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Motivation for Multi-view Analysis

 Logical next step to fixed-view activity analysis

 Does not constrain the human's orientation to frontal 
or profile views relative to single camera

 Capturing action from multiple views        additional 
features for higher discriminative ability

 Robustness to partial occlusions
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Typical Multi-camera Algorithms

 Assume that images from multiple cameras can be 
transmitted for central processing

 Leads to significant bandwidth requirement even for 
commonly used parameters: 

 frame rates of 15-30 fps, 

 image resolutions like 320x240 pixels

 5-10 cameras 

 Computationally intensive operations: 3D visual hull 
construction, 3D model projection onto multiple 2D 
views for matching
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Distributed Processing: what is desirable?

 Transmit compact representative descriptors instead 
of entire images

 Modular design: each camera node can independently 
process local sensory data

 Low memory requirements at each camera node

 Simple and fast aggregation algorithms

 Not compromise on the classification performance 
(compared to the centralized multi-camera approach)
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Contributions of the paper

● Extend the feature histogram representation 
(Dollar et al. 2005) to multiple cameras and 
present a simple aggregation algorithm 

● Demonstrate some level of invariance to actor 
orientation 

● Demonstrate robustness to previously unseen 
views 

● Analyze the system’s superior storage and  
bandwidth requirements       demonstrate 
suitability for a distributed implementation.
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Proposed Methodology

 Represents actions using spatio-temporal 
features 

 Achieves orientation invariance using multi-
view action representation

 Suitable for distributed implementation
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Input Video 
Sequences

Sequence 1

Spatio-temporal 
gradient computation 

at each cuboid

Dimensionality 
reduction using 

PCA

Sequence N

Spatio-temporal 
gradient computation 

at each cuboid

Dimensionality 
reduction using 

PCA

K-means 
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Spatio-temporal feature extraction

Cuboids

(Dollar et al. 2005)
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Assign labels to cuboids based on 
closest cuboid prototype, using 

euclidean distance

Sequence 1

Sequence N

Cuboid
Prototypes

Represent each video sequence as 
histogram over cuboid prototypes

Action Histogram Generation
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Experimental Setup

● 6 cameras, placed approximately uniformly around the room, at same height.
● Subjects can perform actions facing any of the cameras. Discretized 
orientation invariance.
● Even if actor's orientation not along one of the cameras, still high classification 
performance achieved.
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Orientation Invariance

Subject facing camera C
1 Subject facing camera C

3

LeftFrontal Frontal RightFrontal Rear LeftRear RightRear

Facing Camera C1 C6 C1 C2 C5 C4 C3

Facing Camera C3 C2 C3 C4 C1 C6 C5
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Multi-view action representation

The 6 histograms 
corresponding to 6 
camera views 
constitute the multi-
view representation for 
any action.
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Multi-view Action Classification:
Training Stage

Subjects face camera C
1
 while performing actions
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Learning Multi-view action histograms

Training begins:
M subjects, 
C action categories

Subjects

Actions
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Learning Multi-view action histograms

Each camera stores 
one action histogram 
for each subject and 
each action. 

Subjects

Actions
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Learning Multi-view action histograms

Each camera stores 
one action histogram 
for each subject and 
each action. 

Subjects

Actions
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Learning Multi-view action histograms

Each camera stores 
one action histogram 
for each subject and 
each action. 

Subjects

Actions
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Learning Multi-view action histograms

Each camera stores 
one action histogram 
for each subject and 
each action. 

Subjects

Actions
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Learning Multi-view action histograms

These histograms 
are stored as the 
model for each 

camera

Each camera stores 
one action histogram 
for each subject and 
each action. 

Subjects

Actions
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Multi-view Action Classification:
Testing Stage

Subject may face any camera while performing actions. 
As an example, she may face camera C

3 
or C

5
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Test Subject facing camera C
3

Subjects

Actions
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Test Subject facing camera C
3

Generating multi-view 
action histograms for 
test subject – test 
action. 

