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Distributed Approaches for Exploiting Multiuser
Diversity in Wireless Networks
Xiangping Qin, Member, IEEE, and Randall A. Berry, Member, IEEE

Abstract—In wireless fading channels, multiuser diversity can
be exploited by scheduling users to transmit when their channel
conditions are favorable. This leads to a sum throughput that in-
creases with the number of users and, in certain cases, achieves
capacity. However, such scheduling requires global knowledge of
every user’s channel gain, which may be difficult to obtain in some
situations. This paper addresses contention-based protocols for ex-
ploiting multiuser diversity with only local channel knowledge. A
variation of the ALOHA protocol is given in which users attempt
to exploit multiuser diversity gains, but suffer contention losses
due to the distributed channel knowledge. The growth rate of the
sum throughput for this protocol is characterized in a backlogged
system under both short-term and long-term average power con-
straints. A simple “fixed-rate” system is shown to be asymptotically
optimal and to achieve the same growth rate as in a system with an
optimal centralized scheduler. Moreover, asymptotically, the frac-
tion of throughput lost due to contention is shown to be 1 . Also,
in a system with random arrivals and an infinite user population,
a variation of this ALOHA protocol is shown to be stable for any
total arrival rate, given that users can estimate the backlog.

Index Terms—Distributed algorithms, multiuser diversity,
opportunistic communications, random access, scheduling, slotted
ALOHA, wireless networks.

I. INTRODUCTION

I N a multiuser fading channel, different users experience
peaks in their channel quality at different times; this effect

is called multiuser diversity [18]. Multiuser diversity can be
exploited by scheduling users to transmit during the times when
they have favorable channel conditions. The more users present,
the more likely it is that one user has a very good channel at any
given time; hence, the total throughput of such a system tends
to increase with the number of users. Multiuser diversity has
its roots in the work of Knopp and Humblet [18], where they
present a power control scheme for maximizing the capacity
of the uplink in a wireless network, modeled as a Gaussian
multiple-access channel with frequency flat fading. It is shown
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in [18] that the sum capacity of this channel is achieved by
scheduling only the user with the best channel to transmit at
any time (see also [32]). Similar results hold for a parallel
Gaussian broadcast channel [33]. Multiuser diversity underlies
much of the recent work on “opportunistic” or “channel-aware”
wireless scheduling such as [3], [21], [22], [36], [37], as well
as several recent systems such as Qualcomm’s high data rate
(HDR) architecture (code-division multiple-access (CDMA)
1xEV-DO) [4], [42].

Our focus in this paper is on distributed approaches that ex-
ploit multiuser diversity. As in [18], we consider a multiple-ac-
cess model where a group of users all communicate to a single
receiver (e.g., a base station or access point). The approach in
[18] requires a centralized scheduler with knowledge of each
user’s channel state information (CSI). This could be gained by
having each user transmit a pilot signal to the base station; each
user’s channel gain would then be estimated and a scheduler
at the base station would tell the user with the best channel to
transmit. More precisely, assume that each user sends an orthog-
onal pilot signal to the base station for the purpose of channel
estimation and that each pilot requires degrees of freedom,
where the length of a pilot signal depends on the amount of
training needed for channel estimation and any additional over-
head needed per transmission. For a given bandwidth of
hertz, this implies that each additional user requires approxi-
mately additional seconds of overhead, and so
in a system with users, the total overhead will be approxi-
mately , where is the delay required for the base
station to signal which user should transmit.1 This is illustrated
in Fig. 1(a) for a case where the pilot signals are transmitted
orthogonally in time. To effectively exploit multiuser diversity,
the total overhead should be less than the channel’s coherence
time or else the estimated channel gains would no longer be
relevant. It is clear that with sufficiently many users this may
not be satisfied. For a given number of users, whether or not
this overhead is significant will depend on the coherence time,
the bandwidth, and the signal-to-noise ratio (SNR) (which will
effect ).2 In particular in systems with many users (for ex-
ample, the “reachback” scenario in a dense sensor network [2]),
the overhead required for such a centralized approach may be
prohibitive.

Instead of a centralized approach, we consider a case where
each user has knowledge of its own fading level, but no knowl-

1Also note that T will increase logarithmically with the maximum number
of users the system is designed to accommodate, due to the overhead needed to
identify each user.

