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Abstract

We describe distributed algorithms for two widely-used topic models, namely the Latent Dirich-

let Allocation (LDA) model, and the Hierarchical Dirichet Process (HDP) model. In our distributed

algorithms the data is partitioned across separate processors and inference is done in a parallel, dis-

tributed fashion. We propose two distributed algorithms for LDA. The first algorithm is a straight-

forward mapping of LDA to a distributed processor setting. In this algorithm processors concur-

rently perform Gibbs sampling over local data followed by a global update of topic counts. The al-

gorithm is simple to implement and can be viewed as an approximation to Gibbs-sampled LDA. The

second version is a model that uses a hierarchical Bayesian extension of LDA to directly account

for distributed data. This model has a theoretical guarantee of convergence but is more complex

to implement than the first algorithm. Our distributed algorithm for HDP takes the straightforward

mapping approach, and merges newly-created topics either by matching or by topic-id. Using five

real-world text corpora we show that distributed learning works well in practice. For both LDA and

HDP, we show that the converged test-data log probability for distributed learning is indistinguish-

able from that obtained with single-processor learning. Our extensive experimental results include

learning topic models for two multi-million document collections using a 1024-processor parallel

computer.

Keywords: Topic Models, Latent Dirichlet Allocation, Hierarchical Dirichlet Processes, Dis-

tributed Parallel Computation

1. Introduction

Very large data sets, such as collections of images or text documents, are becoming increasingly

common, with examples ranging from collections of online books at Google and Amazon, to the
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large collection of images at Flickr. These data sets present major opportunities for machine learn-

ing, such as the ability to explore richer and more expressive models than previously possible, and

provide new and interesting domains for the application of learning algorithms.

However, the scale of these data sets also brings significant challenges for machine learning,

particularly in terms of computation time and memory requirements. For example, a text corpus

with one million documents, each containing one thousand words, will require approximately eight

GBytes of memory to store the billion words. Adding the memory required for parameters, which

usually exceeds memory for the data, creates a total memory requirement that exceeds that available

on a typical desktop computer. If one were to assume that a simple operation, such as computing a

probability vector over categories using Bayes rule, takes on the order of seconds per word,

then a full pass through the billion words would take 1000 seconds. Thus, algorithms that make

multiple passes through the data, for example clustering and classification algorithms, will have run

times in days for this sized corpus. Furthermore, for small to moderate sized document sets where

memory is not an issue, it would be useful to have algorithms that could take advantage of desktop

multiprocessor/multicore technology to learn models in near real-time.

An obvious approach for addressing these time and memory issues is to distribute the learning

algorithm over multiple processors. In particular, with processors, it is somewhat trivial to address

the memory issue by distributing of the total data to each processor. However, the computation

problem remains non-trivial for a fairly large class of learning algorithms, namely how to combine

local processing on each processor to arrive at a useful global solution.

In this general context we investigate distributed algorithms for two widely-used unsupervised

learning models: the Latent Dirichlet Allocation (LDA) model, and the Hierarchical Dirichet Pro-

cess (HDP) model. LDA and HDP models are arguably among the most successful recent learning

algorithms for analyzing discrete data such as bags of words from a collection of text documents.

However, they can take days to learn for large corpora, and thus, distributed learning would be

particularly useful.

The rest of the paper is organized as follows: In Section 2 we review the standard derivation

of LDA and HDP. Section 3 presents our two distributed algorithms for LDA and one distributed

algorithm for HDP. Empirical results are provided in Section 4. Scalability results are presented

in Section 5, and further analysis of distributed LDA is provided in Section 6. A comparison with

related models is given in Section 7. Finally, Section 8 concludes the paper.

2. Latent Dirichlet Allocation and Hierarchical Dirichlet Process Model

We start by reviewing the LDA and HDP models. Both LDA and HDP are generative probabilistic

models for discrete data such as bags of words from text documents – in this context these models

are often referred to as topic models. To illustrate the notation, we refer the reader to the graphical

models for LDA and HDP shown in Figure 1.

LDA models each of documents in a collection as a mixture over latent topics, with each

topic being a multinomial distribution over a vocabulary of words. For document , we first

draw a mixing proportion from a Dirichlet with parameter . For the word in the document, a

topic is drawn with probability . Word is then drawn from topic , with taking

on value with probability . A Dirichlet prior with parameter is placed on the word-topic

distributions .
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Figure 1: Graphical models for LDA (left) and HDP (right). Observed variables (words) are shaded,

and hyperparameters are shown in squares.

Thus, the generative process for LDA is given by

(1)

To avoid clutter we denote sampling from a Dirichlet as shorthand for

, and likewise for . In this paper, we use symmetric Dirichlet priors for simplicity, un-

less specified otherwise. The full joint distribution over all parameters and variables is

(2)

where , and we use the convention that missing indices are

summed out. and are the two primary count arrays used in

computations, representing the number of words assigned to topic in document , and the number

of times word is assigned to topic in the corpus, respectively. For ease of reading we list

commonly used variables in Table 1.

Given the observed words , the task of Bayesian inference for LDA is to compute the

posterior distribution over the latent topic assignments , the mixing proportions , and the

topics . Approximate inference for LDA can be performed either using variational methods (Blei

et al., 2003) or Markov chain Monte Carlo methods (Griffiths and Steyvers, 2004). In this paper we

focus on Markov chain Monte Carlo algorithms for approximate inference. MCMC is widely used

as an inference method for a variety of topic models, for example Rosen-Zvi et al. (2004), Li and

McCallum (2006), and Chemudugunta et al. (2007) all use MCMC for inference. In the MCMC

context, the usual procedure is to integrate out the mixtures and topics in (2) – a procedure

called collapsing – and just sample the latent variables . Given the current state of all but one
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Description

Number of documents in collection

Number of distinct words in vocabulary

Total number of words in collection

Number of topics

observed word in document

Topic assigned to

Count of word assigned to topic

Count of topic assigned in document

Probability of word given topic

Probability of topic given document

Table 1: Description of commonly used variables.

variable , the conditional probability of is

(3)

where the superscript means that the corresponding word is excluded in the counts.

