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Distributed and Decentralized Control of Residential

Energy Systems Incorporating Battery Storage
Karl Worthmann, Christopher M. Kellett, Philipp Braun, Lars Grüne, and Steven R. Weller

Abstract—The recent rapid uptake of residential solar photo-
voltaic (PV) installations provides many challenges for electricity
distribution networks designed for one-way power flow from
the distribution company to the residential customer. For grid-
connected installations, intermittent generation as well as large
amounts of generation during low load periods can lead to a
degradation of power quality and even outages due to overvoltage
conditions. In this paper we present four control methodologies
to mitigate these difficulties using small-scale distributed battery
storage. These four approaches represent three different control
architectures: centralized, decentralized, and distributed control.
These approaches are validated and compared using data on
load and generation profiles from customers in an Australian
electricity distribution network.

I. INTRODUCTION

Recent years have seen dramatic worldwide growth in

small-scale rooftop solar photovoltaic (PV) distributed gen-

eration. Over 70% of the 70 GW installed PV capacity in the

European Union (EU) as of 2012, for example, was rooftop-

mounted (both residential and commerical/industrial) [3].

As PV penetration levels increase, integrating solar PV into

the grid creates problems for utilities and customers alike.

Reverse power flow in the low-voltage network during daytime

periods of peak generation coupled with low residential load

leads to well-recognized increases in distribution feeder volt-

ages (the so-called voltage rise problem), with the potential for

adverse impacts on power quality and the safety of customer-

owned devices [9].

In response to these challenges, distributed battery storage is

increasingly being considered by utilities seeking to reinforce

distribution networks and shave peak demand without large-

scale capital costs for feeder replacement and related network

upgrades [12], [13]. Likewise consumers seeking reduced

electricity costs by shifting electricity purchases away from

times of peak tariffs, together with a desire for increased

energy self-sufficiency, are beginning to consider residential

battery storage as a viable option.

While the high capital cost of battery systems has made

deployment of residential energy storage systems largely un-

economic, this situation is set to change in the forseeable

future through a confluence of falling battery costs, steadily
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rising electricity costs, and the opportunity to employ retired

electric vehicle batteries in residential storage applications,

over and above the storage offered by in-service battery

electric vehicles (BEVs) and plug-in hybrid electric vehicles

(PHEVs) themselves [16].

With economically viable residential storage on the horizon,

researchers have in recent years moved from the analysis

of relatively rudimentary and largely uncoordinated battery

energy storage systems [11] to systems of increasing scale

and sophistication [8], [9], [18], [7], [14].

In this paper, we consider a network of residential energy

systems (RESs) where as shown in Figure 1 each RES consists

of solar PV generation, battery storage and an inelastic energy

load. Each RES is connected to a grid managed by a distri-

bution utility. Four algorithms for controlling battery usage

are proposed in this paper, each with the aim of reducing

variability in the power demand from the electricity network.

Three of these approaches rely on predictions of load and

generation as well as the simple model of an RES to solve an

economic Model Predictive Control (MPC) problem. These

three economic MPC problems effectively represent three

different control architectures: centralized, decentralized, and

distributed control. The fourth approach, the Simple Con-

troller, is rule-based, implemented locally and makes no use

of a model or predictions of load or generation and hence is

a decentralized controller.

Central to the novel distributed control structure proposed

in this paper is the idea of a Market Maker (MM), a concept

whose roots lie in financial markets; see [4], [2], [17]. In this

paper, the MM implements a simple iterative strategy to set

prices for buying and selling electricity within a residential

network with a view to minimizing the aggregate impact of

the I RESs on the distribution grid. To enable the operation of

the MM it is assumed that each RES can communicate with

the MM (e.g. via a smart meter), but that the RESs do not

communicate directly with one another.

The rest of the paper is organized as follows: in Section II

we formalize the Residential Energy System. In Section III we

present the four control methodologies. In Section V we apply

these algorithms to data from an Australian electricity distri-

bution company to investigate the behavior of the proposed

algorithms when applied to a real-world setting. We conclude

in Section VI.