2For example, in multicarrier systems, the overhead required to estimate the
channel condition in each narrow-band carrier quickly becomes excessive.
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Fig. 1. An example of the overhead required for centralized (a) and distributed
(b) channel measurement.

edge of the fading levels of the other users in the cell. As shown
in Fig. 1(b), this distributed CSI may be acquired by having the
base station periodically broadcast a pilot signal, which each
user uses to estimate its channel. This requires that reciprocity
holds between the downlink and uplink channels, e.g., this can
hold in a time-division duplex (TDD) system, assuming that the
variation in the channel gains is due to multipath fading and
not to other-cell interference. The overhead required for this ap-
proach does not increase with the number of users; the price for
this is that each user must now decide when to transmit without
global channel knowledge. To address this, we propose a simple
variation of the classic slotted ALOHA protocol [1], [7], which
we call channel-aware ALOHA [26], [27]. In networking, a key
reason for using contention-based protocols, such as ALOHA,
is because, with bursty sources, the overhead in determining
which source has traffic to send becomes prohibitive. Here, in-
stead we use this protocol to compensate for the overhead in
learning the channel information. Indeed, our results suggest
that even without bursty arrivals, a contention-based protocol
may be useful in this setting.

Multiple-access channels have a long history of research from
both the information theory and networking communities; how-
ever, as pointed out in [14], these two communities often use
very different models and approaches. In this paper, we borrow
elements from both; we consider a “collision model” for the un-
derlying channel as is often used in networking; given a suc-
cessful transmission, we assume that the user’s rate can ap-
proach the capacity of the underlying channel within a time slot.
This is reasonable when there are enough degrees of freedom
available to use sophisticated codes. In this way, information-
theoretic (capacity) results provide a useful abstraction of the
underlying channel within a time slot. This type of approach has
been increasingly used to study scheduling and various queue
control problems, often motivated by wireless applications (e.g.,
[5], [6], [8], [38]).

From an information-theoretic perspective, related models
with distributed CSI have been studied in [17], [31], [35] for

“distributed power control” in multiple-access channels.3 These
papers consider the expected sum mutual information at the
receiver; transmitting at this rate with distributed CSI requires
coding over many time slots to average over the joint fading
process. Here, we focus on a model where there is no coding
over multiple time slots. Also within each time slot we assume
that each user transmits a single codeword and single user
decoding is used. This precludes approaches as in [10], [24],
which employ ideas from multiuser information theory (i.e.,
rate splitting and superposition coding) to recover informa-
tion when collisions occur. These constraints could arise, for
example, due to delay or complexity concerns. We emphasize
that the basic ideas considered here can clearly be extended
to these more sophisticated systems. From a random-access
perspective, distributed CSI has been considered in [2] for an
ALOHA model with multipacket reception [15], [40]. In [2],
the CSI affects the reception probability of the transmitted
packets, while the transmission rate per packet is fixed. Here,
we use a simple collision model without multiuser reception
or any power capture effects [23], [20]. Again, our basic ideas
could be extended to such settings. Without capture, ALOHA
with distributed CSI has been addressed in [39], which builds
on the conference version of this paper [26] and considers sta-
bility issues. A carrier-sensing random-access protocol based
on distributed CSI is given in [41] for optimizing the energy
efficiency in a sensor network.

Our focus is on characterizing how the throughput of the
channel-aware ALOHA protocol scales as the size of the net-
work increases. We primarily consider a backlogged or satu-
rated system with users, where each user always has data to
send. Our basic model is described in the next section. In this
setting, we show that this contention-based system can still ex-
ploit multiuser diversity and has a sum throughput that increases
with . In Section III, the rate at which this throughput is in-
creasing as well as the first-order constants are given under both
long-term and short-term power constraints, for a broad class of
fading distributions. It is also demonstrated that a simple “fixed-
rate” policy can achieve the optimal growth rate. In Section IV,
this distributed approach is compared to an optimal centralized
system. We prove that the throughput of both systems increases
at the same rate. Asymptotically, the ratio of the throughput of
the channel-aware ALOHA to the throughput with a central-
ized scheduler is shown to be , the same as the well-known
ratio achieved by a standard slotted ALOHA system in an un-
faded channel. This can be interpreted as saying that the only
loss due to distributed channel knowledge is the loss due to
random access for the channel. For a finite number of users,
it is shown that the loss in throughput due to contention when
fading is present is less than the loss in a channel without fading.
In other words, lack of centralized control is less harmful in a
fading environment. Finally, in Section V, we consider a vari-
ation of the ALOHA protocol for random arrivals. For an infi-
nite user Rayleigh-fading model, it is shown that the channel-
aware ALOHA is stable for any total arrival rate. This stability
is achieved by leveraging the increasing multiuser diversity as
the number of backlogged users increases.