HDP is a collection of Dirichlet Processes which share the same topic distributions and can be

viewed as the non-parametric extension of LDA. The advantage of HDP is that the number of topics

is determined by the data. The HDP model is obtained by taking the following model in the limit as

goes to infinity. Let be top level Dirichlet variables sampled from a Dirichlet with parameter

. The topic mixture for each document, , is drawn from a Dirichlet with parameters .

The word-topic distributions are drawn from a base Dirichlet distribution with parameter . As

in LDA, is sampled from , and word is sampled from the corresponding topic . The

generative process is given by

(4)

The posterior distribution is sampled using the direct assignment sampler for HDP described

in Teh et al. (2006). As was done for LDA, both and are integrated out, and is sampled from

the following conditional distribution:

if previously used

new if is new.

(5)

The sampling scheme for is also detailed in Teh et al. (2006). Note that a small amount of

probability mass proportional to new is reserved for the instantiation of new topics. While HDP is

defined to have infinitely many topics, the sampling algorithm only instantiates topics as needed.
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Figure 2: On the NIPS dataset using topics, the fully collapsed Gibbs sampler (solid line) converges

faster than the partially collapsed (circles) and non-collapsed (triangles) samplers.

Need for Distributed Algorithms: One could argue that it is trivial to distribute non-collapsed

Gibbs sampling, because sampling of can happen independently given and , and therefore

can be done concurrently. In the non-collapsed Gibbs sampler, one samples given and ,

and then samples and given . Furthermore, if individual documents are not spread across

different processors, one can marginalize over just , since is processor-specific. In this partially

collapsed scheme, the latent variables on each processor can be concurrently sampled, where the

concurrency is over processors.

Unfortunately, the non-collapsed and partially collapsed Gibbs samplers exhibit slow conver-

gence due to the strong dependencies between the parameters and latent variables. Generally, we

expect faster mixing as more variables are collapsed (Liu et al., 1994; Casella and Robert, 1996).

Figure 2 shows, using one of the data sets used throughout our paper, that the log probability of

test data (measured as perplexity, which is defined in Section 4) of the non-collapsed and partially

collapsed samplers converges more slowly than the fully collapsed sampler.

The slow convergence of partially collapsed and non-collapsed Gibbs samplers motivates the

need to devise distributed algorithms for fully collapsed Gibbs samplers. In the following section

we introduce distributed topic modeling algorithms that take advantage of the benefits of collapsing

both and .

3. Distributed Algorithms for Topic Models

We introduce algorithms for LDA and HDP where the data, parameters, and computation are dis-

tributed over distinct processors. We distribute the documents over processors, with approx-

imately documents on each processor. Documents are randomly assigned to processors,

although as we will see later, the assignment of documents to processors – ranging from random to

highly non-random or adversarial – appears to have little influence on the results. This indifference
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Algorithm 1 AD-LDA

repeat

for each processor in parallel do

Copy global counts:

Sample locally: LDA-Gibbs-Iteration( , , , , , )

end for

Synchronize

Update global counts:

until termination criterion satisfied

is somewhat understandable given that converged results from Gibbs sampling are independent of

sampling order.

We partition the words from the documents into and the corre-

sponding topic assignments into , where processor stores , the words

from documents , and , the corresponding topic assignments.

Topic-document counts are likewise distributed as . The word-topic counts are also

distributed, with each processor keeping a separate local copy .

3.1 Approximate Distributed Latent Dirichlet Allocation

The difficulty of distributing and parallelizing over Gibbs sampling updates (3) lies in the fact that

Gibbs sampling is a strictly sequential process. To asymptotically sample from the posterior distri-

bution, the update of any topic assignment can not be performed concurrently with the update

of any other topic assignment . But given the typically large number of word tokens compared

to the number of processors, to what extent will the update of one topic assignment depend on

the update of any other topic assignment ? Our hypothesis is that this dependence is weak, and

therefore we should be able to relax the requirement of sequential sampling of topic assignments

and still learn a useful model. One can see this weak dependence in the following common situation.

If two processors are concurrently sampling, but sampling different words in different documents

(i.e. ), then concurrent sampling will be very close to sequential sampling because the

only term affecting the order of operations is the total count of topics in the denominator

of (3).

The pseudocode for our Approximate Distributed LDA (AD-LDA) algorithm is shown in Al-

gorithm 1. After distributing the data and parameters across processors, AD-LDA performs simul-

taneous LDA Gibbs sampling on each of the processors. After processor has swept through

its local data and updated topic assignments , the processor has modified count arrays and

. The topic-document counts are distinct because of the document index, , and will

be consistent with the topic assignments . However, the word-topic counts will in general

be different on each processor, and not globally consistent with . To merge back to a single and

consistent set of word-topic counts, we perform a reduce operation on across all processors to

update the global counts. After the synchronization and update operations, each processor has the

same values in the array which are consistent with the global vector of topic assignments .

Note that is not the result of separate LDA models running on separate data. In particular,

each word-topic count array reflects all the counts, not just those local to that processor, so for every

processor , where is the total number of words in the corpus. As in LDA, the
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Figure 3: Graphical model for Hierarchical Distributed Latent Dirichlet Allocation.

algorithm can terminate either after a fixed number of iterations, or based on some suitable MCMC

convergence metric.

We chose the name Approximate Distributed LDA because in this algorithm we are no longer

asymptotically sampling from the true posterior, but to an approximation of the true posterior.

Nonetheless, we will show in our experimental results that the approximation made by Approxi-

mate Distributed LDA works very well.

3.2 Hierarchical Distributed Latent Dirichlet Allocation

In AD-LDA we constructed an algorithm where each processor is independently computing an LDA

model, but at the end of each sweep through a processor’s data, a consistent global array of topic

counts is reconstructed. This global array of topic counts could be thought of as a parent topic

distribution, from which each processor draws its own local topic distribution.

