
Distributed and Interactive Cube Exploration

Niranjan Kamat #1, Prasanth Jayachandran #2, Karthik Tunga #3, Arnab Nandi #4

Computer Science and Engineering Department, The Ohio State University

2015 Neil Avenue, Columbus, OH 43210, USA

{kamatn1
,jayachan

2
,tunga

3
,arnab

4}@cse.osu.edu

Abstract—Interactive ad-hoc analytics over large datasets has
become an increasingly popular use case. We detail the challenges
encountered when building a distributed system that allows the
interactive exploration of a data cube. We introduce DICE,
a distributed system that uses a novel session-oriented model
for data cube exploration, designed to provide the user with
interactive sub-second latencies for specified accuracy levels.
A novel framework is provided that combines three concepts:
faceted exploration of data cubes, speculative execution of queries
and query execution over subsets of data. We discuss design
considerations, implementation details and optimizations of our
system. Experiments demonstrate that DICE provides a sub-
second interactive cube exploration experience at the billion-tuple
scale that is at least 33% faster than current approaches.

I. INTRODUCTION

Large-scale analytics has found a growing number of use

cases in a variety of disciplines, from business to the sciences.

With the rapid rise in data, and the reliance on data-driven

insights for decision making, planning and analysis, the role

of analytics over massive datasets has become a critical one.

With the proliferation of large-scale data infrastructure, it

is not uncommon for end-users to expect direct fine-grained

control over large amounts of data. The availability of both

dedicated and dynamically provisioned distributed computa-

tional resources allows analyses that were typically handled

by database administrators to be performed by the end-users

of the analyses themselves. Further, there is an increasing

demand in real-time or near-real-time analytics, where all

analysis is performed on in-situ data, such as constantly-

updating logs that are being appended to in a batched manner.

As detailed in the following paragraphs, despite the availability

of performant, distributed and scalable infrastructure, there

exist several challenges to large-scale analytics.

In addition to the typical use cases of reporting, where

predetermined query templates are run over batches of new

incoming data, and mining, where data is analyzed to discover

interesting patterns of information, there has been a sharp

rise in the demand for ad-hoc analytics, exposed to the user

over interfaces for business intelligence, interactive dashboards

and advanced domain-specific data-driven applications. These

challenges are exacerbated in the scope of ad-hoc analysis over

a CUBE representation [19] of the data. Such a representation

is useful for the purpose of exploratory data analysis, since

successive investigatory questions can be answered in the form

of drilldown or rollup queries.

Data cube exploration is often expected to be interactive –

queries need to be responded to within a small latency bound.

Studies in human-computer interaction [36], [47] establish

guidelines and demonstrate the functional and economic value

of rapid response times, heavily motivating a sub-1000 ms (i.e.

sub-second) threshold for the database to respond to the user.

For our system, we empirically observed that latencies of up to

1000 ms were perceived as fluid, and it took around 5000 ms

for the user to view and react to the query results.

A. Common Approaches

Intuitively, the simplest approach to ensuring fast, interac-

tive cube exploration is to materialize the entire data cube

such that each query to the cube is simply a lookup from a

main memory cache. While such a setup will perform within

the latency bounds we are subject to, we are constrained by

scale: a fully materialized cube can be several multiples of

the original dataset, which typically is larger than available

memory. Further, such a strategy does not work in the case of

ad-hoc (e.g. computed) dimensions or if the user is inspecting

a new measure. Thus, an often-used approach is to execute

the query over an offline computed sample of the data [2],

[10], [32], [54]. However, this approach cannot accommodate

changes in the underlying data. The techniques described in

our paper are complementary to such an approach and can

easily be adapted, if needed, to accommodate offline sampling.

Online aggregation approaches have also been studied [24],

but require a significant overhaul of the entire query processing

infrastructure. Further related work is provided in Section V.

This paper introduces DICE, a system that proposes a

session-oriented approach to data cube exploration that caters

to the challenges observed. In contrast to existing OLAP

systems, our system is designed keeping in mind the user’s

flow, surfacing approximate results within interactive latencies.

Contributions:

• We introduce DICE, a distributed system that allows explo-

ration of 1-billion-tuple data cubes at sub-second levels.

• We provide a principled cost-based framework that combines

two complementary techniques: speculative query execution

and online data sampling to achieve interactive latencies for

cube exploration in a distributed framework.

• To bound the space of possible speculative queries, we

propose a faceted cube exploration model that considers

successive queries as part of a query session.

• We share insights into the design and implementation of our

system based on real-world query logs, user studies and

detailed performance evaluations.

facet q
uery

result

analytics
frontends

facet
traversals

UI actions
Sampling Rate

	

	

slave1	

DB	

slave3	

DB	

slaveN	

DB	

Result Cache

Master

Network

slave2	

DB	

Workers

Query	
 	

Federa1on	

(result = measure & std dev)

Sample	

Aggrega1on	

Specula1ve	
 Query	

Execu1on	

Fig. 1. DICE Approach: Allow tunable sampling rates on low-latency frontends, with UI actions translated to facet traversal queries (Section II-A) over
the data cube. Queries are executed by the master over distributed slaves (Section II-B). In the DICE approach (Section III), the master manages session state,
query speculation and result aggregation, while the slaves manage execution and caching. For each query, the master distributes the query to each slave, which
may have some results speculatively executed and cached. Results from each slave are then aggregated, error bounds are calculated, and returned to the user.

B. Motivating Example

One typical use of interactive cube exploration is in the

management of cloud infrastructure. For each setup, a handful

of operations personnel manage tens of thousands of nodes,

each with multiple virtual machines. Each instance produces

a plethora of events, which are logged to track performance,

detect failures and investigate systems issues. Each event item

can be understood as a tuple with several fields, and each

analytics task can be considered as a projection on a cube

over the entire dataset. Event log data is copied over from

all instances into a distributed data store, and is typically

queried within fixed time ranges. Queries are ad-hoc, and due

to the critical nature of the task, a system that allows for fast,

interactive aggregations is highly desirable. Thus, an example

query in our use case can be given by:

SELECT rack, AVG(iops)

FROM events

WHERE datacenter = "EU" AND hour = 6

GROUP BY rack;

Such a query can be used to identify problematic I/O rates

across racks which could cause failures in a datacenter over

time. We expect such queries to be either written by the

operations personnel directly, or be generated automatically

by applications that provide visualizations and an easy-to-use

querying layer. An important insight is that such a process

is not about aiding exploration such that user intervention is

not required, but about helping the user analyze data faster by

reducing the time it takes to interact with the data.

Our use case is driven primarily by the need for inter-

active data cube exploration. First, querying is ad-hoc and

exploratory. Given the variety of possible questions to be

answered, it is difficult to implement such a system over tra-

ditional reporting platforms, streaming queries, incrementally

materialized views or query templates. Second, the data is

distributed due to its size and nature of generation: events from

each node in the datacenter are copied over to a set of nodes

dedicated to this ad-hoc analysis to be used by one or few

people. Another consequence of the size of the data is that it

is impractical to construct a fully materialized cube to perform

analysis. Third, user interaction, either through the application

interface or through direct querying should not impede the

user in performing their exploration task. Thus, the interaction

needs to be fluid, requiring the underlying queries to return

quickly, enforcing the latency bounds discussed above. Given

the sampling rate specified by the user, it is desirable that the

results for the specified number of queries be returned at the

earliest. Lastly, queries are seldom one-off, and almost always

occur as part of a larger session of related queries. In light

of this characterization, our problem thus becomes: Given a

relation that is stored across multiple nodes, and the queries

issued by the user so far, ensure that each query in the session

is responded to at the earliest, at the user specified sampling

rate. We will formally define this problem in Section II, along

with the overall data model.