3In CDMA systems, distributed power control has also been considered
(e.g., [12]); in these systems, the distributed knowledge is typically the received
signal-to-interference-plus-noise ratio (SINR) instead of the channel gain.
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II. MODEL DESCRIPTION

We consider a multiple-access model with users all com-
municating to a single receiver over a common bandwidth of

hertz. The channel between each user and the receiver is
modeled as a frequency-flat fading channel with additive white
Gaussian noise. Specifically, at each time , the received signal

is given by

(1)

where and are the transmitted signal and channel
gain for the th user, and is additive white Gaussian noise
with power spectral density . The sequence of channel
gains is modeled as a block-fading
process [25], so that for

for all

where is the length of each time slot. Between time slots,
changes randomly. Each component of is independent,

i.e., each user has independent fading. For simplicity, we focus
on the case where is an independent and identically
distributed (i.i.d.) sequence of random vectors and each com-
ponent has a probability density denoted by . For

example, in the case of Rayleigh fading, ,
where . Much of the following analysis also
applies when for each , is an arbitrary stationary
ergodic process, in which case can be interpreted as
the steady-state distribution. However, when the channel has
memory, this memory can be exploited to improve the perfor-
mance over the approaches considered here, e.g., see [28]. We
assume that and that for all
and is differentiable, so that the corresponding distribution func-
tion is strictly increasing and twice differentiable. We
mainly address the case where the fading statistics are the same
for each user, i.e., for each slot , are i.i.d.4 In this
case, we denote by for all . Asymmetric models,
where the fading statistics vary across users, are discussed in
Section III-D.

We assume that each user has perfect distributed CSI, i.e., at
the start of the th time slot, each user knows but not
for all . We also assume that each user knows the distribu-
tion of its own channel gain; this is a more questionable assump-
tion. In practice, adaptive schemes which attempt to estimate the
channel distributions from past observations would be needed.
We briefly discuss one such approach that is suggested by our
work in Section III. Given this distributed channel knowledge,
let denote the transmission power of user during
time slot as a function of the user’s channel gain. We assume
that each transmitter is subject to one of the following power
constraints (see, e.g., [9]):

4We note that as the the number of users in the network increases, this i.i.d.
assumption becomes more questionable. For example, if the spatial area of the
network increases with the users, then differences in the channel statistics due
to path loss will become more pronounced. On the other hand, if the users are
confined to a given area, then as the number of users increases, the correlation
between neighboring users channels will increase.

• long-term average power constraint: ;
• short-term maximum power constraint: for

all .
Here, we have dropped the time index to simplify notation.
A long-term power constraint limits the total power used over
many time slots, while a short-term constraint limits the power
used in each time slot. The former may reflect constraints due to
limited available energy, while the later may reflect regulatory
constraints.

In [18], it is shown that given , the sum capacity of (1)
in the symmetric case under a long-term average power con-
straint is achieved by setting only for some user
such that for all ; the exact value of is de-
termined by using a water-filling power allocation. In this case,
during each time slot, only one user is transmitting.5 We note
that under a short-term power constraint, the sum capacity is
achieved if every user transmits in each time slot with full power.
However, in this case, a centralized controller needs to know
to determine the resulting rates that can be achieved during each
time slot (i.e., the resulting capacity region). Also, achieving the
sum capacity will require successive interference cancellation
or some other type of multiuser decoding. If one restricts onself
to approaches where at most one user transmits in a slot, then
under a short-term power constraint, the sum throughput is again
clearly maximized by having the user with the best channel
transmit in each slot. Under both a short-term or long-term av-
erage power constraint the sum capacity will increase with the
number of users, due to the increased multiuser diversity gain.

In the distributed case, we assume that at most one user can
successfully transmit in each time slot. Given that only user
transmits, let be a function that indicates the maximum
rate at which the user can reliably transmit as a function of the
received SNR, . To simplify notation, we nor-
malize , so that . We assume that

is an increasing, twice differentiable, and strictly concave
function of with , , , and

for all .6 We also assume that has
zero asymptotic elasticity7 meaning that

This condition requires that the marginal change in rate per mar-
ginal change in SNR is asymptotically going to zero. The main
example we consider is

(2)

which models the case where a user can transmit at rates ap-
proaching the Shannon capacity of (1) in each time slot. This
satisfies the preceding assumptions. Other functions could
also be used, for example, to model the achievable rate under
a specific adaptive modulation and coding scheme; for most

5In the asymmetric case, the optimal power allocation is also to allow only
one user to transmit; however, in this case it will be the user with the largest
weighted channel gain, where the weights depend on the channel distribution.