II. THE RESIDENTIAL ENERGY SYSTEM

We consider a small, neighborhood-level, electricity net-

work consisting of several residences. Each residence com-
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Fig. 1. System model where possible power transfer is indicated by an arrow

above. In particular, solar panels only provide power, residential loads only

draw power, and the batteries and network can both supply and draw power.

prises a Residential Energy System (RES) as shown in Fig-

ure 1, consisting of a residential load, a battery, and solar

photovoltaic panels. Each RES is connected to the wider

electricity network. Note that, in what follows, the solar

photovoltaic panels could be replaced by any residential-scale

local generation and the battery could be replaced by any

residential-scale local energy storage. The important charac-

teristics of these elements are that the generation and the load

are not controllable.

The RES is defined by the following discrete-time system

x(k + 1) = f(x(k), u(k)), (1)

y(k) = h(u(k), w(k)) (2)

where x, u, w ∈ R
I and I ∈ N is the number of RESs

connected in the local area under consideration. For user i, xi

is the state of charge of the battery in kWh, ui is the battery

charge/discharge rate in kW, wi is the residential load minus

the local generation in kW, and yi is the power supplied by/to

the grid in kW. A simple model of the RES of user i is:

xi(k + 1) = xi(k) + Tui(k),
yi(k) = wi(k) + ui(k).

(3)

Here, T represents the length of the sampling interval in hours;

e.g., T = 0.5 corresponds to 30 minutes. The state of charge

of the battery and the charge/discharge rates of the battery are

constrained in practice. In other words, there exist Ci, ūi ∈
R>0 and ui ∈ R<0, with the units of Ci in kWh and the units

of ūi, ui in kW, so that for each RESs i, i ∈ {1, . . . , I}:

0 ≤ xi(k) ≤ Ci ∀k ∈ N0 (4)

and

ui ≤ ui(k) ≤ ūi ∀k ∈ N0. (5)

III. CONTROL APPROACHES

We present four algorithms for the control of a network

of RESs. The first approach, which we term the Simple

Controller, is a straightforward rule-based approach for each

RES to independently decide when to charge or discharge

its battery. The second approach is via a Centralized Model

Predictive Control (MPC) algorithm. This scheme requires full

communication of all relevant variables for the entire network

as well as a known model of the network. As such, this

approach is not scalable and, in the simulations that follow,

is used as a benchmark for the best possible performance.

The third approach is a Decentralized MPC approach that

blends the previous two approaches by allowing each RES

to implement its own local MPC controller. This requires no

communication or cooperation between RESs, similar to the

Simple Controller, and implements a receding horizon optimal

controller, similar to the Centralized MPC approach. Finally,

the fourth approach is a novel Distributed MPC scheme that

allows for cooperation amongst the RESs without requiring

the full communication overhead or the detailed model of the

Centralized MPC approach.

A. Simple Controller

A simple approach to using a battery in an RES is as

follows: If generation exceeds load, and if the battery is

not fully charged, then charge the battery. If load exceeds

generation, and if the battery is not fully discharged, then

discharge the battery (see, e.g., [13]). In a scenario where

power can be sold by a residence to the grid, this behavior can

be enforced by setting the price for buying power (slightly)

higher than the price for selling power.

B. Centralized Model Predictive Control - Benchmark Perfor-

mance

For the Simple Controller proposed in the previous section,

if the load always exceeds generation then the battery will

never be used (see the response of RES 3 in Figure 2

below). However, a battery can be used to time-shift energy

consumption and, hence, can be used to flatten the usage

profile. In order to achieve the goal of reducing the aggregate

variation in energy usage across the network, a Centralized

MPC scheme is presented. Here, a central entity makes all

decisions based on unlimited information exchange between

the subsystems.

MPC is a control strategy that aims to improve system

behavior by iteratively minimizing an optimization criterion

with respect to predicted trajectories and implementing the

first part of the resulting optimal control sequence until the

next optimization is performed (see, e.g., [10], [15] or [6] for

details). We propose such a predictive controller for (3). In

order to do this, we assume that we have predictions of the

residential load and generation some time into the future that

is coincident with the horizon of the predictive controller. In

other words, given a prediction horizon N ∈ N, we assume

knowledge of wi(j) for all j ∈ {k, . . . , k + N − 1}, where

k ∈ N0 is the current time. When the prediction horizon is less

than a day, i.e. NT ≤ 24, such an assumption is not initially

unreasonable as residential loads tend to follow daily patterns

and one-day ahead weather predictions can be fairly accurate.

