphs into some set of property values. Since the external
network Gi is dynamic, the property value p(Gi) can change from round to
round. We say an algorithm monitors a property p with setup time i0 and
delay δ if for all rounds i ≥ i0 the monitor node outputs the property value
p(Gi) by round i + δ. We refer to the first i0 rounds in the execution of a
monitoring algorithm as the setup phase and to the remaining rounds as the
monitoring phase. Initially, the set of overlay edges D0 is empty. An algorithm
can use the setup phase to construct an initial internal network that supports
the computation of the property value. It can continue to adapt the internal
network during the monitoring phase. We assume that the degree of Gi is
polylogarithmic for all i and that the graph G0 is connected. Beyond this, we
make no assumptions about the evolution of the edge set Ei.

4.3 Setup Phase

All monitoring algorithms presented in this chapter that rely on a dedicated
setup phase use a common algorithm for the construction of the initial overlay
network. This algorithm organizes the nodes into a tree T of polylogarithmic
degree and depth O(log n/ log log n) that is rooted at the monitor. In this
section, we first present a more general algorithm that we refer to as the
Overlay Construction Algorithm. This algorithm shares some similarities with
an algorithm of Angluin et al. [Ang+05]. The algorithm is frequently used as

74

4.3 Setup Phase

a subroutine throughout the remainder of this chapter. On the basis of this
algorithm, we describe at the end of the section how the desired tree T can be
constructed. For simplicity, we assume that every node knows the total number
of nodes n. The algorithms can be modified to remove this assumption.

For a given bidirected connected graph G of polylogarithmic degree, the
Overlay Construction Algorithm arranges the nodes of G into a tree of constant
degree and depth O(log n). On a high level, the algorithm works as follows.
It operates on supernodes which are groups of nodes that act in coordination.
Let the identifier of a supernode be the highest identifier of the nodes it
contains. Define two supernodes u, v to be adjacent if there are nodes x, y
that are adjacent in G such that x ∈ u and y ∈ v. Initially, each node forms
a supernode on its own. The algorithm alternately executes a grouping step
and a merging step. In the grouping step, each supernode u determines the
neighboring supernode v with the highest identifier. If id(v) > id(u) then u
sends a merge request to v. Consider the graph whose node set is the set of all
supernodes and that contains a directed edge (u, v) if u sent a merge request to
v. Since each supernode sends at most one merge request and a merge request
is always sent from a supernode with a lower identifier to a supernode with
a higher identifier, this graph is a forest. During the merging step, each tree
of this forest is merged into a new supernode. Before we describe how this
high-level algorithm can be implemented by the nodes, we analyze the number
of iterations of consecutive grouping and merging steps required until only a
single supernode remains.

Lemma 4.1. After O(log n) iterations only a single supernode remains.

Proof. Consider a supernode u at the beginning of a grouping step. We show
that u merges with another supernode within at most two iterations. If u
merges with another supernode in the current iteration, the claim holds. So
suppose u does not merge with another supernode. This implies that u has a
higher identifier than all of its neighbors. Consider any neighbor v of u. Since
id(v) < id(u) and v does not merge with u, the supernode v must merge with
a neighbor w such that id(w) > id(u). Therefore, at the beginning of the next
grouping step, u has a neighbor with an identifier that is larger than id(u).
This implies that u merges with another supernode in that iteration. Since
every supernode merges after at most two iterations, it takes at most O(log n)
iterations until only a single supernode remains.

We now describe how the nodes can locally implement the high-level behavior
of the supernodes described above. At the beginning of every grouping step,
the following invariant holds: Each supernode is internally organized as a tree
of constant degree and depth O(log n) that is rooted at the node with the
highest identifier, and each node in such a tree knows the identifier of the root,

75

Chapter 4 Hybrid Network Monitoring

which corresponds to the identifier of the supernode. The nodes cooperatively
simulate the behavior of their respective supernodes during the grouping step as
follows. Consider a supernode u and the corresponding internal tree Tu. First,
every node of the supernode u sends id(u) along every incident edge in the
original graph G. Thereby, every node learns the identifiers of its neighboring
supernodes. Then, the nodes of u use a convergecast along Tu to determine the
identifier of the supernode v with the highest identifier among the neighbors
of u. This convergecast also collects the identifier of the node x with the
highest identifier in u that is adjacent to a node in v. Once this convergecast
is complete, the root of Tu knows both id(v) and id(x). If id(v) > id(u) then
the root of u sends a message to x. Upon receiving this message, x sends a
merge request to a neighboring node in v and sends a broadcast through Tu

to establish itself as the new root of Tu. All nodes in G wait until O(log n)
rounds have passed before they proceed to the merging step. Thereby, the
above operations can be completed in all supernodes and all nodes start the
merging step at the same time.

At the beginning of every merging step, we have the following situation.
Consider the graph consisting of the internal trees of all supernodes together
with all edges along which a merge request has been sent. This graph is a forest
and the trees of this forest form the new supernodes resulting from the merging
step. Therefore, the nodes of each new supernode v are already arranged into a
tree Tv. Furthermore, each supernode v contains exactly one former root node
that did not instruct a node to send a merge request. It is not hard to see that
this node has the highest identifier in v and, therefore, it becomes the root of
Tv. In its current state, Tv can have up to polylogarithmic degree and linear
depth. To restore the invariants required at the beginning of a grouping step,
we have to transform Tv into a tree of constant degree and depth O(log n).
Furthermore, we have to make sure that all nodes in v know the identifier id(v)
of the root of Tv.

First, we reorganize Tv into a child-sibling tree. For this, each inner node y
arranges its children into a path sorted by increasing identifier and keeps only
the child with the lowest identifier. Each former child of y changes its parent
to be its predecessor on the path and stores its successor as a sibling. In the
resulting child-sibling tree, each node stores at most three identifiers: a parent,
a sibling, and a child. By interpreting the sibling of a node as a second child,
we get a binary tree. This transformation of Tv into a binary tree takes O(1)
rounds. Note that the transformation potentially increases the depth of Tv.
However, this does not pose a problem for our algorithm.

On the basis of this binary tree, we construct a ring of virtual nodes in the
following way. Consider the depth-first traversal of the tree that visits the
children of each node in order of increasing identifier. A node occurs at most
three times in this traversal. Let each node act as a distinct virtual node for

76

4.3 Setup Phase

each such occurrence and let k ≤ 3n be the resulting number of virtual nodes.
A node can locally determine the predecessor and successor of its virtual nodes
according to the traversal. Therefore, the nodes can connect their virtual nodes
into a ring in O(1) rounds.

Next, we use pointer jumping to quickly add chords (i.e., shortcut edges)
to the ring. The virtual nodes execute the following protocol for ⌊log n⌋+ 1
rounds. Each virtual node y learns two identifiers ℓt and rt in each round t of
this protocol. Let ℓ0 and r0 be the predecessor and successor of y in the ring.
In round t, y sends ℓt to rt and vice versa. At the beginning of round t + 1, y
receives one identifier from ℓt and rt, respectively. It sets ℓt+1 to the identifier
received from ℓt and rt+1 to the identifier received from rt. It then proceeds to
the next round of the protocol. In every round of this protocol each virtual
node adds a new chord to the ring by introducing its latest neighbors to each
other. The distance between these neighbors with respect to the ring doubles
from round to round up to the point where the distance exceeds the number
of virtual nodes k. On the basis of this observation, it is not hard to see that
after the specified number of rounds, the diameter of the graph has reduced to
O(log n) while the degree has grown to O(log n). Once the protocol terminates,
the root of v initiates a broadcast from one of its virtual nodes followed by a
convergecast to determine the number of virtual nodes k.

Finally, we use the chords to construct a binary tree of depth O(log n) that
spans all virtual nodes. For this, one of the virtual nodes of the root of v
initiates a broadcast by sending a message to its neighbors ℓt′ and rt′ where
t′ = ⌊log k⌋ − 1. Note that t′ ≤ ⌊log n⌋ + 1 and, therefore, these neighbors
exist. A virtual node that receives this broadcast for the first time after t steps
forwards it to ℓt′ and rt′ where t′ = max{⌊log k⌋ − t− 1, 0}. It is not hard to
see that the binary tree induced by the edges used in this broadcast has depth
O(log n) and contains all nodes of the ring. At this point, the nodes discard
all overlay edges constructed so far and only keep the edges of the binary tree.
We then merge the virtual nodes back together such that each node adopts
the edges of its virtual nodes. This results in a graph of constant degree and
diameter O(log n). Note that this graph is not necessarily a tree. To construct
a tree that satisfies the invariants for the grouping step, the root of v sends
another broadcast through the resulting graph to construct a breadth-first
search tree that has constant degree and diameter O(log n). This broadcast
also informs all nodes in v about id(v). The operations described above take
O(log n) rounds overall. As before, all nodes in G wait for O(log n) rounds to
pass so that they enter the next grouping step at the same time.

Once only a single supernode u remains, its internal tree Tu covers all nodes
of G and has the desired properties, i.e., Tu has constant degree and depth
O(log n). A supernode is the last remaining supernode if and only if during
the grouping step no node reports the identifier of a neighboring supernode.

77

Chapter 4 Hybrid Network Monitoring

Therefore, the root of a supernode can determine whether its supernode is
the last remaining supernode. Since the algorithm runs for O(log n) iterations
according to Lemma 4.1 and each iteration takes O(log n) rounds, we have the
following theorem.

Theorem 4.2. Given any connected bidirected graph G of n nodes and poly-
logarithmic degree, the Overlay Construction Algorithm constructs a constant
degree tree of depth O(log n) that contains all nodes of G and that is rooted at
the node with the highest identifier. The algorithm takes O(log2 n) rounds.

Theorem 4.2 implies the following corollary.

Corollary 4.3. Consider a bidirected graph G of n nodes and polylogarithmic
degree. For each connected component C of G, the Overlay Construction
Algorithm constructs a constant degree tree of depth O(log |C|) that contains all
nodes of C and that is rooted at the node with the highest identifier in C. The
algorithm takes O(log2 |C|) rounds in each component and O(log2 n) rounds
overall.

Finally, note that the algorithm sends merge requests only along edges of G.
This gives rise to the following observation.

Observation 4.4. For a connected bidirected graph G, the edges along which
the Overlay Construction Algorithm sends the merge requests induce a spanning
tree of G.

Observation 4.4 implies that by letting the nodes locally mark the edges that
carry a merge request, the Overlay Construction Algorithm can be used for
the distributed construction of a spanning tree of G in O(log2 n) time. While
this observation is not immediately relevant for the setup phase, it will become
useful in Section 4.5.

On the basis of the Overlay Construction Algorithm, it is straight-forward
to achieve the goal of the setup phase, which is to organize the nodes into a
tree T of polylogarithmic degree and depth O(log n/ log log n) that is rooted
at the monitor s. At the beginning of the setup phase, each node u creates
an overlay edge (u, v) for each edge {u, v} ∈ E0 by copying the identifiers of
its neighbors in the external network G0 to its local memory. This effectively
creates a bidirected overlay network that corresponds to the undirected graph
G0. Note that G0 is connected by assumption. Therefore, we can use the
Overlay Construction Algorithm to construct a tree of constant degree and
depth O(log n) that contains all nodes in the network. Once the algorithm
terminates, s broadcasts a message through the resulting tree to establish
itself as the new root. This does not increase the asymptotic depth of the
tree. We then decrease the depth to O(log n/ log log n) as follows. Each node

78

4.4 Three Simple Monitoring Problems

u broadcasts its identifier down the tree up to a distance of ⌈log log n⌉. Once
this broadcast is complete, a node that received the broadcast of u establishes
an edge to u. It is not hard to see that this creates a graph of at most
polylogarithmic degree and diameter O(log n/ log log n). Finally, s sends a
broadcast through this graph to create a breadth-first search tree that has the
desired properties. We have the following theorem.

Theorem 4.5. A setup time of O(log2 n) rounds is sufficient to organize
the nodes of the network into a tree T of polylogarithmic degree and depth
O(log n/ log log n).

Unless otherwise stated, we assume in the following sections that the setup
phase is executed as described above.

4.4 Three Simple Monitoring Problems

In order to introduce some basic concepts that underlie all monitoring al-
gorithms presented throughout this chapter, we first consider three simple
monitoring problems. Specifically, we show how to monitor the number of
edges, the average node degree, and the clustering coefficient of the external
network by using aggregation on the tree T constructed during the setup phase.

Consider the problem of monitoring the number of edges. We first present an
algorithm that efficiently determines the number of edges in a static graph and
then show how this algorithm can be used to continuously monitor the number
of edges in the external network. It is well known that the number of edges
in a graph is |E| = 1/2 ·∑u∈V deg(u) where deg(u) is the degree of a node
u. Therefore, we can compute |E| by aggregating the sum of all node degrees
along the tree T in the following way. In the first round, each leaf node u sends
deg(u) to its parent. Once an inner node u has received a value xj from each
of its children, it sends deg(u) +

∑

j xj to its parent. After O(log n/ log log n)
rounds, the monitor s has received a value from each of its children. It can use
these values together with its own degree to compute |E| as described above.

To continuously monitor |Ei| for every i ≥ i0, we execute multiple instances
of the above algorithm in a pipelined fashion: In each round i ≥ i0 a new
instance of the algorithm is started. The instances run in parallel and do not
interact with each other. At the beginning of a round i, each node copies the
identifiers of its neighbors in Gi to its local memory. This creates a copy of the
graph Gi in form of an overlay network on which the corresponding instance of
the algorithm can operate. The copy is discarded once the instance terminates.
The messages sent by an instance of the algorithm are labeled with the round
number in which the instance was started so that received messages can be
correctly assigned. Note that the number of bits a node sends and receives per
round in one instance of the algorithm is polylogarithmic. Since the running
time of the algorithm is also polylogarithmic, the number of bits a node sends

79

Chapter 4 Hybrid Network Monitoring

and receives in the pipelined execution is polylogarithmic as well. The running
time of the algorithm becomes the delay of the pipelined execution. Therefore,
we have following theorem.

Theorem 4.6. The number of edges can be monitored with setup time O(log2 n)
and delay O(log n/ log log n).

In the remainder of this chapter, we only present algorithms that compute
the value of a network property for a static graph and implicitly assume that the
respective algorithm is executed in a pipelined fashion to solve the monitoring
problem under consideration.

On the basis of the ideas of the algorithm above, it is easy to solve a number
of monitoring problems that can be reduced to aggregation. For example, one
can monitor the average node degree by letting s multiply the result of the
given algorithm with 2/n before outputting it. This gives us the following
corollary.

Corollary 4.7. The average node degree can be monitored with setup time
O(log2 n) and delay O(log n/ log log n).

As a final example, we consider the clustering coefficient of a network [WS98].
Intuitively, the clustering coefficient reflects the relative number of triangles in
a graph G. It is particularly relevant in the context of biological and social
networks (see, e.g., [New01; NSW01; NWS02; WS98]). Formally, the clustering
coefficient of a node u is defined as

C(u) =
2 · | { v, w ∈ N(u) | {v, w} ∈ E } |

deg(u) · (deg(u)− 1)
,

where N(u) is the set of neighbors of u. The clustering coefficient of a graph
G is defined as C(G) = 1/n ·∑u∈V C(u). Each node u can compute C(u) in
constant time by communicating with its neighbors. Therefore, C(G) can be
computed by aggregating the sum of all C(u) along T and dividing the result
by n at the monitor. This implies the following theorem.

Theorem 4.8. The clustering coefficient can be monitored with setup time
O(log2 n) and delay O(log n/ log log n).

4.5 Bipartiteness

In this section, we consider the problem of monitoring whether the external
network forms a bipartite graph. For now, we assume that the external network
is connected in each round. As we will argue towards the end of this section, it
is straight-forward to remove this assumption. Our algorithm is based on the
following well-known approach (see, e.g., [KT13]): Given a connected graph

80

4.5 Bipartiteness

G, compute a rooted spanning tree of G and assign a color from {0, 1} to
each node u that corresponds to the parity of the depth of u in the spanning
tree. We say an edge in G is valid if it connects nodes of different colors and
it is invalid otherwise. G is bipartite if and only if all edges in G are valid.
It remains to show how this approach can be implemented efficiently in our
framework.

According to Observation 4.4, we can use the Overlay Construction Algorithm
to mark the edges of a spanning tree S of G. Note that S is not rooted at
any particular node. Therefore, two nodes that are connected by an edge in S
cannot locally decide which of them is the parent of the other. From a global
perspective, we consider the monitor s to be the root of S. Each node has to
determine the parity of its depth in S to determine its color. Since S might
have linear depth, a simple broadcast from s does not constitute an efficient
solution to this problem. Instead, we use pointer jumping along a depth-first
traversal of S to determine the colors of the nodes. We define the traversal of
S as follows. The traversal starts at s and moves to the neighbor of s in S with
the lowest identifier. For a node u let u0, u1, . . . , udeg(u)−1 be the neighbors of
u in S arranged by increasing identifier. When the traversal reaches u from a
node ui, it continues to node u(i+1) mod deg(u). The traversal finishes when it
reaches s from the neighbor of s in S with the highest identifier. Define the
traversal distance d(u) to be the number of steps required to reach u for the
first time in this traversal. We will show in Lemma 4.9 that the parity of d(u)
equals the parity of the depth of u in S. For now, we focus on computing d(u)
efficiently for all nodes.

Each node u simulates one virtual node for each occurrence of u in the
traversal, and the nodes connect these virtual nodes into a ring. More specifi-
cally, each node u simulates virtual nodes v0, v1, . . . , vdeg(u)−1 such that vi is
the predecessor of a virtual node of ui and the successor of a virtual node
of u(i−1) mod deg(u) in the ring. Since S is a tree, the ring consists of 2(n− 1)
virtual nodes. Setting up the virtual nodes takes O(1) rounds.

We use pointer jumping to add chords to the ring following the same protocol
we used during the merging step of the Overlay Construction Algorithm. We
define ℓ0 to be the successor of a virtual node and r0 to be the predecessor
of a virtual node. We execute the protocol for t = ⌊log(2(n− 1))⌋ rounds so
that each node constructs chords ℓi and ri for each 1 ≤ i ≤ t. Each chord ℓi

and ri bridges a distance of exactly 2i along the ring. The chords allow us to
efficiently compute the values d(u) in the following way. Let v∗ be the virtual
node simulated by s that precedes a virtual node of the neighbor of s with
the lowest identifier (i.e., v∗ = v0 from the local perspective of s). The virtual
node v∗ stores the value 0 and initiates a broadcast by sending a message with
value 2i along each chord ℓi for 0 ≤ i ≤ t. Consider a virtual node that receives
a broadcast message and that does not yet store a value. Let x be the value

81

Chapter 4 Hybrid Network Monitoring

associated with the received message. The virtual node stores x and sends a
message containing the value x + 2i along each chord ℓi for 0 ≤ i ≤ t. It is
not hard to see that this broadcast reaches all virtual nodes within O(log n)
rounds, and the value stored at a virtual node v after the broadcast finishes
corresponds to the length of the path from v∗ to v along the ring. Therefore,
each node u can determine its traversal distance d(u) by taking the minimum
of the values stored at its virtual nodes. Once all nodes have computed their
traversal distances in this way, each node u determines whether it is incident
to an invalid edge by checking for each neighbor w in G whether d(u) ≡ d(w)
mod 2. Then, the nodes use a convergecast to inform s whether there is an
invalid edge. If so, s outputs that G is not bipartite. Otherwise, s outputs
that G is bipartite.

To establish the correctness of the algorithm, it remains to show the following
lemma.

Lemma 4.9. For each node u, the parity of the depth of u equals the parity
of d(u).

Proof. Recall that the tree is traversed in a depth-first order. Therefore, the
traversal takes an even number of steps between any two visits of the same
node. Let P be the shortest path from s to u in S. The length of P equals the
depth of u. The traversal follows P but it takes a detour whenever it explores
a branch outside of P . By the argument above, each such detour has even
length. Therefore, the parity of the depth of u equals the parity of d(u).

Note that the delay of the algorithm is dominated by the Overlay Construc-
tion Algorithm, which takes O(log2 n) rounds to construct the spanning tree
S according to Theorem 4.2. Therefore, we can eliminate the setup phase by
constructing the tree T during the monitoring phase, which does not asymptot-
ically increase the delay. If the external graph is disconnected we can perform
the above algorithm on each connected component in parallel and aggregate
the individual results along the tree T . This implies the following theorem.

Theorem 4.10. Bipartiteness can be monitored with setup time 0 and delay
O(log2 n).

4.6 Minimum Spanning Tree

We now turn to the problem of monitoring the weight of a minimum spanning
tree (or MST). As before we assume that the edge set can change from round to
round. However, in this section we require the external network to be connected
in every round. Additionally, we associate weights with the edges that can
change every round. In Section 4.6.1 we present an algorithm that monitors the
exact MST weight and in Section 4.6.2 we present an algorithm that monitors

82

4.6 Minimum Spanning Tree

an approximation of the MST weight with an improved delay. Both algorithms
are based on a sequential approximation algorithm by Chazelle et al. [CRT05].

4.6.1 Exact MST Weight

The main idea behind the algorithm is to reduce the computation of the weight
of an MST in a graph G to counting the number of connected components in cer-
tain subgraphs of G. This idea was first introduced by Chazelle et al. [CRT05].
We assume that the edge weights are taken from the set {1, 2, . . . , W} for some
W ∈ N that is bounded polylogarithmically in n. Define the threshold graph
G(ℓ) to be the subgraph of G consisting of all edges with weight at most ℓ, and
define c(ℓ) to be the number of connected components in G(ℓ). The MST weight
M can be computed from the values c(ℓ) as shown in the following lemma.

Lemma 4.11 (Chazelle et al. [CRT05]). In a graph with edge weights from
{1, 2, . . . , W}, the MST weight is

M = n−W +
W −1
∑

i=1

c(i).

On the basis of Lemma 4.11, the monitor can compute the MST weight
as follows. Consider the threshold graph G(ℓ) for some ℓ ∈ {1, 2, . . . , W − 1}.
According to Corollary 4.3, executing the Overlay Construction Algorithm on
G(ℓ) creates an overlay network in which each connected component of G(ℓ) is
spanned by a rooted tree of overlay edges. Each node knows whether it is a
root of one of these trees. Therefore, we can determine c(ℓ) by counting the
number of roots, which can easily be achieved using aggregation along the tree
T constructed during the setup phase. By iterating this process, the monitor
learns the value c(ℓ) for each ℓ ∈ {1, 2, . . . , W − 1}. It then uses the equation
given in Lemma 4.11 to compute the MST weight. Since T is only used after
the algorithm already ran for O(log2 n) rounds, we can construct T during the
monitoring phase and skip the setup phase. Furthermore, we can reduce the
delay by computing up to log2 n different c(i)’s in parallel. This implies the
following theorem.

Theorem 4.12. For edge weights from {1, 2, . . . , W} where W ∈ N is bounded
polylogarithmically in n, the MST weight can be monitored with setup time 0
and delay O(W + log2 n).

Since by our assumption W is at most polylogarithmic in n, we can also
compute all W − 1 values of the c(i)’s in parallel at the cost of increased
communication work per round. This gives us the following corollary.

Corollary 4.13. For edge weights from {1, 2, . . . , W} where W ∈ N is bounded
polylogarithmically in n, the MST weight can be monitored with setup time 0
and delay O(log2 n).

83

Chapter 4 Hybrid Network Monitoring

4.6.2 Approximate MST Weight

Next, we present an algorithm in which the maximum edge weight W con-
tributes only polylogarithmically instead of linearly to the delay of the algorithm.
This improvement comes at the cost of a small approximation error. The algo-
rithm is less restrictive in that it allows the edge weights to be real numbers
from the interval [1, W] for some W ∈ R that is bounded polynomially in n.
The algorithm is based on the same general idea as the algorithm from the
previous section but additionally incorporates ideas from the work of Czumaj
and Sohler [CS09].

First, each node rounds up the edge weight of each incident edge to a power
of (1 + ε) for a given ε with 0 < ε ≤ 1. In the resulting graph G′, each edge
weight is of the form (1 + ε)i where 0 ≤ i ≤ log1+ε W . Let M ′ be the MST
weight in G′, and let c(ℓ) be the number of components in the threshold graph
G(ℓ) of G′ as defined in the previous section. We have the following lemma,
which is analogous to Lemma 4.11.