6We use the standard notation f (x) to denote the derivative of f(x) with
respect to its argument.

7We borrow this terminology from economics, see, e.g., [19].
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common schemes, the resulting will also satisfy these as-
sumptions.8 When user transmits, it sends a single packet of

bits. This packet may be encoded, but no coding is done
between consecutive packets. If multiple users transmit during
a time slot, a collision occurs and no data is received. As in
the standard ALOHA model, after each time slot, the users re-
ceive instantaneous feedback [7] indicating whether a
slot was idle, contained a successful transmission, or contained a
collision.9 In most practical systems, additional feedback will be
available to the users, allowing for more elaborate protocols to
be employed. Again, here we chose to illustrate the basic ideas
in the simplest setting.

Given only , each user must decide in which slots to
transmit and how much power to use when it transmits. For
this purpose, we consider the following class of channel-aware
ALOHA protocols. In standard ALOHA, each backlogged user
independently sends a packet in every slot with probability .
With channel-aware ALOHA, each user bases its transmission
probability on its available CSI, . Specifically, for a given
threshold , each user transmits with probability one when

, and otherwise sends nothing. Thus, user will transmit
with probability , where
is the complimentary distribution function of , which by as-
sumption is strictly decreasing in . The average throughput of
this protocol when all users are always backlogged is given by

(3)
where denotes the vector of transmission
probabilities and denotes the inverse function of .
Each user’s power allocation must also satisfy the given power
constraint.

III. THROUGHPUT SCALING FOR BACKLOGGED SYSTEMS

In this section, we analyze the throughput scaling of channel-
aware ALOHA protocols in a backlogged system, where all
users always have data to send. We emphasize that the number
of backlogged users, , is known by all users in the system.
This is a reasonable assumption when the backlog is constant
over a long time scale, as assumed here. Given the backlog,
first, we consider a heuristic “fixed-rate” protocol for a sym-
metric system, where each user transmits at a fixed rate (for a
given number of users) with probability . We charac-
terize the order at which the throughput of this system increases
with . We then show that asymptotically this choice of proba-
bility is optimal for any fixed-rate system and, furthermore, such
a fixed-rate system is asymptotically optimal within the larger
class of variable-rate systems. Both long-term and short-term
power constraints are considered. Systems with heterogeneous
users will also be discussed, and finally, the performance of the
channel-aware ALOHA protocol will be compared with several
other approaches.

8In particular, for any such function, as long as R() asymptotically grows
no faster than logarithmically with , then it will satisfy the zero asymptotic
elasticity condition.

9In terms of the throughput of the backlogged system studied in the next sec-
tion, it does not matter if the feedback is instantaneous or delayed.

A. Fixed-Rate Algorithm,

To begin, we focus on a symmetric, backlogged system with a
long-term average power constraint. Consider a channel-aware
ALOHA protocol, where, for a given number of users , every
user has the same transmission probability , and whenever a
user transmits it does so at a fixed rate , which requires a
fixed received power of .10 Each user will then
simply invert the channel when they transmit and use power

. To satisfy the long-term power constraint,
must satisfy

(4)

where is the transmission threshold used by each user.
It follows that given , the maximum fixed rate a user can
transmit at is

(5)

Assuming that this rate is used, the average sum throughput of
the fixed-rate system under an average power constraint is

(6)

The transmission probability can be chosen to maximize
this expression. Initially, we consider the suboptimal choice
of resulting in a throughput of ;
this choice maximizes the first term in (6) and simplifies the
following analysis.

We consider how scales as increases. Notice that
the first term in (6) is decreasing with and approaches the
well-known asymptote of . However, increases
as increases, and thus so will . The total throughput is
increasing with ; the rate of increase is given later in Proposi-
tion 1. To describe this rate, we use the following notation: Two
sequences and are defined to be asymptotically equiv-
alent, denoted by , as , if .
This implies that both and asymptotically grow at the same
rate. In the special case where , we write and
say that and are strongly asymptotically equivalent;
in this case, we indicate both the growth rate and the first-order
constant. Note that both and are equivalence relations.

For Proposition 1, we also require that the fading distribution
satisfies the following definition.