Define the predicted average power usage for the ith RES

as

ζi(k) :=
1

N

k+N−1∑

j=k

wi(j). (6)
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To implement a Centralized MPC controller, we then compute

the overall average on the considered prediction horizon by

ζ̄(k) :=
1

I

I∑

i=1

ζi(k)

and then minimize the joint cost function

min
û(·)

k+N−1∑

j=k


ζ̄(k) −

1

I

I∑

i=1

(wi(j) + ûi(j))︸ ︷︷ ︸
ŷi(j)
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(7)

with respect to û(k), û(k +1), . . . , û(k +N − 1) with û(j) =
(û1(j), û2(j), . . . , ûI(j))T , j = k, k + 1, . . . , k + N − 1,

subject to the system dynamics (3), the current state x(k) =
(x1(k), . . . , xI(k))T , and the battery constraints (4)-(5) for all

i ∈ {1, . . . , I}. Here, and in what follows, we denote predicted

controls, states, and outputs in the MPC algorithm by hats;

i.e., for the ith RES at time j the predicted control is ûi(j),
predicted battery state of charge is x̂i(j), and the predicted

output is ŷi(j).
Remark 3.1: In the classical MPC approach one assumes

the existence of an optimal steady-state solution and then the

task of the MPC feedback controller is to stabilize this steady-

state operating point. This is reflected in the cost function that

is minimized in the MPC problem where the cost function

will attain a minimum at the steady-state operating point. For

several reasons, this is not always desirable and has led to the

recent introduction of economic MPC [1] where the defining

characteristic of an economic MPC problem is either the lack

of an optimal steady-state solution or that the chosen cost

function fails to attain a minimum at the steady-state solution.

On the basis of the form of our chosen cost function (7), we

are proposing an economic MPC approach without terminal

constraints [5].

C. Decentralized Model Predictive Control

The Centralized MPC approach presented above requires

a significant amount of communication overhead since each

RES has to communicate its predicted usage profile to a

central entity, which then needs to send an individual control

sequence (in the form of a battery usage profile) to each RES.

Additionally, as the size of the network grows, the computation

time required to solve the optimization problem becomes very

large. A further drawback of the Centralized MPC approach is

that the central entity requires full knowledge of the network

model, in particular (4)-(5) for each i ∈ {1, . . . , I}. Therefore,

any change in the network such as the addition of new solar

resources or batteries, requires the central entity to update its

model. As a consequence of these limitations, it is of interest

to design decentralized or distributed control approaches that

alleviate the communication and computation difficulties, as

well as the need for an up-to-date centrally maintained model

of the network, encountered in Centralized MPC.

A straightforward option in order to flatten the energy

profile of the ith RES is to penalize deviations from its

(anticipated) average usage defined in (6). With a quadratic

cost function, this leads to the finite-horizon optimal control

problem

min
ûi(·)

k+N−1∑

j=k

(wi(j) + ûi(j)︸ ︷︷ ︸
ŷi(j)

−ζi(k))2

subject to the system dynamics (3), the current battery state

of charge xi(k), and the battery constraints (4)-(5).

This optimization is performed by each RES individually

with no reference to the rest of the network. This removes the

aforementioned communication and computation difficulties of

Centralized MPC since no communication is required and the

optimization problem for the ith RES is limited to include

only its own operation. However, it is well-known that such a

decentralized approach is unlikely to lead to, or even approach,

network-wide optimal behavior. In order to improve network-

wide behavior, we next introduce a Distributed MPC approach

that makes use of some communication within the network but

keeps the optimal control problems local to each RES.

D. Market Maker Distributed MPC

We propose a novel hierarchical distributed control approach

where each RES can communicate with a centralized entity,

called the Market Maker (MM) (see [4]), with the aim of

achieving some network-wide objective. The objective we

pursue in this work is to flatten the aggregate power usage

of the network.

In what follows the price of buying or selling power from

or to the grid, respectively, for an RES is discussed. It is

important in this context to note that these need not be

monetary prices, but, rather, can be viewed as a mechanism

to enforce reasonable cooperation between RESs within the

network.

Denote the price for buying power from the grid by p :
N0 → R≥0 and the price to sell power to the grid by q :
N0 → R≥0. In many current electricity markets the values of

p and q are constant; i.e., are independent of the time index

k. In markets that implement time-of-use pricing, the p and

q are periodic with a period of 24 hours, with higher values

at times of predicted high usage and lower values at times

of predicted low usage. In the sequel, these prices will be

manipulated by the Market Maker in real-time in order to

obtain desirable behavior from the residential network. By a

slight abuse of notation, we will refer to the length N sequence

of prices from time k as p = (p(k), . . . , p(k + N − 1))T and

q = (q(k), . . . , q(k + N − 1))T . Define the quantities

y+
i (k) := max{yi(k), 0}, and y−

i (k) := max{−yi(k), 0}

so that y+(k) is the power drawn from the grid at time k while

y−(k) is the power supplied to the grid at time k. We observe

that only one of y+(k) or y−(k) can be nonzero at each k.

