Distributed and Lightweight Multi-Camera Human Activity Classification

Gaurav Srivastava, Hidekazu Iwaki, Johnny Park, Avinash C. Kak School of Electrical and Computer Engineering, Purdue University, USA

Outline

- Motivation for multi-view analysis
- Typical multi-camera algorithms: issues with distributed implementation
- Proposed Action Classification Algorithm
- Classification results
- Why is it lightweight?
- Conclusions

Motivation for Multi-view Analysis

- Logical next step to fixed-view activity analysis
- Does not constrain the human's orientation to frontal or profile views relative to single camera
- Capturing action from multiple views ⇒ additional features for higher discriminative ability
- Robustness to partial occlusions

Typical Multi-camera Algorithms

- Assume that images from multiple cameras can be transmitted for central processing
- Leads to significant bandwidth requirement even for commonly used parameters:
 - frame rates of 15-30 fps,
 - image resolutions like 320x240 pixels
 - 5-10 cameras
- Computationally intensive operations: 3D visual hull construction, 3D model projection onto multiple 2D views for matching

Distributed Processing: what is desirable?

- Transmit compact representative descriptors instead of entire images
- Modular design: each camera node can independently process local sensory data
- Low memory requirements at each camera node
- Simple and fast aggregation algorithms
- Not compromise on the classification performance (compared to the centralized multi-camera approach)

Contributions of the paper

- Extend the feature histogram representation (Dollar et al. 2005) to multiple cameras and present a simple aggregation algorithm
- Demonstrate some level of invariance to actor orientation
- Demonstrate robustness to previously unseen views
- Analyze the system's superior storage and bandwidth requirements \Rightarrow demonstrate suitability for a distributed implementation. **ICDSC 2009**

Proposed Methodology

- Represents actions using spatio-temporal features
- Achieves orientation invariance using multiview action representation
- Suitable for distributed implementation

Spatio-temporal feature extraction

(Dollar et al. 2005)

Convolve the video sequence with a spatio-temporal linear filter to obtain respose function R. Local maxima of R are locations of cuboids.

$$R = \left(I \star g \star h_{ev}\right)^2 + \left(I \star g \star h_{od}\right)^2$$

Spatio-temporal feature extraction

(Dollar et al. 2005)

Action Histogram Generation

Experimental Setup

- 6 cameras, placed approximately uniformly around the room, at same height.
- Subjects can perform actions facing any of the cameras. *Discretized* orientation invariance.
- Even if actor's orientation not along one of the cameras, still high classification performance achieved.

Orientation Invariance

Subject facing camera C₁


```
Subject facing camera C<sub>3</sub>
```

	LeftFrontal	Frontal	RightFrontal	Rear	LeftRear	RightRear
Facing Camera C1	C6	C1	C2	C5	C4	C3
Facing Camera C3	C2	C3	C4	C1	C6	C5

Multi-view action representation

Multi-view Action Classification: Training Stage

Subjects face camera C_1 while performing actions

September 1, 2009

September 1, 2009

Each camera stores one action histogram for each subject and each action.

September 1, 2009

September 1, 2009

September 1, 2009

Multi-view Action Classification: Testing Stage

Subject may face any camera while performing actions. As an example, she may face camera C_3 or C_5

September 1, 2009

September 1, 2009

ICDSC 2009

 d_0

 d_1

 d_0 d_1 d_2

d₀ d₁ d₂ d₃

 d_0 d_1 d_2 d_3 d_4

 d_0 d_1 d_2 d_3 d_4 d_5

Best match found

 d_0 d d_{2} d₃ C d_{5}

Suitability for Distributed Implementation

• For any particular circular shift, the histogram distances can be computed parallely by the cameras.

Suitability for Distributed Implementation

For any particular circular shift, the histogram distances can be computed parallely by the cameras.
Circular shifts can be implemented by each camera broadcasting its histograms.

Suitability for Distributed Implementation

- For any particular circular shift, the histogram distances can be computed parallely by the cameras.
- Circular shifts can be implemented by each camera broadcasting its histograms.
- The histogram distances from the individual cameras can be transmitted to the aggregation module for finding the best matching training histograms corresponding to test histograms.