Using this intuition, we created a Bayesian model reflecting this structure, as shown in Fig-

ure 3. Our Hierarchical Distributed LDA model (HD-LDA) places a hierarchy over word-topic

distributions, with being the global or parent word-topic distribution and the local word-

topic distributions on each processor. The local word-topic distributions are drawn from

according to a Dirichlet distribution with a topic-dependent strength parameter , for each topic

. The model on each processor is simply an LDA model. The generative process is

given by:

(6)

From this generative process, we derive Gibbs sampling equations for HD-LDA. The derivation

is based on the Teh et al. (2006) sampling schemes for Hierarchical Dirichlet Processes. As was

done for LDA, we start by integrating out and . The collapsed distribution of and on
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processor is given by:

(7)

From this we derive the conditional probability for sampling a topic assignment . Unlike

AD-LDA, the topic assignments on any processor are now conditionally independent of the topic

assignments on the other processors given , thus allowing each processor to sample concur-

rently. The conditional probability of is

(8)

The full derivation of the Gibbs sampling equations for HD-LDA is provided in Appendix A,

which lists the complete set of sampling equations for , and .

The pseudocode for our Hierarchical Distributed LDA algorithm is given in Algorithm 2. Each

variable in this model is either local or global, depending on whether inference for the variable

is computed locally on a processor or globally, requiring information from all processors. Local

variables include , , , , and . Global variables include and . Each processor uses Gibbs

sampling to sample its local variables concurrently. After each sweep through the processor’s data,

the global variables are sampled. Note that, unlike AD-LDA, HD-LDA is performing strictly correct

sampling for its model.

HD-LDA can be viewed as a mixture model with LDA mixture components with equal mixing

weights. In this view the data have been hard-assigned to their respective clusters (i.e. processors),

and the parameters of the clusters are generated from a shared prior distribution.

Algorithm 2 HD-LDA

repeat

for each processor in parallel do

Sample locally: LDA-Gibbs-Iteration( , , , , , )

Sample locally

end for

Synchronize

Sample: ,

Broadcast: ,

until termination criterion satisfied

3.3 Approximate Distributed Hierarchical Dirichlet Processes

Our third distributed algorithm, Approximate Distributed HDP, takes the same approach as AD-

LDA. Processors concurrently run HDP for a single sweep through their local data. After all of

the processors sweep through their data, a synchronization and update step is performed to create a

8
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Algorithm 3 AD-HDP

repeat

for each processor in parallel do

Sample locally: HDP-Gibbs-Iteration( , , , , , , , )

Report , to master node

end for

Synchronize

Update global counts (and merge new topics):

Sample: , ,

Broadcast: , , ,

until termination criterion satisfied

Processor 1

Processor 2

Processor 3

+ + + + + +

+ + + + + +

+

= = = = = = = =

Merged Topics

New Topics

T1 T2 T3 T4 T5 T6 T7 T8

Figure 4: The simplest method to merge new topics in AD-HDP is by integer topic label.

single set of globally-consistent word-topic counts . We refer to the distributed version of HDP

as AD-HDP, and provide the pseudocode in Algorithm 3.

Unlike AD-LDA, which uses a fixed number of topics, individual processors in AD-HDP may

instantiate new topics during the sampling phase, according to the HDP sampling equation (5). Dur-

ing the synchronization and update step, instead of treating each processor’s new topics as distinct,

we merge new topics that were instantiated on different processors. Merging new topics helps limit

unnecessary growth in the total number of topics and allows AD-HDP to produce more of a global

model.

There are several ways to merge newly created topics on each processor. A simple way –

inspired by AD-LDA – is to merge new topics based on their integer topic label. A more complicated

way is to match new topics across processors based on topic similarity.

In the first merging scheme, new topics are merged based on their integer topic label. For exam-

ple, assume that we have three processors, and at the end of a sweep through the data, processor one

has 8 new topics, processor two has 6 new topics, and processor three has 7 new topics. Then dur-

ing synchronization, all these new topics would be aligned by topic label and their counts summed,

producing 8 new global topics, as shown in Figure 4.

While this merging of new topics by topic-id may seem suboptimal, it is computationally simple

and efficient. We will show in the next section that this merging generally works well in practice,

even when processors only have a small amount of data. We suggest that even if the merging by

9
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Algorithm 4 Greedy Matching of New Topics for AD-HDP

Initialize global set of new topics, , to be processor 1’s set of new topics

for = 2 to P do

for topic in processor p’s set of new topics do

Initialize score array

for topic in do

score[ ] = symmetric-KL-divergence( , )

end for

if min(score) threshold then

Add ’s counts to the topic in corresponding to min(score)

else

Augment with the new topic

end if

end for

end for

topic-id is initially quite random, the subsequent dynamics align the topics in a sensible manner. We

will also show that AD-HDP ultimately learns models with similar perplexity to HDP, irrespective

of how new topics are merged.

We also investigate more complicated schemes for merging new topics in AD-HDP, beyond the

simple approach of merging by topic-id. Instead of aligning new topics based topic-id it is possible

to align new topics using a similarity metric such as symmetric Kullback-Leibler divergence. How-

ever, finding the optimal matching of topics in the case where is NP-hard (Burkard and Çela,

1999). Thus, we consider approximate schemes: bipartite matching using a reference processor,

and greedy matching.

In the bipartite matching scheme, we select a reference processor and perform bipartite matching

between every processor’s new topics and the set of new topics of the reference processor. The

bipartite match is computed using the Hungarian algorithm, which runs in , producing an

overall complexity of where is the maximum number of new topics on a processor. We

implemented this scheme but did not find any improvement over AD-HDP with merging by topic-id.

In the greedy matching scheme, new topics on each processor are sequentially compared to a

global set of new topics. This global set is initialized to the first processor’s set of new topics. If

a new topic is sufficiently different from every topic in the global set, the number of topics in the

global set is incremented; otherwise, the counts for that new topic are added to those from the closest

match in the global set. A threshold is used to determine whether a new topic is sufficiently different

from another topic. The worst case complexity of this algorithm is – this is the case where

every new topic is found to be different from every other new topic in the global set. Increasing this

threshold will make it more likely for new topics to merge with the topics already in the global set

(instead of incrementing the set), causing the expected running time of this merging algorithm to

be linear in the number of processors. The pseudocode of this greedy matching scheme is shown in

Algorithm 4. This algorithm is run after each iteration of AD-HDP to produce a global set of new

topics. We show in the next section that this greedy matching scheme significantly improves the

rate of convergence for AD-HDP.
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KOS NIPS WIKIPEDIA PUBMED NEWSGROUPS

train 3,000 1,500 2,051,929 8,200,000 19500

6,906 12,419 120,927 141,043 27,059

467,714 2,166,058 344,941,756 737,869,083 2,057,207

test 430 184 - - 498

Table 2: Characteristics of data sets used in experiments.