Definition 1: A fading density on has a well-
behaved tail if

In most common fading models, such as Rayleigh or Ricean
fading, has an exponential tail, i.e., as ,

for some . It can be shown that such densities always
satisfy the above definition. More generally, it can be shown that

10Note that the rate is fixed for a given number of users n, but it can vary with
n, i.e., as the system scales the rate used may change.

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 5, 2009 at 19:25 from IEEE Xplore.  Restrictions apply.



396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006

Fig. 2. Ratio of the total throughput �s (n) of the fixed-rate algorithm to R �Pn �F as a function of the number of users n for a Rayleigh-fading channel
with the indicated average received SNRs.

if this limit exists and , then it must lie in ;
however, examples of densities for which this limit does not
exist can be found.11

Proposition 1: If has a well-behaved tail, then

The proof is given in Appendix A. As an example, consider a
Rayleigh-fading channel ( ), and assume that

is given in (2). In this case, , and,
from Proposition 1

Fig. 2 shows the ratio of to as a
function of for this example with three different values of the
average received SNR ( ). As expected, this ratio converges
to . Even for small values of , the ratio is only slightly larger
than , suggesting that the asymptotic analysis is relevant for
moderate values of .

For a fixed-rate system with users, let be the max-
imum power used in any time slot. Under a long-term average
power constraint , from (4)

From the proof of Proposition 1, it follows that if has a
well-behaved tail, then

11Proposition 1 can be generalized for the weaker assumption that this limit
exists, but is not necessarily 0; in this case, we have only asymptotic equivalence
instead of strong asymptotic equivalence.

Therefore we have the following.

Corollary 1: If has a well-behaved tail, then as
, .

In other words, under an average power constraint, the max-
imum short-term power per time slot is increasing linearly with
the number of users. This is because each user is transmitting

th of the time and so it can use on average times when
it does transmit.12 It follows that if there is both a short-term
and long-term power constraint, the short-term power constraint
eventually limits the throughput growth in Proposition 1.

Next, consider a version of the fixed-rate algorithm under a
short-term power constraint. Each user still has the same trans-
mission probability and uses a fixed transmission rate when-
ever it transmits, and so requires a fixed received power of

. To satisfy the short-term maximum power constraint,
must be no greater than for all . Hence, for

a given , the maximum fixed rate is given by . In
a symmetric system, the resulting sum throughput is given by

(7)

Again, choosing , it is straightforward to see that as

(8)

Note that compared to the average power constraint, the ar-
gument of is now times smaller. This is because the
short-term power is now constant, instead of increasing with

as in Corollary 1. Indeed, if the average power per user is
normalized by the number of users, the growth rate under the
average power constraint will be the same as with a short-term

12Asymptotically, this resembles a type of “flash-signaling” scheme [34].
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power constraint. For the example of a Rayleigh-fading channel
with given by (2)

B. Fixed-Rate Algorithm, Optimal

So far, we have set under both the long-term and short-
term power constraint. In general, this is a suboptimal choice of

in the sense of maximizing the total throughput of the fixed-
rate algorithm. However, we will show that asymptotically there
is no loss in this choice of .

Again, we first examine the system with a long-term average
power constraint. We are still considering the fixed-rate algo-
rithm with the total throughput given by (6). Let
be the optimal transmission probability for a given number of
users , i.e.,

The resulting throughput is . From (6) it can be seen
that as ; otherwise, the total throughput
would go to zero. For any such sequence , the next lemma
gives a direct generalization of Proposition 1.

Lemma 1: Let be any sequence of transmission prob-
abilities with . If has a well-behaved
tail, then as

The proof follows essentially the same steps as that for Propo-
sition 1 and so is omitted. This lemma implies that

where for each

(9)

In other words, to characterize the asymptotic behavior
of , it is sufficient to study the behavior of

. The next lemma shows that asymptotically
cannot go to zero much faster than ; e.g., does not
satisfy this lemma.

Lemma 2: If has a well-behaved tail, then there exists
a constant and an integer such that for all ,

in (9) satisfies

The proof is given in Appendix B. Before stating the main
result for this section, we state one other useful lemma regarding
the tail of the fading distribution.

Lemma 3: Given any constant

The proof is given in Appendix C. Note that as , both
and are approaching infinity; this lemma im-

plies that these quantities increase at essentially the same rate.13

Using these two lemmas, we have the following proposition
which states that as asymptotically there is no loss in
throughput by choosing .

Proposition 2: If has a well-behaved tail, then as
, .

The proof is given in Appendix D. For example, this implies
that with Rayleigh fading and given in (2), then under
the optimal transmission probability the total throughput also
increases like .