Lemma 4.14 (Czumaj and Sohler [CS09]). In a graph with edge weights of
the form (1 + ε)i for 0 ≤ i ≤ log1+ε W , the MST weight is

M ′ = n−W + ε ·
log1+ε W −1
∑

i=0

(1 + ε)i · c((1+ε)i).

On the basis of Lemma 4.14, we can compute M ′ by determining the number
of connected components c((1+ε)i) in log1+ε W many threshold graphs of G′.
While this already implies an improvement over the algorithm from the previous
section, we can further reduce the delay by ignoring large components in the
threshold graphs.

Consider some threshold graph G((1+ε)i). We execute the Overlay Con-
struction Algorithm as in the previous section but we stop its execution after
O(log2(2W/ε)) rounds. By Corollary 4.3, the algorithm is guaranteed to finish
its computation in each connected component of size at most 2W/ε. In larger
connected components, the algorithm may finish but is not guaranteed to do so.
It is not hard to modify the algorithm such that all nodes of a connected com-
ponent know whether the algorithm finished its computation for that connected
component. This allows us to ignore root nodes in connected components for
which the algorithm did not finish. Thereby, the algorithm establishes a unique
root node for each connected component of size at most 2W/ε while in each
larger connected component either a unique root node is established or no root
is established. Let ĉ((1+ε)i) be the number of root nodes established in this way.
The nodes determine the value of ĉ((1+ε)i) using aggregation along the tree T
constructed in the setup phase. We iteratively execute this process for each i
such that 0 ≤ i < log1+ε W . After the Overlay Construction Algorithm finishes

84

4.6 Minimum Spanning Tree

for an iteration, the nodes start the aggregation for counting the number of
roots and, at the same time, start the next execution of the Overlay Con-
struction Algorithm for the following iteration. Thereby, we slightly interleave
consecutive iterations, which reduces the overall delay. After the monitor has
learned the values ĉ((1+ε)i), it computes and outputs

M̂ = n−W + ε ·
log1+ε W −1
∑

i=0

(1 + ε)i · ĉ((1+ε)i).

We have the following theorem.

Theorem 4.15. For edge weights from [1, W] where W ∈ R is bounded poly-
nomially in n, the MST weight M can be monitored up to an additive term of
±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and delay

O

(

log W

ε
· log2

(

W

ε

)

+
log n

log log n

)

.

Proof. We first show the approximation factor. Rounding up the edge weights
to a power of (1 + ε) increases the MST weight by a factor of at most (1 + ε).
Therefore, we have

M ≤M ′ ≤ (1 + ε) ·M.

When computing the values ĉ((1+ε)i), the algorithm potentially ignores all
connected components of size larger than 2W/ε. In each threshold graph there
are at most εn/(2W) such connected components. The algorithm cannot over-
estimate the number of connected components in a threshold graph. Therefore,
we have

c((1+ε)i) − εn

2W
≤ ĉ((1+ε)i) ≤ c((1+ε)i).

For the upper bound on the output M̂ of the algorithm, the equations above
together with the definitions of M ′ and M̂ imply

M̂ ≤M ′ ≤ (1 + ε) ·M.

85

Chapter 4 Hybrid Network Monitoring

For the lower bound on M̂ , we have

M̂ = n−W + ε ·
log1+ε W −1
∑

i=0

(1 + ε)i · ĉ((1+ε)i)

≥ n−W + ε ·
log1+ε W −1
∑

i=0

(1 + ε)i ·
(

c((1+ε)i) − εn

2W

)

= M ′ − ε2n

2W
·

log1+ε W −1
∑

i=0

(1 + ε)i

≥M ′ − ε

2
· n

≥M − ε

2
· n

≥M − ε

2
· 2M

≥ (1− ε) ·M,

where we assume n ≥ 2 so that n ≤M +1 ≤ 2M for the penultimate inequality.
We now turn to the delay of the algorithm. The algorithm iteratively

computes the values ĉ((1+ε)i) for log1+ε W = O(log(W)/ε) threshold graphs.
In each of these iterations the modified Overlay Construction Algorithm is
executed for O(log2(W/ε)) rounds. After the Overlay Construction Algorithm
finishes in the last iteration, the nodes have to wait for the final aggregation to
complete. This takes an additional O(log n/ log log n) rounds.

Finally, since W is bounded polynomially in n, we can execute log W itera-
tions of the algorithm in parallel, which gives us the following corollary.

Corollary 4.16. For edge weights from [1, W] where W ∈ R is bounded
polynomially in n, the MST weight M can be monitored up to an additive term
of ±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and delay

O

(

1

ε
· log2

(

W

ε

)

+
log n

log log n

)

.

4.7 Outlook

We only considered a small number of monitoring problems for hybrid net-
works. There is an abundance of classic problems in the literature that can
be newly investigated under this framework. Furthermore, by focusing exclu-
sively on monitoring problems we only scratched the surface of possible new
research avenues opened up by considering hybrid networks. For example, our
algorithms only communicate via the internal network and use the external

86

4.7 Outlook

network merely as an input to the monitoring algorithms. As we stated in
the introduction of this chapter, there are scenarios in which it is natural to
assume that communication via the external network is much cheaper than
communication via the internal network. Accordingly, one could extend the
model by associating different costs to messages sent over edges of the internal
and the external network. In such a variant of the model it would be interesting
to investigate the trade-off between the communication cost and the running
time of protocols for various problems, also outside of the domain of network
monitoring.

87

Part II

Programmable Matter

89

Chapter 5

Leader Election for
Programmable Matter

Imagine a substance that can change its shape or other physical properties in a
programmable fashion on the basis of user input or sensing of its environment.
Such a substance would have a wide range of applications: For example, it could
be used in engineering to monitor environmental and structural conditions on
bridges or on the inside of nuclear reactors, possibly repairing small fissures
autonomously. In medicine it could be used within our bodies to detect and
coat an area where internal bleeding occurs, eliminating the need of immediate
surgery. It could self-assemble into a stent opening a previously blocked
vessel, or it could identify and isolate tumor cells without external intervention.
Thereby, this substance could achieve tasks that are time-consuming, costly,
dangerous, or even completely impossible for humans today.

A substance that can be programmed to change its physical properties is
commonly referred to as programmable matter. While programmable matter
might sound like science fiction, first small steps towards its realization have
already been made. For example, in modular self-reconfiguring robotic systems
(see, e.g., [Chi94; Yim+07]) a collection of basic robotic modules cooperates to
achieve tasks such as the construction of shapes or enveloping objects. The
progressing minification of mechatronic components might one day lead to
robots that are so small that a collection of robots appears to the naked eye
as a continuous piece of matter. Another example stems from the field of
synthetic biology in which researchers have made progress towards programming
biological cells. Currently, cells can only be programmed to perform simple
computations (see, e.g., [Ben+01; Fri+09]). However, one could imagine to
also control cell movement in a programmable fashion, which would pave the
way for programmable matter consisting of a myriad of interacting cells.

While the physical implementation of programmable matter certainly is
an enormous undertaking, making programmable matter useful also requires

91

Chapter 5 Leader Election for Programmable Matter

efficient algorithms to control the entities that form the programmable mat-
ter. We aim to develop such algorithms on the basis of the amoebot model,
which facilitates rigorous algorithmic research on programmable matter in the
Euclidean plane. In the amoebot model, programmable matter consists of
a uniform set of simple computational units called particles that can move
and bond to other particles and that use their bonds to exchange information.
The particles act asynchronously and achieve locomotion by expanding and
contracting, which resembles the amoeboid movement performed by certain
biological cells (see, e.g., [AE07]). To achieve a collective goal, the particles
have to self-organize in a distributed fashion without any central control.

Our goal in this part of the thesis is to investigate fundamental problems
for programmable matter on the basis of the amoebot model. We begin our
investigation in this chapter by considering the leader election problem, which
requires a set of particles to select one particle as its unique leader. Leader
election is a central and classic problem in distributed computing. Many
problems like the consensus problem (all particles have to agree on some output
value) can easily be solved once a leader has been elected. Leader election
also allows for symmetry breaking in distributed systems, which in general
is a necessary prerequisite to solve problems such as shape formation. We
will further elaborate on this connection between leader election and shape
formation at the beginning of the following chapter.

We present a local-control algorithm that solves the leader election problem in
the amoebot model in O(n) asynchronous rounds with high probability, where
n is the number of particles. Our algorithm relies only on local information
(e.g., particles do not have unique identifiers, they do not know n, and they
do not have a global coordinate system), and it requires only a constant-size
memory at each particle.

Underlying Publications The results presented in this chapter are based on
two publications, the first of which is the following.

Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. A. Bazzi,
A. W. Richa, and C. Scheideler. “Leader Election and Shape
Formation with Self-organizing Programmable Matter”. In:
Proceedings of the 21st International Conference on DNA Com-
puting and Molecular Programming (DNA), see [Der+15b].

In this work we laid the foundation for leader election in the amoebot model
by presenting a leader election algorithm that achieves a running time that
is linear in the number of particles on expectation. Due to the complexity
of the algorithm, both its description and its analysis relied on simplifying
assumptions such as global control and synchronous particle activation. We
improved upon this result in the following publication.

92

5.1 The Amoebot Model

J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Improved Leader Election for Self-Organizing
Programmable Matter”. In: Proceedings of the 13th Interna-
tional Symposium on Algorithms and Experiments for Wireless
Networks (ALGOSENSORS). To appear, see [Day+17].

In this work we presented a leader election algorithm that is both simpler and
more efficient than the previous algorithm. The algorithm achieves a linear
running time with high probability instead of on expectation. Its simplicity
allowed us to devise full local-control protocols and to remove any simplifying
assumptions from the analysis.

While the algorithm and the analysis presented in chapter are based on the
latter of the two publications, many of the ideas underlying the algorithm go
back to the first publication. Section 5.6, which discusses variants of the leader
election problem, is based on both works. Specifically, the positive results are
based on the newer publication and the negative result stems from the earlier
publication.

Outline We begin in Section 5.1 by introducing the amoebot model, which
serves as the foundation of our investigation of algorithms for programmable
matter. We then give an overview of the related literature in Section 5.2. To
provide a consistent picture, this section also covers the related work concerning
shape formation, which is the subject of the following chapter. In Section 5.3
we formally define the leader election problem under the amoebot model. We
then turn to the main part of this chapter, which consists of three sections:
First, we present our leader election algorithm in Section 5.4. Then, we analyze
the algorithm in Section 5.5. Finally, we expand on the topic of leader election
for programmable matter by considering some variants of the leader election
problem and investigating their feasibility in Section 5.6. We close this chapter
in Section 5.7 with a discussion of further variants of the leader election problem
that could be considered in future research.

5.1 The Amoebot Model

In the amoebot model, programmable matter consists of simple computational
units that we call particles. The particles occupy the nodes of the infinite
triangular grid graph GET that is embedded into the Euclidean plane as depicted
in Figure 5.1. A particle occupies either a single node or a pair of adjacent
nodes in GET, and every node can be occupied by at most one particle. Two
particles occupying adjacent nodes are connected, and we refer to such particles
as neighbors.

Particles move through expansion and contraction: If a particle occupies one
node, it can expand to an unoccupied adjacent node to then occupy two nodes.
If a particle occupies two nodes, it can contract to one of these nodes to then

93

Chapter 5 Leader Election for Programmable Matter

Figure 5.1: Example of a set of particles on the underlying infinite triangular
grid graph GET. The figure shows a section of GET as a gray grid.
A contracted particle is depicted as a black circle. An expanded
particle is depicted as two black circles connected by a black line.

occupy a single node. We refer to a particle occupying one node as a contracted
particle and we refer to a particle that occupies two nodes as an expanded
particle, see Figure 5.1. Two particles can move in coordination by combining
an expansion and a contraction in what we call a handover. There are two
variants of a handover: First, a contracted particle p can push a neighboring
expanded particle q and expand into a node previously occupied by q, forcing q
to contract. Second, an expanded particle p can pull a neighboring contracted
particle q to a node v occupied by p, causing q to expand into v and allowing
p to contract. In both cases the handover effectively allows a pair of particles
to move without disconnecting from each other.

For an expanded particle, we refer to one of the nodes occupied by the
particle as its head and call the other node its tail. For a contracted particle,
the single node occupied by the particle is both its head and its tail. When
a contracted particle expands to a node, that node becomes the head of the
particle while the other node becomes its tail. The head and the tail of a
particle each have six ports, one for each incident edge. The ports are labeled
in the following way: A particle considers one of the six directions in the grid
formed by GET to be its local north direction. The local north direction of
a particle does not change even when the particle moves. Each particle has
its own local north direction that can differ from the local north direction of
other particles. Hence, the particles do not have a common compass. They
do however have common chirality, i.e., all particles have a common notion
of clockwise rotation in the Euclidean plane. A particle labels the ports of its
head (resp. its tail) with the numbers 0 to 5 in clockwise order starting at the
port that points in its local north direction.

Neighboring particles can communicate through facing ports. When two
particles p and q are connected by an edge, p knows the label of q’s port that
is incident to the edge. Furthermore, p knows whether q’s port belongs to the

94

5.2 Related Work

head or tail of q. Each particle has a local memory that can be accessed by
any neighboring particle. Particles exchange information with their neighbors
by simply writing into their memory. A particle always knows whether it
is contracted or expanded, and in the latter case it also knows which head
port points towards its tail. This information is also available to neighboring
particles. Each particle has access to a local source of random bits. The
particles are anonymous, i.e., they do not have unique identifiers. Furthermore,
they do not possess any global knowledge such as the overall number of particles.

We refer to a set of particles as a particle system. The computation of a
particle system progresses through a sequence of atomic particle activations,
i.e., only one particle is active at a time. Whenever a particle is activated, it
can perform an arbitrary computation involving its local memory, the memories
of its neighbors, and random bits, and it can perform at most one movement,
i.e., an expansion, a contraction, a pull, or a push. We measure time in terms
of asynchronous rounds, where we define a round to be complete after each
particle has been activated at least once. We assume the activation of the
particles to be fair in that at all times each particle is activated eventually.

Throughout this part of the thesis we make two assumptions that are
not necessarily part of the amoebot model but that lie at the core of our
investigation of programmable matter. First, we assume that the memory
of each particle is of constant size. Thereby, the computational power of a
particle is restricted to that of a probabilistic finite-state machine. We make
this assumption to guarantee that our algorithms can, in principle, scale to
an arbitrary number of particles without memory constraints becoming an
issue. Second, we require the particle system to form a connected structure at
all times, i.e., the subgraph of GET induced by the occupied nodes has to be
connected. The reason for this requirement is that in a physical realization of
programmable matter, disconnected parts of a particle system might separate
irreversibly from the particle system by falling off or drifting away.

The leader election algorithm presented in this chapter does not move the
particles. Therefore, large parts of the amoebot model remain unused for now.
However, we will make use of the complete model in the subsequent chapter
on shape formation with programmable matter.

5.2 Related Work

While some of the basic ideas behind programmable matter are already more
than two decades old [TM91], rigorous algorithmic research that explicitly deals
with this subject is still quite sparse. There is, however, a plethora of work
on models and systems that are implicitly related to programmable matter in
varying degrees. Many of these approaches share some underlying concepts
with our work in the amoebot model, but overall they differ significantly either
in their assumptions or in their goals. One of our primary objectives in this

95

Chapter 5 Leader Election for Programmable Matter

section is to provide the reader with a general understanding of the context of
our work by giving a non-exhaustive overview of some of the related models
and the problems investigated therein.1 To limit the scope of this section, we
only give a brief description of the main features of each model and mostly
focus on the problems of leader election and shape formation, which are the
problems investigated in this part of the thesis. While some variant of shape
formation has been considered in most of these models, the leader election
problem has generally received less attention. Of course, leader election is one
of the classic problems of distributed computing and has been investigated
under various models outside the context of programmable matter. However,
we are not aware of any leader election algorithm that fits the very restrictive
setting of the amoebot model.

Before we begin our discussion of related models and systems, we give a
comprehensive overview of the work in the amoebot model. We first presented
a preliminary version of the amoebot model at the First Workshop on Bio-
logical Distributed Algorithms and later published this version of the model
in [Der+14]. Since then, we presented several results revolving around the
problems of leader election, shape formation, and coating. For the leader
election problem, which is the topic of this chapter, we introduced a first algo-
rithm in [Der+15b] and later presented an improved and simplified algorithm
in [Day+17]. A comparison of these results can be found in the description of
the underlying publications at the beginning of this chapter. In the context of
shape formation, which is the topic of the following chapter, we presented a
simple approach for building a line in [Der+15b], extended this approach to
other simple shapes in [Der+15a], and finally presented a more general and
efficient approach to shape formation in [Der+16b]. The latter publication
forms the basis of the following chapter. A comparison to the earlier results
can be found at the beginning of that chapter. Finally, we also considered the
coating problem. In this problem a particle system is connected to a static
object represented by a connected set of nodes in the underlying graph GET.
The goal is to reorganize the particles to form layers around the given object,
i.e., the particle system has to coat the object. We presented an algorithm for
this problem in [Der+17] and showed that the algorithm has a linear running
time in [Der+16a]. Our results on coating are not part of this thesis.

Recently, also other authors have adopted the amoebot model to devise
algorithms for programmable matter: Cannon et al. [Can+16] presented an
algorithm for the compression problem in which the particles have to gather
as tightly together as possible. This work introduces an interesting new aspect
to the study of the amoebot model by using an algorithm that is based on a

1The overview of the related models and systems given in this section is largely based on
the publications underlying this part of the thesis [Der+15b; Der+16b; Day+17].

96

5.2 Related Work

stochastic process and analyzing this algorithm using Markov chain techniques.
A similar approach is used in [Arr+17] to address the shortcut bridging problem
in which a set of particles has to optimize the shape of a bridge between two
given objects to balance the competing factors of path length and bridge cost.
Finally, Di Luna et al. [Di +17] very recently presented new results on shape
formation that expand considerably on our previous results.

We now turn our attention to other models and systems that are related
to programmable matter and our work. One can broadly distinguish between
passive and active systems. In passive systems the computational entities
either do not have any intelligence at all (but just move and bond on the
basis of their structural properties or due to chemical interactions with the
environment), or they have limited computational capabilities but cannot
control their movements. In active systems, on the other hand, the entities
can control the way they act and move in order to solve a specific task. The
amoebot model falls squarely into the category of active systems.

Prominent examples of passive systems are DNA computing, tile-based
self-assembly, and population protocols. The field of DNA computing was
initiated by Adleman [Adl94], who demonstrated that DNA molecules can be
used to solve an instance of the directed Hamiltonian path problem. More
general results on the computational power of DNA followed soon after (see,
e.g., [Bon+96; OR99] and the references therein). Aside from using biological
matter as a medium for computation, there are also approaches to form shapes
out of DNA. One such approach is DNA origami (see, e.g., [Rot06]) in which
DNA is folded to form nanoscale shapes and patters. A more extensive overview
of DNA computing can be found in the survey of Daley and Kari [DK02] and
in the chapter on DNA computing in [GDT14].

The basic idea behind self-assembly is that a collection of simple entities
autonomously assembles into a more complex structure without external in-
tervention.2 This process is based on local interactions between the entities
that typically follow simple rules. The most popular model for tile-based
self-assembly, which uses tiles as its basic entities, is the Tile Assembly Model
(or TAM) introduced by Erik Winfree in his seminal PhD thesis [Win98].
This model was inspired by the groundbreaking results on DNA computing
at the time and comes in two variants: The abstract Tile Assembly Model (or
aTAM) is a high-level model that ignores the possibility of errors and provides
a framework for theoretical research on tile-based self-assembly. In contrast,
the kinetic Tile Assembly Model (or kTAM) also takes several technical as-
pects of DNA-based self-assembly into account. The tiles in the aTAM are
two-dimensional unit squares that cannot be rotated or flipped. Each edge of
a tile has a color, and each color has an integer strength. The self-assembly

2This paragraph is based on a survey by Patitz, see [Pat14].

97

Chapter 5 Leader Election for Programmable Matter

process starts with an initial assembly, which usually consists of a single tile,
and progresses by sequentially attaching additional tiles in a non-deterministic
fashion. A tile can be attached to the assembly at a certain position if its edge
colors match the edge colors of the adjacent tiles and the sum of the strengths
of the matching edge colors reaches a certain threshold called the temperature
of the system. The aTAM naturally lends itself for the construction of shapes
and patterns, but it can also be used to perform universal computations. There
is an abundance of results on both of these subjects in the literature. We refer
to the excellent surveys on tile-based self-assembly [Dot12; Woo13; Pat14] for
an extensive overview of the many models and results in this area.

In the area of distributed computing, population protocols [Ang+06] have
been used to explore the computational power of simple mobile agents. This
model allows a set of finite-state agents to perform a computation by engaging
in a sequence of pairwise interactions. Two interacting agents update their
state by jointly applying a transition function. The agents in this model are
passive in that they have no control over the interaction sequence. There are
several publications that investigate the leader election problem under different
variants of population protocols (see, e.g, [DS15; AG15; Das+17] and the
references therein). Recently, population protocols have also been used for the
construction of network topologies [MS16] and geometric shapes [Mic15], which
is made possible by allowing two interacting agents to form or release a bond.

In contrast to the passive systems described above, the computational entities
in active systems are more powerful in that they can both perform computations
and control their movements. Notable examples of active systems are robotic
and natural swarms, self-reconfigurable robotic systems, and the nubot model.

Models for swarm robotics and natural swarms usually assume that there
is a collection of autonomous agents that can freely move in a given space
and that have limited sensing and communication capabilities. The work in
this area follows a variety of goals such as gathering (e.g., [AGM13; Cie+12]),
spreading (e.g., [Hsi+02; CP08]), and mimicking the collective behavior of
natural systems to understand the global effects of local behavior (e.g., [Cha09;
Bha+13]). There are also several results on shape formation (e.g., [Flo+08;
AR10; Das+10; RCN14]). Of special note from a practical point of view is the
work of Rubenstein et al. [RCN14], which demonstrates that programmable
self-assembly of complex two-dimensional shapes with hundreds or thousands
of simple robots called kilobots is possible in practice today. Surveys of recent
results in swarm robotics can be found in [McL08; Ker13].

A self-reconfigurable robot is able to deliberately change its shape by rear-
ranging its parts in order to adapt to new circumstances, perform new tasks,
or recover from damage. Modular self-reconfigurable robots are formed from
modules (i.e., robotic building blocks), of which there are often only few dif-

98

5.2 Related Work

ferent types.3 A particularly relevant variant of self-reconfigurable robots are
metamorphic robotic systems [Chi94], which only use a single type of module
and aim at solving problems like shape formation and enveloping objects.
In this regard, these systems bear some resemblance to our amoebot model.
Another relevant line of work is the Claytronics project (see, e.g., [GCM05]),
which explicitly combines the idea of modular self-reconfigurable robots with
the concept of programmable matter by envisioning programmable matter con-
sisting of myriads of simple robotic modules called Claytronics atoms or catoms.
While the research on modular self-reconfigurable robots has a strong focus
on the development of hardware, there has also been a number of algorithmic
advances (e.g., [But+04; WWA04]). For a survey of modular self-reconfigurable
robotic systems see [Yim+07].

The nubot model by Woods et al. [Woo+13] aims to provide a theoretical
framework for studying the complexity of self-assembled structures with active
molecular components. Thereby, it departs from previous models for self-
assembly that were based exclusively on passive components such as the
Tile Assembly Model described above. The nubot model considers a two-
dimensional grid of monomers. Each monomer has an internal state. Adjacent
monomers can interact in a pairwise fashion according to a set of rules. Two
interacting monomers can jointly update their states. They can also be subject
to a movement rule, which is locally applied but causes global movement in
the system. Finally, the model allows monomers to appear and disappear.
The latter two features of the nubot model are specifically tailored to the
biological setting considered by the authors. Naturally, one of the problems
investigated under the nubot model is the construction of two-dimensional
shapes (e.g., [Woo+13; Che+14]). Furthermore, the possibility of simulating
classical computational models such as Boolean circuits and Turing machines
has been considered (e.g., [CXW15]).