II. DATA MODEL AND PRELIMINARIES

Having motivated the problem setting of a distributed,

interactive, cube exploration system, we now discuss prelim-

inaries for each of these three contexts. We begin with cube

exploration, where we define a faceted exploration model to

facilitate complete yet efficient exploration of the data cube.

As we will discuss in the following section, faceted explo-

ration bounds the space of successive queries, thereby making

speculative query execution feasible. Second, we discuss the

execution of faceted queries in a distributed setting, where

data is distributed across nodes as table shards. Finally, given

the constraints of interactivity, we explain our techniques for

approximate querying over sampled data, provide a framework

to execute faceted queries over multiple nodes, and draw

from concepts of stratified sampling and post-stratification to

aggregate results and estimate error bounds.

A. Faceted Exploration of Data Cubes

In the context of cube exploration, the definitions of cube,

region, and group are as per the original data cube paper [19].

A region denotes a node in the cube lattice and a group denotes

tuples with the same values of attributes for that region. For ex-

ample, one of the groups in the region {datacenter,month}

is {EU,January} for the cube derived from the motivating

example. We continue with our motivating example, using

the following schema: Database table events catalogs all the

system events across the cluster and has three dimensions, two

of which are hierarchical:

location[zone:datacenter:rack], time[month:week:hour], iops

Challenges in Exploration: As a user exploring a data cube,

the number of possible parts of the cube to explore (i.e. cube

groups) is very large, and thus, exploration can be unwieldy. To

this end, we introduce the faceted model of cube exploration,

which simplifies cube exploration into a set of facet traversals,

as described below. As we will see in the following section,

the faceted model drastically reduces the space of possible

cube exploration and simplifies speculative query execution,

which is essential to the DICE architecture.

a,b	

b	
 a	

*	

sibling

pivot

parent

child

Fig. 2. Faceted Cube Explo-
ration Traversals

We introduce the term facet as

the basic state of exploration of

a data cube, drawing from the

use of category counts in the

exploratory search paradigm of

faceted search [53]. Empirically,

most visualizations such as map

views and bar charts found in vi-

sual analytics tools can be con-

structed from aggregations along

a single dimension. Facets are meant to be perused in an

interactive fashion – a user is expected to fluidly explore the

entire data cube by successively perusing multiple facets.

Intuitively, a user explores a cube by inspecting a facet of

a particular region in the data cube – a histogram view of a

subset of groups from one region, along a specific dimension.

The user then explores the cube by traversing from that facet

to another facet. This successive facet can be a parent facet in

the case of a rollup, a child facet in the case of a drilldown,

a sibling facet in the case of change of a dimension value

in the group and a pivot facet in the case of a change in

the inspected dimension. Thus, the user is effectively moving

around the cube lattice to either a parent region, or a child

region or remaining in the same region using sibling and pivot

traversals to look at the data differently. A session comprises

of multiple traversals. The formal definitions are as follows.

Facet: For a region r in cube C, a facet f is a set of groups

g ∈ r(d1...n) such that the group labels differ on exactly one

dimension di, i.e. ∀ga, gb ∈ f, di(ga) 6= di(gb) ∧ dj(ga) =
dj(gb) where i 6= j and di is the grouping dimension, and the

remaining dimensions are the bound dimensions. In its SQL

representation, a facet in a region contains a GROUP BY on the

grouping dimension and a conjunction of WHERE clauses on

the bound dimensions of that region. A facet can be referred

to using the notation f(dg,
−−−→
db : vb) where dg ∪ −→

db denotes

the dimensions in the corresponding region, dg denotes the

grouping dimension,
−−−→
db : vb denotes a vector representing the

bound dimensions and their corresponding values. Thus, the

measure COUNT on the dimension iops along with the facet

f(zone,month : m1, week : w1) gives a histogram of I/O

failure counts grouped by zones for a specific week and month.

Facet Session: A facet session ~F is an ordered list of facets

f1...n that a user visits to explore the data cube. The transition

from one facet to another is known as a traversal.

We now define four traversals, Parent, Child, Sibling and Pivot,

inspired by similar traversals over data cube, each allowing us

to move from one facet to another. We define them in terms

of the destination facet, as follows.

Parent Facet: A parent facet is defined as any facet obtained

by generalizing any of the bound dimensions. Thus, a facet

fp(dpg,
−−−−−→
dpb : vpb) is a parent to the facet f(dg,

−−−→
db : vb) if

dpg = dg and
−−−−−→
dpb : vpb represents a parent group of

−−−→
db : vb

in the cube lattice. The parent facet f(zone,month : m1)
generalizes the dimension time from the prior example.

Child Facet: A child facet is defined as any facet obtained

by specializing any of the bound dimensions. Thus, a facet

fc(dcg,
−−−−−→
dcb : vcb) is a child to the facet f(dg,

−−−→
db : vb) if dcg =

dg and
−−−−−→
dcb : vcb represents a child group of

−−−→
db : vb in the cube

lattice. Thus, the child facet f(zone,month : m1, week :
w1, hour : h1) specializes the dimension time.

Sibling Facet: A sibling facet is defined as any facet ob-

tained by changing the value for exactly one of the bound

dimensions. Thus, a facet fs(dsg,
−−−−−→
dsb : vsb) is a sibling to the

facet f(dg,
−−−→
db : vb) if dsg = dg ,

−→
dsb =

−→
db and −→vsb and −→vb

differ by exactly one value. The sibling facet f(zone,month :
m1, week : w2) thus changes the value of week.

Pivot Facet: A pivot facet is defined as any facet obtained by

switching the grouping dimension with a bound dimension.

Thus, a facet f(dg,
−−−→
db : vb) can be pivoted to the facet

fv(dvg,
−−−−−→
dvb : vvb) if dvg ∈ −→

db ∧ dg ∈ −→
dvb and −→vb and −→vvb have

all but one bound dimension and value in common. The facet

f(week, zone : z1,month : m1) pivots on zone z1 from the

facet example, and is therefore its pivot facet.

EXPLORABILITY OF THE CUBE: It is clear that in our model,

the user is able to fully explore the data cube, i.e. all cube

groups can be explored using facets, and it is possible to reach

any facet from any other facet. First, a group g =
−−→
d : v, can

be obtained from |−→d | facets, f(dg,
−−−→
db : vb) : dg ∈ −→

d ∧ −→
db =−→

d − dg . Second, any two facets in a region can be reached

from another by a series of sibling and pivot traversals: sibling

traversals to change bound values, and pivot traversals to

switch between bound and grouped dimensions. Parent and

child traversals allow us to reach the corresponding parent

and child regions in the cube lattice. Thus, the four traversals

enable full exploration of the cube lattice. Note that we do

not require users to follow only the listed traversals – faceted

traversals simply reduce the space of successive queries for

speculation (Section III-A).

EFFECTIVENESS OF FACETED MODEL: The four traversals

mentioned above are both intuitive and sufficient to explore

the entire data cube. The parent, child and pivot traversals are

inspired by rollup, drilldown and pivot operations respectively.

It is always possible to add more traversal types, especially

by mining a user’s query history for common “patterns”

of analysis, e.g. keeping the bound dimensions the same

and changing the group by dimension. Such extensions are

easily pluggable into our system, but not required – the four

traversals described above are intuitive and powerful enough to

traverse the cube. We quantify the applicability of our model

on real-world query logs and measure user satisfaction

using a user study, described in Section IV-C.

B. Distributed Execution

The interactive nature of our use case necessitates the

approximation of results by executing queries over a subset

of the data. We use sharded tables to achieve distributed

and sampled execution of queries. A sharded table contains

a subset of the rows of a SQL table and the concatenation

of all shards across nodes is equivalent to the entire dataset.

Each node may contain multiple shards. A sharded table is the

atomic unit of data in our system: updates are performed at

the granularity of the shard level, and each session makes the

assumption that the list of shards and the shards themselves

do not change.