We denote the N × N identity matrix by IN , the N vector

(1, 1, . . . , 1)T by 1N , the N × N matrix of all zeros by 0N ,

and the N ×N lower triangular matrix consisting of ones and

zeros by

LN =




1 0
...

. . .

1 · · · 1


 .
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We define the finite-horizon optimal control problem for

each RES so as to minimize the cost of an individual res-

idence over an N -step horizon; i.e., for subsystem i, i ∈
{1, 2, . . . , I},

min
ûi(·)

k+N−1∑

j=k

p(j)ŷ+
i (j) − q(j)ŷ−

i (j)

︸ ︷︷ ︸
=: 0T ûi+pT ŷ

+

i
−qT ŷ

−

i

(8)

subject to the constraints (4) representing the battery capacities

and system dynamics (3); i.e. define w̃i(k) ∈ R
N by w̃i(k) :=

[wi(k), wi(k + 1), . . . , wi(k + N − 1)]T . Then



T · LN 0N 0N

−T · LN 0N 0N

−IN IN −IN

IN −IN IN







ûi

ŷ+
i

ŷ−
i


≤




(C − xi(k)) · 1N

xi(k) · 1N

w̃i(k)
−w̃i(k)




as well as the constraints (5); i.e., u ·1N ≤ ûi ≤ ū ·1N . Here,

the optimization variables are

ûi = (ûi(k), . . . , ûi(k + N − 1))T ,

ŷ+
i = (ŷ+

i (k), . . . , ŷ+
i (k + N − 1))T ,

ŷ−
i = (ŷ−

i (k), . . . , ŷ−
i (k + N − 1))T .

Since this is a linear optimization problem, the optimum is

attained in each minimization — although it may not be

unique. Note that the minimization problem to be solved

encompasses 3N variables and 6N constraints yielding linear

growth of the number of optimization variables and constraints

in the prediction horizon. Furthermore, it can be observed that

any solution necessarily exhibits x̂i(k + N − 1) = 0. This is

intuitively obvious since there is no benefit to having a charge

left in the battery at the end of the horizon. However, this does

not necessarily imply that the ith component of the closed loop

solution at time k + N − 1 equals zero due to the receding

horizon nature of MPC.

In order to set prices, we propose an iterative negotiation

before prices are set. This negotiation is operated by the

Market Maker, which sets initial prices from the current time k

to the end of the prediction horizon k +N − 1 and broadcasts

these to the residential network. Each RES then solves its

own MPC problem based on the cost functional given by (8),

then communicates its desired grid profile, {ŷi(j)}
k+N−1
j=k , to

the Market Maker. The Market Maker uses the aggregated

grid profile to update prices, which are then broadcast to the

residential network. This process is iterated until (hopefully) a

steady-state is reached. Note that in a slight modification to the

original definition of a Market Maker proposed in [4] we allow

multiple iterations of the Market Maker setting prices and

receiving bids whereas in [4] the Market Maker receives bids

once and sets prices once (i.e., there is only a single iteration

per sampling instant). Herein we propose a simple algorithm

for the setting of prices by the Market Maker. However many

algorithms are possible (see, e.g., [17]) and investigating these

alternatives is the subject of ongoing work.

Denote the negotiation iteration index by ℓ ∈ N0 and the

predicted grid profile for RES i, i ∈ {1, . . . , I}, at negotiation

iteration ℓ by {ŷi,ℓ(j)}
k+N−1
j=k . Denote the predicted demand

of the residential network at time j and negotiation iteration

ℓ by

Πℓ(j) :=
1

I

I∑

i=1

ŷi,ℓ(j) ∀ j ∈ {k, . . . , k + N − 1} (9)

and the average predicted demand as

Π̄(j) :=
1

N

k+N−1∑

j=k

Πℓ(j). (10)

Remark 3.2: Note that since the predicted residential load

and generation is fixed for the prediction horizon, the aver-

age predicted demand, Π̄(j), is independent of the iterative

negotiation process.