4. Experiments

The purpose of our experiments is to investigate how our distributed topic model algorithms, AD-

LDA, HD-LDA and AD-HDP, perform when compared to their sequential counterparts, LDA and

HDP. We are interested in two aspects of performance: the quality of the model learned, measured

by log probability of test data; and the time taken to learn the model. Our primary data sets for these

experiments were KOS blog entries, from dailykos.com, and NIPS papers, from books.nips.cc.

We chose these relatively small data sets to allow us to perform a large number of experiments.

Both data sets were split into a training set and a test set. Size parameters for these data sets are

shown in Table 2. For each corpus, is the number of documents, is the vocabulary size

and is the total number of words. Two larger data sets WIKIPEDIA, from en.wikipedia.org,

and PUBMED, from pubmed.gov were used for speedup experiments, described in Section 5. For

precision-recall experiments we used the NEWSGROUPS data set, taken from the UCI Machine

Learning Repository. All the data sets used in this paper can be downloaded from the UCI Machine

Learning Repository (Asuncion and Newman, 2007).

Using the KOS and NIPS data sets, we computed test set perplexities for a range of topics , and

for numbers of processors, , ranging from 1 to 3000. The distributed algorithms were initialized by

first randomly assigning topics to words in , then counting topics in documents, , and words in

topics, , for each processor. For each run of LDA, AD-LDA, and HD-LDA, a sample was taken

at 500 iterations of the Gibbs sampler, which is well after the typical burn-in period of the initial

200-300 iterations. For each run of HDP and AD-HDP, we allow the Gibbs sampler to run for 3000

iterations, to allow the number of topics to grow. In our perplexity experiments, multiple processors

were simulated in software by separating data, running sequentially through each processor, and

simulating the global synchronization and update steps. For the speedup experiments, computations

were run on 64 to 1024 processors on a 2000+ processor parallel supercomputer.

The following set of hyperparameters was used for the experiments, where hyperparameters are

shown as variables in squares in the graphical models in Figures 1 and 3. For AD-LDA we set

and . For AD-HDP we set , Gamma and Gamma . While

and could have also been fixed, resampling these hyperparameters allows for more robust topic

growth, as described by Teh et al. (2006). For LDA and AD-LDA we fixed the hyperparameters

and , but these priors could also be learned using sampling.

Selection of hyperparameters for HD-LDA was guided by our experience with AD-LDA. For

AD-LDA, , but for HD-LDA , so we choose and to make the

mode of to simulate the inclusion of global counts in as is done in AD-LDA. We

set , because it is important to scale by the number of topics to prevent oversmoothing

when the counts are spread thinly among many topics. Finally, we choose and to make the mode

11
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of , matching the value of used in our LDA and AD-LDA experiments. Specifically, we

set: , , and .

To systematically evaluate our distributed topic model algorithms, AD-LDA, HD-LDA and

AD-HDP, we measured performance using test set perplexity, which is computed as Perp test

test

test . For every test document, half the words at random are designated for fold-

in, and the remaining words are used as test. The document mixture is learned using the fold-in

part, and log probability of the test words is computed using this mixture, ensuring that the test

words are not used in estimation of model parameters. For AD-LDA, the perplexity computation

exactly follows that of LDA, since a single set of topic counts are saved when a sample is

taken. In contrast, all copies of are required to compute perplexity for HD-LDA. Except

where stated, perplexities are computed for all algorithms using samples from the posterior

from ten independent chains using

test test (9)

This perplexity computation follows the standard practice of averaging over multiple chains when

making predictions with LDA models trained via Gibbs sampling, as discussed in Griffiths and

Steyvers (2004). Averaging over ten samples significantly reduces perplexity compared to using a

single sample from one chain. While we perform averaging over multiple samples to improve the

estimate of perplexity, we have also observed similar relative results across our algorithms when we

use a single sample to compute perplexity.

Analogous perplexity calculations are used for HD-LDA and AD-HDP. With HD-LDA we ad-

ditionally compute processor-specific responsibilities, since test documents do not belong to any

particular processor, unlike the training documents. Each processor learns a document mixture

using the fold-in part for each test document. For each processor, the likelihood is calculated over

the words in the fold-in part in a manner analogous to (9), and these likelihoods are normalized to

form the responsibilities, . To compute perplexity, we compute the likelihood over the test words,

using a responsibility-weighted average of probabilities over all processors:

test test (10)

where

Computing perplexity in this manner prevents the possibility of seeing or using test words during

the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that the model perplexity is

essentially the same for the distributed models AD-LDA and AD-HDP at and as

their single-processor versions at . The figures show the test set perplexity, versus number of

processors, , for different numbers of topics for the LDA-type models, and also for the HDP-

models which learn the number of topics. The perplexity is computed by LDA (circles) and

HDP (triangles), and we use our distributed algorithms – AD-LDA (crosses), HD-LDA (squares),

12
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and AD-HDP (stars) – to compute the and perplexities. The variability in

perplexity as a function of the number of topics is much greater than the variability due to the

number of processors. Note that there is essentially no perplexity difference between AD-LDA and

HD-LDA.
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Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus number of processors P.

corresponds to LDA and HDP. At and we show AD-LDA, HD-LDA
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Even in the limit of a large number of processors, the perplexity for the distributed algorithms

matches that for the sequential version. In fact, in the limiting case of just one document per

processor, for KOS and for NIPS, we see that the perplexities of AD-LDA are

generally no different to those of LDA, as shown in the rightmost point in each curve in Figure 6.

AD-HDP instantiates fewer topics but produces a similar perplexity to HDP. The average num-

ber of topics instantiated by HDP on KOS was 669 while the average number of topics instantiated

by AD-HDP was 490 ( ) and 471 ( ). For NIPS, HDP instantiated 687 topics while

AD-HDP instantiated 569 ( ) and 569 ( ) topics. AD-HDP instantiates fewer topics

because of the merging across processors of newly-created topics. The similar perplexity results for

AD-HDP compared to HDP, despite the fewer topics, is partly due to the relatively small probability

mass in many of the topics.