C. Querying over Table Shards

A sample of the data is constructed online by choosing

random table shards during run-time, allowing for random

sampling. We use standard sampling concepts of stratified

sampling [13] and post-stratification [13] for estimating the

error bounds. Details on our use of sampling methods are

provided in the appendix.

Given the preliminaries and definitions, in the naive case,

the problem of ad-hoc cube exploration using the facet ex-

ploration model is simply that of successively executing each

query received at a given sampling rate. We formulate our

problem as the following:

For a facet session ~F , where each ad-hoc facet query fi
is expected to execute at a certain sampling rate, and the

expected time between the termination of one facet query and

the start of the next ad-hoc facet query (i.e., the time taken to

view the results of the prior query) is τV , return fi as quickly

as possible to the end-user, preferably within the interactive

threshold τI .

Accuracy Gain Heuristic: In order to schedule speculative

queries at different sampling rates, we need to know the reduc-

tion in sampling error at different sampling rates. However, it

cannot be known before actually sampling the data. Therefore,

we construct a heuristic based on the consistency property of

Maximum Likelihood Estimation (MLE), ||θ∗ − θ|| = O(1√
n
)

where θ∗ is the current estimate, θ is the true value and n is

the current sampling rate, which informs us that the difference

between our estimate and the true value will be inversely

proportional to the square root of the current sampling rate.

Therefore, we can estimate the future gain in accuracy based

on the sampling rate. Thus, the estimated gain in the accuracy

due to a unit sampling rate increase can be given as

AccuracyGain(Rcurr) = c ∗ (1√
Rcurr

− 1√
Rcurr + 1

) (1)

where Rcurr is the current sampling rate and c is the constant

from the proportionality heuristic.

With more time permissible, we issue the same query on

multiple tables on multiple nodes progressively giving us

a smaller standard error for the estimators. Our goal then

during speculative execution of the queries is to increase the

likelihood that the next user query would be cached at a higher

sampling rate allowing us to retrieve the results at the desired

sampling rate at the earliest. We cast this to fit the DICE

framework in the following section.

III. THE DICE SYSTEM

A. Speculating Queries in a Session

A crucial insight to ad-hoc querying is that queries oc-

cur in sessions. Thus, it is prudent to think of improving

query performance holistically at the session level. A session

comprises several ad-hoc queries, each of which requires low-

latency responses. The result for each query is inspected by

the user for a small amount of time, after which the next

query is issued. We consider this as a hidden opportunity –

the database is simply waiting on the user to issue the next

query. In light of this, our solution is to utilize this waiting

time to speculate, execute and cache the most likely followup

queries at the highest quality possible. While the concept of

speculative execution is an intuitive one, there are several

challenges to implementing it over a distributed, approximate

querying environment – especially in the context of data cube

exploration. The challenges comprise a host of interdependent

problems: What are the most likely followup queries? What is

the strategy to employ to execute and cache likely queries? In

a sampling approach, what is the highest sampling rate to run

a speculative query at, given interactive constraints? Finally,

is there a singular framework to combine these problems into

a cohesive, unified system?

Given these challenges, we present the DICE system that

solves the problem by using three complementary strategies.

First, it performs speculative query execution, by caching

results of likely followup queries, allowing for reduced laten-

cies for ad-hoc query sessions. The enumeration of the likely

followup queries is made possible by the faceted model of

data cube exploration described in Section II. Second, DICE

employs a novel architecture of query execution over a dis-

tributed database, executing queries piecemeal over individual

table shards and then assembling them in a post-processing

step. This novel architecture in turn allows for bounded-time

execution of queries ensuring interactive latencies. Third, it

employs a cost-based model for the prioritized execution of

speculative queries such that likely queries are executed at

higher sampling rates.

B. System Architecture

The architecture of our system employs a hierarchical

master-slave approach, such that all queries are issued to the

master, and responded to by the master. In line with the

setting described in Section II-B, each slave manages multiple

table shards. Each shard is atomic and read-only, and is

implemented as a table in a commodity relational database.

The catalog of shards across all slave nodes is maintained

at the master. For a single exploration session, the catalog is

used to ensure that the list of shards addressed is constant. The

slaves maintain an in-memory LRU cache for the results. In a

fast-changing database, table shards can be atomically added

and deleted from the slaves, and the master’s catalog can be

updated, allowing for querying over rapidly changing data.

C. Query Flow

The high-level query flow of DICE is as follows: each

ad-hoc query is rewritten and federated to the slave nodes,

where it is executed. The results are returned, aggregated and

presented to the user, along with the accuracy of the query.

Upon success, a set of speculative queries is executed till

the next user query is received, with the goal of increasing

the likelihood of caching as many of the future queries as

possible. When the successive ad-hoc query is issued, it is

again rewritten and federated, with the hope that its results

are cached at the slaves at a high sampling rate, thus reducing

the latency of the overall ad-hoc query.

User Query: At startup, the master makes sure that all

the slaves are running and ready to accept queries. On

receiving an ad-hoc query, the query is rewritten into multiple

queries, one per required random table shard and passed to

each slave. Since data is horizontally distributed across all

slave nodes, the query itself is identical, with the exception

of id of the table shard addressed. On completion of an

ad-hoc query (or if the results of the query were already

in the cache), each slave returns the results back to the

master, where the results are aggregated, and error calculation

performed, and this information presented to the user.

Speculative Queries: Upon completion of the ad-hoc

query, the master immediately schedules a list of speculative

queries that can be issued by the user. While the space of

possible queries is unbounded, we restrict our speculations

using faceted exploration framework; thus allowing the list

of possible queries to be enumerable. Speculated queries are

then ranked (as discussed in the following subsection), and

distributed amongst the slaves in a round-robin fashion. Each

slave issues, in an increasing order of rank, a predefined

number of concurrent queries to its database and populates

the results in its cache (speculative query results are not sent

to the master). Upon receiving the next user query, the slave

kills all currently running speculative queries.

Successive User Query: When the next ad-hoc query

arrives, it is again rewritten and federated to the slaves. If

the exact query or a unified query (refer to Section III-F) is

cached, the result of the ad-hoc query is materialized from

the cached result. If it is not cached it is then executed on

the database. The caching of speculated queries drastically

impacts ad-hoc query latency and allows for a fluid and

interactive data cube exploration experience.

D. Prioritizing Speculative Queries

As is clear from the query flow and the faceted model,

each ad-hoc query can yield significantly large number of

speculative queries. Given the bounded time available for exe-

cution, it is typically not possible to execute all the speculative

queries. Thus, it is necessary to prioritize speculative query

execution such that it maximizes the likelihood of results for

the successive query being returned from the cache. This can

in turn be done by maximizing the overall gain in accuracy, as

discussed in Section II-C. The selection of the maximal subset

can be modeled as a linear integer programming problem as

follows:

MAXIMIZE:
∑

q∈Q Prob(q) ·AccuracyGain(SR) · xq

SUBJECT TO:
∑

q∈Q T ime(q) · xq <= totalSpecT ime

WHERE: xq ∈ {0, 1}.

Here, Prob(q) gives the probability of a query q, which

should be obtained from the query logs, Q is the set of all

speculative queries at all sampling rates, AccuracyGain(SR)
is the estimated gain in sampling accuracy which depends

on the sampling rate SR of q as described in Section II-C,

T ime(q) is the estimated running time and totalSpecT ime
is the expected total speculative time.

Considering the input parameters, it is not possible to solve

the above optimization problem in sub-second latency thus

preventing us from returning results within those latencies. We

expect the majority of the query execution cost to be typically

due to an in-memory table scan over identically sized data

if the table shards are pre-loaded in the memory. It is not

possible to load the entire dataset into memory but definitely

a significant fraction which in our experiments was up to 20%
such that the error bars for most of the groups were small.