Subjects

Actions
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Finding the best match
Subjects

Actions
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Finding the best match
Subjects

Actions
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Finding the best match
Subjects

Actions
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Suitability for Distributed Implementation

● For any particular circular shift, the histogram distances can be computed parallely by the cameras.
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Suitability for Distributed Implementation

● For any particular circular shift, the histogram distances can be computed parallely by the cameras.
● Circular shifts can be implemented by each camera broadcasting its histograms. 
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Suitability for Distributed Implementation

● For any particular circular shift, the histogram distances can be computed parallely by the cameras.
● Circular shifts can be implemented by each camera broadcasting its histograms.
● The histogram distances from the individual cameras can be transmitted to the aggregation module for 
finding the best matching training histograms corresponding to test histograms.
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Experiments and Results

 Two multi-view multi-action datasets:

 Purdue Dataset

 12 subjects, 9 action classes, 6 cameras

 IXMAS Dataset (Weinland et al. 2007)

 10 subjects, 11 action classes, 4 cameras

 Action Classification using 1-NN.

 Leave-one-out cross validation
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Purdue Dataset

 3 experimental scenarios:

 Multi camera training, multi camera testing    (MM)

 Multi camera training, single camera testing   (MS)

 Single camera training, single camera testing (SS)
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Purdue Dataset

Bending

Boxing

Clapping

Running
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Classification Results (Purdue Dataset)

Confusion Matrix
(Multi camera training, multi camera testing)
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Classification Results (Purdue Dataset)

 Classifcation accuracy: MM > MS > SS

Multi View Single View

Testing Testing

Multi View Training 84.6 82.96

Single View Training (Frontal) N/A 78.89
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Classification Results (Purdue Dataset)

 Single View Testing: Front view accuracy >  
side view accuracy

Single View Testing
Left Front Right

Multi View Training 73.18 82.96 64.82

Single View Training (Frontal) 56.48 78.89 45.37
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Training Testing (Single View)

Multi-view

Single-view (Frontal) Single-view (Frontal)
78.89 %

Single-view (Right)
45.37 %

Single-view (Left)
56.48 %

Single-view (Frontal)
82.96 %

Single-view (Right)
64.82 %

Single-view (Left)
73.18 %
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Classification for Previously Unseen Views

Green cameras used during training stage

Yellow cameras used during testing stage

(Purdue Dataset)

Images from different 
camera views were 
scaled differently so 
that the human actor 
has the same height in 
all the images.
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# Previously unseen views Classification Accuracy

1 83.70%

2 82.78%

3 82.22%

4 83.52%

5 78.70%

6 76.30%

Classification for Previously Unseen Views
(Purdue Dataset)
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IXMAS Dataset: 
Comparing 3 Algorithms

# Cameras in testing stage Proposed approach

4 81.40% 81.30% 78.00%

3 79.10% 70.20% 60.00%

2 75.60% 81.30% 71.00%

1 69.10% Not reported Not reported

Weinland et al. (2007) Yan et al. (2008)

Average Classification Accuracy 
(as a function of number of cameras used)

10 subjects, 11 action classes, 4 cameras
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Advantages for 
Distributed Implementation

 Comparative analysis with Weinland et al.

 Based on IXMAS dataset.

 Memory requirements:

 Weinland et al.               1.72 Mbytes

 Proposed approach       0.293 Mbytes / camera

 Communication Bandwidth requirements:

 For transmitting full images (390x291 resolution, 23 fps): 30 Mbytes/s

 Weinland et al. (transmit silhouette information): 47.1 Kbytes/s 

 Proposed approach (transmit histogram distance values): 2.7 Kbytes/s
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Conclusions

 Proposed a Multi-camera orientation invariant 
action classification algorithm:

 Based on simple histogram features

 Training and testing stages are simple

 Lightweight features       low memory and 
bandwidth requirements. 

 Algorithm suitable for distributed implementation 
due to simple computations, low resource 
requirements and modular operation.
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Thank You !
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