Finally, we turn to two systems that do not readily fit into the broad
categories of passive and active systems, namely cellular automata and slime
molds. The concept of cellular automata is already more than half a century
old and goes back to John von Neumann and Stanislaw Ulam.4 A cellular
automaton consists of a lattice of cells. Each cell has one of finitely-many states.
The cells update their state in synchronous steps according to a local transition
function that takes into account a cell’s current state and the current state
of its neighbors. There is a rich body of work using a multitude of different
variants of cellular automata, which we cannot do justice in these few lines.
The problem of forming shapes or patterns has been studied extensively in
this area, and many of the models and systems described above are inherently

3The beginning of this paragraph is based on [Yim+07].
4This paragraph is based on [Sch08].

99

Chapter 5 Leader Election for Programmable Matter

related to this model of computation. For an introduction to the subject of
cellular automata see, e.g., [Sch08].

Our last (and maybe most peculiar) example of a system related to pro-
grammable matter is the slime mold physarum polycephalum. Experiments
indicate that this amoeba-like organism is capable of solving shortest path
problems in a maze [NYT00]. Thereby, this organism can be interpreted
as an example of simple computational matter that occurs in nature. Boni-
faci et al. [BMV12] investigated the behavior of physarum polycephalum from
a theoretical point of view and showed that under an abstract mathematical
model the shape of the organism indeed converges to a shortest path. The
behavior of physarum polycephalum already served as an inspiration for dis-
tributed algorithms in the domain of wireless sensor networks [Li+10]. In the
future it might inspire algorithms for programmable matter.

5.3 Problem Statement

We consider the classic problem of leader election. We define an algorithm to
solve the leader election problem if for any given particle system, eventually a
single particle irreversibly declares itself the leader (e.g., by setting a dedicated
bit in its memory) and no other particle ever declares itself to be the leader.
We define the running time of a leader election algorithm to be the number of
rounds until a leader is established. Note that we do not require the algorithm
to terminate for particles other than the leader. We assume the particle
system to be well-initialized in that the memory of every particle is empty.
Furthermore, we assume for simplicity that all particles are contracted.

We investigate several variants of the leader election problem in Section 5.6.
Among these variants, we consider the case that the algorithm has to terminate
for all particles and the case that the particle system contains expanded
particles.

5.4 Leader Election Algorithm

Before we describe the leader election algorithm in detail, we give a short
high-level overview. The algorithm consists of six phases. The phases are not
strictly synchronized among each other, i.e., at any point in time, different parts
of the particle system may execute different phases. Furthermore, a particle
can be involved in the execution of multiple phases at the same time. The
first phase is the boundary setup phase (see Section 5.4.1). In this phase, each
particle locally checks whether it is part of a boundary of the particle system,
see Figure 5.2. Only the particles on a boundary participate in the leader
election. Particles occupying a common boundary organize themselves into a
directed cycle. The remaining phases operate on each boundary independently.
In the segment setup phase (see Section 5.4.2), a boundary is subdivided into
segments: Each particle flips a fair coin. Particles that flip heads become

100

5.4 Leader Election Algorithm

Figure 5.2: Boundaries of a particle system. The solid line represents the
unique outer boundary and the dashed lines represent the inner
boundaries of the particle system.

candidates and compete for leadership, whereas particles that flip tails become
non-candidates and assist the candidates in their competition. A segment
consists of a candidate and all subsequent non-candidates along the boundary
up to the next candidate. The identifier setup phase (see Section 5.4.3) assigns
a random identifier to each candidate. The identifier of a candidate is stored
in a distributed manner among the particles in its segment. In the identifier
comparison phase (see Section 5.4.4), the candidates compete for leadership by
comparing their identifiers using a token passing scheme. When a candidate
sees an identifier that is higher than its own identifier, it revokes its candidacy.
Whenever a candidate sees its own identifier, the solitude verification phase
(see Section 5.4.5) is triggered. In this phase, a candidate checks whether it is
the last remaining candidate on the boundary. When a candidate determines
that it is indeed the last remaining candidate on its boundary, it initiates
the boundary identification phase (see Section 5.4.6) to determine whether it
occupies the unique outer boundary of the particle system, see Figure 5.2. If
so, it becomes the leader. Otherwise, it revokes its candidacy. The following
detailed description of the algorithm is divided into six sections—one for each
phase of the algorithm.

5.4.1 Boundary Setup

The boundary setup phase organizes the particle system into a set of boundaries,
see Figure 5.2. Let A be the set of nodes in GET that are occupied by particles.
According to our assumptions, the subgraph GET|A of GET induced by A is
connected. Let GET = (V, E). Consider the graph GET|V \A induced by the
unoccupied nodes in GET. We call a connected component R of GET|V \A an
empty region. Let N(R) be the neighborhood of an empty region R in GET,
that is

N(R) = {u ∈ V | u /∈ R and ∃v ∈ R : {u, v} ∈ E }.

101

Chapter 5 Leader Election for Programmable Matter

Note that, by definition, all nodes in N(R) are occupied by particles. We refer
to N(R) as the boundary of the particle system corresponding to R. Since
GET|A is a finite graph, exactly one empty region has infinite size while the
remaining empty regions have finite size. We define the boundary corresponding
to the infinite empty region to be the unique outer boundary and refer to a
boundary that corresponds to a finite empty region as an inner boundary.

For each boundary of the particle system, we organize the particles occupying
that boundary into a directed cycle. Upon its first activation, a particle
instantly determines its place in these cycles using only local information.
Figure 5.3 shows all possible neighborhoods of a particle (up to rotation)
and the corresponding results of the boundary setup phase. To produce the
depicted results, a particle p proceeds as follows. First, p checks for the two
special cases shown in the top-most part of the figure. If p has no neighbors,
it must be the only particle in the particle system since the particle system
is connected. Thus, it immediately declares itself the leader and terminates.
If all neighboring nodes of p are occupied, p is not part of any boundary and
terminates without participating in the leader election process any further.

If these special cases do not apply then p has at least one occupied node
and one unoccupied node in its neighborhood. Interpret the neighborhood of p
as a directed ring of six nodes that is oriented clockwise around p. Consider
a maximal sequences of unoccupied nodes (v1, v2, . . . , vk) in this ring. Such a
sequence is part of some empty region and, hence, corresponds to a boundary
that includes p. Let v0 be the node before v1 and let vk+1 be the node after vk

in the ring. Note that we might have v0 = vk+1. By definition, v0 and vk+1

are occupied. Particle p implicitly arranges itself as part of a directed cycle
spanning the aforementioned boundary by considering the particle occupying v0

to be its predecessor and the particle occupying vk+1 to be its successor on that
boundary. It does this individually for each maximal sequence of unoccupied
nodes in its neighborhood to produce the results shown in Figure 5.3.

The remaining phases of the leader election algorithm operate exclusively on
boundaries. Furthermore, they are executed on each boundary independently,
i.e., the executions within different boundaries do not interact with each other.
Note that a particle can have up to three maximal sequences of unoccupied
nodes in its neighborhood, see Figure 5.3. As a consequence, a particle can be
part of up to three distinct boundaries. However, a particle cannot locally decide
whether two distinct sequences of unoccupied nodes belong to two distinct
empty regions or to the same empty region. To guarantee that the executions
on distinct boundaries are isolated, we let the particles treat each sequence of
unoccupied nodes as a distinct empty region. For each such sequence, a particle
executes an independent instance of the same algorithm that encompasses the
remaining five phases of the leader election algorithm. We say a particle acts
as a number of distinct agents—one for each maximal sequence of unoccupied

102

5.4 Leader Election Algorithm

Figure 5.3: Results of the boundary setup phase (up to rotation). In the special
cases shown at the top of the figure the particle is not part of any
boundary. The rest of the figure is organized according to the
number of boundaries a particle is part of from its local perspective.
For each boundary, the figure shows an arrow going from the
predecessor to the successor of the particle on that boundary.

103

Chapter 5 Leader Election for Programmable Matter

Figure 5.4: Organization of agents into directed cycles. Note that the parti-
cle system shown in this figure is the same as the one shown in
Figure 5.2. Particles are depicted as gray circles and the agents of
a particle are depicted as black dots inside of the corresponding
circle. After the boundary setup phase, the agents form disjoint
cycles that span the boundaries of the particle system. The solid
arrows represent the unique outer boundary and the dashed arrows
represent the two inner boundaries.

nodes in its neighborhood. Whenever a particle is activated, it sequentially
executes the independent instances of the algorithm for each of its agents
in an arbitrary order, i.e., whenever a particle is activated, also its agents
are activated. Each agent is assigned the predecessor and successor that was
determined by the particle for the corresponding sequence of unoccupied nodes.
This effectively connects the set of all agents into disjoint cycles spanning the
boundaries of the particle system, see Figure 5.4. We refer to the predecessor
and successor of an agent a as a.pred and a.succ, respectively. Note that as a
consequence of this approach, a particle can occur up to three times on the
same boundary as different agents. While we can ignore this property for
most of the remaining phases, we have to carefully handle it in the solitude
verification phase described in Section 5.4.5.

5.4.2 Segment Setup

This phase and all subsequent phases operate on each boundary independently.
Therefore, we only consider a single boundary for the remainder of the algorithm
description. The goal of the segment setup phase is to divide the boundary
into disjoint segments. Each agent flips a fair coin. The agents for which the
coin flip comes up heads become candidates and the agents for which the coin
flip comes up tails become non-candidates. In the following phases, candidates
compete for leadership while non-candidates assist the candidates in their

104

5.4 Leader Election Algorithm

competition. A segment is a maximal sequence of agents (a1, a2, . . . , ak) such
that a1 is a candidate, ai is a non-candidate for i > 1, and ai = ai−1.succ for
i > 1. Note that the maximality condition implies that the successor of ak is a
candidate. We refer to the segment starting at a candidate c as c.seg and call
it the segment of c. In the following phases, each candidate uses its segment as
a distributed memory.

5.4.3 Identifier Setup

After the segments have been set up, each candidate generates a random
identifier by assigning a random digit to each agent in its segment. The
candidates use these identifiers in the next phase to engage in a competition
with the goal of eliminating all but one candidate on the boundary. Note that
the term identifier is slightly misleading in that two distinct candidates can have
the same identifier (in fact, this will happen quite frequently). Nevertheless,
we hope that the reader agrees that the way these values are used makes this
term an appropriate choice.

To generate a random identifier, a candidate c sends a token along its
segment in the direction of the cycle spanning the boundary. A token is simply
a constant-size piece of information that is passed from one particle (or agent)
to the next by writing it to the memory of a neighboring particle. Throughout
the leader election algorithm, a particle holds at most a constant number of
tokens at all times, so the constant-size memory of the particles is sufficient to
implement a token-passing mechanism. While the token traverses the segment,
it assigns a value chosen uniformly at random from [0, r − 1] to each visited
agent where r is a constant that is fixed in the analysis. The identifier generated
in this way is a number with radix r consisting of |c.seg| digits where c holds
the most significant digit and the last agent of c.seg holds the least significant
digit. We refer to the identifier of a candidate c as c.id. The competition
in the next phase of the algorithm is based on comparing identifiers. When
comparing identifiers of different lengths, we define the shorter identifier to be
lower than the longer identifier.

After generating its random identifier, each candidate creates a copy of its
identifier that is stored in reversed digit order in its segment. This step is
required as a preparation for the next phase. To achieve this, we use a single
token that moves back and forth along the segment and copies one digit at a
time. More specifically, we reuse the token described above that generated the
random identifier. Once this token reaches the end of the segment, it starts
copying the identifier: It reads the digit of the last agent of the segment and
moves to the beginning of the segment. There, it stores a copy of that digit in
the candidate c. It then reads the digit of c and moves back to the end of the
segment where it stores a copy of that digit in the last agent of the segment.
It proceeds in a similar way with the second and the second to last agent and

105

Chapter 5 Leader Election for Programmable Matter

so on until the identifier is completely copied. Afterwards, the token moves
back to c to inform the candidate that the identifier setup is complete.

Note that for ease of presentation we deliberately opted for a simple algorithm
over a fast algorithm for creating a reversed copy of the identifier. As we will
show in Section 5.5.2, the running time of this simple algorithm is dominated
by the running time of the next phase so that the overall asymptotic running
time of the leader election algorithm does not suffer.

5.4.4 Identifier Comparison

During the identifier comparison phase the agents use their identifiers to
compete with each other. Each candidate compares its own identifier with the
identifier of every other candidate on the boundary. A candidate whose identifier
is not the highest identifier withdraws its candidacy, whereas a candidate with
the highest identifier eventually progresses to the solitude verification phase,
which is described in the next section. To achieve the comparison, the non-
reversed copies of the identifiers remain stored in their respective segments
while the reversed copies move backwards along the boundary as a sequence of
tokens. More specifically, a digit token is created for each digit of a reversed
identifier. A digit token created by the last agent of a segment is marked as a
delimiter token. Once created, the digit tokens traverse the boundary against
the direction of the cycle spanning it. Each agent is allowed to hold at most
two tokens at a time, which gives the tokens some space to move along the
boundary. The tokens are not allowed to overtake each other, so whenever
an agent stores two tokens, it keeps track of the order they were received in
and forwards them accordingly. An agent forwards at most one token per
activation. Furthermore, an agent can receive a token only after it created its
own digit token. We define the token sequence of a candidate c as the sequence
of digit tokens created by the agents in c.seg. Note that, according to the rules
for forwarding tokens, the token sequences remain separated and the tokens
within a token sequence maintain their relative order along the boundary.

Whenever a token sequence traverses a segment c.seg of a candidate c, the
agents in c.seg cooperate with the tokens of the token sequence to compare the
identifier c.id with the identifier stored in the token sequence. This comparison
has three possible outcomes: (i) the token sequence is longer than c.seg or the
lengths are equal and the token sequence stores an identifier that is strictly
greater than c.id, (ii) the token sequence is shorter than c.seg or the lengths are
equal and the token sequence stores an identifier that is strictly smaller than
c.id, or (iii) the lengths are equal and the identifiers are equal. In the first case, c
does not have the highest identifier and withdraws its candidacy. In the second
case, c might be a candidate with the highest identifier and therefore remains a
candidate. Finally, in the third case c initiates the solitude verification phase,
which is then executed in parallel to the identifier comparison phase. Note

106

5.4 Leader Election Algorithm

that solitude verification might be triggered quite frequently, especially for
candidates with short segments. We describe how to deal with this fact in the
next section.

We now describe the token passing scheme for the identifier comparison on
the basis of the example of a candidate c and the next candidate c′ along the
boundary at the beginning of the identifier comparison phase. Both agents
and tokens can be either active or inactive. Agents are initially active while
tokens are initially inactive. When an active agent receives an active token,
both become inactive and we say the agent and the token match. Since the
tokens in the token sequence of c are initially inactive, they are forwarded by
the agents of c.seg without matching. Whenever a token is forwarded by a
candidate into a new segment, the token becomes active. Therefore, the tokens
in the token sequence of c′ are active when they enter c.seg. When an agent
matches with a token, it compares its digit of the non-reversed identifier with
the digit stored in the token and keeps the result of the comparison for future
reference. Note that since the digits of c′.id are stored in reversed order in
the token sequence of c′, the agent holding the least significant digit of c.id
matches with the token holding the least significant digit of c′.id, the agent
holding the second to least significant digit of c.id matches with the token
holding the second to least significant digit of c′.id, and so on.

The lengths of the identifiers are compared as follows. Recall that the digit
token generated by the last agent of a segment is marked as a delimiter token.
If the delimiter token of c′ matches with c, the token sequence of c′ has the
same length as c.seg. If the delimiter token of c′ matches with another agent of
c.seg (and is therefore already inactive when it reaches c), the token sequence
of c′ is shorter than c.seg. Finally, if a non-delimiter token of c′ matches with
c, the token sequence of c′ is longer than c.seg. Consequently, c can distinguish
these three cases once it receives the delimiter token of c′.

If the token sequence of c′ has the same length as c.seg, c has to compare its
identifier with the identifier stored in the token sequence of c′. As described
above, the digits of the respective identifiers are compared in the correct order
and the results of the comparisons are stored in a distributed way by the agents
of c.seg. When the delimiter token of c′ traverses c.seg, it keeps track of the
comparison result of the most significant digit for which the identifiers differ.
It can do so because during its traversal it sees the consecutive digit-wise
comparisons going from the least significant digit to the most significant digit.
Once c receives the delimiter token of c′, c can use the information stored
within the token to decide whether the identifiers are equal or, if not, which
identifier is greater.

It remains to describe how the agents and tokens are prepared for subsequent
comparisons. Specifically, we have to define when inactive agents and tokens
become active again and when the comparison results stored in the agents

107

Chapter 5 Leader Election for Programmable Matter

are deleted. As described above, an inactive token becomes active when it is
forwarded by a candidate into a new segment. The remaining tasks are the
responsibility of the delimiter tokens: When an agent receives a delimiter token,
it executes the computations described above and then deletes its comparison
result and becomes active again.

Finally, note that a candidate that withdrew its candidacy still takes part
in the identifier comparison phase to a certain extent: Since the agents in
its segment still match with incoming tokens, the candidate has to keep
activating these tokens when it forwards them to the segment of the preceding
candidate. However, candidates that withdrew their candidacy will never
progress to solitude verification and are treated as non-candidates in the
solitude verification phase.

5.4.5 Solitude Verification

The goal of the solitude verification phase is for a candidate c to check whether
it is the last remaining candidate on its boundary. Solitude verification is
triggered during the identifier comparison phase whenever a candidate detects
equality between its own identifier and the identifier of a token sequence that
traversed its segment. Note that such a token sequence can either be the
token sequence created by c itself or the token sequence created by some other
candidate that chose the same random identifier. Once the solitude verification
phase has been started, it runs in parallel to the identifier comparison phase
and does not interfere with it.

A candidate c can check whether it is the last remaining candidate by
determining whether the next candidate in the direction of the cycle is again c
or some other candidate. To achieve this, the solitude verification phase has to
span not only c.seg but also all subsequent segments of former candidates that
already withdrew their candidacy during the identifier comparison phase. We
refer to the union of these segments as the extended segment of c. The basic
idea of the algorithm is the following: We treat the edges that connect the
agents on the boundary as vectors in the two-dimensional Euclidean plane. For
c to be the last remaining candidate, the candidate at the end of the extended
segment of c must occupy the same node as c. This is the case if and only if the
vectors corresponding to the edges along the extended segment of c together
with the vector going from the last agent of the extended segment to the next
candidate sum up to the zero vector. To determine whether this is the case,
c locally defines a two-dimensional coordinate system (e.g., the coordinate
system depicted in Figure 5.6) and uses a token passing scheme to determine
whether the x- and y-coordinates of the vectors respectively sum up to zero.
We only describe the token passing scheme for the x-coordinate. The token
passing scheme for the y-coordinate works analogously. The two token passing
schemes are executed in parallel.

108

5.4 Leader Election Algorithm

First, c sends an activation token along its extended segment to the next
candidate. Whenever the token moves right (i.e., in the positive direction of
the local x-axis defined by c), it creates a positive token that is sent back along
the boundary towards c. Whenever the token moves left (i.e., in the negative
direction of the local x-axis), it creates a negative token that is also sent back
towards c. The positive and negative tokens move independently of each other.
However, a token of either type cannot overtake another token of the same
type. Each agent can hold at most two tokens of each type. The tokens do not
move beyond c.

Consider a positive token t. Eventually, t reaches an agent a such that the
agents from c to a.pred all hold two positive tokens. At this point, t cannot
move any closer to c and we say t has settled. Each token holds a bit that
specifies whether it has settled. The bit is initially false. It is set to true if the
token reaches c or if the token is held by an agent a such that a.pred already
holds two settled positive tokens. The negative tokens use the same mechanism
to detect whether they are settled. Observe that once all tokens of a specific
type have settled, they form a consecutive sequence whose length corresponds
to the number of tokens.

After the activation token completely traversed the extended segment of c
and reached the next candidate, it moves back towards c while staying behind
the positive and negative tokens. When it first encounters an agent a in front
of it that holds a settled token, it moves to a and waits until all tokens at a
are either forwarded or have settled. At this point, the observation from the
last paragraph implies the following property: The total number of positive
tokens equals the total number of negative tokens if and only if the number of
settled positive tokens at a equals the number of settled negative tokens at a.
Therefore, the activation token can locally decide whether the x-coordinate of
the aforementioned sum of vectors is zero or not. The activation token then
moves back to c and reports the result. On its way to c it deletes all positive
and negative tokens it encounters. Once c has received the results for both the
x- and the y-coordinate, it knows whether the vectors induced by its extended
segment sum up to the zero vector.

Using the given token passing scheme, a candidate c can decide whether
the next candidate along the boundary occupies the same node in GET as
c. However, this is not sufficient to decide whether c is the last remaining
candidate on the boundary. As mentioned in Section 5.4.1, a particle can occur
up to three times as different agents on the same boundary. Therefore, there
can be distinct agents on the same boundary that occupy the same node of
GET. If an extended segment reaches from one of these agents to another,
the vectors induced by the extended segment sum up to the zero vector even
though there are at least two agents left on the boundary. To handle this case,
each particle assigns a locally unique agent identifier from {1, 2, 3} to each of

109

Chapter 5 Leader Election for Programmable Matter

its agents in an arbitrary way. When the activation token reaches the end of
the extended segment, it reads the agent identifier of the candidate at the end
of the extended segment and carries this information back to c. It is not hard
to see that c is the last remaining candidate on the boundary if and only if
the vectors sum up to the zero vector and the agent identifier stored in the
activation token equals the agent identifier of c.

Finally, we have to address the interaction between the solitude verification
phase and the identifier comparison phase. As already mentioned in the
previous section, the solitude verification phase can be triggered quite frequently.
Therefore, it can happen that the solitude verification phase is triggered for a
candidate c while c is still performing a previously triggered execution of the
solitude verification phase. In this case, c simply continues with the already
ongoing execution and ignores the request for another execution. Furthermore,
c might be eliminated by the identifier comparison phase while it is performing
solitude verification. In this case, c waits for the ongoing solitude verification
to finish and only then withdraws its candidacy.

5.4.6 Boundary Identification

Once a candidate c determines that it is the only remaining candidate on its
boundary, it initiates the boundary identification phase to check whether it lies
on the unique outer boundary of the particle system or on an inner boundary.
If it lies on the outer boundary, the particle responsible for c declares itself the
leader. Otherwise, c revokes its candidacy. To achieve this, we make use of
the observation that the outer boundary is oriented clockwise while an inner
boundary is oriented counter-clockwise, see Figure 5.4. This observation is a
direct consequence of the way the predecessor and successor of an agent are
defined in Section 5.4.1.

The candidate can distinguish between the two cases using the following
simple token passing scheme: It sends a token along the boundary that sums
up the angles of the turns it takes according to Figure 5.5. When the token
returns to the candidate, the absolute value |α| of the value α stored in the
token represents the external angle of the polygon induced by the boundary.
It is well known that the external angle of a polygon in the Euclidean plane
is |α| = 360◦. Note that the rules given in Figure 5.5 take into account the
orientation (i.e., clockwise versus counter-clockwise) of the traversal. Since
the outer boundary is oriented clockwise and an inner boundary is oriented
counter-clockwise, we have α = 360◦ for the outer boundary and α = −360◦

for an inner boundary. The token can encode α as an integer k such that
α = k · 60◦. To distinguish the two possible final values of k it is sufficient to
store k modulo 5 so that we have k = 1 for the outer boundary and k = 4 for
an inner boundary. Therefore, the token only needs three bits of memory.

110

5.5 Analysis

Figure 5.5: Angles along a traversal of a boundary. For the depicted agent a
the incoming arrow represents the vector from a.pred to a and the
the outgoing arrow represents the vector from a to a.succ. Note
that only the angle between these vectors is relevant; the absolute
global direction of the vectors cannot be detected by the agent a
since the particles do not possess a global compass.

5.5 Analysis

We now turn to the analysis of the leader election algorithm. We first show
the correctness of the algorithm in Section 5.5.1 and then analyze its running
time in Section 5.5.2.

5.5.1 Correctness

To show the correctness of the algorithm we have to prove that eventually a
single particle irreversibly declares itself to be the leader of the particle system
and no other particle ever declares itself to be the leader. Note that an agent
on an inner boundary can never cause its particle to become the leader: Even
if the algorithm reaches the point at which there is exactly one candidate
c on some inner boundary, c will withdraw its candidacy in the boundary
identification phase. Therefore, we can focus exclusively on the behavior of
the algorithm on the unique outer boundary.