This lets us assume unit execution time for each query over

a shard. In that case, it is clear that choosing the query that

yields the maximum of the product of the probability of a

query and the estimated accuracy gain for the corresponding

sampling rate is the best decision. Therefore, the solution to the

problem of choosing of the best queries that yield the highest

overall accuracy gain turns into a greedy selection problem,

the algorithm to which we provide in the following section.

Greedy Approach: The greedy cost-based approach priori-

tizes the execution of the most likely queries that provide

the highest overall accuracy gains. We represent the score

of a query q at the sampling rate of SR as Prob(q) ·
AccuracyGain(SR).

In the case of multi-query optimizations such as unifica-

tion (described in Section III-F), where multiple queries are

grouped together into a unified query Q = q1..n, the score

can be represented as
∑

q∈Q Prob(q) ·AccuracyGain(q).
Queries are run greedily on the worker nodes in descending

order of the score. Since worker nodes are capable of bounded-

time execution and each query runs in a time lesser than the

view latency threshold due to the small size of the table shard,

this approach proves to be a viable strategy and successfully

provides for sub-second latencies, as observed in Section IV.

In the case of sibling traversals for ordinal dimensions,

a user is more likely to choose the changed bound dimen-

sion value closer to the current value. We use a heuristic

that the distribution of the probability of the value that

the changing dimension in the where predicate takes can

be given as P (newV al) = O(1
||newV al−oldV al||2). Let the

set of speculative sibling queries and their probabilities be

SQ = {SQ1...n} and P = {P1...n} respectively. We re-

distribute the sum of these probabilities between queries in

SQ as P (x) = 1
c∗(x−oldV al)2 where c is the normalization

constant given by
∑

y∈Υ

1
(y−oldV al)2 where Υ is the domain of

the changing dimension. Using query logs, user behavior can

be modeled using the above distribution as the prior.

E. The DICE Algorithm

We are now able to illustrate both the overall model of the

system (Algorithm 1) and the DICE algorithm (Algorithm 2).

EXPLORE(User u)
1 //CF : Current Facet
2 CF = null
3 while True
4 do

5 Query q ← TRAVERSE(u,CF)
6 Results r ← EXEC(q)
7 QSpec ← ENUMERATE-SPEC(q)
8 PSpec ← DICE-PLAN-DETERMINE(QSpec, CF)
9 for each node n, queries Q in PSpec

10 do //parallel loop till next user query

11 NODE-EXEC-ALL(n,Q)

Algorithm 1: Core Exploration Loop

DICE-PLAN-DETERMINE(QSpec, CF)
1 PSpec ← GET-SPEC-PROBABILITIES(QSpec)
2 PSSpec ← SIBLING-ADJUSTMENT(PSpec, CF)
3 Accuracy Gains← GENERATE-ACCURACY-GAINS-VECTOR()
4 Unified Queries← QUERY-UNIFICATION(QSpec)
5 PUnified Queries ← {}
6 for each UQ in Unified Queries
7 do

8 PUQ ←
∑

Q∈UQ PSSpec(Q)
9 Unified Accuracies = Unified Queries ×

10 Accuracy Gains
11 DESC-SORT(Unified Accuracies)
12 return Unified Accuracies

Algorithm 2: DICE Execution Strategy

Algorithm 1 (Core Exploration Loop) describes the overall

DICE cube exploration system. A user first selects a query

(Line 5) which is then executed (Line 6). The system then

enumerates all the different possible speculative queries based

on the cube exploration model described earlier (Line 7) and

ranks them (Line 8). It then distributes the workload across

all the available nodes (Lines 9−−11). Next, in Algorithm 2,

we formally describe how DICE ranks the speculative queries

at different sampling rates.

Algorithm 2 (DICE Execution Strategy) starts by first

finding out the normalized probabilities Pspec given a set of

speculative queries (Line 1), and reweighting probabilities of

the sibling queries as described in Section III-D (Line 2). Next,

it generates the vector of the estimated accuracy gains for all

sampling rates (Line 3) and then performs unification over all

the speculative queries (Line 4) as given in Section III-F.

Finally, it ranks the unified queries at different sampling rates

by the product of their probabilities and their corresponding

sampling rate accuracy gains (Lines 5−−11) and returns the

sorted queries (Line 12).

F. Optimization: Query Unification

We now detail unification, a technique to speed up query ex-

ecution. For each traversal, the number of speculative queries

given the current facet f(dg,
−−−→
db : vb), in the worst case is:

NumParent = |−→db |
NumChild =

∑

dim∈{Dimensions}−{−→db,dg} Cardinality(dim)

NumSibling =
∑

dim∈−→
db

Cardinality(dim)− |−→db |
NumPivot = Cardinality(dg) ∗ |

−→
db |

Consequently, one can infer that the total number of specu-

lative queries could be greater than the sum of the cardinalities

of all the dimensions. Further, taking replication of queries due

to usage of table shards results into consideration, the total

number of speculative queries is equal to the product of the

number of table shards and the number of distinct speculative

queries. Hence, it is not feasible to run all the speculative

queries for most real-world datasets at high sampling rates

within interactive time bounds.

We can observe that the generation of speculative queries

leads to several queries that differ only by the value of

a single bound dimension. Unifying multiple such queries

into a lesser number of queries becomes essential since

concurrently running all of them will congest the system.

We have used two techniques of minimizing the number of

queries by unification. The first is to unify WHERE clauses on

a column into a GROUP BY on the column, and the second

is to split a dimension’s domain into ranges, and issuing

range-based queries. The results of these unified queries can

be post-processed to extract results for the user query.

Groupby Based Unification: Multiple queries can be

unified into a single query by replacing the bound dimension

that takes multiple values by a GROUP BY on the same

dimension when the cardinality of a dimension is moderately

high (i.e. above a set threshold). This unification leads to

the following speculative queries for the current user facet

f(dg,
−−−→
db : vb) in a cube of dimensions

−→
d :

Parent− Set = {∀di; di ∈
−→
db : f(dg,

−−−→
db : vb − di : vi)}

Sibling − Set = {∀di; di ∈
−→
db : f(dg, di,

−−−→
db : vb − di : vi)}

Pivot− Set = {∀di; di ∈
−→
db : f(dg, di,

−−−→
db : vb − di : vi)}

Child− Set = {∀di; di ∈
−→
d −−→

db : f(dg, di,
−−−→
db : vb)}

The sibling and pivot queries thus generated are identical.

One can also notice that a parent query f(dg,
−−−→
db : vb−di : vi)

can be answered by the corresponding sibling/pivot query

f(dg, di,
−−−→
db : vb − di : vi) where di : vi ∈ −−−→

db : vb. Thus,

groupby-based unification leads to an enormous reduction

in possible queries needed to be run. However, the results

for the next query would need to be retrieved from the

new unified query’s result set, and this post-processing

may be expensive. Typically, groupby unification is useful,

specifically for moderately high (thresholds set empirically)

cardinality dimensions. There is, clearly, a tradeoff between

running a large number of non-unified queries, and a single

unified query with a large result set.

Range Based Unification:

At very high cardinalities, the problem of the very high num-

ber of speculative queries is not resolved by the groupby-based

unification since the result set is expected to be large. Unifying

the queries into ranges was found to be extremely useful.

We convert multiple speculative queries f(dg,
−−−−−−→
db : v1..vn) into

fewer range-based speculative queries f(dg,
−−−−−−−−→
db : [v1..vn1

)),

f(dg,
−−−−−−−−−→
db : [vn1

..vn2
)) .. f(dg,

−−−−−−−−−−−→
db : [vnk−1

..vnk
]). The choice

between range-based and groupby-based unification depends

on the column cardinality and is a tunable parameter. This

parameter can be obtained empirically using the marginal

distribution of the column and the prior workload.