Despite no formal convergence guarantees, the approximate distributed algorithms, AD-LDA

and AD-HDP, converged to good solutions in every single experiment (of the more than one hun-

dred) we conducted using multiple real-world data sets. We also tested both our distributed LDA

algorithms with adversarial/non-random distributions of topics across processors using synthesized

data. One example of an adversarial distribution of documents is where each document only uses a

single topic, and these documents are distributed such that processor only has documents that are

about topic . In this case the distributed topic models have to learn the correct set of topics, even

though each processor only sees local documents that pertain to just one of the topics. We ran multi-

ple experiments, starting with 1000 documents that were hard-assigned to topics (i.e. each

document is only about one topic), and distributing the 1000 documents over processors,

where each processor contained documents belonging to the same topic (an analogy is one proces-

sor only having documents about sports, the next processor only having documents about arts, and

so on). The perplexity performance of AD-LDA and HD-LDA under these adversarial/non-random

distribution of documents was as good as the performance when the documents were distributed

randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithms with

processors are not just due to averaging effects, we split the NIPS corpus into one hundred

15-document collections, and ran LDA separately on each of these hundred collections. The test

perplexity at computed by averaging 100-separate LDA models was 2117, significantly

higher than the test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a

baseline approach of simple averaging of results from separate processors performs much worse

than the distributed coordinated learning algorithms that we propose in this paper.

4.2 Convergence

One could imagine that distributed algorithms, where each processor only sees its own local data,

may converge more slowly than single-processor algorithms where the data is global. Consequently,

we performed experiments to see whether our distributed algorithms were converging at the same

rate as their sequential counterparts. If the distributed algorithms were converging slower, the com-

putational gains of parallelization would be reduced. Our experiments consistently showed that the

convergence rate for the distributed LDA algorithms was just as fast as those for the single processor

case. As an example, Figure 7 shows test perplexity versus iteration of the Gibbs sampler for the

NIPS data at topics. During burn-in, up to iteration 200, the distributed algorithms are ac-

tually converging slightly faster than single processor LDA. Note that one iteration of AD-LDA or
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HD-LDA on a parallel multi-processor computer only takes a fraction (at best ) of the wall-clock

time of one iteration of LDA on a single processor computer.
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Figure 7: Convergence of test perplexity versus iteration for the distributed algorithms AD-LDA

and HD-LDA using the NIPS data set and topics.

We see slightly different convergence behavior in the non-parametric topic models. AD-HDP

converges more slowly than HDP, as shown in Figure 8, due to AD-HDP’s heavy averaging of new

topics resulting from merging by topic-id (i.e. no matching). This slower convergence may partially

be a result of the lower number of topics instantiated. The number of new topics instantiated in one

pass of AD-HDP is limited to the maximum number of new topics instantiated on any one processor.

For example, in the right plot, after 500 iterations, HDP has instantiated 360 topics, whereas AD-

HDP has instantiated 210 ( ) and 250 ( ) topics. Correspondingly, at 500 iterations,

the perplexity of HDP is lower than the perplexity of AD-HDP. After three thousand iterations, AD-

HDP produces the same perplexity as HDP, which is reassuring because it indicates that AD-HDP

is ultimately producing a model that has the same predictive ability as HDP. We observe a similar

result for the NIPS data set.

One way to accelerate the rate of convergence for AD-HDP is to match newly generated topics

by similarity instead of by topic-id. Figure 9 shows that performing the greedy matching scheme for

new topics as described in Algorithm 4 significantly improves the rate of convergence for AD-HDP.

In this experiment, we used a threshold of 2 for determining topic similarity. The number of topics

increases at a faster rate for AD-HDP with matching, since the greedy matching scheme is more

flexible in that the number of new topics at each iteration is not limited to the maximum number of

new topics instantiated on any one processor. The results show that the greedy matching scheme

enables AD-HDP to converge almost as quickly as HDP. In practice, only a few new topics

are generated locally on each processor each iteration, and so the computational overhead of this

heuristic matching scheme is minimal relative to the time for Gibbs sampling.
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Figure 8: Results for HDP versus AD-HDP with no matching. Left plot shows test perplexity versus

iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration for

HDP and AD-HDP. Results are for the KOS data set.
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Figure 9: Results for HDP versus AD-HDP with greedy matching. Left plot shows test perplexity

versus iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration

for HDP and AD-HDP. Results are for the KOS data set.

To further check that the distributed algorithms were performing comparably to their single

processor counterparts, we ran experiments to investigate whether the results were sensitive to the

number of topics used in the models, in case the distributed algorithms’ performance worsens when

the number of topics becomes very large. Figure 10 shows the test perplexity computed on the

NIPS data set, as a function of the number of topics, for the LDA algorithms and a fixed number of

processors (the results for the KOS data set were quite similar and therefore not shown). The

perplexities of the different algorithms closely track each other as number of topics, , increases.

In fact, in some cases HD-LDA produces slightly lower perplexities than those of single processor
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LDA. This lower perplexity may be due to the fact that in HD-LDA test perplexity is computed

using P sets of topic parameters, thus it has more parameters than AD-LDA to better fit the data.

0 100 200 300 400 500 600 700
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Number of Topics

P
e

rp
le

x
it
y

LDA

AD−LDA P=10

HD−LDA P=10

Figure 10: Test perplexity versus number of topics using the NIPS data set (S=5).

4.3 Precision and Recall

In addition to our experiments measuring perplexity, we also performed precision/recall calculations

using the NEWSGROUPS data set, where each document’s corresponding newsgroup is the class

label. In this experiment we use LDA and AD-LDA to learn topic models on the training data. Once

the model is learned, each test document can be treated as a ”query”, where the goal is to retrieve

relevant documents from the training set. For each test document, the training documents are ranked

according to how probable the test document is under each training document’s mixture and the

set of topics . From this ranking, one can calculate mean average precision and area under the

ROC curve.
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Figure 11: Precision/recall results: (left) Mean average precision for LDA/AD-LDA. (right) Area

under the ROC curve for LDA/AD-LDA.
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Figure 11 shows the mean average precision and the area under the ROC curve achieved by

LDA and AD-LDA, plotted versus iteration. LDA performs slightly better than AD-LDA for the

first 20 iterations, but AD-LDA catches up and converges to the same mean average precision and

area under the ROC curve as LDA. This again shows that our distributed/parallel version of LDA

produces a very similar result to the single-processor version.