Let n be the number of particles in the particle system. Recall that we say
an event occurs with high probability (abbreviated as w.h.p.) if it occurs with
probability at least 1− n−c for a given constant c ≥ 1. We first show a series
of lemmas to establish that, with high probability, there is a unique candidate
that has an identifier that is strictly greater than the identifier of every other
candidate. Define L to be the length of the outer boundary, i.e., the number of
agents in the cycle spanning the boundary. We have the following bound on L.

111

Chapter 5 Leader Election for Programmable Matter

Figure 5.6: Coordinate system and bounding box (dashed) of a particle system.

Lemma 5.1. L ≥ √n.

Proof. We define a coordinate system by picking an arbitrary node of GET as
the origin and orienting the x- and y-axis as depicted in Figure 5.6. Consider
the axis-aligned bounding box of the particle system, see Figure 5.6. We define
the length of a side of this bounding box as the number of nodes it spans. Since
the particle system is connected and contains n particles, one of the sides of
the bounding box has to be of length at least

√
n. Assume for now that the

top and bottom side of the bounding box have the longest length. Define a
column of the particle system to be a maximal set of particles with the same
x-coordinate. The particle with the greatest y-coordinate in each column is
part of the outer boundary. Since the number of columns equals the length of
the top side, there are at least

√
n agents on the outer boundary. The case

that the left and right side of the bounding box have the longest length is
analogous.

The next lemma gives us a lower bound on the length of the longest segment,
which is equal to the number of digits in the longest identifier.

Lemma 5.2. For n sufficiently large, there is a segment of length at least
⌊0.25 log n⌋, w.h.p.

Proof. Pick an arbitrary agent a1 on the boundary and let a = (a1, a2, . . . , aL)
where ai = ai−1.succ for 2 ≤ i ≤ L. Define b = (b1, b2, . . . , bL) where bi = 1 if
the coin flip performed by ai in the identifier setup phase came up heads and
bi = 0 otherwise. We first show that b contains a subsequence of length at least
m = ⌊0.25 log n⌋ such that all elements of the subsequence are 0. For this, we
divide b into consecutive subsequences of length m. According to Lemma 5.1,
we get k subsequences where

k = ⌊L/m⌋ ≥ ⌊√n/m⌋ ≥ ⌊4√n/ log n⌋.

112

5.5 Analysis

For k to be well defined we assume n ≥ 16 so that m > 0. We define
b(i) = (b(i−1)m+1, . . . , bim) to be the i-th subsequence where 1 ≤ i ≤ k. Let Ei

be the event that all elements of b(i) are 0. We have

Pr[Ei] = 1/2m ≥ n−1/4.

Since the events Ei are independent, we have

Pr

[

k
⋂

i=1

Ei

]

≤
(

1− n−1/4
)k
≤
(

1− n−1/4
)⌊4

√
n/ log n⌋

.

Note that ⌊x⌋ > x/4 for any x ≥ 4/3. Since 4
√

n/ log n ≥ 4/3 for n ≥ 16, this
implies ⌊4√n/ log n⌋ >

√
n/ log n. Therefore, we have

Pr

[

k
⋂

i=1

Ei

]

≤
(

1− n−1/4
)

√
n/ log n

.

Applying the well-known inequality (1− 1/x)x ≤ 1/e with x = n1/4 yields

Pr

[

k
⋂

i=1

Ei

]

≤ e−n1/4/ log n.

So for n sufficiently large, the entries of one of the subsequences b(i) are all 0,
w.h.p. This implies that b contains a subsequence of at least m consecutive
entries that are 0.

It remains to show that at least one element of b is 1 and, therefore, there
is at least one candidate on the outer boundary. This holds with probability
1− 2−L ≥ 1− 2−√

n according to Lemma 5.1. So overall, for n sufficiently large
there is a segment of size at least ⌊0.25 log n⌋, w.h.p.

We can now show that there is a unique candidate that has an identifier
that is strictly greater than the identifier of every other candidate.

Lemma 5.3. For n sufficiently large, there is a candidate c∗ such that c∗.id >
c.id for every candidate c 6= c∗, w.h.p.

Proof. Let C be the set of candidates, let M be the set of candidates with
maximal segment length, and let c∗ be some candidate with the highest identifier.
Since in a comparison between two identifiers of different length the shorter
identifier is defined to be lower than the longer identifier, we must have c∗ ∈M
and c∗.id > c.id for all c ∈ C \M . It remains to show that c∗.id > c.id for all
c ∈M \ {c∗}. This is the case if the identifier of c∗ is unique.

By definition, the identifiers of the candidates in M all consist of the same
number of digits. By Lemma 5.2, this number of digits is at least ⌊0.25 log n⌋,

113

Chapter 5 Leader Election for Programmable Matter

w.h.p. Each digit is chosen independently and uniformly at random from the
interval [0, r−1] for a constant r of our choice. Therefore, for any candidate c ∈
M \ {c∗} the probability that c.id = c∗.id is at most r−⌊0.25 log n⌋ ≤ r1−0.25 log n.
Applying the union bound shows that the probability that there exists a
candidate c ∈M \ {c∗} such that c.id = c∗.id is at most

(|M | − 1) · r1−0.25 log n = (|M | − 1) · r · n−0.25 log r ≤ 3r · n1−0.25 log r,

where the second inequality holds because |M | ≤ 3n by definition. Choosing r
sufficiently large and requiring n ≥ r shows the lemma.

On the basis of Lemma 5.3, we can now prove the correctness of the algorithm.

Theorem 5.4. The algorithm solves the leader election problem, w.h.p.

Proof. We have to show that eventually a single particle irreversibly declares
itself to be the leader of the particle system and no other particle ever declares
itself to be the leader. As described at the beginning of this section, an agent
on an inner boundary of the particle system cannot cause its particle to become
the leader. So consider the agents on the outer boundary. Once every particle
has finished the boundary setup phase, every agent has finished the segment
setup phase, and every candidate has finished the identifier setup phase, we
have that w.h.p. there is a unique candidate c∗ that has the highest identifier on
the outer boundary according to Lemma 5.3. Since c∗ has the highest identifier,
it does not withdraw its candidacy during the identifier comparison phase.
In contrast, every other candidate c 6= c∗ eventually withdraws its candidacy
because the token sequence of c∗ eventually traverses c.seg. Therefore, an
agent c 6= c∗ cannot cause its particle to become the leader. Once c∗ is the last
remaining candidate on the outer boundary, it eventually triggers the solitude
verification phase because the token sequence of c∗ eventually traverses c∗.seg
while c∗ is not already performing solitude verification. After verifying that it
is the last remaining candidate, c∗ executes the boundary identification phase
and eventually determines that it lies on the outer boundary. It then instructs
its particle to declare itself the leader of the particle system.

5.5.2 Running Time

Recall that the running time of an algorithm for leader election is defined as
the number of rounds until a leader is established. Since the given algorithm
always establishes a leader on the unique outer boundary, we can limit our
attention to that boundary.

The first two phases of the algorithm, namely the boundary setup phase
and the segment setup phase, consist entirely of computations based on local
neighborhood information. Therefore, these phases can be completed instantly

114

5.5 Analysis

by a particle upon its first activation. Since each particle is activated at least
once in every round, the first two phases of the algorithm are complete for all
particles after a single round. When an agent becomes a candidate, it initiates
the identifier setup phase. We have the following lemma.

Lemma 5.5. For a segment of length ℓ the identifier setup phase takes O(ℓ2)
rounds.

Proof. In the identifier setup phase a token that is created by the candidate
first traverses the segment to establish the random digits of the identifier. Once
the token reaches the end of the segment, it creates a copy of the identifier
that is stored in reversed order in the segment. For this, the token moves in
an alternating fashion back and forth through the segment. Finally, once the
copying is complete, the token moves back to the candidate. It is not hard to
see that the overall number of steps taken by the token is O(ℓ2).

After the first round, the segment is established and therefore the token can
move without being stalled. In each further round, the token can take at least
one step along its trajectory. Hence, the identifier setup phase takes O(ℓ2)
rounds.

To bound the number of rounds required to complete the identifier setup
phase for all segments on the outer boundary, we have to bound the maximal
length of a segment.

Lemma 5.6. The length of a segment on the outer boundary is O(log n), w.h.p.

Proof. For n ≥ 2 and any constant real c ≥ 1, the probability that an agent
becomes a candidate with a segment of length at least c log n is at most
1/2c log n = n−c. Since there are n particles in the particle system and each
particle corresponds to at most three agents, there are at most 3n agents on
the outer boundary. Applying the union bound shows that the probability that
there is a segment of length at least c log n is at most 3n1−c. Therefore, there
is no segment of length at least c log n, w.h.p.

Combining the previous two lemmas gives us the following corollary.

Corollary 5.7. The identifier setup phase is complete for all candidates on
the outer boundary after O(log2 n) rounds, w.h.p.

After the identifiers have been generated, they are compared in the identifier
comparison phase. In this phase a set of digit tokens, one for each agent on the
boundary, traverses the boundary against the direction of the cycle spanning
it. Each agent can store at most two tokens. The tokens are not allowed to
overtake each other, so agents maintain the order of the tokens when forwarding
them. Note that a token is never delayed unless it is blocked by tokens in front

115

Chapter 5 Leader Election for Programmable Matter

of it. Therefore, an agent a forwards a token whenever a.pred can hold an
additional token. Finally, an agent forwards at most one token per activation.

We define the number of steps a token took as the number of times it
was forwarded from one agent to the next since its creation. Let T be the
earliest round such that at the beginning of the round every agent on the outer
boundary has created its digit token. We have the following lemma.

Lemma 5.8. At the beginning of round T + i for i ≥ 0, each digit token on
the outer boundary took at least i steps.

Proof. We establish a lower bound on the number of steps a token took by
comparing the asynchronous execution of the token passing scheme with a
synchronous execution in which the tokens move in lockstep. For the syn-
chronous execution, we assume that each token is initially stored at the agent
that created it. We refer to this point in time in the synchronous execution
as round 0. The tokens move in lockstep along the boundary so that in every
round each agent stores exactly one token. For a token t let si(t) be the number
of steps t took by the beginning of round i of the synchronous execution. By
definition, we have si(t) = i. Similarly, let ai(t) be the number of steps t took
at the beginning of round T + i of the asynchronous execution. We show by
induction on i that ai(t) ≥ si(t) for all i and for every token t.

The statement holds for i = 0 by definition. Suppose that the statement
holds for some i ≥ 0 and consider a token t. We show ai+1(t) ≥ si+1(t). If
ai(t) > si(t) then

ai+1(t) ≥ ai(t) ≥ si(t) + 1 = si+1(t),

and, therefore, the statement holds. So assume ai(t) = si(t). To prove
ai+1(t) ≥ si+1(t), we have to show that t is forwarded at least once in round T +i
of the asynchronous execution. Recall that in each round of the asynchronous
execution, each agent is activated at least once. Therefore, also the agent
holding t at the beginning of the round is activated at least once. Since the
tokens do not overtake each other, their relative order along the boundary
(considering both a token’s position on the boundary as well as which token
is forwarded first if an agent holds two tokens) is well defined and remains
unchanged in both the synchronous and the asynchronous execution. Let t′ be
the next token from t in the direction of the traversal along the boundary (i.e.,
against the direction of the cycle spanning the boundary). In the synchronous
execution t′ started one agent ahead of t. Furthermore, the induction hypothesis
together with our assumption that ai(t) = si(t) implies

ai(t
′) ≥ si(t

′) = si(t) = ai(t).

Therefore, t′ is at least one agent ahead of t in the asynchronous execution. By
an analogous argument one can see that the token t′′ following t′ is at least

116

5.5 Analysis

two agents ahead of t in the asynchronous execution. Since the tokens preserve
their order, there are no other tokens in between t, t′, and t′′. Therefore, the
agent to which t should be forwarded in round T + i of the asynchronous
execution holds at most one token, namely t′. Furthermore, even if the agent
holding t at the beginning of round T + i of the asynchronous execution holds
an additional token, t is forwarded first because the order of the tokens is
preserved. Therefore, t is indeed forwarded at least once in round T + i of the
asynchronous execution.

Consider the proof of Lemma 5.8 above. On a conceptual level, we showed
that the asynchronous execution of a token passing scheme dominates a cor-
responding synchronous execution in terms of a suitable measure of progress.
We refer to this kind of argument as a domination argument. Domination
arguments play a crucial role in this part of the thesis as they are our main
tool for analyzing the running time of algorithms in the amoebot model.

The following lemma establishes an upper bound on the running time of
the solitude verification phase. Its proof is another example of a domination
argument.

Lemma 5.9. For an extended segment of length ℓ the solitude verification
phase takes O(ℓ) rounds.

Proof. The token passing scheme of the solitude verification phase is executed
independently for the x- and the y-coordinate. We consider one of these
executions and show that it takes O(ℓ) rounds. First, the activation token
moves through the extended segment and creates positive and negative tokens.
Since the activation token moves through the extended segment unhinderedly,
this traversal takes O(ℓ) rounds. Then, the activation token moves back
towards the candidate but now stays behind the tokens it created. The two
types of tokens created by the activation token move back towards the candidate
independently of each other. However, two tokens of the same type cannot
overtake each other. Once all tokens of both types have settled, the activation
token can move back to the candidate unhinderedly, which takes another O(ℓ)
rounds.

It remains to determine the number of rounds until all tokens have settled.
We use a domination argument that is very similar to the one used in the
proof of Lemma 5.8. Consider a single token type. To simplify our notation,
we define round 0 of the asynchronous execution to be the earliest round such
that at the beginning of the round the activation token already created all
tokens of the considered type. We compare the asynchronous execution with
the following synchronous execution: In round 0 of the synchronous execution,
each token is stored at the agent that created it. The tokens then move in
lockstep towards the candidate. Apart from the movement of the tokens, the

117

Chapter 5 Leader Election for Programmable Matter

synchronous execution works the same way as the asynchronous execution,
i.e., each agent can store two tokens and the tokens move as close to the
candidate as possible. We assign the numbers 1, 2, . . . , ℓ to the agents of the
extended segment starting with 1 at the candidate. For a token t let si(t) be
the number assigned to the agent that holds t at the beginning of round i of
the synchronous execution. Similarly, let ai(t) be the number of the agent that
holds t at the beginning of round i of the asynchronous execution. We show
by induction on i that ai(t) ≤ si(t) for all i and for every token t.

The statement holds for i = 0 by definition. Suppose that the statement
holds for some round i ≥ 0 and consider a token t. We show ai+1(t) ≤ si+1(t).
If ai(t) < si(t) then

ai+1(t) ≤ ai(t) ≤ si(t)− 1 ≤ si+1(t),

and, therefore, the statement holds. So assume ai(t) = si(t). We need two
observations: First, since the tokens do not overtake each other, their order
along the extended segment is well defined and remains unchanged in both the
synchronous and the asynchronous execution. Second, when an agent holds
two tokens in the synchronous execution, both tokens must have settled.

Let t′ be the next token from t towards the candidate. If there is no such
token, the statement holds since t can move unhinderedly in the asynchronous
execution. Otherwise, we have si(t

′) ≤ si(t) by our first observation. We
distinguish three cases and show that in each case ai+1(t) ≤ si+1(t).

1. If si(t
′) = si(t) then, by our second observation, both t and t′ have

settled. Therefore, t is never forwarded again, neither in the synchronous
execution nor in the asynchronous execution. This implies

ai+1(t) = ai(t) = si(t) = si+1(t).

2. If si(t
′) ≤ si(t) − 2 then the agent ahead of t holds no token in the

synchronous execution because there is no token between t and t′ by our
first observation. By our assumption that ai(t) = si(t) together with the
induction hypothesis, the agent ahead of t also holds no token in the
asynchronous execution. Therefore, t is forwarded at least once in the
asynchronous execution and we have

ai+1(t) ≤ ai(t)− 1 = si(t)− 1 = si+1(t).

3. If si(t
′) = si(t)− 1 then we have to distinguish two subcases. If the agent

si(t
′) holds two tokens in the synchronous execution then t′ has settled

and hence also t has settled. Therefore, the statement holds by the same
argument as in the first case above.

118

5.5 Analysis

So suppose that si(t
′) only holds t′ in the synchronous execution. Let t′′

be the next token from t′ towards the candidate. If there is no such token,
then the agent ahead of t holds at most one token in the asynchronous
execution, namely t′. Otherwise, t′′ is at least two agents ahead of t in
the synchronous execution and, by the induction hypothesis, also in the
asynchronous execution. So again, the agent ahead of t holds either no
token or only t′ in the asynchronous execution. Therefore, t is forwarded
at least once in the asynchronous execution and the statement holds by
the same argument as in the second case above.

It is not hard to see that the synchronous execution moves all tokens to
their final positions in O(ℓ) rounds. By the domination argument given above,
the asynchronous execution requires O(ℓ) rounds to do the same. Once all
tokens have settled, it takes O(ℓ) additional rounds until each token sets the
bit showing that it has settled to true.

The boundary identification phase is executed only when a candidate deter-
mines that it is the last remaining candidate on the boundary. The following
lemma provides an upper bound for the running time of this phase. Recall
that L is defined as the number of agents on the outer boundary.

Lemma 5.10. The boundary identification phase on the outer boundary takes
O(L) rounds.

Proof. The token calculating the angle completely traverses the outer boundary.
Since the boundary has length L and the token is forwarded at least once in
every round, this takes O(L) rounds.

Finally, we can show the main theorem of this chapter.

Theorem 5.11. The algorithm solves the leader election problem in O(L)
rounds, w.h.p.

Proof. After the first round the boundaries, the candidates, and the segments
have been established. By Corollary 5.7, all candidates on the outer boundary
complete the identifier setup phase within O(log2 n) rounds. So according to
Lemma 5.3, a unique candidate c∗ with the highest identifier on the outer
boundary has been established at that point, w.h.p. We show that c∗ instructs
its particle to become the leader after O(L) rounds.

At the beginning of round T = O(log2 n) all digit tokens have been created.
According to Lemma 5.8, after an additional L rounds, every digit token has
completed a pass along the outer boundary. At this point, the token sequence
of c∗ has traversed the segment of every other candidate and, therefore, every
candidate except for c∗ either already withdrew its candidacy or is flagged to

119

Chapter 5 Leader Election for Programmable Matter

withdraw its candidacy after it completes its current execution of the solitude
verification phase. Since the maximum length of an extended segment of a
candidate on the outer boundary is L, the candidates that still execute the
solitude verification phase withdraw their candidacy after O(L) additional
rounds according to Lemma 5.9. Once c∗ is the only remaining candidate on
the outer boundary, it has to start its final execution of the solitude verification
phase. For this, it might have to finish an already running execution of the
solitude verification phase that might fail because it was started too early.
In this case, it takes O(L) rounds for the solitude verification phase to fail.
After O(L) additional rounds, the token sequence of c∗ traverses c∗.seg again
and thus triggers the final execution of the solitude verification phase, which
takes another O(L) rounds. When c∗ determines that it is the last remaining
candidate, it executes the boundary identification phase, which takes O(L)
rounds according to Lemma 5.10. So after overall O(L) rounds, c∗ determines
that it is the only remaining candidate on the outer boundary and instructs
its particle to become the leader.

Theorem 5.11 specifies the running time of the leader election algorithm in
terms of the number of agents on the outer boundary. Let k be the number of
particles on the outer boundary. Since each particle on the outer boundary
corresponds to at most three agents on the outer boundary, we have the
following corollary.

Corollary 5.12. The algorithm solves the leader election problem in O(k)
rounds, w.h.p.

Depending on the application it might be desirable to specify the running
time of the algorithm in terms of the number of particles n in the entire particle
system. Clearly, the number of particles on the outer boundary is at most n.
This implies the following corollary.

Corollary 5.13. The algorithm solves the leader election problem in O(n)
rounds, w.h.p.

Note that in some cases the bound given in Corollary 5.13 is quite loose
compared to the bound given in Corollary 5.12 because the number of particles
on the outer boundary of a particle system can be much lower than n. For
example, a solid square of n particles (shaped like the bounding box depicted
in Figure 5.6) only has k = O(

√
n) particles on its outer boundary. However,

in general we can have k = Θ(n), which can easily be seen in the example of a
particle system forming a straight line.

120

5.6 Variants of the Leader Election Problem

5.6 Variants of the Leader Election Problem

In this section, we consider several variants of the leader election problem. We
present three positive results: We show how a leader can be elected when the
particle system contains expanded particles, we demonstrate how the leader
election algorithm can be extended such that its execution terminates for all
particles, and we present a variant of the algorithm that not only elects a
leader in O(L) rounds with high probability, but also eventually elects a leader
almost surely. The algorithms for these variants can be combined into a single
algorithm that satisfies all of the above properties. We close this section with
a negative result concerning the generalization of the leader election problem
to arbitrary graphs under the absence of geometric information.

5.6.1 Expanded Particles

It is straight-forward to extend the leader election algorithm to allow the
particle system to contain expanded particles: An expanded particle p simply
simulates two distinct contracted particles, one for each node occupied by
p. Whenever p is activated, it simulates the activations of the corresponding
contracted particles one after another in an arbitrary order. This effectively
reduces the problem of leader election with expanded particles to leader election
without expanded particles.

Since every expanded particle is activated at least once in every round, also
every simulated particle is activated at least once in every round. Recall that the
analysis presented in Section 5.5 holds for any fair activation order. Therefore,
the analysis remains valid despite the fact that two simulated particles of an
expanded particle are always activated immediately after one another. This
implies that the statement of Theorem 5.11 also holds for particle systems
containing expanded particles. Since the number of simulated particles is
at most twice the number of particles, the statements of Corollary 5.12 and
Corollary 5.13 also remain valid.

5.6.2 Termination for All Particles

In the definition of the leader election problem given in Section 5.3, the
leader is the only particle for which the algorithm must terminate. Any non-
leader particle is allowed to execute the algorithm indefinitely. The algorithm
presented in Section 5.4 can in fact experience infinite loops for a subset of the
agents in certain situations. For example, consider a particle system with an
empty region R of size 1. With constant probability, all six agents on the inner
boundary corresponding to R become candidates and get the same one-bit
identifier. The identifier comparison phase of the leader election algorithm
will never eliminate any of the six candidates in this situation. Therefore, the
candidates are stuck in an infinite loop.

Depending on the application, it might be desirable to have a leader election

121

Chapter 5 Leader Election for Programmable Matter

algorithm that is guaranteed to terminate for all particles. This can be achieved
using the following extension of the algorithm presented in Section 5.4: After
the leader has been elected, it broadcasts a termination message through the
particle system. A particle receiving this message forwards it to each of its
neighbors and then terminates its execution of the leader election algorithm.
Let A be the set of occupied nodes in GET and let GET|A be the subgraph
of GET induced by A. Clearly, the running time of the broadcast is linear
in the diameter D of the graph GET|A. Therefore, after O(L + D) rounds,
a leader has emerged and the execution of the leader election algorithm has
terminated for all particles in the particle system. We summarize this result in
the following theorem.

Theorem 5.14. The algorithm solves the leader election problem and termi-
nates for all particles in O(L + D) rounds, w.h.p.

Note that the parameters L and D are in general independent of each other.
For example, it is not hard to construct particle systems such that either
L = Ω(n) and D = O(

√
n), or L = O(

√
n) and D = Ω(n). However, L and D

are both clearly in O(n), which implies the following corollary.

Corollary 5.15. The algorithm solves the leader election problem and termi-
nates for all particles in O(n) rounds, w.h.p.

5.6.3 Almost-Sure Leader Election

The leader election algorithm presented in Section 5.4 elects a leader with
high probability. Accordingly, there is a small probability that the algorithm
fails to elect a leader. For example, every agent could decide to become a
non-candidate during the segment setup phase so that the algorithm effectively
comes to a halt without electing a leader. In this section, we describe how
the leader election algorithm can be extended such that it almost surely elects
a leader eventually (i.e., it elects a leader with probability 1 in the limit as
the number of rounds approaches infinity) and it still elects a leader in O(L)
rounds with high probability.

The main idea behind the extension is to run a second leader election
algorithm in parallel to the algorithm presented in Section 5.4. The second
algorithm sets up the boundaries as described in Section 5.4.1. Each agent is
initially a candidate, and the candidates alternate between the following two
phases: In the first phase, a candidate flips a coin and sends the result along
its boundary to both its preceding and its succeeding candidate. A candidate
withdraws its candidacy if its coin flip came up tails and the coin flips of both
its predecessor and its successor came up heads. Note that this competition
locally synchronizes competing candidates.