An interesting observation with range queries is that even

with careful tuning of the ranges, the cardinality of the data for

each range-unified query is large enough to motivate the use

of an index on range-unified columns. Thus, we only index

dimensions with very high cardinalities. While this introduces

variability into our cost model, the lack of a good determiner

for the cost of a range-unified query and aforementioned lack

of a fast solution to our linear integer programming problem

compels us to invoke Occam’s Razor and use a unit cost in this

case and the resultant greedy algorithm for query selection.

G. Optimality of DICE

As described in Sections III-D and III-F, we cast the

linear integer programming problem of maximizing the overall

accuracy under the constraint of maximum allocated time into

a greedy algorithm of choosing the new query at an additional

unit sampling rate. Also, as mentioned earlier in Section II-C,

we would not know the accuracy gain without actually running

the query. Thus, approximating the gain using the estimated

accuracy gain based on the MLE Consistency property is a

sound assumption to make. Therefore, the DICE algorithm of

choosing a new query with the highest product of probability

from the workload and the estimated accuracy gain at the

newer sampling rate will indeed be the optimal strategy.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

DICE is implemented in Java running on Sun Java 6 VMs

and uses PostgreSQL 9.1 as the database for each slave node.

By default, we discard the first run of each experiment and

report the average of the following three runs (runs were nearly

identical for all experiments, with no outliers, also observed by

the low standard deviation). We perform an exhaustive analysis

of the DICE system over a variety of cluster configurations,

workloads and algorithms for our metrics, as described below.

Cluster Configurations: CLUSTERSMALL is a private cluster

built on commodity hardware with only DICE running

during the experiments. The master node has 1 Quad Core

3.30GHz Intel i5 CPU, 16GB DDR3 RAM @1333MHz &

256GB SATA HDD and the 15 slave nodes each possess 1

Quad Core 2.13GHz Intel Xeon CPU, 4GB DDR2 RAM

@667MHz & 720GB SATA HDD. Nodes are connected over

a Gigabit Ethernet switch. Each slave contains 4 workers.

CLUSTERCLOUD is an Amazon EC2 configuration of 1

master and 50 slaves of the c1.xlarge type, each with

7GB Memory and 8 Virtual cores, powering 8 workers per

slave node. All nodes for both configurations run Ubuntu

Linux 12.04 LTS.

Dataset: Our generated dataset conforms to the example

schema provided in Section I, and comprises 1 billion rows

sharded uniformly across all nodes with a default table shard

size of 1M rows. The distributions and cardinalities are:

location[uniform]:[zone{10}:datacenter{100}:rack{1000}],

time[gaussian]:[month{12}:week{52}:hour{24}] and

iops[zipfian]:{10000}.

Each table shard is 102MB on disk, with a data size of 81MB

and index size of 21MB, yielding in a total of 1000 table

shards spanning 100GB. Unless otherwise specified, we run

experiments at 20% sampling rate i.e., 200 million rows are

actually processed. 1

Workloads: The user was asked to explore the dataset

taking into consideration the faceted exploration model using

a popular BI tool. Query logs from the tool were used to

derive the workload. A workload depicts a user query session

of 10 facet traversals, with the measure function AVG. Unless

stated, 3 workloads were used for each experiment and with

the aforementioned 3 runs, results into a sample size of 90
queries. The viewing latency threshold τV is fixed to 5000ms.

Algorithms: We compare five different algorithms:

ALGONOSPEC stands for “No Speculation” and represents

the baseline use case, i.e. ad-hoc distributed querying without

any speculation, similar in design to modern distributed query

execution engines. ALGORANDOM represents distributed

querying using query speculation, but the queries chosen to

1It should be noted that due to the variability of schema, row / columnar
storage layouts and hardware performance, our focus is on the number of
rows processed, and not the disk representation.

be speculated are selected randomly from the set of possible

facet traversals. ALGOUNIFORM selects speculative queries

uniformly from each type of facet traversal. ALGODICE

uses the DICE speculative query selection technique.

ALGOPERFECT “improves” upon DICE by allowing for a

perfect prediction of the subsequent ad-hoc query – this

represents the (hypothetical) best-case performance of our

speculation strategy, and is included to demonstrate the

overall potential of speculative caching.

Metrics: AVERAGE LATENCY is measured in milliseconds as

the average latency of a query across sessions and runs. We

also depict ±1 standard deviation of latency using error bars

in most of our results. AVERAGE ACCURACY is measured as

the absolute percentage deviation of the sampled results from

the results over the entire dataset.

B. Results

1) Impact of Data Size: We observe, in Figure 3 & 4, the

impact of data size on the latency observed by each algorithm

by varying the target sample size for the ad-hoc queries

in our workload. ALGONOSPEC scales almost linearly, and

exceeds the sub-second threshold for 200M rows. Despite issu-

ing speculative queries, ALGORANDOM and ALGOUNIFORM

perform just as poorly as ALGONOSPEC, validating the need

for a principled approach to speculative querying that DICE

provides. ALGODICE stays within the sub-second threshold,

and scales quite well for increasing size, performing almost as

well as ALGOPERFECT (which is the lower bound for latency

in this case) and manages to maintain a near 100% cache hit

ratio, especially for smaller sampling rates. A 1-tailed t-test

confirms (p-value 0.05, t-statistic 58.41 > required critical

value 1.662) that ALGODICE’s speedup over ALGONOSPEC

is statistically significant. Another observation is a perfor-

mance envelope with ALGOPERFECT exists – there are several

constant-time overheads which could be further optimized,

an opportunity for future work. Figure 4 performs the same

experiment at a larger scale on CLUSTERCLOUD, allowing for

cube exploration over the 1 billion rows (100% sampling)

while maintaining a sub-second average latency – 33%

faster than the baseline ALGONOSPEC.

2) Sampling & Accuracy: Since DICE allows the user to

vary the sampling rate, we present a plot of the AVERAGE

ACCURACY for a sample workload, compared to results from

aggregation over the full dataset. It should be noted that

accuracy depends on multiple factors. First and foremost,

accuracy is dependent on skew in the data. As described in

the schema, our dataset contains a multitude of distributions

across all the dimensions. Second, the selectivity of queries

in the workload will impact the sensitivity of error. Third, the

placement of the data is a significant contributing factor: since

data is horizontally sharded across multiple nodes, sampling

and aggregation of data is impacted by the uniformity of data

placement. In Figure 5, we present the average accuracy for

a workload at varying sampling rates over all 1B rows. For

this workload, accuracy increases steadily till the 50% mark,

after which the benefits of increasing the sampling taper off,

slowly reaching full accuracy at the 100% sampling rate.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 50" 100" 150" 200"

T
im

e
%(
m
s)
%

Sample%Size%(millions%of%rows)%

Cluster:)Small)

NOSPEC" Random" Uniform"

DICE" Perfect"

Fig. 3. Varying Size of Dataset: CLUSTERSMALL

250$ 500$ 750$ 1000$

0$

200$

400$

600$

800$

1000$

1200$

1400$

1600$

T
im

e
%(
m
s)
%

Sample%Size%(millions%of%rows)%

Cluster:)Cloud)

NOSPEC$ DICE$ Perfect$

Fig. 4. Varying Size of Dataset: CLUSTERCLOUD

5" 10" 20" 50" 75" 100"

40"

50"

60"

70"

80"

90"

100"

A
cc
u
ra
cy
'(
%
)'

Sample'Size'(%)'

Cluster:)Small)

Dataset:)1)billion)rows)

Fig. 5. Accuracy over a workload

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

0" 2" 4" 6" 8" 10"

T
im

e
%(
m
s)
%

Number%of%Dimensions%

Cluster:)Small)

NOSPEC" DICE"

Fig. 6. Impact of Number of Dimensions

3) Number of Dimensions: Figure 6 shows how varying the

number of dimensions in a query affects its execution time.