Experiments and Results

- Two multi-view multi-action datasets:
 - Purdue Dataset
 - 12 subjects, 9 action classes, 6 cameras
 - IXMAS Dataset (Weinland et al. 2007)
 - 10 subjects, 11 action classes, 4 cameras
- Action Classification using 1-NN.
- Leave-one-out cross validation

Purdue Dataset

- 3 experimental scenarios:
 - Multi camera training, multi camera testing (MM)
 - Multi camera training, single camera testing (MS)
 - Single camera training, single camera testing (SS)

Purdue Dataset

September 1, 2009

Classification Results (Purdue Dataset)

	Error rate = 15.3704 %								
Walking	.75	.25	.00	.00	.00	.00	.00	.00	.00
Running	.05	.95	.00	.00	.00	.00	.00	.00	.00
Bending	.00	.00	1.0	.00	.00	.00	.00	.00	.00
Kicking	.00	.00	.02	.98	.00	.00	.00	.00	.00
SitDown	.00	.00	.03	.00	.97	.00	.00	.00	.00
StandUp	.00	.00	.00	.00	.00	1.0	.00	.00	.00
HandWaving	.00	.00	.00	.00	.00	.00	.82	.18	.00
HandClapping	.00	.00	.03	.00	.00	.00	.18	.60	.18
Boxing	.00	.00	.07	.28	.00	.02	.00	.08	.55
	Walk	Runn	Beno	Kickin	Sito	Stan	Hand	Hand	Botio
		<i>0</i> 0 '''	ng Y	ng "I	9 1	NA .	(b)	Naving	lapping

Confusion Matrix (Multi camera training, multi camera testing)

Classification Results (Purdue Dataset)

	Multi View	Single View
	Testing	Testing
Multi View Training	84.6	82.96
Single View Training (Frontal)	N/A	78.89

Classification accuracy: MM > MS > SS

Classification Results (Purdue Dataset)

	Single View Testing			
	Left	Front	Right	
Multi View Training	73.18	82.96	64.82	
Single View Training (Frontal)	56.48	78.89	45.37	

 Single View Testing: Front view accuracy > side view accuracy

Classification for Previously Unseen Views (Purdue Dataset)

# Previously unseen views	Classification Accuracy		
1	83.70%		
2	82.78%		
3	82.22%		
4	83.52%		
5	78.70%		
6	76.30%		

September 1, 2009

IXMAS Dataset: Comparing 3 Algorithms

10 subjects, 11 action classes, 4 cameras

# Cameras in testing stage	Proposed approach	Weinland et al. (2007)	Yan et al. (2008)
4	81.40%	81.30%	78.00%
3	79.10%	70.20%	60.00%
2	75.60%	81.30%	71.00%
1	69.10%	Not reported	Not reported

Average Classification Accuracy (as a function of number of cameras used)

Advantages for Distributed Implementation

- Comparative analysis with Weinland et al.
- Based on IXMAS dataset.
- Memory requirements:
 - Weinland et al. 1.72 Mbytes
 - Proposed approach 0.293 Mbytes / camera
- Communication Bandwidth requirements:
 - For transmitting full images (390x291 resolution, 23 fps): 30 Mbytes/s
 - Weinland et al. (transmit silhouette information): 47.1 Kbytes/s
 - Proposed approach (transmit histogram distance values): 2.7 Kbytes/s

Conclusions

- Proposed a Multi-camera orientation invariant action classification algorithm:
 - Based on simple histogram features
 - Training and testing stages are simple
 - Lightweight features ⇒ low memory and bandwidth requirements.
 - Algorithm suitable for distributed implementation due to simple computations, low resource requirements and modular operation.

References

- Dollár, P., Rabaud, V., Cottrell, G., and Belongie, S., "Behavior Recognition via Sparse Spatio-Temporal Features", ICCV VS-PETS 2005, Beijing, China.
- Weinland, D., Boyer, E., Ronfard, R., "Action Recognition from Arbitrary Views using 3D Exemplars", ICCV 2007, vol. 1, no. 7, pp. 14-21, Oct. 2007.
- Yan, P., Khan, S.M., Shah, M., "Learning 4D action feature models for arbitrary view action recognition", CVPR 2008, vol. 1, no. 7, pp. 23-28, June 2008

Thank You !