Next we consider the optimal transmission probability for a
fixed-rate algorithm under a short-term power constraint. In this
case, let

(10)

Notice that the only difference between this and (9) is the ar-
gument of . In this case, it can again be shown that
decays like .

Lemma 4: If has a well-behaved tail, then there exists
a constant and an integer such that for all ,

in (10) satisfies

The proof is given in Appendix E. Using this property, we
have that under a short-term power constraint, there is again no
loss asymptotically in choosing .

Proposition 3: If has a well-behaved tail, then as
, .

The proof is in Appendix F.
These results suggest that with either a short-term or long-

term power constraint, there is little loss in simply setting the
transmission probability equal to . This choice of transmis-
sion probability also facilitates adaptive algorithms when the
users do not know their channel distributions. Assuming that
all users have the same, but unknown channel distribution, each
user would want to set a channel threshold so that it transmits

th of the time, where is the current backlog. Each user
could then simply track the fraction of time it transmits within
a given window and adjust its channel threshold depending on
whether this is less than or greater than .

C. Variable-Rate Algorithms

We now turn to variable-rate algorithms, where for a given
, each user may transmit at a variable-rate , which

will depend on the user’s channel gain and power allocation
. We first consider the system under a short-term power

constraint. In this case, given that a user transmits, it should

13We use the notation y ! 0 to indicate that y approaches zero from the
right.
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use the maximum power , resulting in a rate of . In
a symmetric network, if each user transmits with probability

, then the sum throughput for a variable-rate system under a
short-term power constraint will be

(11)

Clearly, for any , , i.e., the variable-rate
system will have a larger throughput than a fixed-rate system
with the same transmission probability. However, the next
proposition shows that asymptotically these two systems are
equivalent.

Proposition 4: Let be a nonnegative, decreasing se-
quence of probabilities such that as . If
has a well-behaved tail, then .

The proof is given in Appendix G. Let be the prob-
ability which maximizes for each . It follows from
this proposition that . Also, letting

be the probability that maximizes , we have
. Therefore, it must be that

where the last relation follows from Proposition 3. In other
words, the optimal variable-rate throughput is also strongly
asymptotically equivalent to .

Next, we examine a variable-rate system under a long-term
power constraint. We restrict ourselves to the case where
is given by (2). In this case, given a transmission probability

, to maximize the sum throughput each user should choose a
power allocation that maximizes the average throughput given
a success subject to the average power constraint. This power
allocation is given by the following optimization problem:

maximize

subject to (12)

The solution to this will be a “water-filling” power allocation
[13] over those channel states , i.e.,

for all , where is chosen to satisfy the average
power constraint. Note that when is large, the solution to (12)
may result in for some . Specifically,
this occurs when . In this case, each user is actu-
ally transmitting with a probability smaller than . However, it
can be seen that as decreases, will increases and the
corresponding parameter will be nonincreasing. Hence, for
small enough , ; in this case, we have

(13)

Let denote the optimal sum throughput given by (12)
for a given and . Assuming that is small enough so that (13)
holds, then

(14)

The next proposition states that once again, the optimal vari-
able-rate sum throughput is asymptotically equivalent to that
obtained with a fixed-rate system.

Proposition 5: Let be a nonnegative, decreasing se-
quence of probabilities such that as . If
has a well-behaved tail, then .

The proof is given in Appendix H. For finite , using an
optimal (water-filling) power allocation will have some advan-
tage over a fixed-rate scheme. The main advantage is that the
fixed-rate scheme requires most of the power for “poor” channel
states, while the optimal power allocation can save this power
for better channel states. However, as increases, the channel
threshold will also increase, and in both cases a user
will only transmit when the channel is “good”. Intuitively, this
explains why asymptotically there is no difference in these two
schemes. Fig. 3 shows the ratio of to
for different values of as a function of the average SNR ( )
in a Rayleigh-fading channel with given by (2). It can be
seen that the ratio is decreasing with both the number of users
and the SNR; even for a small number of users (i.e., ) and
small SNR the ratio is very close to .

D. Asymmetric Model

So far we have been considering a symmetric system where
each user’s fading was identically distributed and each user re-
ceived the same average throughput. In this subsection, we will
relax these assumptions and look at some simple asymmetric
models. To begin consider a model with two classes of users.
Class 1 has users and each user has the channel distribu-
tion . Class 2 has users and each user has the channel
distribution . Again, each user has independent fading.
We allow these two classes to have different priorities, which is
modeled by allowing one class to transmit with a higher prob-
ability than the other. Specifically, we constrain the ratio of the
transmission probabilities to satisfy . Without loss of
generality, we assume that , i.e., Class 1 has the higher
priority. As in the symmetric model, each class will
choose a channel threshold , and only transmit
when their channel gain exceeds this threshold.