The second phase of the algorithm corresponds to the solitude verification
phase described in Section 5.4.5. Once a candidate determines that it is the last

122

5.6 Variants of the Leader Election Problem

remaining candidate on its boundary, it executes the boundary identification
phase described in Section 5.4.6. If the candidate lies on an inner boundary,
it withdraws its candidacy. If it lies on the outer boundary, it sends a token
along the boundary that stops the execution of the original algorithm in the
particles on the outer boundary and, at the same time, checks whether the
original algorithm already established a leader. If there already is a leader, the
candidate withdraws its candidacy. Otherwise, it declares itself the leader.

We have the following theorem.

Theorem 5.16. The algorithm elects a leader in O(L) rounds with high
probability, and it eventually elects a leader almost surely.

Proof. Consider the execution of the second algorithm on the outer boundary.
As long as there is more than one candidate on the boundary, the first phase
of the algorithm reduces the number of candidates with a probability that
is lower bounded by a constant. Furthermore, the last remaining candidate
on the boundary competes with itself and will therefore never withdraw its
candidacy during the first phase of the algorithm. Therefore, it holds almost
surely that eventually only a single candidate remains on the outer boundary.

The last remaining candidate on the outer boundary eventually passes the
solitude verification phase and the boundary identification phase. It then
interacts with the original leader election algorithm by sending a token along
the outer boundary. This interaction produces one of three results: First, if
the original algorithm already established a leader, the second algorithm does
not produce a leader. Second, if the original algorithm established a unique
candidate with the highest identifier on the outer boundary but the particle
corresponding to that candidate is reached by the aforementioned token before
it claims leadership, only the second algorithm establishes a leader. Finally, if
the original algorithm fails to establish a unique candidate with the highest
identifier on the outer boundary, the second algorithm establishes a leader.

With high probability either the first or the second case holds according
to Theorem 5.4. In the first case, the leader is established by the original
algorithm in O(L) rounds by Theorem 5.11. In the second case, the second
algorithm stops the execution of the original algorithm before it establishes
a leader. Since the original algorithm establishes a leader in O(L) rounds,
the aforementioned token must have been created in O(L) rounds. The token
requires at most L rounds to traverse the boundary and, therefore, the second
algorithm establishes a leader in O(L) rounds. Finally, in the third case the
second algorithm almost surely establishes a leader eventually.

5.6.4 General Graphs

In the amoebot model, the particles occupy the nodes of the infinite triangular
grid graph GET. The graph GET is embedded in the Euclidean plane in a specific

123

Chapter 5 Leader Election for Programmable Matter

way, which provides the particles with geometric information. Specifically, the
particles can measure distance because each adjacent pair of nodes is separated
by a unit distance, and they can measure angles since each face of GET is an
equilateral triangle and the particles know the rotational order of neighboring
nodes through their port labels. The leader election algorithm presented in
Section 5.4 explicitly uses this geometric information in the boundary setup
phase, the solitude verification phase, and the boundary identification phase.

A natural question is whether there is an algorithm that achieves leader
election on any given graph G without geometric information. To formally
investigate this question, we assume that we are given a set of contracted
particles occupying a connected subset of the nodes of a graph G of constant
degree d, and the ports of the particles are labeled arbitrarily with numbers
from 1 to d. This variant of the amoebot model was presented in [Der+15b] as
the general amoebot model.

Let G be a ring of n nodes and let each node be occupied by a contracted
particle. To solve the leader election algorithm, eventually a single particle has
to irreversibly declare itself the leader and no other particle may ever declare
itself to be the leader. Since every node is occupied by a contracted particle,
the particles cannot move. Therefore, the particles have to elect a leader using
communication only. Note that the problem of electing a leader in the particle
system under these conditions is equivalent to the problem of electing a leader
in an undirected ring of anonymous nodes where each node is a probabilistic
finite automaton.

The problem of electing a leader in a ring of anonymous nodes was already
investigated by Itai and Rodeh [IR90]. We say a leader election algorithm fails
if it either does not establish a leader or it establishes more than one leader.
The results of Itai and Rodeh imply that for every ρ < 1, the error probability
of an algorithm that solves the leader election problem on rings of arbitrary
size is greater than ρ, i.e., the probability that the algorithm fails cannot be
bounded away from 1. Therefore, the leader election problem is infeasible on
arbitrary graphs without geometric information.

5.7 Outlook

We already investigated several variants of leader election under the amoebot
model in the previous section. Still, many intriguing questions in this area
remain open. For example, our algorithm elects a leader in O(L) rounds
where L is the number of agents on the outer boundary. As we discussed in
Section 5.6.2, the parameter L is in general independent from the diameter D
of the particle system. It would be interesting to investigate whether there
is an algorithm that elects a leader in O(D) time. If so, one could try to
combine this algorithm with the algorithm presented in this chapter to achieve
a running time of O(min{D, L}).

124

5.7 Outlook

We showed in Section 5.6.4 that there is no algorithm that solves the leader
election problem in general graphs without geometric information. However, it
seems reasonable to adapt the presented algorithm to other specific graphs such
as the infinite square grid graph and its natural embedding in the Euclidean
plane in which each node lies at integer coordinates. For this, it would be
necessary to modify the boundary setup phase, the solitude verification phase,
and the boundary identification phase since these phases explicitly use the
geometric information induced by the embedding of the graph. The remaining
phases of the leader election algorithm only rely on the boundaries established in
the boundary setup phase and should therefore work without any modification.

Finally, it would also be interesting to see how the feasibility and the
complexity of leader election changes when the amount of geometric information
provided to the particles is varied. For example, we conjecture that if all nodes
have the same local north direction (i.e., the particle system has a global
compass), leader election can be solved deterministically using a variant of
the presented algorithm. Furthermore, one could investigate whether the
assumption of common chirality is actually necessary for leader election.

125

Chapter 6

Shape Formation with
Programmable Matter

We continue our investigation of the algorithmic foundations of programmable
matter in this chapter by considering the shape formation problem. As its name
suggests, this problem requires the particles of a particle system to reorganize
into a specific shape such as a line or a triangle.

There is an interesting connection between the shape formation problem
and the leader election problem we investigated in the previous chapter. We
first presented the ideas behind this connection in [Der+15b], albeit in a
slightly different context. Consider a ring of six expanded particles in which
the local north directions of the particles are chosen in such a way that the
particle system looks identical from the local point of view of each individual
particle. To clarify this intuitive description, note that such a ring actually
has a hexagonal shape due to the underlying graph GET and its embedding in
the plane. Suppose that the particles have to reorganize into a straight line.
To solve this problem, some particle in the ring has to contract since no other
movement is possible. At the same time, an algorithm has to make sure that
the particles on the opposite side of the ring do not contract since this would
subdivide the particle system into multiple connected components. Therefore,
an algorithm has to break the symmetry of the initially given ring in order to
solve the shape formation problem in this case. This can, of course, be achieved
by electing a leader and designating it as the first particle to contract.

On the other hand, suppose that we had an algorithm for the construction
of a straight line. Such an algorithm would allow for a very simple approach
to leader election: Once the line has been constructed, the two particles at
the ends of the line engage in a competition using random coin flips that
are exchanged by sending tokens along the line. The particle that wins the
competition becomes the leader of the particle system. Therefore, the leader
election problem can essentially be reduced to the problem of forming a line.

127

Chapter 6 Shape Formation with Programmable Matter

We introduced a first approach to shape formation in the amoebot model
in [Der+15b] and later extended this approach to form more shapes in [Der+15a].
The framework presented in this work allows for the construction of simple
shapes such as lines, triangles, and hexagons. The underlying idea is to con-
struct a shape by sequentially adding new particles to the end of a construction
path that originates at a given leader particle. For the example of a line, the
construction path is also a line. For a hexagon, the construction path spirals
outwards from the leader particle. The particles that are not part of the shape
are organized into a spanning forest: Particles adjacent to the shape form the
roots, and the remaining particles form the actual trees. To move the particles
towards the end of the construction path, the roots traverse the boundary of
the shape in a common direction while pulling the particles in their respective
trees behind them. This basic approach to shape formation has two major
disadvantages. First, it can only construct simple shapes that are amenable to
being built using a construction path. Furthermore, due to the sequential way
in which the approach extends the shape, it generally requires Ω(n) rounds to
construct a shape consisting of n particles, even if the shape could in principle
be formed more efficiently.

In this chapter, we present a more advanced approach to shape formation
that alleviates both of these shortcomings. Our approach can be used to
construct a large class of shapes. Specifically, we consider shapes composed of
a constant number of equilateral triangles of unit size that are arranged on a
grid. The approach can construct any shape that is sequentially constructible,
i.e., any shape that can be formed by sequentially adding triangles to the
outside of the shape under construction. We assume that the initial particle
system is well-initialized in that the particles form a triangle and the memory
of each particle only holds a representation of the desired shape. Under these
assumptions, our approach forms a scaled representation of the given shape that
includes all particles in O(

√
n) rounds. We show that this bound is optimal in

the sense that for every shape deviating from the initial triangle, any algorithm
requires Ω(

√
n) rounds to construct the shape in the worst case.

Underlying Publication This chapter is based on the following publication.

Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Universal Shape Formation for Programmable
Matter”. In: Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), see [Der+16b].

Unfortunately, we had to slightly weaken the main result in this chapter in
comparison to the underlying publication to compensate for an oversight in the
original analysis. Specifically, we had to restrict the shape formation algorithm
to shapes that are sequentially constructible instead of arbitrary shapes.

128

6.1 Problem Statement

Outline We already introduced the amoebot model and gave an overview of
the related literature, including the work pertinent to shape formation, in the
previous chapter. Therefore, we can turn directly to the technical part. We
begin in Section 6.1 by formally specifying the shape formation problem under
consideration. In Section 6.2 we introduce a number of movement primitives
that allow us to move large sets of particles in an efficient manner. These
primitives are used extensively throughout the remainder of this chapter. We
then describe an algorithm that transforms the initially given triangle into an
intermediate structure in Section 6.3, which simplifies the shape formation
process. We finally present the actual shape formation algorithm in Section 6.4.
Each of these algorithms is accompanied by a corresponding analysis in the
respective section. We close this chapter in Section 6.5 by discussing some
directions for potential future research on shape formation and, more generally,
on the algorithmic foundations of programmable matter overall.

6.1 Problem Statement

In the shape formation problem, a particle system has to reconfigure into a
given shape. Consider a set S of faces in the planar embedding of GET. Note
that S corresponds to a set of nodes in the dual graph of GET. We say two
triangular faces of GET are connected if they share a side, which is the case if
and only if the corresponding nodes in the dual graph are connected. We say
S is connected if the subgraph of the dual graph induced by S is connected.
We define a shape to be a connected, constant-size set of faces in GET.

Let s = |S|. We say S is sequentially constructible if there is a permutation
(a1, a2, . . . , as) of the faces in S such that for each prefix (a1, a2, . . . , ai) of the
permutation the shape corresponding to that prefix is connected, and each
triangular face ai has a side that lies on the outer boundary of the shape
induced by the prefix (a1, a2, . . . , ai). Intuitively, this means that it must be
possible to construct S by sequentially adding faces to the outside of the shape
in a way such that each intermediate shape created during the construction
is connected. Figure 6.1 shows a shape that is not sequentially constructible,
and Figure 6.2 shows a shape that is sequentially constructible.

Consider a transformation that consists of a translation, a rotation by a
multiple of 60◦, and an isotropic scaling. Let S′ be the set of triangles resulting
from applying this transformation to each face of a shape S. We require the
transformation to be such that the vertices of the triangles in S′ coincide with
nodes of GET. Let V (S′) be the set of nodes in GET that lie on a vertex, on
an edge, or on the inside of a triangle from S′. We call V (S′) a representation
of the shape S. Figure 6.2 illustrates this definition by an example.

For the shape formation problem, we assume that the particles system
initially forms a triangle consisting entirely of contracted particles. The local
memory of every particle initially only contains a binary representation of a

129

Chapter 6 Shape Formation with Programmable Matter

Figure 6.1: A shape that is not sequentially constructible. For each permutation
of the faces in this shape either there is an intermediate shape that
is not connected or at some point a face is added to the inside of
an intermediate shape.

Figure 6.2: Two representations of a shape consisting of 16 faces. We will often
represent sets of particles as geometric shapes. In this example, each
position inside a triangle, on a side of a triangle, and on a vertex
of a triangle is occupied by a particle. In the left representation
the triangles coincide with the faces of GET. Note that in this
representation the hole in the middle of the shape is actually closed
and therefore the representation is a solid quadrilateral. In the
right representation each triangle consists of four faces of GET and
the shape is rotated counter-clockwise by 120◦ compared to the left
representation.

130

6.2 Movement Primitives

sequentially constructible shape S. For ease of presentation, we assume that
the total number of particles n is a triangular number and, therefore, the
particles initially form a perfect triangle. We briefly discuss in Section 6.5
how this assumption can be lifted. An algorithm solves the shape formation
problem if it terminates for all particles and once all particles have terminated,
the set of occupied nodes corresponds to some representation of S. Note that
we allow the representation to contain expanded particles.

6.2 Movement Primitives

The shape formation algorithm reconfigures the particle system using a set
of primitives for moving connected sets of particles. The simplest of these
primitives moves a chain of particles along a path: Consider a simple directed
path P of length ℓ in GET. Let the first m nodes of P be occupied by contracted
particles for some m ≤ ℓ. The goal is to let the particles traverse P : i.e., the
particles should move only through the nodes in P , they have to stay connected
at all times, and in the end the particles should occupy the last m nodes of
P while being contracted. This is achieved by letting the particles move as a
connected chain using handovers.

Every particle in the chain moves forward according to the following greedy
movement strategy: The front-most particle in the chain expands along P
whenever it is contracted. The last particle contracts whenever it is expanded.
A contracted particle that is not the front-most particle pushes the particle in
front of it if possible. Finally, an expanded particle that is not the last particle
pulls the particle behind it if possible. We assume that the front-most particle
of the chain can locally deduce P , i.e., it knows in which direction to expand
and when to stop. Note that the given movement strategy never changes the
order of the particles in the chain and keeps the chain connected.

The following lemma bounds the number of rounds required for a particle
chain to traverse a path P . The proof of the lemma is based on a domination
argument, the concept of which we introduced in the previous chapter. Note
that in the previous chapter we used domination arguments to reason about
the movement of tokens, whereas the proof of the following lemma uses a
domination argument to reason about the movement of particles.

Lemma 6.1. A chain of particles of size m ≤ ℓ can traverse a path P of length
ℓ in O(ℓ) rounds.

Proof. We compare the asynchronous execution of the greedy movement strat-
egy with a synchronous execution in which all particles move at the same
time and each particle is allowed to be part of at most one movement, i.e.,
one expansion, one contraction, or one handover. Let P = (v1, v2, . . . , vℓ).
The particles initially occupy the nodes v1 to vm. For a particle p we write
hs

i (p) = j if the head of p occupies the node vj at the beginning of round i

131

Chapter 6 Shape Formation with Programmable Matter

of the synchronous execution, and we write ts
i (p) = j if the tail of p occupies

the node vj at the beginning of round i of the synchronous execution. We
define ha

i (p) and ta
i (p) analogously for the asynchronous execution. We show

by induction on the number of rounds that ha
i (p) ≥ hs

i (p) and ta
i (p) ≥ ts

i (p) for
every particle p and every round i.

The statement holds by definition for i = 0. Suppose that the statement
holds for round i and consider a particle p. We show ha

i+1(p) ≥ hs
i+1(p) and

ta
i+1(p) ≥ ts

i+1(p). If ha
i (p) > hs

i (p) or ta
i (p) > ts

i (p) then the statement holds.
So assume ha

i (p) = hs
i (p) and ta

i (p) = ts
i (p). We distinguish the following five

cases for the movement of p in round i of the synchronous execution.

1. If p does not move then certainly the statement holds.

2. If p expands into an empty node then p must be the front-most particle
of the chain so that p also expands in the asynchronous execution.

3. If p contracts without pulling another particle then p must be the last
particle of the chain so that p also contracts in the asynchronous execution.

4. If p performs a handover with the particle p′ in front of it then p must
be contracted and p′ must be expanded at the beginning of round i of
the synchronous execution. By the induction hypothesis, p′ must also
be expanded at the beginning of round i of the asynchronous execution.
Therefore, once p or p′ is activated in round i of the asynchronous
execution, the particles perform a handover.

5. If p performs a handover with the particle p′ behind it then p must be
expanded and p′ must be contracted at the beginning of round i of the
synchronous execution. By the induction hypothesis, p′ must also be
contracted at the beginning of round i of the asynchronous execution.
Therefore, once p or p′ is activated in round i of the asynchronous
execution, the particles perform a handover.

Since the statement holds in all cases, the induction is complete.
It is not hard to see that the synchronous execution of the greedy movement

strategy lets the particle chain traverse P in O(ℓ) rounds. Therefore, the
domination argument above implies the lemma.

The remaining movement primitives operate on a set of contracted particles
that form a triangle in GET. We define four operations for such triangles,
namely expansion, contraction, rotation, and shift. An example of the first
three of these operations is shown in Figure 6.3. The expansion of a triangle
results in a geometric shape we refer to as an expanded triangle. An expanded
triangle is a quadrilateral consisting of two triangles of the same size as the

132

6.2 Movement Primitives

Figure 6.3: Expansion, contraction, and rotation of a triangle. A triangle (left)
can expand to form an expanded triangle (middle). An expanded
triangle can contract back to a triangle (right). Concatenating an
expansion and a contraction effectively rotates a triangle by 60◦

around one of its vertices.

original triangle that share a common side. The contraction of a triangle
transforms an expanded triangle back into a triangle. An expansion can be
combined with a contraction to rotate a triangle around one of its vertices
by 60◦. Finally, a shift of a triangle moves all of its particles in a common
direction by one node.

The movement of a triangle is controlled by a designated particle occupying
one of its vertices. We refer to this particle as the coordinator of the triangle.
We assume that the particles on the boundary of a triangle are organized into
a cycle oriented counter-clockwise around the triangle. Each particle on the
boundary knows the direction of its preceding and its succeeding particle in
this cycle.

A triangle coordinator c can perform a counter-clockwise expansion of its
triangle in the following way. Let T be the set of nodes occupied by the
triangle before the expansion. Consider the side of the triangle that is incident
to c and that occurs first when traversing the boundary of the triangle in
counter-clockwise direction. Let L1 be the set of nodes corresponding to this
side of the triangle, see Figure 6.4. Let L2 be the set of nodes corresponding
to the other side of the triangle that is incident to c. Finally, let L3 be the set
of nodes we get by rotating L2 counter-clockwise around c by 60◦. Define a
row of the triangle as a maximal subset of T that forms a straight line in GET

that is parallel to the side of the triangle opposite of c.
The coordinator uses the following token passing scheme to control the

expansion. First, c sends an activation token along L1. Once a particle receives
the activation token, it forwards the token along L1 and sends a row token
along its row. A particle p that receives a row token forwards it to the next
particle p′ along its row. From that point on, p considers p′ to be the particle
in front of it in a particle chain and p′ considers p to be the particle behind it
in the chain. In each row there is a unique particle that initially occupies L2.

133

Chapter 6 Shape Formation with Programmable Matter

Figure 6.4: Example of a counter-clockwise triangle expansion. The coordinator
c is located at the top vertex of the triangle. The rows of the triangle
expand independently of each other by moving as particle chains
along the paths shown as dashed arrows in the right part of the
figure. Once every particle not occupying a node in L1 is expanded,
the triangle expansion is complete.

These particles are the front-most particles of the particle chains. Once such a
particle receives a row token, it starts moving as depicted in the right part of
Figure 6.4. Thereby, the particles in each individual row move as a connected
particle chain. The particles occupying L1 are part of these particle chains but
they are forced to stay at their position. Thus, according to the rules of the
greedy movement strategy, eventually all particles are expanded except for the
particles occupying L1. At this point, the particles form an expanded triangle.

To determine when the expansion of the triangle is complete, the coordinator
c proceeds as follows: When c sends out the activation token, it also creates
a validation token. A particle holding the validation token tries to forward it
along L3, i.e., it forwards the token if there is a particle occupying the next
position in L3 and it keeps the token if there is no such particle. It is not
hard to see that the validation token can only completely traverse L3 when
the triangle expansion is complete. Once the validation token reaches the last
node of L3, it is sent back along L3 to c. Note that the particle p occupying
the last node of L3 in the expanded triangle can easily be distinguished from
the remaining particles occupying nodes in L3 since p was originally a vertex
of the triangle. When the validation token returns to c, the coordinator knows
that the triangle expansion is complete.

On the basis of the ideas presented in the previous paragraphs, it is not hard
to design local-control algorithms for the remaining movement primitives. We
have the following lemma.

Lemma 6.2. A triangle of side length ℓ can be expanded, contracted, rotated,
and shifted in O(ℓ) rounds.

134

6.3 Intermediate Structure

Figure 6.5: Intermediate structure.

Proof. We prove the statement of the lemma for the case of triangle expansion.
First, note that the activation token and the row tokens only move through
static particles. The activation token traverses the side of the triangle corre-
sponding to L1, which consists of ℓ particles. Since the token is forwarded
every round, this traversal takes at most O(ℓ) rounds. Once the activation
token has completed its traversal, it takes another O(ℓ) rounds until every row
token reaches a particle occupying a node in L2. At this point, the particles
of each row have been organized into a particle chain. The particle chains
move independently of each other. The movement of a particle chain stops
once all its particles are expanded except for the particle occupying a node in
L1. Note that the path along which a particle chain moves has length O(ℓ).
By arguments analogous to those presented in the proof of Lemma 6.1, the
movement of a particle chain takes O(ℓ) rounds. Once all particle chains have
completed their movement, the validation token can traverse L3 unhinderedly.
Since this token traverses O(ℓ) static particles, it takes another O(ℓ) rounds
until it returns to the coordinator. Taking the sum of all of these terms gives
us a total running time of O(ℓ) rounds.

Consider a triangle consisting of m particles. According to Lemma 6.2, such
a triangle can be expanded, contracted, rotated, and shifted in O(

√
m) rounds.

This allows us to move large groups of particles efficiently, which is crucial for
the performance of the shape formation algorithm.

6.3 Intermediate Structure

The goal of this section is to reconfigure the particle system from the initially
given triangle into an intermediate structure that simplifies the actual shape
formation process. The intermediate structure we aim for is shown in Figure 6.5.
It consists of ∆ equilateral triangles of side length ℓ (shown in dark gray) that
are arranged in a straight line, and a remainder of particles (light gray) that
is too small to form an additional triangle. All particles in this structure are
contracted. Note that the algorithm we present in this section actually creates
a structure that can be slightly worse in the sense that it might leave a larger
remainder of particles. We will come back to this at the end of the section; for

135

Chapter 6 Shape Formation with Programmable Matter

now we assume that we can build the ideal structure.
Given a certain number of particles, the number of triangles ∆ in the

intermediate structure is completely determined by the choice of the side
length ℓ. Recall that s = |S| is the number of faces in the given shape. For the
intermediate structure to be useful, we want to choose ℓ such that

3

4
s + 1 ≤ ∆ ≤ s− 3.

The reason for these bounds on ∆ will become apparent in the following section.
Let L be the side length of the initial triangle. We choose

ℓ =

⌈

L

⌊c · √s⌋

⌉

for a constant c < 1. The following lemma establishes a value of c such that
our choice of ℓ is appropriate.

Lemma 6.3. For c = 50/51, s ≥ 153, and L ≥ 99 · √s, we have

3

4
s + 1 ≤ ∆ ≤ s− 3.

Proof. The number of particles t(k) in a triangle of side length k is

t(k) =
k
∑

i=1

i =
k(k + 1)

2
.

Therefore, we have

∆ =

⌊

t(L)

t(ℓ)

⌋

=

⌊

L(L + 1)

ℓ(ℓ + 1)

⌋

.

Let m = ⌊c · √s⌋ such that ℓ = ⌈L/m⌉. This implies

L/m ≤ ℓ ≤ L/m + 1. (6.1)

We first establish the upper bound on ∆. We have

∆ =

⌊

L(L + 1)

ℓ(ℓ + 1)

⌋

≤ L(L + 1)

ℓ(ℓ + 1)
≤ L(L + 1)

ℓ2
.