Let p, p ∈ R≥0 be the minimum and maximum buying

prices, respectively. The buying price pℓ+1(j) of the successor

iteration is set by the Market Maker for each j ∈ {k, . . . , k +
N − 1} as

pℓ+1(j) = max{p,min{p̄, pℓ(j) + θ
(
Πℓ(j) − Π̄(j)

)
}}

where θ ∈ R>0 is a selectable parameter. The selling price

qℓ+1(j) is set to a fraction of pℓ+1(j); i.e. qℓ+1(j) = κpℓ+1(j),
κ ∈ (0, 1). This convention ensures that certain pathological

arbitrage-type behavior is avoided since pℓ(j) ≥ qℓ(j) for

all ℓ and j. In other words, buying electricity at a particular

time is always more expensive than what can be obtained by

selling electricity at that time. This inhibits an RES short-

selling electricity; i.e., buying a lot of power to charge its

battery at one time instant and then turning around and selling

that power at the next time instant at a profit. Note that in the

presence of realistic charging/discharging rate constraints this

may not be a problem.

In the simulations of the following sections we set θ = 0.2,

κ = 0.95, p = 0, and p̄ = 5. The initial prices are set

as p0(j) = max{p,min{ p̄, 1
I

∑I
i=1 ωi(j) − Π̄(j)}}. Several

different values were tried for the number of Market Maker

iterations and values between 3 and 10 provided the best

performance. Consequently, the results reported below use 3
Market Maker iterations; i.e., ℓ = 0, 1, 2, 3. Understanding

the convergence behavior of the iterative Market Maker is an

important element of future work.

Summarizing, the Market Maker increases both the selling

and buying price at time j when network demand at time j

exceeds the average predicted demand and, conversely, if the

network demand is less than the average predicted demand

the Market Maker decreases the prices. Intuitively, this should

have the effect of flattening the aggregate power drawn or

supplied from the residential energy network. In the sequel,

we will refer to the scheme just described as Market Maker

Distributed MPC (MM Distributed MPC).

IV. SYNTHETIC TRAJECTORY SIMULATIONS

To facilitate our discussion of the four algorithms presented

above for control of RESs we will make use of the three

synthetic power profiles wi depicted in Figure 2 representing

three synthetic RESs. In Section V we will apply the four

algorithms to data from an Australian electricity network.
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Fig. 2. Power consumption without use of battery storage (no power

management controller) is shown for 48 hours. The average consumption

peaks are indicated by the dash dotted green lines.

Throughout this section, we fix the parameters xi(0) = 0.5,

Ci = 4, ui = −0.5, and ūi = 0.5. It is not necessary in general

for the storage capacities of the individual subsystems to be

equal. We have imposed this constraint in order to simplify

the presentation of our numerical findings.

With the stated goal of flattening the power demand profile

we will compare the different proposed controllers against

each other using two metrics. Define the average power

demand at time k as

Π(k) :=
1

I

I∑

i=1

yi(k).

Let N denote the simulation length in number of samples;

e.g. in Figure 2, N = 48hrs × samples
0.5hrs = 96. The first

performance metric is the peak-to-peak (PTP) variation of the

average demand of all RESs given by
(

max
k∈{0,...,N−1}

Π(k)

)
−

(
min

k∈{0,...,N−1}
Π(k)

)
.

The second performance metric is the root-mean-square

(RMS) deviation from the average; i.e., we calculate the

average Υ := 1
NI

∑N−1
k=0

∑I
i=1 wi(k), and the respective

quadratically penalized deviations
√√√√ 1

N

N−1∑

k=0

(Π(k) − Υ )
2
. (11)

Throughout this section we will provide plots showing average

power demand as well as battery state of charge. We draw

attention to the time window on these plots as being from

hour 25 to hour 48. This shows the results for a 24 hour period

where the starting point of hour 25 is shown as the effect of

the choice of initial condition has essentially disappeared after

one day.

A. The Nominal Case

We first apply the four controllers proposed in Section III to

the three synthetic power profiles of Figure 2 with the resulting

average power profiles shown in Figure 3.

a) Simple Controller b) Centralized MPC
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c) Decentralized MPC d) MM Distributed MPC
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Fig. 3. Average power demand for the controllers proposed in Section III with

one day prediction horizon (N = 48, T = 0.5): yi(k), k = 24, 25, . . . , 47.