Here we focus on a fixed-rate algorithm with a short-term
power constraint of for each class . Similar ideas apply to the
other settings. In this case, for a given transmission probability,
each class user can transmit at rate , whenever

. The sum throughput for all Class 1 users is then

(15)

Likewise, the sum throughput for Class 2 users is

(16)

Once again, we want to characterize how the total throughput
scales as the number of users increases. In this case, we consider
increasing and while keeping their ratio fixed, i.e.,
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Fig. 3. Ratio of �s (n) to �s (n) as a function of the average received SNR in a Rayleigh-fading channel with n = 5; 10; and 100 users.

for some . With this assumption, letting and
, the total throughput can be written as

(17)

To analyze the asymptotic performance we also make the
following assumption about the fading distributions of the two
classes.

Definition 2: Two fading densities and on
have similar tails if they both have well-behaved tails

and there exists some constant such that

This definition requires the tails of the the two fading dis-
tributions to be asymptotically equivalent. For example, this
will be true if both distributions correspond to Rayleigh fading
with different means. Moreover, if two densities have similar
tails, then as the next lemma states, the rates
and will also be asymptotically equivalent as

.

Lemma 5: If and have similar tails, then for
any

The proof is given in Appendix I. Another property we will
use for two distributions with similar tails is as follows.

Lemma 6: Given that and have sim-
ilar tails, let be a fading density with distribution,

. For and also
have similar tails.

The proof is given in Appendix J. Notice that is the
density of the maximum of two independent random variables
with distributions and . This lemma states that if
both of these random variables have similar tails, then they will
each have similar tails with their maximum.

Let be the value of which maximizes the total
throughput in (17) as a function of . The following proposition
generalizes Proposition 3 to this setting.

Proposition 6: If and have similar tails, then
as

In other words, it is asymptotically optimal to set

and

Note that if , i.e., both classes have the same priority,
then just as in the symmetric case, it is asymptotically optimal
for both classes to transmit with a probability of over the total
number of users.

The proof of this proposition is given in Appendix K. The
main idea in this proof is to consider a symmetric system, where
every user has a fading density given by as defined in
Lemma 6. We then use our previous results for a symmetric
system along with lemmas 5 and 6 to derive the desired results.

Using Proposition 6, it can be seen that total throughput for
Class 1 users satisfies
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Likewise for Class 2

The total throughput for both classes satisfies

where the last step follows from the similar tail property.
These results can easily be extended to classes, where

each class has a different channel distribution
and different short-term power constraint . Let the

transmission probability of each class be constrained to
satisfy , and let the number of users in class , satisfy

. Denote by the total throughput of all
classes, as a function of and , and let be
the probability which maximizes this throughput for a given .

Corollary 2: If are a family of fading densities
where each pair have similar tails, then as

The proof of this follows the same argument as in Proposi-
tion 6 and so is omitted. From this corollary, it follows that the
total throughput for each class using the optimal transmission
probability is strongly asymptotically equivalent to

E. Performance Comparisons

We conclude this section by comparing the performance of
several other protocols to the performance of channel-aware
ALOHA in a symmetric Rayleigh-fading channel with average
channel gain , when is given by (2). For simplicity,
we focus on the case of a fixed-rate policy with a short-term
power constraint; similar results hold for variable-rate pro-
tocols and long-term power constraints. Recall in this case
the throughput of the channel-aware ALOHA protocol grows
like as a function of for Rayleigh-fading
channels.

The first case we consider is a slotted ALOHA system where
there is no fading and the channel between each user and the
transmitter has a constant gain of . In this case, given a
short-term power constraint of , the maximum rate a user can
send when it transmits is independent of the number
of users. The sum throughput is then maximized by choosing

, yielding

As , this decreases and approaches the constant value
of , while the throughput of channel-aware ALOHA
grows unbounded with .