Applying the left inequality of Equation 6.1 gives us

∆ ≤ L(L + 1)

L2
·m2 =

L + 1

L
· ⌊c · √s

⌋2 ≤ L + 1

L
c2s.

Since L ≥ 50 we have (L + 1)/L ≤ c−1, which implies

∆ ≤ cs ≤ s− 3,

136

6.3 Intermediate Structure

where the last inequality holds since s ≥ 153.
We now turn to the lower bound on ∆. We have

∆ =

⌊

L(L + 1)

ℓ(ℓ + 1)

⌋

≥ L(L + 1)

ℓ(ℓ + 1)
− 1 ≥

(

L

ℓ + 1

)2

− 1.

Applying the right inequality of Equation 6.1 gives us

∆ ≥
(

L

L/m + 2

)2

− 1

=

(

L

L + 2m

)2

·m2 − 1

=

(

L

L + 2m

)2

· ⌊c · √s
⌋2 − 1

≥
(

L

L + 2m

)2

· (c · √s− 1
)2 − 1,

where the last inequality holds because c · √s ≥ 1. Simple arithmetic shows
that since L ≥ 99 · √s we have

(

L

L + 2m

)2

≥ c2,

which implies

∆ ≥
(

c2 · √s− c
)2
− 1 ≥ 3

4
s + 1,

where the last inequality holds because s ≥ 130.

We now describe how the initial triangle is reorganized into the intermediate
structure. First, we use the algorithm presented in the previous chapter to
perform leader election. This establishes a unique leader particle on the outer
boundary of the initial triangle. Once the leader has been established, it
initiates a broadcast throughout the particle system to stop the execution
of the leader election algorithm as described in Section 5.6.2 of the previous
chapter. The leader particle then sends a token along the boundary to transfer
its leadership to a particle at a vertex of the initial triangle. Since the triangle
has a circumference of O(

√
n), the leader election takes O(

√
n) rounds with

high probability according to Corollary 5.12. Transferring the leadership to a
vertex of the triangle also takes O(

√
n) rounds.

Next, the particle system determines the value of ℓ. Note that, in general,
a single particle cannot store ℓ = Ω(

√
n) since the memory of a particle has

constant size. Therefore, we have to store ℓ in a distributed fashion over
multiple particles. To determine ℓ, we use the following token passing scheme:
The leader sends a counter token along an adjacent side of the initial triangle.

137

Chapter 6 Shape Formation with Programmable Matter

This token stores a counter that counts the number of steps the token takes
modulo ⌊c · √s⌋. Since c and s are constants, also ⌊c · √s⌋ is a constant so
that the counter only requires constant memory. The counter is initialized
with the value 0 and is incremented whenever the token is forwarded. When a
particle holds the counter token while the counter is 0, the particle creates a
marker token. Note that thereby also the leader creates a marker token. Once
the counter token has traversed the side of the triangle, it is consumed by the
particle occupying the vertex at the end of the side.

Upon consuming the counter token, the particle at the end of the side creates
a terminal token. Both the marker tokens and the terminal token travel back
towards the leader. Each particle is allowed to store either one marker token
or the terminal token. An exception to this rule is the particle that creates
the terminal token: If this particle creates both a marker token and a terminal
token, it can temporarily store both tokens but has to pass the marker token
before the terminal token. Since the marker tokens all move towards the leader,
they eventually occupy a segment of consecutive particles starting at the leader.
To detect when this state is reached, each marker token stores a bit that is
initially false. The bit becomes true if the marker token is held by the leader
or if the marker token has another marker token in front of it that has its bit
set to true. Once the terminal token has a marker token with its value set
to true in front of it, it knows that all marker tokens are done moving. The
terminal token then moves through the segment of marker tokens back to the
leader to inform it that the token passing scheme has terminated. Note that
we allow the particles to hold both a marker token and the terminal token for
this traversal of the segment. After the token passing scheme has terminated,
the length of the segment of marker tokens corresponds to the value of ℓ. We
prove this fact in the following lemma.

Lemma 6.4. The segment of marker tokens created by the token passing
scheme has length ℓ.

Proof. Consider the set of particles that create marker tokens. These particles
divide the side of the triangle into disjoint segments. Let m = ⌊c · √s⌋. If L is
divisible by m then all segments are of length exactly m. Otherwise, the last
segment is shorter than m. In both cases, the number of segments is ⌈L/m⌉.
Since the number of segments corresponds to the number of marker tokens,
the lemma holds.

Next, we analyze the running time of the token passing scheme. Note that
the presented token passing scheme resembles the token passing scheme used in
the solitude verification phase of the leader election algorithm, see Section 5.4.5.
However, the two schemes differ in the initial placement of the tokens and the
number of tokens a particle (or agent) can hold. We have the following lemma.

138

6.3 Intermediate Structure

Lemma 6.5. The token passing scheme to determine ℓ takes O(
√

n) rounds.

Proof. The counter token traverses the side of the triangle in O(
√

n) rounds.
When its traversal is complete, all marker tokens and the terminal token have
been created and move towards the leader. Once the marker tokens occupy a
segment of consecutive particles, it takes O(

√
n) rounds for the bit in every

marker token to become true. The terminal token reaches the end of the
segment, detects that the marker tokens are done moving, and moves back to
the leader in an additional O(

√
n) rounds.

It remains to determine the time from the creation of the last marker token
until the marker tokens occupy a segment of consecutive particles. We use a
domination argument that is very similar to the argument used in the proof
of Lemma 5.9. We define round 0 of the asynchronous execution to be the
earliest round such that at the beginning of the round all marker tokens have
been created. We compare the asynchronous execution with the following
synchronous execution: In round 0 of the synchronous execution, each token
is stored at the particle that created it. The tokens then move in lockstep
towards the leader. We assign the numbers 1, 2, . . . , L to the particles of the
side of the triangle starting with 1 at the leader. For a marker token t let
si(t) be the number assigned to the particle that holds t at the beginning of
round i of the synchronous execution. Let ai(t) be defined analogously for the
asynchronous execution. We show by induction on i that ai(t) ≤ si(t) for all i
and for every marker token t.

The statement holds for i = 0 by definition. Suppose the statement holds for
round i. Consider a marker token t. We show ai+1(t) ≤ si+1(t). If ai(t) < si(t)
then certainly ai+1(t) ≤ si+1(t). So assume ai(t) = si(t). Consider the next
token t′ from t towards the leader. If si(t

′) < si(t)− 1 then by the induction
hypothesis we have

ai(t
′) ≤ si(t

′) < si(t)− 1 = ai(t)− 1

so that t does not have a token in front of it at the beginning of round i
in the asynchronous execution. Therefore, t is forwarded in round i of the
asynchronous execution when the particle holding t is activated, which implies
ai+1(t) ≤ si+1(t).

Now suppose si(t
′) = si(t)− 1. Note that ⌊c · √s⌋ ≥ 2 by our choice of c and

the lower bound on s established in Lemma 6.3. Therefore, at the beginning
of round 0 of the synchronous execution the marker tokens are separated by
at least one particle that does not hold a token. This implies that when two
tokens occupy neighboring particles in the synchronous execution, both tokens
must be at their final position. Hence, t and t′ must be at their final position
so that neither token is forwarded in round i in the synchronous execution.
This implies ai+1(t) ≤ si+1(t) and completes the induction.

139

Chapter 6 Shape Formation with Programmable Matter

Figure 6.6: Construction of the intermediate structure. The parts forming the
intermediate structure are shown in dark gray. The triangles that
are shifted and rotated are shown in light gray. For each dashed
arrow, the circles at the origin and at the tip of the arrow mark
the same particle before and after the respective triangle is moved.
As an example, the left-most triangle is rotated clockwise by 60◦

around the vertex at the origin of the corresponding arrow, then
it is shifted once to the right and once to the bottom-right, and
finally it is rotated clockwise by 120◦ around the vertex at the tip
of the arrow.

It is not hard to see that the synchronous execution moves all tokens to
their final position in O(

√
n) rounds. By the domination argument above, the

asynchronous execution also requires O(
√

n) rounds.

Once ℓ has been established, the intermediate structure is formed using a
recursive process that is coordinated by the leader. The process reconfigures
the particle system using triangle shifts and triangle rotations as illustrated in
Figure 6.6. It starts with the initial triangle. First, it splits the triangle into a
smaller triangle and an isosceles trapezoid with legs of length ℓ. The isosceles
trapezoid becomes the first part of the intermediate structure. Without loss of
generality, we assume that the leader initially occupies the top vertex of the
largest triangle shown in Figure 6.6. To determine the length of the legs of the
isosceles trapezoid, the leader sends a token that transfers the length ℓ from the
top of the triangle to the bottom by traversing the path shown in Figure 6.7.

140

6.3 Intermediate Structure

Figure 6.7: Transferring the length ℓ from the top of a triangle to the bottom.

Note that traversing this path can be achieved using only local information. To
separate the smaller triangle from the isosceles trapezoid, the token traverses
the circumference of the triangle and establishes a counter-clockwise cycle in
the particles that designates the set of particles as a triangle. Then the token
establishes a coordinator for the new triangle at its bottom right vertex.

To form the next part of the intermediate structure, the new triangle is
rotated, shifted twice, and rotated again as shown in Figure 6.6. Once the
movement of the triangle is complete, the coordinator gives up its role and
sends a token to the leader. Upon receiving this token, the leader sends a
broadcast through the triangle that removes the cycle from the boundary. The
process then recurs on the new triangle. Note that the orientation of the
rotations and the direction of the shifts changes with every recurrence. Also
the paths taken by the tokens used in the process change slightly from one
recurrence to the next. The process ends after moving the first triangle that
has a side length less or equal to ℓ.

The following lemma provides an upper bound on the number of rounds
required to build the intermediate structure.

Lemma 6.6. The presented algorithm builds the intermediate structure in
O(
√

n) rounds.

Proof. The algorithm terminates after O(L/ℓ) = O(1) recursions. In each
recursion the tokens coordinating the construction process traverse an overall
distance of O(

√
n), which takes O(

√
n) rounds. The newly established triangle

is rotated and shifted a constant number of times, which takes O(
√

n) rounds
according to Lemma 6.2.

The final part of the algorithm subdivides the intermediate structure into
triangles that are arranged as shown in Figure 6.5 by organizing the particles

141

Chapter 6 Shape Formation with Programmable Matter

Figure 6.8: End of the intermediate structure.

on the sides of each triangle into a cycle. This is achieved by letting a single
token traverse the sides of all triangles, which the token can do using only local
information. During the traversal, the token counts the number of triangles
in the intermediate structure. After the traversal, it reports this number to
the leader. Since there is a constant number of triangles in the intermediate
structure and the sides of each triangle have length ℓ = O(

√
n), the traversal

takes O(
√

n) rounds.
As we mentioned above, the given algorithm builds a structure that is slightly

different from the ideal intermediate structure shown in Figure 6.5. Roughly
speaking, the end of the structure is not necessarily perfectly suited for the
purpose of dividing the structure into triangles of side length ℓ. Consequently,
the number of triangles ∆′ in the structure constructed by the algorithm might
be smaller than the number of triangles ∆ in an ideal intermediate structure.
The following lemma characterizes the properties of the intermediate structure
constructed by the algorithm.

Lemma 6.7. The algorithm builds an intermediate structure containing ∆′

triangles where ∆− 1 ≤ ∆′ ≤ ∆.

Proof. We have ∆′ ≤ ∆ by definition. To show ∆′ ≥ ∆ − 1 we need the
following observation: The end of the structure built by the algorithm takes
on one of the three shapes depicted in the first three parts of Figure 6.8. If the
last triangle moved by the algorithm has a side length greater or equal than
ℓ− 1, the shape in (a) or (b) is created. Otherwise, the end of the structure
conceptually resembles the shape shown in (c).

The remainder of the proof argues about Part (d) of Figure 6.8. Without
loss of generality, let the last triangle in the intermediate structure be oriented
as shown in dark gray. The potential next triangle, shown as a dashed outline,
cannot be formed. Therefore, the vertex of that triangle marked by a black dot
must be unoccupied. This holds because if it were occupied then all nodes of
the dashed triangle would be occupied, no matter which of the three possible
shapes the end of the structure has. Since the node marked by the circle is
unoccupied, also the nodes on the bold line must be unoccupied and every
node to the right of that line must be unoccupied. Therefore, all particles of

142

6.4 Shape Formation Algorithm

the intermediate structure that are not part of a triangle have to lie in the light
gray area. This area contains ℓ(ℓ− 1) nodes. Since a triangle of side length ℓ
contains ℓ(ℓ + 1)/2 nodes, the particles that are not part of any triangle could
form at most one additional triangle, which shows the lemma.

We summarize the results of this section in the following theorem.

Theorem 6.8. For s ≥ 153 and L ≥ 99 · √s the algorithm builds an interme-
diate structure consisting of ∆′ triangles where

3

4
s ≤ ∆′ ≤ s− 3.

in O(
√

n) rounds, w.h.p.

Proof. The bound on ∆′ follows from Lemma 6.3 and Lemma 6.7. For the
running time bound we simply add up the bounds presented throughout this
section for the individual steps of the algorithm: Establishing a leader at a
vertex of the initial triangle takes O(

√
n) rounds with high probability. The

token passing scheme for determining the value of ℓ takes O(
√

n) rounds
according to Lemma 6.5. Building the intermediate structure takes O(

√
n)

rounds according to Lemma 6.6. Finally, subdividing the intermediate structure
into triangles takes another O(

√
n) rounds. Therefore, the overall running time

of the algorithm is O(
√

n).

6.4 Shape Formation Algorithm

We now turn to the shape formation algorithm, which transforms the inter-
mediate structure into a representation of the desired shape. In this section,
we use the term triangle exclusively to refer to a set of particles that forms
a triangle, and we use the term face to refer to a triangular face of the given
shape S. From a high-level perspective, the shape formation algorithm can be
interpreted as a sequential algorithm that is globally coordinated by the leader.
On a low level, however, the algorithm implicitly parallelizes the movement
of large sets of particles by applying the movement primitives presented in
Section 6.2. This parallelization is crucial for the running time of the algorithm.

The main idea behind the algorithm is to construct the shape one face at
time by sequentially adding triangles from the intermediate structure to the
outside of the shape under construction. Before we describe how this can
be achieved, we point out a number of difficulties that the algorithm has to
overcome in order to solve the shape formation problem.

First, note that the faces of a shape have overlapping edges, while the edges
of triangles cannot overlap because each node in GET can only be occupied
by a single particle. As a consequence, building a representation of a shape

143

Chapter 6 Shape Formation with Programmable Matter

Figure 6.9: Realization of a representation. The left part shows a representation
of a shape with six faces. The right part shows a possible realization
of this representation. Note that the realization requires triangles
of three different side lengths.

generally requires triangles of three different side lengths, namely ℓ, ℓ− 1, and
ℓ− 2, see Figure 6.9. Therefore, the algorithm must remove one or two rows
of particles from some of the triangles, and the removed particles must be
incorporated back into the structure. There are two additional special cases
concerning the placement of triangles in a representation. We will address these
cases once we have established a more detailed picture of the shape formation
algorithm.

Second, recall that in general there is a set of particles at the end of the
intermediate structure that does not form a triangle, see Figure 6.8. We refer
to this set of particles as the remainder of the intermediate structure. To
include all particles of the particle system into the representation of the shape,
the remainder has to be incorporated along with the particles that form the
triangles of the intermediate structure.

Finally, the number of triangles ∆′ in the intermediate structure is lower
than the number of faces s in the given shape S according to Theorem 6.8. To
make up for the missing triangles, the algorithm has to use some expanded
triangles to form pairs of neighboring faces in the representation.

6.4.1 Simplified Algorithm

For ease of presentation, we ignore most of the above difficulties for now.
So suppose that the intermediate structure does not contain a remainder, it
consists of exactly s triangles, and the particles removed from the triangles do
not have to be incorporated into the representation. The algorithm constructs
a representation of the shape in which the sides of the faces have length ℓ, i.e.,
the sides cover ℓ nodes in GET. Since the shape S is sequentially constructible,

144

6.4 Shape Formation Algorithm

there is a permutation (a1, a2, . . . , as) of the faces in S such that for each prefix
(a1, a2, . . . , ai) of the permutation the shape corresponding to that prefix is
connected, and each triangular face ai has a side that lies on the outer boundary
of the shape induced by the prefix (a1, a2, . . . , ai). Since s is a constant, the
leader of the particle system can locally compute such a permutation.

The algorithm adds triangles to the shape according to the order of the
faces in the computed permutation. Since each prefix of the permutation
forms a connected shape, the shape remains connected during its construction.
Furthermore, since each newly added face has a side on the outer boundary
of the shape induced by the corresponding prefix, the shape can always be
extended by adding a new triangle to the outer boundary of the shape.

Before the algorithm starts the construction of the shape, it maps the
triangles in the intermediate structure to the faces of the shape. It then prunes
the triangles in the intermediate structure to the correct size by removing one
or two rows from a triangle. The removed rows are moved out of the way using
particle chain movement. The algorithm then sequentially moves the triangles
from the intermediate structure along the outer boundary of the shape to their
respective goal positions using triangle rotations and shifts. Whenever the
intermediate structure or the removed rows interferes with the placement of
the next triangle, they are moved out of the way.

The intermediate structure contains a constant number of triangles and
each of these triangles has a side length of O(

√
n). The algorithm can place a

triangle using a constant number of applications of the movement primitives
for triangles. So according to Lemma 6.2, moving the triangles takes O(

√
n)

rounds. The number of rows removed from the triangles is constant and each
row has length O(

√
n). The algorithm moves a row a constant number of times

along a distance of O(
√

n). So according to Lemma 6.1, moving the pruned
rows requires O(

√
n) rounds. Overall, the algorithm requires O(

√
n) rounds to

construct the shape under these simplified conditions.

6.4.2 Full Algorithm

We now show how to extend the simplified algorithm to handle the difficulties
described at the beginning of this section. First, we address the two special
cases concerning the placement of triangles we briefly mentioned above. As
depicted in Figure 6.10, when placing a triangle of side length ℓ− 1, a vertex
of the triangle might already be present in the current shape. In this case, we
prune this vertex from the triangle while it is still part of the intermediate
structure. We then split the triangle into a smaller triangle of side length ℓ− 2
and a particle chain of length ℓ− 2. These two parts are sequentially moved to
their designated position once the corresponding face of the shape has to be
constructed.

The second special case occurs when a triangle of side length ℓ− 1 has to

145

Chapter 6 Shape Formation with Programmable Matter

Figure 6.10: Placing a triangle of side length ℓ−1 with a vertex already present
in the shape.

be moved through an already constructed part of the shape that can only
accommodate triangles of side length ℓ− 2 (e.g., a shape formed like a bottle,
with a narrow tunnel and larger inner area). In this case, we split the triangle
of side length ℓ− 1 into a smaller triangle of side length ℓ− 2 and a particle
chain of length ℓ− 1. As in the first case, we sequentially move these parts to
their respective position once the construction reaches the corresponding face.

Our solution to the remaining difficulties requires us to modify the given
shape S. Specifically, we define S′ to be the shape resulting from subdividing
each face in S into four faces, each forming an equilateral triangle. It is not
hard to see that a representation of S′ is also a representation of S. We can
construct S′ by sequentially placing groups of four triangles that correspond
to the faces in S. This shows that if S is constructible also S′ is constructible.

The intermediate structure can have a remainder of particles at its end that
does not form a triangle of side length ℓ but that has to be incorporated into
the representation of the shape. Since the structure of the remainder might be
such that it cannot easily be moved using the movement primitives described
in Section 6.2, our goal is to incorporate the remainder without moving it.
To this end, the algorithm rotates and translates the shape S such that the
first two faces of S (according to the computed permutation of the faces) are
aligned with the remainder at the end of the intermediate structure as depicted
in Figure 6.11. The algorithm then constructs a representation of the two faces
that incorporates the remainder as shown in the figure.

Let s′ = 4s be the number of faces in S′. Constructing the first two faces of

146

6.4 Shape Formation Algorithm

Figure 6.11: Incorporating the remainder into the first two faces (bold outline)
of S. The end of the intermediate structure is shown in dark gray.
The triangles placed around the remainder are shown in light gray.
The area containing the remainder is also shown in light gray. The
unoccupied nodes in this area are filled by placing triangles of side
length ℓ− 1 above and below the remainder and expanding them
as indicated by the dashed arrows. This expansion can require all
particles of a triangles to expand, i.e., also the particles occupying
the line L1 in Figure 6.4 including the coordinator might have to
expand. The rest of the two faces is constructed from a triangle of
side length ℓ and two triangles of side length ℓ− 1, one of which
is expanded as indicated. Note that, depending on the shape of
the remainder, it can be necessary to temporarily place triangles
around this construction to guarantee connectivity.

147

Chapter 6 Shape Formation with Programmable Matter

S in the way depicted in Figure 6.11 uses five triangles to represent eight faces
of S′. According to Theorem 6.8, the number of triangles in the intermediate
structure (which we now construct on the basis of the value s′ instead of s)
satisfies ∆′ ≤ s′−3. This implies that the construction presented in Figure 6.11
cannot cause a surplus of triangles.

Next, we address the problem of incorporating the pruned rows and vertices
back into the structure. Consider the representation of the first two faces of
S shown in Figure 6.11. The bottom face shown in the figure contains an
expanded triangle. We incorporate the pruned particles into the representation
by selectively contracting rows of this expanded triangle and moving the pruned
particles into the space opened up in this way using particle chain movement.
Since the number of pruned particles is bounded by O(

√
n) and the expanded

triangle can make space for an additional Ω(n) particles, all pruned particles
can be accommodated.

Finally, it remains to show how S′ can be constructed when the number
of triangles in the intermediate structure is lower than s′ − 3. Consider a
face in S other than the initial two faces. The face corresponds to four faces
in S′. By choosing a pair of neighboring faces among these four faces and
representing it by an expanded triangle, we can construct all four faces using
only three triangles. Constructing the first two faces in S using five triangles as
shown in Figure 6.11 and constructing each of the remaining s− 2 faces using
three triangles as described above implies that overall we require δ triangles to
construct S′ where

δ = 3(s− 2) + 5 = 3

(

s′

4
− 2

)

+ 5 =
3

4
· s′ − 1 ≤ 3

4
· s′.

According to Theorem 6.8, the intermediate structure contains ∆′ triangles
where

∆′ ≥ 3

4
· s′ ≥ δ.

Therefore, the number of triangles in the intermediate structure is sufficient to
construct S′. By selectively representing faces in S using either three or four
triangles, the algorithm can construct the shape using exactly ∆′ triangles.

Note that constructing S′ instead of S does not increase the asymptotic
running time of the algorithm. Furthermore, it is not hard to see that the tech-
niques for overcoming the various difficulties do not invalidate the arguments
about the running time we gave for the simplified algorithm. Combining these
arguments with the statement of Theorem 6.8 implies the following theorem.

Theorem 6.9. The algorithm solves the shape formation problem in O(
√

n)
rounds, w.h.p.

We conclude this section with a theorem that shows that the running time
of the presented algorithm is optimal.

148

6.5 Outlook

Theorem 6.10. Let S be any shape except for a triangle. Any algorithm
requires Ω(

√
n) rounds to construct a representation of S.

Proof. Note that an algorithm cannot control the activation order of the
particles. Thus, every particle moves only a distance of at most O(1) per
round in the worst case. If S is not a triangle then there exists a particle that
has to be moved by distance of Ω(

√
n) in order to form a representation of

S. Therefore, any algorithm needs at least Ω(
√

n) rounds to solve the shape
formation problem for S in the worst case.

6.5 Outlook

There are several ways in which the shape formation algorithm presented in
this chapter could be extended. As we already mentioned in Section 6.1, it
is not hard to remove the assumption that the number of particles in the
given particle system is a triangular number: Suppose that the particles are
initially organized into a triangle such that the last row of the triangle is
not necessarily completely filled with particles. Note that there are at most
O(
√

n) particles in the last row and the leader can determine via a token
passing scheme whether the last row is complete. While the intermediate
structure is built, the incomplete row is moved out of the way using particle
chain movement such that it does not interfere with the construction process.
During the construction of the representation of the given shape, we move the
incomplete row together with the intermediate structure when necessary. We
incorporate the incomplete row into the representation in the same way we
incorporated the pruned rows and vertices, i.e., we move it into the area filled
by an expanded triangle that was used to construct one of the first two faces
of the shape. During the entire algorithm, the incomplete row has to move a
distance of O(

√
n) so that the given bound on the running time remains intact.