Dimensions are increased by adding new WHERE predicates

to the query. As seen in Figure 6, execution time decreases up

to a certain point and then starts increasing. The decreasing

slope in the curve is caused by selectivity – as dimensions

are added, less number of rows are processed, allowing for

faster materialization of resultsets. After a certain point, the

evaluation cost of the multiple WHERE clauses takes over,

especially because the order of filter dimensions is not ideal.

4) Number of Slave Nodes: We vary the number of slave

nodes in Figure 7, while keeping the size of the data constant at

200M rows. As expected, for all algorithms, latencies decrease

as the number of nodes increases. An interesting observation

is made for ALGODICE however – for 4 nodes, DICE thrashes

memory due to the amount of data involved and the number

of speculative queries, which is not a problem for both

ALGONOSPEC (no speculation / caching) or ALGOPERFECT

(exactly one ad-hoc query being cached).

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

2" 4" 6" 8" 10" 12" 14" 16"

T
im

e
%(
m
s)
%

Number%of%Nodes%

Cluster:)Small)

NOSPEC"

DICE"

Perfect"

Fig. 7. Varying the Number of Slave Nodes

40#

50#

60#

70#

80#

90#

100#

0# 50# 100# 150# 200#

C
a
ch
e
&H
it
&R
a
te
&(
%
)&

Sample&Size&(millions&of&rows)&

Cluster:)Small)

DICE#

Fig. 8. Cache Hit Change with Sampling Rate Change

5) Cache Hit Variability: Since the cache hit rate is a key

contributor to the average latency of a session, in Figure 8 we

study how the cache hit rate varies with the sampling rate for

a fixed cache size. We use the cache hit rate as a proportional

measure of the prediction quality. Higher cache hits are a direct

result of high quality of speculation. We achieve close to a

100% hit rate for 50 million sampled rows. As we increase

the sampling rate, we see the cache hit rate decreasing nearly

linearly, since the total number of speculative queries increases

linearly with the sampling rate.

6) Sample Session: As an anecdotal example, we present

in Figure 9 the trace of a single cube exploration ses-

sion for ALGONOSPEC, ALGODICE and ALGOPERFECT on

CLUSTERSMALL. The X axis depicts successive ad-hoc

queries in a session. (It should be noted that while the bars are

stacked together for convenience for the reader, the session for

each algorithm is executed separately.) The Y axis represents

AVERAGE LATENCY. Cache hit rate for ALGODICE is shown

as a label above the bars. The cache hit rate for the first query

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

T
im

e
%(
m
s)
%

NOSPEC"

DICE"

Perfect"
0 .75

.75 .68
1 1

1

1 .68

.75

Cluster: Small

Fig. 9. Individual Latencies for Anecdotal Query Session

is 0.0, since there has been no speculation and the caches are

empty. ALGODICE performs almost as well as ALGOPERFECT

with hit rates equal or closer to 1.0.

7) Impact of Various Techniques: We now study in Fig-

ure 10, the performance impact of the various algorithms and

optimizations to our system on the CLUSTERSMALL cluster.

We compare the AVERAGE LATENCY of various techniques

compared to ALGONOSPEC. ALGOUNIFORM is slightly faster

due to some of the speculative queries being part of the

session. Including the unification optimization discussed in

Section III-F reduces the number of concurrent queries, im-

proving latency. Finally, including the locality model and cost-

based prioritization of speculative queries yields ALGODICE,

which outperforms all other methods.

0	

500	

1000	

1500	

2000	

NOSPEC	
 UNIFORM	
 UNIFORM	
 +	

BATCHING	

DICE	

T
im

e
	
 (
m
s)
	

Cluster:	
 Small 	
 	

Fig. 10. Impact of Various Techniques

C. Real-world Usage and User Study

Real-world Query Logs: To evaluate the real-world efficacy

of the facet model, we procured a real-world query log of ad-

hoc analytical queries by real users on a production system

generated HIVE data warehouse of an Internet advertising

company. Considering only the aggregation queries (with the

group by clause), the log spanned 509 queries. Amongst

them 46 query sessions were detected which comprised of 116
queries i.e. 22.97% of the queries. The traversals described in

the DICE model were found to cover 100% of the session-

based queries, demonstrating that our traversal model is in-

deed expressive enough to allow for significant speedups (the

remainder are executed traditionally, without speculation.)

User Studies: We performed a user study to compare the

effectiveness DICE over traditional methods.The study was

performed with 10 graduate students across the department

who were knowledgeable in databases and data cubing, deter-

mined using a pre-test. The users were then given a pre-task

tutorial on data cubing and our data model. They were then

asked to explore the cube using the faceted model for 10 ad-

hoc queries of their choice. They were not told if the DICE

speculation was turned on or off (50% of the users each).

After the session, the user’s query session was repeated in the

other mode (speculation was turned on if it was off before and

vice versa) to get comparable times. Care was taken to avoid

different biases. The pre-task tutorial avoided bias against prior

knowledge of data cubing and our data model. Having only

1 total task that lasted less than 10 minutes prevented fatigue

bias, and the same user workload being re-run (automated) for

the alternate mode avoided learning effects. The test algorithm

being split equally dealt with carryover effects.

The mean and standard deviation for Time-To-Task for the

entire query session of 10 queries using ALGODICE were

47757 ms and 937 ms and for ALGONOSPEC were 54506 ms

and 3111 ms: i.e. on average users queried 7 seconds faster

with ALGODICE . Consider null hypothesis as ALGODICE
execution time to be no different than ALGONOSPEC time

and alternate hypothesis to be that ALGODICE is faster than

ALGONOSPEC. The query session time which consists of

query execution time, query input time and result view time

is significantly lesser for our method, ALGODICE, compared

with ALGONOSPEC based on a 1-tailed t-test (t-statistic

value of 21.77 > 1.833 needed for a p-value of 0.05).

Speculation Noticeability: While DICE speedups are objec-

tively significant, an important question for a user-involved

system is: Can users notice the difference and have a

preference? To test this, the users were asked to report which

query session (i.e. with or without DICE) they found out to be

faster. Results were unanimous: all our users preferred the

ALGODICE session over ALGONOSPEC. Clearly, reduction

in query times due to usage of ALGODICE speculation is

indeed noticeable to the user.

User Satisfaction: At the end of the query session, the users

were asked to rate their satisfaction (10:extremely happy,

5:neutral, 1:extremely unhappy) for both the faceted traversal

model and the overall system. For the traversal model, the

main criteria they were asked to take into consideration were

the traversals allowed under DICE, any extra traversals they

thought it lacked, and the ease of traversal. The mean rating

for the faceted model was 7.9 with a standard deviation of

1.54. Consider the null hypothesis of the faceted model ratings

being equal to 5 (i.e. neutral) and the alternate hypothesis of

the faceted model rating being greater than 5. The value of

the t-statistic was found out to be 5.67 which is much greater

than the critical value of 1.833 needed for a 1-tailed t-test for a

p-value of 0.05 showing that the traversal model satisfaction

was statistically significantly better than random/neutral

response. Additionally, for the overall DICE system, the

average User-Satisfaction was very high: 8.7 with a standard

deviation of 0.82, summarizing our overall assertion that DICE

not only provides objective speedups, it also provides a

significantly better experience for the end user.

V. RELATED WORK

Cube Exploration: While the original cube paper [19] provides

for a variety of operators, facet traversals introduced in this

paper are typical to interactions on analytics user interfaces.

Work by Sarawagi et al. on mining of interesting regions [45]

and exploration operators [46] can be easily plugged into our

speculation framework. Kamber et al. [27] have discussed

metarule exploration, and dynamic exploration on cube subsets

have been discussed in [31]. Our contribution is towards

improving interactive exploration in a session context.

Cube Materialization: Materialization strategies range from

full-cube materialization over MapReduce [37] to region-

specific materialization [11] to selective partial materializa-

tion. Optimization techniques exist for optimizing intra-query

parallelization [3], but do not consider multiple queries as part

of an interactive session.