The peak-to-peak variations and the RMS deviations from

the average for the no-storage case as well as the four

controllers are collected in Table I.

peak peak PTP RMS
(high) (low) Variation Deviation

No Battery Storage 2.2785 -1.1683 3.4468 0.7865

Simple Controller 2.2785 -1.0016 3.2801 0.7573

Decentralized MPC 1.7785 -0.8168 2.5952 0.6076

MM Distributed MPC 1.7785 -0.6683 2.4468 0.5399

Centralized MPC 1.7785 -0.6683 2.4468 0.5079

TABLE I
COMPARISON OF PEAK-TO-PEAK VARIATION AND RMS DEVIATION FOR

DIFFERENT CONTROL TECHNIQUES APPLIED TO SYNTHETIC

TRAJECTORIES OF FIGURE 2.

Since it has access to all available information and mini-

mizes the deviation from the average globally, the Centralized

MPC algorithm of Section III-B represents the best possible

outcome with respect to flattening the average grid profile and

Table I verifies this. In this case we see a reduction of the total

variation by 1kW can be achieved which corresponds to the

theoretical maximum in view of the charging rate constraints

(ūi −ui = 1). As noted at the beginning of Section III-C, this

performance comes at a significant cost in terms of complexity

of the implementation and a high computational effort.

For these trajectories, we see that the MM Distributed

MPC algorithm of Section III-D achieves the same peak-

to-peak variation as the Centralized MPC, but without the

requirement of maintaining a global model of all RESs or

of needing to solve a large global optimization problem. The

Decentralized MPC of Section III-C removes the need for

any communication infrastructure but results in slightly worse

performance than the MM Distributed MPC algorithm. The

Simple Controller of Section III-A results in a negligible



6

improvement over the case of having no battery storage.

In order to get a feel for how the different controllers be-

have, we plot the battery state of charge over time in Figure 4.

We observe that for the Simple Controller, RES 3 makes no

use of its battery due to the fact that load always exceeds

generation (since y3(k) > 0 for all k in Figure 2). By contrast,

when applying Decentralized MPC RES 3 charges its battery

in the morning in order to reduce the large afternoon peak. It

is interesting to note that the battery usage is effectively the

same for all RESs under the MM Distributed MPC approach,

while the Centralized MPC approach leads to individual but

similar battery usage for each RES.

a) Simple Controller b) Centralized MPC
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c) Decentralized MPC d) MM Distributed MPC
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Fig. 4. Battery usage profiles for the four controllers applied to the synthetic

trajectories of Figure 2 with a one day prediction horizon (N = 48, T = 0.5)

for the MPC-based controllers: xi(k), k = 24, 25, . . . , 47.

B. Performance under different Prediction Horizons

We briefly investigate the change in performance of the

three MPC algorithms when we change the length of the

prediction horizon. With regards to solar predictions, shorter

prediction horizons are more reliable and we here focus on

prediction horizons of 24 hours or less.

With respect to the criterion of peak-to-peak variation, the

differences between a 6, 12, or 24 hour prediction horizon are

almost negligible. At a short prediction horizon of 3 hours, the

performance of the MM Distributed MPC and the Centralized

MPC algorithms begins to deteriorate. The RMS deviations

from the average for the three MPC schemes are shown in

Table II. Again, the performance of the MM Distributed MPC

is close to the performance of the Centralized MPC, and both

outperform the Decentralized MPC algorithm. We observe that

there is negligible benefit to a prediction horizon of 24 hours

over a prediction horizon of 12 hours. A more comprehensive

investigation of the effects of prediction horizon length is left

for future work.

Horizon 3h 6h 12h 24h

Decentralized MPC 0.7057 0.6636 0.6166 0.6076

MM Distributed MPC 0.6739 0.6192 0.5393 0.5399

Centralized MPC 0.7112 0.6186 0.5365 0.5079

TABLE II
RMS DEVIATIONS FROM THE AVERAGE FOR THE MPC-BASED

CONTROLLERS USING DIFFERENT PREDICTION HORIZONS APPLIED TO THE

SYNTHETIC TRAJECTORIES IN FIGURE 2.