Beyond this simple extension of the algorithm, it would be interesting to
investigate whether a similar running time can be achieved when the initial
distribution of the particles is not a triangle. Certainly, if the initial distribution
has a diameter of Ω(n), shape formation takes Ω(n) rounds since the represen-
tation of a shape consisting of a constant number of equilateral triangles has
a diameter of O(

√
n). Therefore, it seems reasonable to restrict the diameter

of the initial particle distribution to O(
√

n) and to ask whether starting from
such a distribution, a given shape can be constructed in O(

√
n) rounds.

Another promising direction for future research is the construction of more
complex shapes. For example, one could consider shapes consisting of a non-
constant number of triangles. The description of such a shape could be spread
across multiple particles. More generally, one could encode a shape as a Turing-
machine program, which is an approach used in other related models (see, e.g.,
[Mic15]). In fact, Di Luna et al. already mentioned such an approach for the

149

Chapter 6 Shape Formation with Programmable Matter

amoebot model in a recent brief announcement [Di +17]. A conference version
of this work was accepted at the 21st International Conference on Principles of
Distributed Systems and should appear soon.

Finally, it would be desirable to restore the original result of the publication
underlying this chapter by lifting the requirement that the given shape has to
be sequentially constructible. We conjecture that subdividing the triangular
faces of a shape that is not sequentially constructible into smaller triangles
might result in a new shape that is sequentially constructible. However, we
leave the investigation of this conjecture for future work.

From a broader perspective that goes beyond the contents of this thesis,
there is a plethora of problems that can be investigated under the amoebot
model. As we discussed in Section 5.2, we already presented an algorithm for
the coating problem in which a given object has to be covered by even layers
of particles (see [Der+17; Der+16a]). Other authors considered problems such
as compression [Can+16] and shortcut bridging [Arr+17]. In future research,
one could investigate problems such as the construction of the convex hull
of a given object or the collective transport problem from swarm robotics in
which a set of particles has to collaborate in order to transport a given object
to another location. A particularly interesting aspect that has not yet been
investigated under the amoebot model is exploration. Consider, for example,
the following simple exploration problem: We are given two static objects
that are separated by a certain distance and a particle system that is initially
connected to only one of these objects. The particle system has to explore the
surrounding area without disconnecting from its object in order to find the
second object as quickly as possible.

When looking at the subject of programmable matter from an even broader
perspective, it becomes apparent that there are numerous algorithmic challenges
that have to be overcome before programmable matter can become a reality.
One of the most obvious challenges is the fact that physical space is three-
dimensional while the amoebot model only considers two dimensions. The
problem of extending the amoebot model to three dimensions raises a number
of questions. For example, one would have to determine a suitable underlying
graph to replace the equilateral triangular graph. A possible approach to this
problem is to ask what three-dimensional shape a physical particle should have.
Naturally, the cube would be an obvious candidate. However, the rhombic
dodecahedron, which is also a space-filling polyhedron, might be a better choice
since it is more closely related to the geometry underlying the two-dimensional
amoebot model. Aside from finding a suitable model, one would have to
investigate in what capacity the existing algorithms can be generalized to three
dimensions or whether entirely new algorithms are necessary.

Another important issue one has to address in order to bring programmable
matter closer to reality is recovery from faults. In systems consisting of

150

6.5 Outlook

thousands or even millions of tiny computational entities, faults will most likely
be unavoidable. The potentially enormous scale of these systems presumably
prohibits dealing with faults manually, i.e., by outside human intervention. We
therefore need models and algorithms that inherently consider the possibility
of unresponsive, faulty, or even byzantine particles and automatically deal with
these problems when they arise. Faulty particles could be detected, deactivated,
and extracted from the particle system by other particles. Alternatively, one
could envision having a certain degree of redundancy in a particle system that
allows it to operate even when a certain fraction of the particles is unresponsive.

Finally, it would be highly desirable to have an ongoing dialog between
researchers working on the algorithmic foundations of programmable matter
and those working on its physical implementation in the form of robotic and
biological systems. Results and advancements in the practical field should influ-
ence the models used by theoreticians. In turn, theoretical results might inspire
new approaches and solutions for the physical implementation of programmable
matter. One aspect of programmable matter for which interdisciplinary re-
search is of crucial importance is the choice of the locomotion primitive: The
amoebot model achieves locomotion by allowing particles to expand and con-
tract, which is a very local movement. It might be reasonable to implement
non-local movements by allowing particles to carry or otherwise move other
particles within reasonable limits. This might then allow for much more efficient
algorithms for problems such as shape formation. Contrasting the algorithmic
power of locomotion primitives with their practical feasibility is a task that
requires contributions from both theoretical and applied research alike.

151

Bibliography

[Abr+03] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and
E. Pavlov. “A Generic Scheme for Building Overlay Networks in
Adversarial Scenarios”. In: Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS). Nice,
France, 2003. doi: 10.1109/IPDPS.2003.1213125.

[Adl94] L. M. Adleman. “Molecular Computation of Solutions to Combi-
natorial Problems”. In: Science 266.5187 (1994), pp. 1021–1024.
doi: 10.1126/science.7973651.

[AE07] R. Ananthakrishnan and A. Ehrlicher. “The Forces Behind Cell
Movement”. In: International Journal of Biological Sciences 3.5
(2007), pp. 303–317. doi: 10.7150/ijbs.3.303.

[AG15] D. Alistarh and R. Gelashvili. “Polylogarithmic-Time Leader Elec-
tion in Population Protocols”. In: Proceedings of the 42nd Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP). Kyoto, Japan, 2015, pp. 479–491. doi: 10.1007/978-3-

662-47666-6_38.

[AGM13] C. Agathangelou, C. Georgiou, and M. Mavronicolas. “A Dis-
tributed Algorithm for Gathering Many Fat Mobile Robots in the
Plane”. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC). Montreal, Canada, 2013, pp. 250–
259. doi: 10.1145/2484239.2484266.

[Ahm+15] M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. R. Molla. “The Cost
of Global Broadcast in Dynamic Radio Networks”. In: Proceedings
of the 19th International Conference on Principles of Distributed
Systems, (OPODIS). Rennes, France, 2015, pp. 7:1–7:17. doi:
10.4230/LIPIcs.OPODIS.2015.7.

[AK93] S. Aggarwal and S. Kutten. “Time Optimal Self-Stabilizing Span-
ning Tree Algorithms”. In: Proceedings of the 13th International
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). Bombay, India, 1993, pp. 400–410.
doi: 10.1007/3-540-57529-4_72.

153

https://doi.org/10.1109/IPDPS.2003.1213125
https://doi.org/10.1126/science.7973651
https://doi.org/10.7150/ijbs.3.303
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1145/2484239.2484266
https://doi.org/10.4230/LIPIcs.OPODIS.2015.7
https://doi.org/10.1007/3-540-57529-4_72

Bibliography

[AM14] S. Abshoff and F. Meyer auf der Heide. “Continuous Aggregation
in Dynamic Ad-Hoc Networks”. In: Proceedings of the 21st Interna-
tional Colloquium on Structural Information and Communication
Complexity (SIROCCO). Takayama, Japan, 2014, pp. 194–209.
doi: 10.1007/978-3-319-09620-9_16.

[Ang+05] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. “Fast Con-
struction of Overlay Networks”. In: Proceedings of the 17th An-
nual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). Las Vegas, Nevada, USA, 2005, pp. 145–154. doi:
10.1145/1073970.1073991.

[Ang+06] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta.
“Computation in networks of passively mobile finite-state sensors”.
In: Distributed Computing 18.4 (2006), pp. 235–253. doi: 10.1007/

s00446-005-0138-3.

[APR16] J. Augustine, G. Pandurangan, and P. Robinson. “Distributed
Algorithmic Foundations of Dynamic Networks”. In: SIGACT
News 47.1 (2016), pp. 69–98. doi: 10.1145/2902945.2902959.

[AR10] D. Arbuckle and A. A. G. Requicha. “Self-assembly and self-repair
of arbitrary shapes by a swarm of reactive robots: algorithms and
simulations”. In: Autonomous Robots 28.2 (2010), pp. 197–211.
doi: 10.1007/s10514-009-9162-7.

[Arr+17] M. A. Arroyo, S. Cannon, J. J. Daymude, D. Randall, and A. W.
Richa. “A Stochastic Approach to Shortcut Bridging in Pro-
grammable Matter”. In: Proceedings of the 23rd International Con-
ference on DNA Computing and Molecular Programming (DNA).
Austin, Texas, USA, 2017, pp. 122–138. doi: 10.1007/978-3-

319-66799-7_9.

[AS07a] B. Awerbuch and C. Scheideler. “A Denial-of-Service Resistant
DHT”. In: Proceedings of the 21st International Symposium on
Distributed Computing (DISC). Lemesos, Cyprus, 2007, pp. 33–47.
doi: 10.1007/978-3-540-75142-7_6.

[AS07b] B. Awerbuch and C. Scheideler. “Towards Scalable and Robust
Overlay Networks”. In: Proceedings of the 6th International Work-
shop on Peer-to-Peer Systems (IPTPS). Bellevue, Washington,
USA, 2007.

[Aug+15] J. Augustine, G. Pandurangan, P. Robinson, S. T. Roche, and E.
Upfal. “Enabling Robust and Efficient Distributed Computation
in Dynamic Peer-to-Peer Networks”. In: Proceedings of the 56th
Annual Symposium on Foundations of Computer Science (FOCS).

154

https://doi.org/10.1007/978-3-319-09620-9_16
https://doi.org/10.1145/1073970.1073991
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1145/2902945.2902959
https://doi.org/10.1007/s10514-009-9162-7
https://doi.org/10.1007/978-3-319-66799-7_9
https://doi.org/10.1007/978-3-319-66799-7_9
https://doi.org/10.1007/978-3-540-75142-7_6

Bibliography

Berkeley, California, USA, 2015, pp. 350–369. doi: 10.1109/FOCS.

2015.29.

[AV84] M. J. Atallah and U. Vishkin. “Finding Euler Tours in Parallel”.
In: Journal of Computer and System Sciences 29.3 (1984), pp. 330–
337. doi: 10.1016/0022-0000(84)90003-5.

[AW04] H. Attiya and J. Welch. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics. 2nd Edition. John Wiley and
Sons, 2004.

[AW09] J. Aspnes and U. Wieder. “The expansion and mixing time of skip
graphs with applications”. In: Distributed Computing 21.6 (2009),
pp. 385–393. doi: 10.1007/s00446-008-0071-3.

[Ben+01] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and
E. Shapiro. “Programmable and autonomous computing machine
made of biomolecules”. In: Nature 414 (2001), pp. 430–434. doi:
10.1038/35106533.

[BGP13] A. Berns, S. Ghosh, and S. V. Pemmaraju. “Building Self-Stabi-
lizing Overlay Networks with the Transitive Closure Framework”.
In: Theoretical Computer Science 512 (2013), pp. 2–14. doi: 10.

1016/j.tcs.2013.02.021.

[Bha+13] A. Bhattacharyya, M. Braverman, B. Chazelle, and H. L. Nguyen.
“On the Convergence of the Hegselmann-Krause System”. In:
Proceedings of the 4th Conference on Innovations in Theoretical
Computer Science (ITCS). Berkeley, California, USA, 2013, pp. 61–
66. doi: 10.1145/2422436.2422446.

[BKM14] P. Berenbrink, B. Krayenhoff, and F. Mallmann-Trenn. “Estimat-
ing the number of connected components in sublinear time”. In:
Information Processing Letters 114.11 (2014), pp. 639–642. doi:
10.1016/j.ipl.2014.05.008.

[BMV12] V. Bonifaci, K. Mehlhorn, and G. Varma. “Physarum Can Com-
pute Shortest Paths”. In: Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). Kyoto, Japan,
2012, pp. 233–240.

[Bon+96] D. Boneh, C. Dunworth, R. J. Lipton, and J. Sgall. “On the
computational power of DNA”. In: Discrete Applied Mathematics
71.1-3 (1996), pp. 79–94. doi: 10.1016/S0166-218X(96)00058-3.

[But+04] Z. J. Butler, K. Kotay, D. Rus, and K. Tomita. “Generic Decen-
tralized Control for Lattice-Based Self-Reconfigurable Robots”. In:
International Journal of Robotics Research 23.9 (2004), pp. 919–
937. doi: 10.1177/0278364904044409.

155

https://doi.org/10.1109/FOCS.2015.29
https://doi.org/10.1109/FOCS.2015.29
https://doi.org/10.1016/0022-0000(84)90003-5
https://doi.org/10.1007/s00446-008-0071-3
https://doi.org/10.1038/35106533
https://doi.org/10.1016/j.tcs.2013.02.021
https://doi.org/10.1016/j.tcs.2013.02.021
https://doi.org/10.1145/2422436.2422446
https://doi.org/10.1016/j.ipl.2014.05.008
https://doi.org/10.1016/S0166-218X(96)00058-3
https://doi.org/10.1177/0278364904044409

Bibliography

[Can+16] S. Cannon, J. J. Daymude, D. Randall, and A. W. Richa. “A
Markov Chain Algorithm for Compression in Self-Organizing Par-
ticle Systems”. In: Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing (PODC). Chicago, Illinois,
USA, 2016, pp. 279–288. doi: 10.1145/2933057.2933107.

[CDH09] C. Cooper, M. E. Dyer, and A. J. Handley. “The Flip Markov
Chain and a Randomising P2P Protocol”. In: Proceedings of
the 28th Annual ACM Symposium on Principles of Distributed
Computing (PODC). Calgary, Canada, 2009, pp. 141–150. doi:
10.1145/1582716.1582742.

[Cen+15] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz,
and J. Suomela. “Algebraic Methods in the Congested Clique”.
In: Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing (PODC). Donostia-San Sebastián, Spain,
2015, pp. 143–152. doi: 10.1145/2767386.2767414.

[CF05] C. Cramer and T. Fuhrmann. Self-Stabilizing Ring Networks on
Connected Graphs. Tech. rep. University of Karlsruhe, 2005.

[Cha09] B. Chazelle. “Natural Algorithms”. In: Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
New York City, New York, USA, 2009, pp. 422–431.

[Che+14] H.-L. Chen, D. Doty, D. Holden, C. Thachuk, D. Woods, and C.-T.
Yang. “Fast Algorithmic Self-assembly of Simple Shapes Using
Random Agitation”. In: Proceedings of the 20th International Con-
ference on DNA Computing and Molecular Programming (DNA).
Kyoto, Japan, 2014, pp. 20–36. doi: 10.1007/978-3-319-11295-

4_2.

[Chi94] G. S. Chirikjian. “Kinematics of a Metamorphic Robotic System”.
In: Proceedings of the 1994 IEEE International Conference on
Robotics and Automation (ICRA). San Diego, California, USA,
1994, pp. 449–455. doi: 10.1109/ROBOT.1994.351256.

[Cie+12] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. “Dis-
tributed Computing by Mobile Robots: Gathering”. In: SIAM
Journal on Computing 41.4 (2012), pp. 829–879. doi: 10.1137/

100796534.

[CNS12] T. Clouser, M. Nesterenko, and C. Scheideler. “Tiara: A self-
stabilizing deterministic skip list and skip graph”. In: Theoretical
Computer Science 428 (2012), pp. 18–35. doi: 10.1016/j.tcs.

2011.12.079.

156

https://doi.org/10.1145/2933057.2933107
https://doi.org/10.1145/1582716.1582742
https://doi.org/10.1145/2767386.2767414
https://doi.org/10.1007/978-3-319-11295-4_2
https://doi.org/10.1007/978-3-319-11295-4_2
https://doi.org/10.1109/ROBOT.1994.351256
https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1016/j.tcs.2011.12.079
https://doi.org/10.1016/j.tcs.2011.12.079

Bibliography

[CP08] R. Cohen and D. Peleg. “Local spreading algorithms for au-
tonomous robot systems”. In: Theoretical Computer Science 399.1-
2 (2008), pp. 71–82. doi: 10.1016/j.tcs.2008.02.007.

[CRT05] B. Chazelle, R. Rubinfeld, and L. Trevisan. “Approximating the
Minimum Spanning Tree Weight in Sublinear Time”. In: SIAM
Journal on Computing 34.6 (2005), pp. 1370–1379. doi: 10.1137/

S0097539702403244.

[CS09] A. Czumaj and C. Sohler. “Estimating the Weight of Metric
Minimum Spanning Trees in Sublinear Time”. In: SIAM Journal
on Computing 39.3 (2009), pp. 904–922. doi: 10.1137/060672121.

[CXW15] M. Chen, D. Xin, and D. Woods. “Parallel computation using
active self-assembly”. In: Natural Computing 14.2 (2015), pp. 225–
250. doi: 10.1007/s11047-014-9432-y.

[Czu+05] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R.
Rubinfeld, and C. Sohler. “Approximating the Weight of the
Euclidean Minimum Spanning Tree in Sublinear Time”. In: SIAM
Journal on Computing 35.1 (2005), pp. 91–109. doi: 10.1137/

S0097539703435297.

[Das+10] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. “On the Com-
putational Power of Oblivious Robots: Forming a Series of Geomet-
ric Patterns”. In: Proceedings of the 29th Annual ACM Symposium
on Principles of Distributed Computing (PODC). Zürich, Switzer-
land, 2010, pp. 267–276. doi: 10.1145/1835698.1835761.

[Das+17] S. Das, G. A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta.
“Mediated Population Protocols: Leader Election and Applica-
tions”. In: Proceedings of the 14th Annual Conference on The-
ory and Applications of Models of Computation (TAMC). Bern,
Switzerland, 2017, pp. 172–186. doi: 10.1007/978-3-319-55911-

7_13.

[Day+17] J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T.
Strothmann. “Improved Leader Election for Self-Organizing Pro-
grammable Matter”. In: Proceedings of the 13th International
Symposium on Algorithms and Experiments for Wireless Networks
(ALGOSENSORS). To appear. Vienna, Austria, 2017.

[Der+14] Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler,
and T. Strothmann. “Brief Announcement: Amoebot - A New
Model for Programmable Matter”. In: Proceedings of the 26th
ACM Symposium on Parallelism in Algorithms and Architectures

157

https://doi.org/10.1016/j.tcs.2008.02.007
https://doi.org/10.1137/S0097539702403244
https://doi.org/10.1137/S0097539702403244
https://doi.org/10.1137/060672121
https://doi.org/10.1007/s11047-014-9432-y
https://doi.org/10.1137/S0097539703435297
https://doi.org/10.1137/S0097539703435297
https://doi.org/10.1145/1835698.1835761
https://doi.org/10.1007/978-3-319-55911-7_13
https://doi.org/10.1007/978-3-319-55911-7_13

Bibliography

(SPAA). Prague, Czech Republic, 2014, pp. 220–222. doi: 10.

1145/2612669.2612712.

[Der+15a] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “An Algorithmic Framework for Shape Formation
Problems in Self-Organizing Particle Systems”. In: Proceedings of
the 2nd Annual International Conference on Nanoscale Computing
and Communication (NANOCOM). Boston, Massachusetts, USA,
2015, pp. 21:1–21:2. doi: 10.1145/2800795.2800829.

[Der+15b] Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. A. Bazzi, A. W.
Richa, and C. Scheideler. “Leader Election and Shape Formation
with Self-organizing Programmable Matter”. In: Proceedings of the
21st International Conference on DNA Computing and Molecular
Programming (DNA). Boston and Cambridge, Massachusetts, USA,
2015, pp. 117–132. doi: 10.1007/978-3-319-21999-8_8.

[Der+16a] Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Schei-
deler, and T. Strothmann. “On the Runtime of Universal Coating
for Programmable Matter”. In: Proceedings of the 22nd Interna-
tional Conference on DNA Computing and Molecular Programming
(DNA). Munich, Germany, 2016, pp. 148–164. doi: 10.1007/978-

3-319-43994-5_10.

[Der+16b] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Universal Shape Formation for Programmable
Matter”. In: Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). Asilomar State
Beach/Pacific Grove, California, USA, 2016, pp. 289–299. doi:
10.1145/2935764.2935784.

[Der+17] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and
T. Strothmann. “Universal coating for programmable matter”.
In: Theoretical Computer Science 671 (2017), pp. 56–68. doi:
10.1016/j.tcs.2016.02.039.

[DGS16] M. Drees, R. Gmyr, and C. Scheideler. “Churn- and DoS-resistant
Overlay Networks Based on Network Reconfiguration”. In: Proceed-
ings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). Asilomar State Beach/Pacific Grove, Cali-
fornia, USA, 2016, pp. 417–427. doi: 10.1145/2935764.2935783.

[Di +17] G. A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, and Y. Ya-
mauchi. “Brief Announcement: Shape Formation by Programmable
Particles”. In: Proceedings of the 31st International Symposium on
Distributed Computing (DISC). Vienna, Austria, 2017, pp. 48:1–
48:3. doi: 10.4230/LIPIcs.DISC.2017.48.

158

https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-319-43994-5_10
https://doi.org/10.1007/978-3-319-43994-5_10
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1016/j.tcs.2016.02.039
https://doi.org/10.1145/2935764.2935783
https://doi.org/10.4230/LIPIcs.DISC.2017.48

Bibliography

[Dij74] E. W. Dijkstra. “Self-stabilizing Systems in Spite of Distributed
Control”. In: Communications of the ACM 17.11 (1974), pp. 643–
644. doi: 10.1145/361179.361202.

[DK02] M. J. Daley and L. Kari. “DNA Computing: Models and Im-
plementations”. In: Comments on Theoretical Biology 7 (2002),
pp. 177–198.

[DKO14] A. Drucker, F. Kuhn, and R. Oshman. “On the Power of the
Congested Clique Model”. In: Proceedings of the 2014 ACM Sym-
posium on Principles of Distributed Computing (PODC). Paris,
France, 2014, pp. 367–376. doi: 10.1145/2611462.2611493.

[DMS04] R. Dingledine, N. Mathewson, and P. F. Syverson. “Tor: The
Second-Generation Onion Router”. In: Proceedings of the 13th
USENIX Security Symposium (SSYM). San Diego, California, USA,
2004, pp. 303–320.

[Dot12] D. Doty. “Theory of Algorithmic Self-Assembly”. In: Communica-
tions of the ACM 55.12 (2012), pp. 78–88. doi: 10.1145/2380656.

2380675.

[Dou02] J. R. Douceur. “The Sybil Attack”. In: Proceedings of the 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS). Cambridge,
Massachusetts, USA, 2002, pp. 251–260. doi: 10.1007/3-540-

45748-8_24.

[DS15] D. Doty and D. Soloveichik. “Stable Leader Election in Population
Protocols Requires Linear Time”. In: Proceedings of the 29th In-
ternational Symposium on Distributed Computing (DISC). Tokyo,
Japan, 2015, pp. 602–616. doi: 10.1007/978-3-662-48653-5_40.

[Dut+13] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola.
“On the Complexity of Information Spreading in Dynamic Net-
works”. In: Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). New Orleans, Louisiana, USA,
2013, pp. 717–736. doi: 10.1137/1.9781611973105.52.

[Elk04] M. Elkin. “Unconditional Lower Bounds on the Time-Approxi-
mation Tradeoffs for the Distributed Minimum Spanning Tree
Problem”. In: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC). Chicago, Illinois, USA, 2004,
pp. 331–340. doi: 10.1145/1007352.1007407.

[Elk06] M. Elkin. “A faster distributed protocol for constructing a mini-
mum spanning tree”. In: Journal of Computer and System Sciences
72.8 (2006), pp. 1282–1308. doi: 10.1016/j.jcss.2006.07.002.

159

https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/2380656.2380675
https://doi.org/10.1145/2380656.2380675
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-662-48653-5_40
https://doi.org/10.1137/1.9781611973105.52
https://doi.org/10.1145/1007352.1007407
https://doi.org/10.1016/j.jcss.2006.07.002

Bibliography

[ES15] M. Eikel and C. Scheideler. “IRIS: A Robust Information System
Against Insider DoS Attacks”. In: ACM Transactions on Parallel
Computing 2.3 (2015), pp. 18:1–18:33. doi: 10.1145/2809806.