5. Scalability

The primary motivation for developing distributed algorithms for LDA and HDP is to have highly

scalable algorithms, in terms of memory and computation time. Memory requirements depend on

both memory for data and memory for model parameters. The memory for the data scales with ,

the total number of words in the corpus. The memory for the parameters is linear in the number

of topics , which is either fixed for the LDA models or learned for the HDP models. The per-

processor per-iteration time and space complexity of LDA and AD-LDA are shown in Table 3.

AD-LDA’s memory requirement scales well as collection sizes grow, because while corpus size (

and ) can get arbitrarily large, which can be offset by increasing the number of processors, ,

the vocabulary size will tend to asymptote, or at least grow more slowly. Similarly the time

complexity scales well since the leading order term is divided by .

The communication cost of the reduce operation, denoted by in the table, represents the time

taken to perform the global sum of the count difference . This is executed in

stages and can be implemented efficiently in standard language/protocols such as MPI, the

Message Passing Interface. Because of the additional term, parallel efficiency will depend on

, with increasing efficiency as this ratio increases. Space and time complexity of HD-LDA are

similar to that of AD-LDA, but HD-LDA has bigger constants. For a given number of topics, ,

we argue that AD-HDP has similar time complexity as AD-LDA.

We performed large-scale speedup experiments with just AD-LDA instead of all three of our

distributed topic modeling algorithms because AD-LDA produces very similar results to HD-LDA,

but with significantly less computation. We expect that relative speedup performance for HD-LDA

and AD-HDP should follow that for AD-LDA.

LDA AD-LDA

Space

Time

Table 3: Space and time complexity of LDA and AD-LDA.

We used two multi-million document data sets, WIKIPEDIA and PUBMED, for speedup exper-

iments on a large-scale supercomputer. The supercomputer used was DataStar, a 15.6 TFlop teras-

cale machine at San Diego Supercomputer Center built from 265 IBM P655 8-way compute nodes.

We implemented a parallel version of AD-LDA using the Message Passing Interface protocol. We

ran AD-LDA on WIKIPEDIA using topics and PUBMED using topics dis-

tributed over and 1024 processors. The speedup results, shown in Figure 12,

show relatively high parallel efficiency, with approximately 700 times speedup for WIKIPEDIA

and 800 times speedup for PUBMED when using processors, corresponding to parallel

efficiencies of approximately 0.7 and 0.8 respectively. This speedup is computed relative to the
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Figure 12: Parallel speedup results for 64 to 1024 processors on multi-million document datasets

WIKIPEDIA and PUBMED.

time per iteration when using processors (i.e. at processors speedup=64), since

it is not possible, due to memory limitations, to run these models on a single processor. Multiple

runs were timed for both WIKIPEDIA and PUBMED, and the resulting variation in timing was less

than 1%, so error bars are not shown in the figure. We see slightly higher parallel efficiency for

PUBMED versus WIKIPEDIA because PUBMED has a larger amount of computation per unit data

communicated, .

This speedup dramatically reduces the learning time for large topic models. If we were to learn

a topic model for PUBMED using LDA on a single processor, it would require over 300

days instead of the 10 hours required to learn the same model using AD-LDA on 1024 processors. In

our speedup experiments on these large data sets, we did not directly investigate latency or commu-

nication bandwidth effects. Nevertheless, one could expect that if the communication time becomes

very long compared to the computation time, then it may be worth doing multiple Gibbs sampling

sweeps on a processor’s local data before performing the synchronization and global update step.

In Section 6 we further examine this question of frequency of synchronizations. The relative time

for communication versus computation also effects the weak scaling of parallelization, where the

problem size increases linearly with the number of processors. We expect that parallel efficiency

will be relatively constant for weak scaling since is constant.

In addition to the large-scale speedup experiments run on the 1024-processor parallel super-

computer, we also performed small-scale speedup experiments for AD-HDP on an 8-node parallel

cluster running MPI. Using the NIPS data set we measured parallel efficiencies of 0.75 and 0.5 for

and . The latter result on 8 processors means that the HDP model for NIPS can be

learned four times faster than on a single processor.
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6. Analysis of Approximate Distributed LDA

Finally, we investigate the dynamics of AD-LDA learning using toy data to get further insight

into how AD-LDA is working. While we have shown experimental results showing that AD-LDA

produces models with similar perplexity and similar convergence rates to LDA, it is not obvious

why this algorithm works so well in practice. Our toy example has words and

topics. We generated document collections according to the LDA generative process given by (1).

We chose a low dimension vocabulary, , so that we could plot the evolution of the Gibbs sampler

on a two-dimensional word-topic simplex. We first generated data, then learned models using LDA

and AD-LDA.

The left plot of Figure 13 shows the distance between the model’s estimate of a particular

topic-word distribution and the true distribution, as a function of Gibbs iteration, for both single-

processor LDA and AD-LDA with . LDA and AD-LDA have qualitatively the same three-

phase learning dynamics. The first four or so iterations (labeled initialize) correspond to somewhat

random movement close to the randomly initialized starting point. In the next phase (labeled burn-

in) both algorithms rapidly move in parameter space toward the posterior mode. And finally after

burn-in (labeled stationary) both are sampling around the mode. In the right plot we show the sim-

ilarity between AD-LDA and LDA samples taken from the equilibrium distribution – here plotted

on the two-dimensional planar simplex corresponding to the three-word topic distribution.
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Figure 13: (Left) distance to the mode for LDA and for AD-LDA. (Right) Closeup of 50

samples of (projected onto the topic simplex) taken from the equilibrium distribution,

showing the similarity between LDA and AD-LDA. Note the zoomed scale in

this figure.