Distributed Query Execution: Ad-hoc analysis over large

datasets has been made popular with the availability of declar-

ative query languages such as SCOPE [8], Pig [40] and

Hive [52], which translate to MapReduce-oriented flows, and

is not ideal for interactive workloads. Ideas such as columnar

storage layouts [5], [20], [49], hierarchical execution [35],

distributed database hybrids [1], online distributed aggrega-

tion [41] and main-memory engines [18] have achieved low

latencies when querying over large datasets, resulting in a spurt

of development activity in this area, resulting in implementa-

tions such as Drill, Impala, Tez, PivotalHD, HAWQ, Peregrine

and Druid, projects that target single query execution latency.

Prefetching: The idea of speculative execution of queries

and prefetching results has been discussed before [48], [51].

PROMISE [44] investigates the likelihood of future queries and

can be used to supplant the workload-based approach in our

paper. Ramachandran et al. [43] focus on the speculation of

exact, non-approximate drill-down queries. Improvements in

speculation quality based on ideas in these papers can be used

to better prioritize and sample our speculative queries.

Online Aggregation: Online aggregation ideas proposed by

Hellerstein et al. [24] and the related CONTROL [23] project

which surface approximate answers are highly relevant and re-

lated work. Our system builds upon these ideas in a distributed

cubing environment, combining user-directed techniques of

speculative execution and sampling.

Sampling-based Estimation: There is significant prior work in

using sampling for approximating query results [38]. Jin et

al. [26] detail the approximation of OLAP queries using pre-

summarized statistics. Wang et al. discuss [55] data placement,

[56] details the computation of errors for a GROUP BY query

over multitable joins, and [32] discuss a sampling-based

framework to materialize cubes. BlinkDB [2] performs an

offline sampling step of multiple column combinations. As

mentioned before, the ideas presented in BlinkDB are orthog-

onal to both the faceted exploration model proposed by our

work, and the speculation-based execution architecture. Strate-

gies for stratification using prior workloads [10] and methods

to increase sensitivity for low-selectivity attributes [54] have

also been considered before.

Data Interaction: The proliferation of business intelligence

tools that leverage visualization and interactive interfaces [4],

[6], [15], [28], [57] to explore large multidimensional datasets

highly motivate the need for a distributed interactive cube

exploration system. Tools such as Tableau [21] translate visual

interactions into a series of SQL queries, and interactive loops

correlate directly with our session-based model. As discussed

in Section IV, we observe that such interactions directly

correspond to facet traversals, allowing us to utilize actual

workloads from such tools in our experimental evaluation.

Olston et al. [39], propose the interactive analysis of web-

scale data using query templates. Cetintemel et al. [7] envision

a “guidance” system for interactive querying. Session-oriented

sampling and speculation approaches described in our paper

can significantly improve the interactivity of such a system.

VI. CONCLUSION AND FUTURE WORK

Given the proliferation of commodity distributed infras-

tructure and big data analytics applications, there is a com-

pelling need for systems that allow interactive exploration of

aggregated data. As demonstrated in the experiments, DICE

meets this need, and allows for exploration of 1-billion-tuple

data cubes at sub-second latencies, significantly outperforming

existing methods. The system uses a combination of three

complementary strategies: a faceted cube exploration model,

data sampling and speculative caching to provide interaction-

level performance for the end-user.

Going forward, there are several avenues of future work.

The inclusion of interestingness of cube groups into the explo-

ration framework would be a very useful extension. This would

bridge the gap between automated exposition of insights, and

ad-hoc exploration. One possible way to include this into

DICE is to formulate the interestingness of a facet, which can

be mined in an initial offline step during the ingestion of a table

shard, and stored in conjunction with the dataset. During the

exploration phase, this can considered when prioritizing facets

to speculatively execute. DICE can be trivially extended by

modeling user behavior through query logs and plugging in

new traversal types. We plan on modeling traversal patterns

for 2 dimensional GROUP BYs. Further, we intend to support

multi-tenancy; this would allow us to leverage caching benefits

across multiple users, allowing for higher speedups. Estimated

speculation time can be divided between different users based

on their importance. Another possible extension is to combine

methods for offline and online materialization of data cubes

by identifying the fraction of the cube to fully prematerialize.

A possible approach is to materialize an approximate and

compressed representation [17] of the data cube, and use the

online execution step to increase the quality of the answer

based on the approximate model [22].

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads. VLDB, 2009.

[2] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari, and I. Stoica.
Blink and It’s Done: Interactive Queries on Very Large Data. VLDB,
2012.

[3] F. Akal, K. Böhm, and H. Schek. OLAP Query Evaluation in a Database
Cluster: A Performance Study on Intra-Query Parallelism. ADBIS, 2002.

[4] M. Barnett, B. Chandramouli, R. DeLine, S. Drucker, D. Fisher,
J. Goldstein, P. Morrison, and J. Platt. Stat!-An Interactive Analytics
Environment for Big Data. SIGMOD, 2013.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. CIDR, 2005.

[6] A. Buja, D. Cook, and D. F. Swayne. Interactive High-Dimensional
Data Visualization. Computational and Graphical Statistics, 1996.

[7] U. Çetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou,
A. Kalinin, O. Papaemmanouil, and S. B. Zdonik. Query Steering for
Interactive Data Exploration. CIDR, 2013.

[8] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, et al. SCOPE: Easy and
Efficient Parallel Processing of Massive Data Sets. VLDB, 2008.

[9] B. Chandramouli, J. Goldstein, R. Barga, et al. Accurate Latency
Estimation in a Distributed Event Processing System. ICDE, 2011.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified Sampling
for Approximate Query Processing. TODS, 2007.

[11] Y. Chen, A. Rau-Chaplin, et al. cgmOLAP: Efficient Parallel Generation
and Querying of Terabyte Size ROLAP Data Cubes. ICDE, 2006.

[12] S.-J. Chun, C.-W. Chung, and S.-L. Lee. Space-Efficient Cubes for
OLAP Range-Sum Queries. DSS, 2004.

[13] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 2007.

[14] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning
for What-If Analysis. CIDR, 2013.

[15] A. Dubrawski, M. Sabhnani, et al. Interactive Manipulation, Visualiza-
tion Analysis of Large Sets of Multidimensional Time Series in Health
Informatics. INFORMS, 2008.

[16] U. Fischer et al. Forecasting the Data Cube: A Model Configuration
Advisor for Multi-Dimensional Data Sets. CITY, 2013.

[17] N. Friedman et al. Learning Bayesian Network Structure from Massive
Datasets. UAI, 1999.

[18] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. TKDE, 1992.

[19] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, et al. Data Cube:
A Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Totals. Data Mining and Knowledge Discovery, 1997.

[20] A. Hall et al. Processing a Trillion Cells Per Mouse Click. VLDB, 2012.

[21] P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization.
SIGMOD, 2006.

[22] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data
Cubes Efficiently. SIGMOD, 1996.

[23] J. Hellerstein, R. Avnur, A. Chou, C. Hidber, et al. Interactive Data
Analysis: The Control Project. Computer, 1999.

[24] J. Hellerstein et al. Online Aggregation. SIGMOD, 1997.

[25] T. Jäkel et al. Pack Indexing for Time-Constrained In-Memory Query
Processing. BTW, 2013.

[26] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal. New Sampling-Based
Estimators for Olap Queries. ICDE, 2006.

[27] M. Kamber et al. Metarule-Guided Mining of Association Rules using
Data Cubes. KDD, 1997.

[28] D. Keim, F. Mansmann, et al. Visual Analytics: Scope and Challenges.
Visual Data Mining, 2008.

[29] A. Kemper et al. HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. ICDE, 2011.