[ESS14] M. Eikel, C. Scheideler, and A. Setzer. “RoBuSt: A Crash-Failure-
Resistant Distributed Storage System”. In: Proceedings of the 18th
International Conference on Principles of Distributed Systems
(OPODIS). Cortina d’Ampezzo, Italy, 2014, pp. 107–122. doi:
10.1007/978-3-319-14472-6_8.

[Fed+06] T. Feder, A. Guetz, M. Mihail, and A. Saberi. “A Local Switch
Markov Chain on Given Degree Graphs with Application in Con-
nectivity of Peer-to-Peer Networks”. In: Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS). Berkeley, California, USA, 2006, pp. 69–76. doi: 10.

1109/FOCS.2006.5.

[Flo+08] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. “Arbi-
trary pattern formation by asynchronous, anonymous, oblivious
robots”. In: Theoretical Computer Science 407.1-3 (2008), pp. 412–
447. doi: 10.1016/j.tcs.2008.07.026.

[For+14] D. Foreback, A. Koutsopoulos, M. Nesterenko, C. Scheideler, and T.
Strothmann. “On Stabilizing Departures in Overlay Networks”. In:
Proceedings of the 16th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS). Paderborn,
Germany, 2014, pp. 48–62. doi: 10.1007/978-3-319-11764-

5_4.

[Fri+09] A. E. Friedland, T. K. Lu, X. Wang, D. Shi, G. Church, and
J. J. Collins. “Synthetic Gene Networks That Count”. In: Science
324.5931 (2009), pp. 1199–1202. doi: 10.1126/science.1172005.

[Fri08] J. Friedman. “A Proof of Alon’s Second Eigenvalue Conjecture
and Related Problems”. In: Memoirs of the AMS 195.910 (2008).
doi: 10.1090/memo/0910.

[Gär03] F. C. Gärtner. A Survey of Self-Stabilizing Spanning-Tree Con-
struction Algorithms. Tech. rep. Swiss Federal Institute of Tech-
nology (EPFL), 2003.

[GCM05] S. C. Goldstein, J. Campbell, and T. C. Mowry. “Programmable
Matter”. In: IEEE Computer 38.6 (2005), pp. 99–101. doi: 10.

1109/MC.2005.198.

[GDT14] T. F. Gonzalez, J. Diaz-Herrera, and A. Tucker, eds. Comput-
ing Handbook, Third Edition: Computer Science and Software
Engineering. CRC Press, 2014.

160

https://doi.org/10.1145/2809806
https://doi.org/10.1007/978-3-319-14472-6_8
https://doi.org/10.1109/FOCS.2006.5
https://doi.org/10.1109/FOCS.2006.5
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1126/science.1172005
https://doi.org/10.1090/memo/0910
https://doi.org/10.1109/MC.2005.198
https://doi.org/10.1109/MC.2005.198

Bibliography

[GLS16] R. Gmyr, J. Lefèvre, and C. Scheideler. “Self-stabilizing Metric
Graphs”. In: Proceedings of the 18th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS).
Lyon, France, 2016, pp. 248–262. doi: 10.1007/978- 3- 319-

49259-9_20.

[GLS17] R. Gmyr, J. Lefèvre, and C. Scheideler. “Self-stabilizing Metric
Graphs”. In: Theory of Computing Systems (2017). To appear.

[Gmy+17] R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler. “Distributed
Monitoring of Network Properties: The Power of Hybrid Networks”.
In: Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP). Warsaw, Poland, 2017,
pp. 137:1–137:15. doi: 10.4230/LIPIcs.ICALP.2017.137.

[Gon01] L. Gong. “Industry Report: JXTA: A Network Programming
Environment”. In: IEEE Internet Computing 5.3 (2001), pp. 88–
95. doi: 10.1109/4236.935182.

[Heg+15] J. W. Hegeman, G. Pandurangan, S. V. Pemmaraju, V. B. Sardesh-
mukh, and M. Scquizzato. “Toward Optimal Bounds in the Con-
gested Clique: Graph Connectivity and MST”. In: Proceedings of
the 2015 ACM Symposium on Principles of Distributed (PODC).
Donostia-San Sebastián, Spain, 2015, pp. 91–100. doi: 10.1145/

2767386.2767434.

[HK11] B. Haeupler and D. R. Karger. “Faster Information Dissemination
in Dynamic Networks via Network Coding”. In: Proceedings of
the 30th Annual ACM Symposium on Principles of Distributed
Computing (PODC). San Jose, California, USA, 2011, pp. 381–390.
doi: 10.1145/1993806.1993885.

[Hsi+02] T.-R. Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete, and J. S. B.
Mitchell. “Algorithms for Rapidly Dispersing Robot Swarms in Un-
known Environments”. In: Algorithmic Foundations of Robotics V,
Selected Contributions of the Fifth International Workshop on the
Algorithmic Foundations of Robotics (WAFR). Nice, France, 2002,
pp. 77–94. doi: 10.1007/978-3-540-45058-0_6.

[HST12] T. P. Hayes, J. Saia, and A. Trehan. “The Forgiving Graph:
a distributed data structure for low stretch under adversarial
attack”. In: Distributed Computing 25.4 (2012), pp. 261–278. doi:
10.1007/s00446-012-0160-1.

[HZ01] S. Halperin and U. Zwick. “Optimal Randomized EREW PRAM
Algorithms for Finding Spanning Forests”. In: Journal of Algo-
rithms 39.1 (2001), pp. 1–46. doi: 10.1006/jagm.2000.1146.

161

https://doi.org/10.1007/978-3-319-49259-9_20
https://doi.org/10.1007/978-3-319-49259-9_20
https://doi.org/10.4230/LIPIcs.ICALP.2017.137
https://doi.org/10.1109/4236.935182
https://doi.org/10.1145/2767386.2767434
https://doi.org/10.1145/2767386.2767434
https://doi.org/10.1145/1993806.1993885
https://doi.org/10.1007/978-3-540-45058-0_6
https://doi.org/10.1007/s00446-012-0160-1
https://doi.org/10.1006/jagm.2000.1146

Bibliography

[IR90] A. Itai and M. Rodeh. “Symmetry Breaking in Distributed Net-
works”. In: Information and Computation 88.1 (1990), pp. 60–87.
doi: 10.1016/0890-5401(90)90004-2.

[Jac+09] R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H. Täubig.
“A distributed polylogarithmic time algorithm for self-stabilizing
skip graphs”. In: Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing (PODC). Calgary, Canada,
2009, pp. 131–140. doi: 10.1145/1582716.1582741.

[Jac+12] R. Jacob, S. Ritscher, C. Scheideler, and S. Schmid. “Towards
Higher-Dimensional Topological Self-Stabilization: A Distributed
Algorithm for Delaunay Graphs”. In: Theoretical Computer Science
457 (2012), pp. 137–148. doi: 10.1016/j.tcs.2012.07.029.

[JáJ92] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[JM95] D. B. Johnson and P. T. Metaxas. “A Parallel Algorithm for
Computing Minimum Spanning Trees”. In: Journal of Algorithms
19.3 (1995), pp. 383–401. doi: 10.1006/jagm.1995.1043.

[JP13] T. Jacobs and G. Pandurangan. “Stochastic Analysis of a Churn-
Tolerant Structured Peer-to-Peer Scheme”. In: Peer-to-Peer Net-
working and Applications 6.1 (2013), pp. 1–14. doi: 10.1007/

s12083-012-0124-z.

[Ker13] S. Kernbach, ed. Handbook of Collective Robotics: Fundamentals
and Challanges. Pan Stanford Publishing, 2013.

[KG89] J. M. Keil and C. A. Gutwin. “The Delaunay triangulation closely
approximates the complete Euclidean graph”. In: Proceedings of the
Workshop on Algorithms and Data Structures (WADS). Ottawa,
Canada, 1989, pp. 47–56. doi: 10.1007/3-540-51542-9_6.

[KG92] J. M. Keil and C. A. Gutwin. “Classes of Graphs Which Approxi-
mate the Complete Euclidean Graph”. In: Discrete & Computa-
tional Geometry 7 (1992), pp. 13–28. doi: 10.1007/BF02187821.

[KKS14] S. Kniesburges, A. Koutsopoulos, and C. Scheideler. “Re-Chord: A
Self-stabilizing Chord Overlay Network”. In: Theory of Computing
Systems 55.3 (2014), pp. 591–612. doi: 10.1007/s00224-012-

9431-2.

[KLO10] F. Kuhn, N. A. Lynch, and R. Oshman. “Distributed Computation
in Dynamic Networks”. In: Proceedings of the 42nd ACM Sympo-
sium on Theory of Computing (STOC). Cambridge, Massachusetts,
USA, 2010, pp. 513–522. doi: 10.1145/1806689.1806760.

162

https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1145/1582716.1582741
https://doi.org/10.1016/j.tcs.2012.07.029
https://doi.org/10.1006/jagm.1995.1043
https://doi.org/10.1007/s12083-012-0124-z
https://doi.org/10.1007/s12083-012-0124-z
https://doi.org/10.1007/3-540-51542-9_6
https://doi.org/10.1007/BF02187821
https://doi.org/10.1007/s00224-012-9431-2
https://doi.org/10.1007/s00224-012-9431-2
https://doi.org/10.1145/1806689.1806760

Bibliography

[KLS08] F. Kuhn, T. Locher, and S. Schmid. “Distributed Computation
of the Mode”. In: Proceedings of the 27th ACM Symposium on
Principles of Distributed Computing (PODC). Toronto, Canada,
2008, pp. 15–24. doi: 10.1145/1400751.1400756.

[KLW07] F. Kuhn, T. Locher, and R. Wattenhofer. “Tight Bounds for Dis-
tributed Selection”. In: Proceedings of the 19th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).
San Diego, California, USA, 2007, pp. 145–153. doi: 10.1145/

1248377.1248401.

[KMR02] A. D. Keromytis, V. Misra, and D. Rubenstein. “SOS: Secure
Overlay Services”. In: Proceedings of the 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM). Pittsburgh, Pennsylvania,
USA, 2002, pp. 61–72. doi: 10.1145/633025.633032.

[KSW05] F. Kuhn, S. Schmid, and R. Wattenhofer. “A Self-repairing Peer-
to-Peer System Resilient to Dynamic Adversarial Churn”. In:
Proceedings of the 4th International Workshop on Peer-to-Peer
Systems (IPTPS). Ithaca, New York, USA, 2005, pp. 13–23. doi:
10.1007/11558989_2.

[KT13] J. Kleinberg and E. Tardos. Algorithm Design: Pearson New
International Edition. Pearson Education Limited, 2013.

[Len13] C. Lenzen. “Optimal Deterministic Routing and Sorting on the
Congested Clique”. In: Proceedings of the 2013 ACM Sympo-
sium on Principles of Distributed Computing (PODC). Montreal,
Canada, 2013, pp. 42–50. doi: 10.1145/2484239.2501983.

[Li+10] K. Li, K. Thomas, C. E. Torres, L. F. Rossi, and C.-C. Shen.
“Slime Mold Inspired Path Formation Protocol for Wireless Sensor
Networks”. In: Proceedings of the 7th International Conference on
Swarm Intelligence (ANTS). Brussels, Belgium, 2010, pp. 299–311.
doi: 10.1007/978-3-642-15461-4_26.

[Loc09] T. Locher. “Foundations of Aggregation and Synchronization in
Distributed Systems”. PhD thesis. 2009.

[Lot+05] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. “Minimum-
Weight Spanning Tree Construction in O(log log n) Communi-
cation Rounds”. In: SIAM Journal on Computing 35.1 (2005),
pp. 120–131. doi: 10.1137/S0097539704441848.

[Lov93] L. Lovász. “Random Walks on Graphs: A Survey”. In: Combina-
torics, Paul Erdős is Eighty. Ed. by D. Miklós, V. T. Sós, and
T. Szőnyi. Vol. 2. János Bolyai Mathematical Society, 1993.

163

https://doi.org/10.1145/1400751.1400756
https://doi.org/10.1145/1248377.1248401
https://doi.org/10.1145/1248377.1248401
https://doi.org/10.1145/633025.633032
https://doi.org/10.1007/11558989_2
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1007/978-3-642-15461-4_26
https://doi.org/10.1137/S0097539704441848

Bibliography

[LS03] C. Law and K.-Y. Siu. “Distributed Construction of Random Ex-
pander Networks”. In: Proceedings of the 22nd IEEE International
Conference on Computer Communications (INFOCOM). San Fran-
ciso, California, USA, 2003, pp. 2133–2143. doi: 10.1109/INFCOM.

2003.1209234.

[McL08] J. D. McLurkin. “Analysis and Implementation of Distributed
Algorithms for Multi-Robot Systems”. PhD thesis. Massachusetts
Institute of Technology, 2008.

[Mic15] O. Michail. “Terminating Distributed Construction of Shapes and
Patterns in a Fair Solution of Automata”. In: Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing
(PODC). Donostia-San Sebastián, Spain, 2015, pp. 37–46. doi:
10.1145/2767386.2767402.

[MS06] P. Mahlmann and C. Schindelhauer. “Distributed Random Digraph
Transformations for Peer-to-Peer Networks”. In: Proceedings of
the 18th Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). Cambridge, Massachusetts, USA, 2006,
pp. 308–317. doi: 10.1145/1148109.1148162.

[MS16] O. Michail and P. G. Spirakis. “Simple and efficient local codes for
distributed stable network construction”. In: Distributed Comput-
ing 29.3 (2016), pp. 207–237. doi: 10.1007/s00446-015-0257-4.

[New01] M. E. J. Newman. “The structure of scientific collaboration net-
works”. In: Proceedings of the National Academy of Sciences 98.2
(2001), pp. 404–409. doi: 10.1073/pnas.98.2.404.

[NSW01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random
graphs with arbitrary degree distributions and their applications”.
In: Physical Review E 64 (2 2001), pp. 026118-1–026118-17. doi:
10.1103/PhysRevE.64.026118.

[NW07] M. Naor and U. Wieder. “Novel Architectures for P2P Applica-
tions: The Continuous-Discrete Approach”. In: ACM Transactions
on Algorithms 3.3 (2007). doi: 10.1145/1273340.1273350.

[NWS02] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. “Random
graph models of social networks”. In: Proceedings of the National
Academy of Sciences 99 (2002), pp. 2566–2572. doi: 10.1073/

pnas.012582999.

[NYT00] T. Nakagaki, H. Yamada, and Á. Tóth. “Maze-solving by an
amoeboid organism”. In: Nature 407 (2000), p. 470. doi: 10.1038/

35035159.

164

https://doi.org/10.1109/INFCOM.2003.1209234
https://doi.org/10.1109/INFCOM.2003.1209234
https://doi.org/10.1145/2767386.2767402
https://doi.org/10.1145/1148109.1148162
https://doi.org/10.1007/s00446-015-0257-4
https://doi.org/10.1073/pnas.98.2.404
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1145/1273340.1273350
https://doi.org/10.1073/pnas.012582999
https://doi.org/10.1073/pnas.012582999
https://doi.org/10.1038/35035159
https://doi.org/10.1038/35035159

Bibliography

[OR99] M. Ogihara and A. Ray. “Simulating Boolean Circuits on a DNA
Computer”. In: Algorithmica 25.2-3 (1999), pp. 239–250. doi:
10.1007/PL00008276.

[ORS07] M. Onus, A. W. Richa, and C. Scheideler. “Linearization: Locally
Self-Stabilizing Sorting in Graphs”. In: Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX).
New Orleans, Louisiana, USA, 2007, pp. 99–108. doi: 10.1137/1.

9781611972870.10.

[Pat14] M. J. Patitz. “An Introduction to Tile-Based Self-Assembly and
a Survey of Recent Results”. In: Natural Computing 13.2 (2014),
pp. 195–224. doi: 10.1007/s11047-013-9379-4.

[PR99] D. Peleg and V. Rubinovich. “A Near-Tight Lower Bound on the
Time Complexity of Distributed MST Construction”. In: Proceed-
ings of the 40th Annual Symposium on Foundations of Computer
Science (FOCS). New York City, New York, USA, 1999, pp. 253–
261. doi: 10.1109/SFFCS.1999.814597.

[PRS16] G. Pandurangan, P. Robinson, and M. Scquizzato. “Fast Dis-
tributed Algorithms for Connectivity and MST in Large Graphs”.
In: Proceedings of the 28th ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA). Asilomar State Beach/Pacific
Grove, California, USA, 2016, pp. 429–438. doi: 10.1145/2935764.

2935785.

[PRT16] G. Pandurangan, P. Robinson, and A. Trehan. “DEX: self-healing
expanders”. In: Distributed Computing 29.3 (2016), pp. 163–185.
doi: 10.1007/s00446-015-0258-3.

[RCN14] M. Rubenstein, A. Cornejo, and R. Nagpal. “Programmable self-
assembly in a thousand-robot swarm”. In: Science 345.6198 (2014),
pp. 795–799. doi: 10.1126/science.1254295.

[RD01] A. I. T. Rowstron and P. Druschel. “Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-Peer
Systems”. In: Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). Heidelberg,
Germany, 2001, pp. 329–350. doi: 10.1007/3-540-45518-3_18.

[Rot06] P. W. K. Rothemund. “Folding DNA to create nanoscale shapes
and patterns”. In: Nature 440 (2006), pp. 297–302. doi: 10.1038/

nature04586.

165

https://doi.org/10.1007/PL00008276
https://doi.org/10.1137/1.9781611972870.10
https://doi.org/10.1137/1.9781611972870.10
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1145/2935764.2935785
https://doi.org/10.1145/2935764.2935785
https://doi.org/10.1007/s00446-015-0258-3
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1038/nature04586
https://doi.org/10.1038/nature04586

Bibliography

[RSS11] A. W. Richa, C. Scheideler, and P. Stevens. “Self-Stabilizing De
Bruijn Networks”. In: Proceedings of the 13th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems
(SSS). Grenoble, France, 2011, pp. 416–430. doi: 10.1007/978-

3-642-24550-3_31.

[Sar+13] A. Das Sarma, D. Nanongkai, G. Pandurangan, and P. Tetali.
“Distributed Random Walks”. In: Journal of the ACM 60.1 (2013),
pp. 2:1–2:31. doi: 10.1145/2432622.2432624.

[Sch08] J. L. Schiff. Cellular Automata: A Discrete View of the World.
John Wiley & Sons, 2008.

[Sin+06] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach. “Eclipse
Attacks on Overlay Networks: Threats and Defenses”. In: Pro-
ceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM). Barcelona, Spain, 2006. doi: 10.

1109/INFOCOM.2006.231.

[SNP09] A. Das Sarma, D. Nanongkai, and G. Pandurangan. “Fast Dis-
tributed Random Walks”. In: Proceedings of the 28th Annual
ACM Symposium on Principles of Distributed Computing (PODC).
Calgary, Canada, 2009, pp. 161–170. doi: 10.1145/1582716.

1582745.

[SR05] A. Shaker and D. S. Reeves. “Self-Stabilizing Structured Ring
Topology P2P Systems”. In: Proceedings of the 5th IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P). Konstanz,
Germany, 2005, pp. 39–46. doi: 10.1109/P2P.2005.34.

[ST08] J. Saia and A. Trehan. “Picking up the Pieces: Self-Healing in
Reconfigurable Networks”. In: Proceedings of the 22nd IEEE In-
ternational Symposium on Parallel and Distributed Processing
(IPDPS). Miami, Florida, USA, 2008, pp. 1–12. doi: 10.1109/

IPDPS.2008.4536326.

[Sut+13] K. Suto, H. Nishiyama, N. Kato, T. Nakachi, T. Fujii, and A.
Takahara. “THUP: A P2P Network Robust to Churn and DoS
Attack Based on Bimodal Degree Distribution”. In: IEEE Journal
on Selected Areas in Communications 31.9-Supplement (2013),
pp. 247–256. doi: 10.1109/JSAC.2013.SUP.0513022.

[TM91] T. Toffoli and N. Margolus. “Programmable Matter: Concepts and
Realization”. In: Physica D: Nonlinear Phenomena 47.1 (1991),
pp. 263–272. doi: 10.1016/0167-2789(91)90296-L.

166

https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1145/2432622.2432624
https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1145/1582716.1582745
https://doi.org/10.1145/1582716.1582745
https://doi.org/10.1109/P2P.2005.34
https://doi.org/10.1109/IPDPS.2008.4536326
https://doi.org/10.1109/IPDPS.2008.4536326
https://doi.org/10.1109/JSAC.2013.SUP.0513022
https://doi.org/10.1016/0167-2789(91)90296-L

Bibliography

[Tra+03] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-
C. Hugly, E. Pouyoul, and B. Yeager. Project JXTA 2.0 Super-Peer
Virtual Network. 2003.

[TV85] R. E. Tarjan and U. Vishkin. “An Efficient Parallel Biconnectivity
Algorithm”. In: SIAM Journal on Computing 14.4 (1985), pp. 862–
874. doi: 10.1137/0214061.

[Win98] E. Winfree. “Algorithmic Self-Assembly of DNA”. PhD thesis.
1998.

[Woo+13] D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and
P. Yin. “Active Self-Assembly of Algorithmic Shapes and Patterns
in Polylogarithmic Time”. In: Proceedings of the 4th Conference
on Innovations in Theoretical Computer Science (ITCS). Berkeley,
California, USA, 2013, pp. 353–354. doi: 10 . 1145 / 2422436 .

2422476.

[Woo13] D. Woods. “Intrinsic universality and the computational power of
self-assembly”. In: Proceedings of the 6th Conference on Machines,
Computations and Universality (MCU). Zürich, Switzerland, 2013,
pp. 16–22. doi: 10.4204/EPTCS.128.5.

[WS98] D. J. Watts and S. H. Strogatz. “Collective dynamics of ’small-
world’ networks”. In: Nature 393 (1998), pp. 440–442. doi: 10.

1038/30918.

[WWA04] J. E. Walter, J. L. Welch, and N. M. Amato. “Distributed reconfig-
uration of metamorphic robot chains”. In: Distributed Computing
17.2 (2004), pp. 171–189. doi: 10.1007/s00446-003-0103-y.

[Yim+07] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian. “Modular Self-Reconfigurable
Robot Systems”. In: IEEE Robotics and Automation Magazine
14.1 (2007), pp. 43–52. doi: 10.1109/MRA.2007.339623.

[Zha+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. “Tapestry: A Resilient Global-Scale Overlay
for Service Deployment”. In: IEEE Journal on Selected Areas in
Communications 22.1 (2004), pp. 41–53. doi: 10.1109/JSAC.2003.

818784.

167

https://doi.org/10.1137/0214061
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.4204/EPTCS.128.5
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1007/s00446-003-0103-y
https://doi.org/10.1109/MRA.2007.339623
https://doi.org/10.1109/JSAC.2003.818784
https://doi.org/10.1109/JSAC.2003.818784

	Introduction
	I Overlay Networks
	Churn- and DoS-Resistant Overlay Networks
	Related Work
	Model and Problem Statement
	Preliminaries
	Rapid Node Sampling
	H-Graphs
	Hypercubes

	Adversarial Churn
	Adversarial DoS-Attacks
	Outlook

	Self-Stabilizing Metric Graphs
	Related Work
	Model
	Problem Statement
	Algorithm
	Analysis
	Directed Cycle Construction
	Movement of the Test-Pointers
	Metric Graph Construction
	Running Time
	After Stabilization

	Outlook

	Hybrid Network Monitoring
	Related Work
	Model and Problem Statement
	Setup Phase
	Three Simple Monitoring Problems
	Bipartiteness
	Minimum Spanning Tree
	Exact MST Weight
	Approximate MST Weight

	Outlook

	II Programmable Matter
	Leader Election for Programmable Matter
	The Amoebot Model
	Related Work
	Problem Statement
	Leader Election Algorithm
	Boundary Setup
	Segment Setup
	Identifier Setup
	Identifier Comparison
	Solitude Verification
	Boundary Identification

	Analysis
	Correctness
	Running Time

	Variants of the Leader Election Problem
	Expanded Particles
	Termination for All Particles
	Almost-Sure Leader Election
	General Graphs

	Outlook

	Shape Formation with Programmable Matter
	Problem Statement
	Movement Primitives
	Intermediate Structure
	Shape Formation Algorithm
	Simplified Algorithm
	Full Algorithm

	Outlook

	Bibliography