The left plot of Figure 14 depicts the same trajectory shown in Figure 13 left, projected onto the

topic simplex. This plot shows the paths in parameter space of each model, and the same three-phase

learning dynamics: taking a few small steps near the starting point, moving up to the true solution,

and then sampling near the posterior mode for the rest of the iterations. For each Gibbs iteration,

the parameters corresponding to each of the two individual processors, and those parameters after

merging, are shown for AD-LDA. One can see the alternating pattern of two separate (but close)

20



DISTRIBUTED ALGORITHMS FOR TOPIC MODELS

parameter estimates on each processor, followed by a merged estimate. We observed that after the

initial few iterations, the individual processor steps and the merge step each resulted in a move closer

to the mode. One might worry that the AD-LDA algorithm would get trapped close to the initial

starting point, e.g., due to repeated label switching or oscillatory behavior of topic labeling across

processors. In practice we have consistently observed that the algorithm quickly discards such

configurations due to the stochastic nature of the moves and latches onto a consistent and stable

labeling that rapidly moves it toward the posterior mode. The figure clearly illustrates that LDA and

AD-LDA have qualitatively similar learning dynamics. The right plot in Figure 14 illustrates the

same qualitative behavior as in the left plot, but now for processors.

Interestingly, across a wide range of experiments, we observed that the variance in the AD-

LDA word-topic distribution samples is typically only about 70% of the variance in LDA topic

samples. Since the samplers are not the same it makes sense that the posterior variance differs

(i.e. is underestimated) by the parallel sampler. We expect less variance because AD-LDA ignores

fluctuations in the bulk of . Nonetheless, all of our experiments indicate that the posterior mode

and means found by the parallel sampler are essentially the same as those found by the sequential

sampler.
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Figure 14: (Left) Projection of topics onto simplex, showing convergence to mode for .

(Right) Same as left plot, but with .

Another insight can be gained by thinking of LDA as an approximation to stochastic descent in

the space of assignment variables . On a single processor, one can view Gibbs sampling during

burn-in as a stochastic algorithm to move up the likelihood surface. With multiple processors, each

processor computes an upward direction in its own subspace, keeping all other directions fixed.

The global update step then recombines these directions by vector-addition, in the same way as one

would compute a gradient using finite differences. This is expected to be accurate as long as the

surface is locally convex or concave, but will break down at saddle-points. We conjecture AD-LDA

works reliably because saddle points are unstable and rare because the posterior is usually highly

peaked for LDA models and high-dimensional count data sets.

While we see similar perplexities for AD-LDA compared to LDA, we could further ask if the

AD-LDA algorithm is producing any bias in its estimates of the model parameters. To test this, we
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Figure 15: Average error in word-topic distribution versus P for AD-LDA.

performed a series of experiments where we generated synthetic data sets according to the LDA

generative process, with known word-topic distributions . We then learned LDA and AD-LDA

models from each of the simulated data sets. We computed the expected value of the AD-LDA topics

and compared this to two reference values, ref one based on the true distribution, ref ,

the other based on multiple LDA samples, ref LDA . Figure 15 shows that AD-LDA is much

closer to the LDA topics LDA than either are to the true topics , telling us that the sampling

variation in learning LDA models from finite data sets is much greater than the variation between

LDA and AD-LDA on the same data sets.

When Does AD-LDA Fail? In all of our experiments thus far, we have seen that our distributed al-

gorithms learn models with equivalent predictive power as their non-distributed counterparts. How-

ever, when global synchronizations are done less frequently (i.e., when the synchronization step is

performed after multiple Gibbs sampling sweeps through local data), the distributed algorithms may

converge to suboptimal solutions.

When the synchronization interval is increased dramatically, it is possible for AD-LDA to con-

verge to a suboptimal solution. This can happen because the topics (with the same integer label) on

each processor can drift far apart, so that topic on one processor diverges from topic on another

processor. In Figure 16, we show the results of an experiment on KOS where synchronizations only

occur once every 100 iterations. For processors, AD-LDA performs significantly worse than

LDA. The processor case is the worst case for AD-LDA, since one half of the total words on

each processor have the freedom to drift. In contrast, when processors, each processor can

only locally modify 1/100 of the topic assignments, and so the topics on each processor can not

drift far from the global set of topic counts at the previous iteration. Bipartite matching significantly
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improves the perplexity in the processor case, suggesting that the lack of communication

has indeed caused the topics to drift apart. Fortunately, topic drifting becomes less of a problem as

more processors are used, and can be eliminated by frequent synchronization. It is also important

to note that AD-LDA , where processors synchronize after every iteration, gives essentially

identical results as LDA. Our recommendation in practice is to perform the synchronization and

count updates after each iteration of the Gibbs sampler. As shown earlier in the paper, this leads

to performance that is essentially indistinguishable from LDA. Since most multi-processor comput-

ing hardware will tend to have communication bandwidth matched to processor speed (i.e. faster

and/or more processors usually come with a faster communication network), synchronizing after

each iteration of the Gibbs sampler will usually be the optimal strategy.
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Figure 16: Test perplexity versus iteration where synchronizations between processors only occur

every 100 iterations, KOS, .

7. Related Work

Approximate inference for topic models such as LDA and HDP can be carried out using a variety

of methods, the most common being variational methods and Markov chain Monte Carlo methods.

Previous efforts to parallelize these algorithms have focused on variational methods, which are often

straightforward to cast in a distributed framework. For example, Blei et al. (2002) and Nallapati

et al. (2007) describe distributed variational EM methods for LDA. In their distributed variational

approach, the computationally expensive E-step is easily parallelized because the document-specific

variational parameters are independent. Wolfe et al. (2008) investigate the parallelization of both

the E and M-steps of variational EM for LDA, under a variety of computer network topologies. In

these cases the distributed version of LDA produces identical results to the sequential version of

the algorithm. However, memory for variational inference in LDA scales as , where is the

number of distinct document-word pairs in the corpus. For typical English-language corpora, the

total number of words in the corpus is less than twice the number of distinct document-word pairs
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( ), so can be considered on the order of . Since is usually much larger than the

number of documents, , this memory requirement of is not nearly as scalable as that the

memory requirement of for MCMC methods.