C. Performance Under Inaccurate Forecasts

The MPC-based controllers rely on the predicted demand

data wi(j), j = k, k+1, . . . , k+N−1, which is the difference

between the predicted residential load and the predicted solar

PV generation. However, both of these predictions are subject

to random fluctuations due to a variety of factors, including

variability in consumption and in cloud cover. Hence, in this

section we add noise to the predictions of the individual sub-

systems and investigate the sensitivity of the proposed MPC

schemes to inaccurate forecasts. To be more precise, Θ realiza-

tions (ξρ
i (j), (i, j) ∈ {1, 2, . . . , I}× {0, 1, . . . ,N + N − 1}),

ρ ∈ {1, 2, . . . ,Θ}, of independently and identically normally

distributed random variables with zero mean and standard

deviation 0.01 ·T are generated. Then, for each time instant k,

each system i, and each realization ρ, a disturbance sequence

̺
ρ
i,k(·) is generated according to

̺
ρ
i,k(j + 1) = ̺

ρ
i,k(j) + ξ

ρ
i (k + j), ̺

ρ
i,k(0) = 0.

This disturbance sequence captures two important elements of

likely forecast errors. The first is that the accuracy of forecasts

is degraded for times farther into the future. This is captured

by the fact that the standard deviation increases with time. The

second element is that disturbances are likely to be correlated

in time since weather and load conditions are unlikely to

change rapidly over time. This observation is consistent with

the real-world data used in Section V.

Based on these disturbance sequences, disturbed forecasts

w̃
ρ
i,k(·) are constructed by

w̃
ρ
i,k(·) = wi(k + ·) + ̺

ρ
i,k(·).

Based on these disturbed predicted energy demands, a Monte-

Carlo simulation with Θ = 1000 realizations of the stochastic

processes (ξρ
· (·)), ρ ∈ {1, 2, . . . ,Θ} is carried out. We

calculate the two performance metrics PTP variation and RMS

deviation for each of the Θ realizations. The extrema as well as

the averages are given in Table III. In other words, we present

the largest and smallest PTP variation and RMS deviation and

also the average of both metrics over all realizations.

PTP Variation RMS Deviation
Max. / Av. / Min. Max. / Av. / Min.

Decentralized MPC 2.7171/2.5939/2.4913 0.6181/0.6040/0.5877

MM Distributed MPC 2.4951/2.4475/2.4283 0.6158/0.5913/0.5691

Centralized MPC 2.4880/2.4474/2.4283 0.5156/0.5104/0.5062

TABLE III
COMPARISON OF PEAK-TO-PEAK VARIATION AND RMS DEVIATION FOR

DIFFERENT CONTROL TECHNIQUES AND INACCURATE FORECASTS.



7

We see that the relative performance ordering is the same as

before in all cases: Centralized MPC provides the best perfor-

mance while MM Distributed MPC sometimes approaches the

performance of Centralized MPC and outperforms Decentral-

ized MPC. When compared with the nominal (unperturbed)

values from Table I, we observe that none of the MPC-based

schemes suffer significant performance degradations when

using inaccurate forecasts.

Additionally, in Figure 5 we show the envelopes obtained by

taking the pointwise in time maximum and minimum values

across all realizations as well as the nominal (unperturbed)

trajectories for comparison. Here, large variations contributing

to the RMS deviation criterion can be observed for the MM

Distributed MPC. These typically occur if the charging rate

constraints are not active, i.e., ui(k) 6= u and ui(k) 6= u,

i = 1, 2, . . . , I, while MM Distributed MPC performs very

well during longer (dis-)charging intervals. Hence, future

research will aim at improving the MM Distributed MPC in

order to alleviate this drawback. Nonetheless, MM Distributed

MPC is still competitive in comparison to Decentralized MPC

with respect to this metric; indeed it even slightly outperforms

it. Consequently, we again see that our proposed model-

based control schemes are not overly sensitive to inaccurate

forecasts.

a) Centralized MPC
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c) MM Distributed MPC
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Fig. 5. The impact of inaccurate forecasts on the average power demands

(left) and the battery usage profiles (right) when using the MPC-based

controllers applied to the synthetic trajectories.

V. AUSTRALIAN DATA

In this section, we compare the four previously discussed

controllers by considering the load and generation profiles for

a group of 20 and a group of 300 customers drawn from the

Australian electricity distribution company Ausgrid. Ausgrid is

a state-owned corporation servicing approximately 1.6 million

customers across New South Wales from Sydney to Newcastle.