[30] N. Khoussainova et al. Session-Based Browsing for More Effective
Query Reuse. SSDBM, 2011.

[31] B. Leonhardi, B. Mitschang, R. Pulido, et al. Augmenting OLAP
Exploration with Dynamic Advanced Analytics. EDBT, 2010.

[32] X. Li, J. Han, Z. Yin, J.-G. Lee, et al. Sampling Cube: A Framework
for Statistical OLAP over Sampling Data. SIGMOD, 2008.

[33] X. Liu et al. A Text Cube Approach to Human, Social and Cultural
Behavior in the Twitter Stream. SBP, 2013.

[34] S. L. Lohr. Sampling: Design and Analysis. Cengage Learning, 2010.

[35] S. Melnik, A. Gubarev, J. Long, et al. Dremel: Interactive Analysis of
Web-Scale Datasets. VLDB, 2010.

[36] R. Miller. Response Time in Man-Computer Conversational Transac-
tions. FJCC, 1968.

[37] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed Cube
Materialization on Holistic Measures. ICDE, 2011.

[38] N. Ntarmos, P. Triantafillou, et al. Statistical Structures for Internet-
Scale Data Management. VLDB, 2009.

[39] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed.
Interactive Analysis of Web-Scale Data. CIDR, 2009.

[40] C. Olston, B. Reed, et al. Pig Latin: A Not-So-Foreign Language for
Data Processing. SIGMOD, 2008.

[41] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggre-
gation for Large Mapreduce Jobs. PVLDB, 2011.

[42] C. Raı̈ssi et al. Computing Closed Skycubes. VLDB, 2010.

[43] K. Ramachandran, B. Shah, and V. V. Raghavan. Dynamic Pre-Fetching
of Views Based on User-Access Patterns in an OLAP System. SIGMOD,
2005.

[44] C. Sapia. PROMISE: Predicting Query Behavior to Enable Predictive
Caching Strategies for OLAP Systems. DaWaK, 2000.

[45] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Explo-
ration of OLAP Data Cubes. EDBT, 1998.

[46] S. Sarawagi and G. Sathe. i3: Intelligent, Interactive Investigation of
OLAP Data Cubes. SIGMOD, 2000.

[47] B. Shneiderman. Response Time and Display Rate in Human Perfor-
mance with Computers. CSUR, 1984.

[48] A. Smith. Sequentiality and Prefetching. TODS, 1978.

[49] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, et al.
C-Store: A Column-Oriented DBMS. VLDB, 2005.

[50] F. Tao et al. EventCube: Multi-Dimensional Search and Mining of
Structured and Text Data. KDD, 2013.

[51] F. Tauheed et al. SCOUT: Prefetching for Latent Structure Following
Queries. VLDB, 2012.

[52] A. Thusoo, J. Sarma, N. Jain, et al. Hive-A Petabyte Scale Data
Warehouse using Hadoop. ICDE, 2010.

[53] D. Tunkelang. Faceted Search. Synthesis Lectures on Information

Concepts, Retrieval, and Services, 2009.

[54] F. Wang and G. Agrawal. Effective Stratification for Low Selectivity
Queries on Deep Web Data Sources. CIKM, 2011.

[55] Y. Wang, S. Parthasarathy, and P. Sadayappan. Stratification Driven
Placement of Complex Data: A Framework for Distributed Data Ana-
lytics. ICDE, 2013.

[56] F. Xu, C. Jermaine, and A. Dobra. Confidence Bounds for Sampling-
based Group by Estimates. TODS, 2008.

[57] J. Yi et al. Toward a Deeper Understanding of the Role of Interaction
in Information Visualization. VCG, 2007.

APPENDIX

We build upon stratified sampling and post-

stratification [13] for our sampling framework. Error bounds

for aggregation queries are based on the variance (across

samples) of the measure for each cube group. As an initial

step, we combine the variance for the same group across

multiple queries, after which the variances across multiple

groups are combined to give an error estimate for the entire

query.

TABLE I
LIST OF NOTATIONS USED IN SECTION II-C

Symbol Explanation

s2
h

variance of the group h
nh number of tuples in the group h in the sample

nhi
number of tuples belonging to the group h from
the ith query

n total number of tuples in the sample

mhi mean of the group h from the ith query

mh mean of the group h from all the queries

vhi variance of the group h from the ith query

p proportion of tuples selected by the where clause

V̂ [θ̂] variance of the estimator for the parameter θ

H number of groups in the union of all the queries

Nh number of tuples in group h in the dataset

N number of tuples in the dataset

Combining variances within groups: In order to deliver

results at higher sampling rates, DICE runs the same query

on multiple randomly chosen shards on multiple nodes. This

results in the same cube group being possibly obtained from

the multiple table shards. Hence, the statistics for the same

group from these multiple queries need to be combined to-

gether. While combining the AVG, SUM and COUNT is straight

forward, we present a technique for combining variances as

s2h =
1

nh − 1
(

numQ
∑

i=1

nhi(mhi−mh)
2)+

∑

i

(nhi−1)vhi) (2)

where numQ is the number of queries that a query needs

to be replicated to. Thus, we get the requisite statistics for a

combined group across all the replicated queries.

Continuing our motivating example, the faceted representa-

tion of the query is f(rack, hour : 6, datacenter : EU) with

the measure AVG and measure dimension iops . We append

the COUNT and VARIANCE measures to the queries since they

are needed as given in Equation (2) to combine variances for

the same group across multiple queries. Assume the query is

run on a single shard on 2 nodes and result into a sampling rate

of 10%, returning us groups and the corresponding measures

from the two queries respectively as:

{[rack:1,hour:6,datacenter:EU,AVG:10,COUNT:5,VAR:4],
[rack:2,hour:6,datacenter:EU,AVG:12,COUNT:6,VAR:2]} &

{[rack:1,hour:6,datacenter:EU,AVG:5,COUNT:8,VAR:1],
[rack:2,hour:6,datacenter:EU,AVG:6,COUNT:7,VAR:2]}.

Plugging in the values from above into (2), we get the variance

for the combined group [rack:1,hour:6,datacenter:EU] as s21 =
8.32 and for [rack:2,hour:6,datacenter:EU] as s22 = 11.52.

Combining variances across groups: From the variances of

each of the combined groups, we can get an error estimate

for the combination of all of these groups i.e. the combined

result set. We consider three algebraic measures SUM, AVG

and COUNT. From the standard sampling theory, the variance

of the estimator for the measure SUM can be given as:

V̂ [t̂] =
H
∑

h=1

N2
h(1−

nh

Nh

)
ŝh

2

nh

(3)

The variance of the estimator for the measure AVG can be

obtained by dividing the above value by N2.

For the measure COUNT, we can use the proportion estima-

tor since the where clause acts as the indicator function and

thus the variance of the estimator for COUNT can be given as:

V̂ [p̂] = (1− n

N
)
p̂(1− p̂)

n− 1
(4)

The above formulae cannot be used as they are since we

cannot know the value of Nh without accessing the entire data.

We resolve this issue by estimating Nh

N
by nh

n
and nh

Nh
by

the sampling rate which resulting into an unbiased estimator.

Holistic measures can be handled as described in [34].

Again plugging in the values we get, ŷ = 6.92 ∗ 13/26 +
8.77∗13/26 = 7.85 and V̂ [t̂] = (1326)

2 ∗ (1−0.1)∗ (8.32/13+
11.52/13) = 0.35

The error will be given by

ConfidenceInterval

2 ∗ Estimate
= zα

2
∗

√

V (θ̂)

θ̂
(5)

where θ̂ is the estimate of the measure parameter and V (θ̂)
is the variance of the estimate.

Thus, for a confidence of 95%, we can get the standard error

for the query as 1.96∗
√
0.35

7.85 = 0.15 resulting into an accuracy

of 85%.