Parallelized versions of various machine learning algorithms have also been developed. Forman

and Zhang (2000) describe a parallel k-means algorithm, and W. Kowalczyk and N. Vlassis (2005)

describe an asynchronous parallel EM algorithm for Gaussian mixture learning. A parallel EM

algorithm for Probabilistic Latent Semantic Analysis, implemented using Google’s MapReduce

framework, was described in Das et al. (2007). A review of how to parallelize an array of standard

machine learning algorithms using MapReduce was presented by Chu et al. (2007). Rossini et al.

(2007) presents a framework for statisticians that allows for the parallel computing of independent

tasks within the R language.

While many of these EM algorithms are readily parallelizable, Gibbs sampling of dependent

variables (such as topic assignments) is fundamentally sequential and therefore difficult to paral-

lelize. One way to parallelize Gibbs sampling is to run multiple independent chains in parallel to

obtain multiple samples; however, this multiple-chain approach does not address the fact that the

burn-in within each chain may take a long time. Furthermore, for some applications, one is not in-

terested in multiple samples from independent chains. For example, if we wish to learn topics for a

very large document collection, one is usually satisfied with mean values of word-topic distributions

taken from a single chain.

One can parallelize a single MCMC chain by decomposing the variables into independent non-

interacting blocks that can be sampled concurrently (Kontoghiorghes, 2005). However, when the

variables are not independent, sampling variables in parallel is not possible. Brockwell (2006)

presents a general parallel MCMC algorithm based on pre-fetching, but it is not practical for learning

topic models because it discards most of its computations which makes it relatively inefficient. It

is possible to construct partially parallel Gibbs samplers, in which the samples are independently

accepted with some probability. In the limit as this probability goes to zero, this sampler will

approach the sequential Gibbs sampler, as explained in P. Ferrari et al. (1993). However, this method

is also not practical when learning topic models because it is computationally inefficient. Younes

(1998) shows the existence of exact parallel samplers that make use of periodic synchronous random

fields. However there is no known method for constructing such a sampler.

Our HD-LDA model is similar to the DCM-LDA model presented by Mimno and McCallum

(2007). There the authors perform topic modeling on a collection of books by learning a different

topic model for each book and then clustering these learned topics together to find global topics. In

this model, the concept of a book is directly analogous to our concept of a processor. DCM-LDA

uses Stochastic EM along with agglomerative clustering to learn topics, while our HD-LDA follows

a fully Bayesian approach for inference. HD-LDA also differs from other topic hierarchies found

in the literature. The Hierarchical Dirichlet Process model of Teh et al. (2006) places a deeper

hierarchical prior on the topic mixture, instead of on the word-topic distributions. The Pachinko

Allocation Model presented by Li and McCallum (2006) deals with a document-specific hierarchy

of topic-assignments. These types of hierarchies do not directly facilitate proper parallel Gibbs

sampling as is done in HD-LDA.
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8. Conclusions

We have proposed three different algorithms for distributing across multiple processors Gibbs sam-

pling for LDA and HDP. With our approximate distributed algorithm, AD-LDA, we sample from an

approximation to the posterior distribution by allowing different processors to concurrently sample

topic assignments on their local subsets of the data. Despite having no formal convergence guar-

antees, AD-LDA works very well empirically and is easy to implement. With our hierarchical dis-

tributed model, HD-LDA, we adapt the underlying LDA model to map to the distributed processor

architecture. This model is more complicated than AD-LDA, but it inherits the usual convergence

properties of Markov chain Monte Carlo. We discovered that careful selection of hyperparameters

was critical to making HD-LDA work well, but this selection was clearly informed by AD-LDA.

Our distributed algorithm AD-HDP followed the same approach as AD-LDA, but with an additional

step to merge newly instantiated topics.

Our proposed distributed algorithms learn LDA models with predictive performance that is no

different than single-processor LDA. On each processor they burn-in and converge at the same rate

as LDA, yielding significant speedups in practice. For HDP, our distributed algorithm eventually

produced the same perplexity as the single-processor version of HDP. Prior to reaching the con-

verged perplexity result, AD-HDP had higher perplexity than HDP since the merging of new topics

by label slows the rate of topic growth. We also discovered that matching new topics by similarity

significantly improves AD-HDP’s rate of convergence.

The space and time complexity of these distributed algorithms make them scalable to run very

large data sets, for example, collections with billions to trillions of words. Using two multi-million

document datasets, and running computations on a 1024-processor parallel supercomputer, we

showed how one can achieve a 700-800 times reduction in wall-clock time by using our distributed

approach.

There are several potentially interesting research directions that can be pursued using the algo-

rithms proposed here as a starting point. One research direction is to use more complex schemes that

allow data to adaptively move from one processor to another. The distributed schemes presented in

this paper can also be used to parallelize topic models that are based on or derived from LDA and

HDP, and beyond that a potentially larger class of graphical models.
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Appendix A.

The auxiliary variable method explained in Escobar and West (1995) and Teh et al. (2006) is used

to sample , , and . To derive Gibbs sampling equations, we use the following expansions:

(11)

(S is Stirling number of first kind) (12)

The first expansion follows from the definition of the Beta function, and the second expansion

makes use of the Stirling number of the first kind to rewrite the factorial (see (Abramowitz and

Stegun, 1964)).

Now we derive the sampling equation for . Combining the collapsed distribution (7) with the

prior on (6) gives the posterior distribution for 1:

(13)

Using the expansions (11,12) we introduce the auxiliary variables and :

(14)

The joint distribution above allows us to create sampling equations for , , and :

Gamma (15)

Beta (16)

Antoniak (17)

1. To avoid notational clutter, we denote conditioned-upon variables and parameters by a dash. These variables can be

inferred from context.
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The Antoniak distribution is the distribution of the number of occupied tables if customers

are sent into a restaurant that follows the Chinese restaurant process with strength parameter .

Sampling from the Antoniak distribution is done by sampling Bernoulli variables:

Bernoulli (18)

(19)

Using the same auxiliary variable techniques, we derive sampling equations for and . These

variables are sampled jointly because they are dependent. The posterior distribution for and

and the joint distribution with the auxiliary variables and are given by:

(20)

(21)

Note that the set of variables ( and ) is unrelated to the set of auxiliary variables introduced

for . The sampling equations for , , , and are:

Gamma (22)

Dirichlet (23)

Beta (24)

Antoniak (25)
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