The data from these customers was collected as part of the

Smart Grid, Smart City project and covers 12 months, of which

we use six weeks starting on the first of March 2011. For the

set of 20 (300) customers the mean consumption is +0.4209
(+0.4282) while the maximum and minimum values for

the average trajectory are +1.3740 (+1.0375) and −0.3414
(−0.2153), respectively. This represents the no battery case.

Applying the controllers proposed in Section III yields the

load/generation and battery state of charge profiles shown in

Figure 6 with the peak-to-peak variation and the RMS devi-

ation from the average shown in Table IV. Average demand

profiles corresponding to 300 systems are not shown as they

are similar to the 20 systems case.

PTP Variation RMS Deviation

No Battery Storage 1.7153 (1.2528) 0.2970 (0.2525)

Simple Controller 1.6388 (1.1470) 0.2848 (0.2397)

Decentralized MPC 1.2098 (0.8402) 0.1952 (0.1509)

MM Distributed MPC 1.1154 (0.8468) 0.1765 (0.1447)

Centralized MPC 1.1153 (N/A) 0.1267 (N/A)

TABLE IV
AUSTRALIAN DATA: PEAK-TO-PEAK VARIATION AND RMS DEVIATION

FROM THE AVERAGE FOR 20 (300) RESS. THE CORRESPONDING PLOTS

ARE SHOWN IN FIGURE 6.

In Table IV, when applied to the group of 20 RESs we

observe that the peak-to-peak variation in power demand is

significantly reduced by all three MPC-based schemes. Indeed,

when considering peak-to-peak variation, both the Decentral-

ized MPC and the MM Distributed MPC yield performance

close to the benchmark given by Centralized MPC; with the

distributed MPC scheme slightly outperforming the Decen-

tralized MPC scheme. When considering the RMS deviation

from the average for 20 RESs we see that the MPC-based

controllers provide a significant improvement over no storage

and the Simple Controller, while the Centralized MPC scheme

provides another significant improvement over the other two

MPC-based schemes.

Centralized MPC is not applicable for 300 RESs since

the resulting optimization problem becomes too large to be

solved in a reasonable period of time. Therefore, we do

not have Centralized MPC as a benchmark of performance

when considering 300 RESs. In this case, we see that both

Decentralized MPC and MM Distributed MPC outperform

the Simple Controller in terms of both peak-to-peak variation

and RMS deviation from the average. Interestingly, for 300
RESs, the Decentralized MPC scheme slightly outperforms the

MM Distributed MPC scheme when considering peak-to-peak

variation, while this slight performance difference is reversed

when considering RMS deviation from the average. This is a

finding that requires further investigation and is left for future

work.
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a) Simple Controller

0 1 2 3 4 5

0

0.5

1

1.5

time [weeks]

y
 [
K

W
]

0 1 2 3 4 5

0

0.5

1

1.5

2

x
 [
K

W
h
]

time [weeks]

b) Centralized MPC

0 1 2 3 4 5

0

0.5

1

1.5

time [weeks]

y
 [
K

W
]

0 1 2 3 4 5

0

0.5

1

1.5

2

x
 [
K

W
h
]

time [weeks]

c) Decentralized MPC

0 1 2 3 4 5

0

0.5

1

1.5

time [weeks]

y
 [
K

W
]

0 1 2 3 4 5

0

0.5

1

1.5

2

x
 [
K

W
h
]

time [weeks]

d) MM Distributed MPC
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Fig. 6. Australian data for twenty customers: average power demand and

battery state of charge profile when applying the four different control schemes

over six weeks.

In Figure 6 we observe that the MM Distributed MPC

scheme appears to better utilize the available battery storage

when compared with the Decentralized MPC scheme in the

sense that for the decentralized scheme the batteries are on

average never empty or full. By contrast, the MM Distributed

MPC scheme fully employs the available battery capacity

in order to further flatten the aggregate grid profile. This

observation also holds true for the scenario with 300 RESs.

VI. CONCLUSIONS

Of the four algorithms presented in this paper, Centralized

MPC provides the best performance but quickly becomes

infeasible as the size of the required optimization problem

rapidly increases with the network size. Decentralized MPC

has the benefit of requiring no communication between RESs

(or any central entity) while ensuring that the size of the local

optimization problems remains small. However, in general

it is known that such decentralized schemes do not lead to

network-wide optimal behavior. The novel Distributed MPC

scheme proposed in this paper requires a central entity (as

in Centralized MPC), but does not suffer from scalability

problems since the optimization problems remain local to each

RES.
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