The next alternative we consider is an ALOHA system with
Rayleigh fading, where the users do not base their transmis-
sions on the channel state. When a user transmits, it does so
at a fixed-rate for a given backlog . However, with Rayleigh
fading, a user would not be able to transmit at any fixed-rate as
the channel gain approaches zero and still satisfy the short-term
power constraint. To accommodate this, we assume that each
user’s transmission is only successful when its channel is above
a threshold . The difference here is that this threshold will
not change with the number of users, and the users will transmit
regardless of the threshold (this is reasonable, for example, if
the users do not have any CSI). The choice of subject
to a short-term power constraint which maximizes the average
throughput is

(18)

The sum throughput in this case is again maximized by choosing
, yielding

Again this will be decreasing with . In this case, the throughput

approaches an asymptote of . Furthermore,
it can be shown that , and so .
This can be interpreted as saying that if the transmitters cannot
exploit fading, then the fading reduces the throughput of an
ALOHA system over that achieved in a nonfaded channel.

The last case we consider is a time-division multiplexing
(TDM) system in a Rayleigh-fading channel, where each user
is assigned a fixed time slot in a TDM frame. During each time
slot, only one user can transmit. As in the second case above,
we assume users transmit at a constant transmission rate ,
and the transmission is only successful when the channel gain
is larger than in (18). The sum throughput in this case is
given by

which is a constant, independent of .
Fig. 4 shows an example of the sum throughput as a function

of in all fours cases. Notice that for small values of , the
TDM approach has a higher throughput than the channel-aware
ALOHA system. As grows, however, the ALOHA approach
quickly achieves higher throughputs, despite the fact that col-
lisions occur. This is interesting as in a wire-line channels, a
TDM approach is always preferable to any random-access tech-
nique for a backlogged system. However, in this wireless set-
ting, the channel-aware ALOHA system has a higher throughput
when enough users are present to provide sufficient multiuser
diversity.

Let denote the minimum number of users required for
the throughput of the channel-aware ALOHA system to be
greater than or equal to the throughput of the TDM scheme.
For a fixed-rate system with transmission probability , is
the smallest such that . Fig. 5 shows for
a Rayleigh fading channel as a function of the average SNR. It
can be seen that at low SNR only a few users are needed for the
channel-aware ALOHA to outperform TDM. This number in-
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Fig. 4. Comparison of the sum throughput versus the number of users for fixed-rate systems under a short-term power constraint. The parameter used here are
W = 1 kHz, �P = 40 W, N = 0.001 W/Hz, and h = 1.

Fig. 5. The number of users required for channel-aware ALOHA to outperform TDM as a function of the average SNR.
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creases with the average SNR. Also shown in Fig. 5 is the same
quantity in a Nakagami fading channel with parameter

under a short-term power constraint and a Rayleigh-fading
channel with a long-term power constraint. Under a long-term
power constraint increases slower than in the same channel
under a short-term constraint. This suggests that the channel-
aware ALOHA system benefits more from the ability to al-
locate power than the TDM system. In the Nakagami fading
model, is larger than in the Rayleigh model. The fading in
a Nakagami channel with has a smaller variance than in
a Rayleigh channel. A more variable fading environment is ben-
eficial for opportunistic transmission schemes such as channel-
aware ALOHA.

IV. COMPARISONS WITH CENTRALIZED SCHEDULERS

In this section, we compare the performance of the
channel-aware ALOHA protocol to that achieved by a central-
ized scheduler with perfect knowledge of every user’s channel
gain. We again consider a backlogged symmetric system. From
Section III, we know that with an appropriate transmission
probability, the throughput of the channel-aware ALOHA will
increase with the number of backlogged users as does the max-
imum sum throughput in a centralized system. In this section,
we compare the rate at which the throughput increases in these
two systems.

We consider centralized schedulers that are restricted to
scheduling one user per time slot. With this restriction, the cen-
tralized scheduling policy that maximizes the sum throughput
would always schedule the user with the largest channel gain
in each time slot.14 Assuming a short-term power constraint of

and variable rate transmissions, the average sum throughput
achieved by such a policy with users is

(19)

The next proposition compares this to the throughput
of a variable-rate channel-aware ALOHA protocol with trans-
mission probability (cf. (11)).

Proposition 7: For all , .

The proof is given in Appendix L. It is based on showing
that the channel gain conditioned on a success in the ALOHA
system is stochastically larger than the maximum unconditional
channel gain in the centralized system. This implies that the
throughput in the ALOHA system averaged only over the suc-
cessful slots will be greater than the throughput in the central-
ized system; however, the actual throughput in the ALOHA
system will be decreased by the probability of collision which
is . We note that this proof does not require any
assumptions about the tail of the fading distribution, nor does

need to have zero asymptotic elasticity.
Since as , an immediate corollary

of Proposition 7 is that , i.e., the throughput of

14As noted previously, with a long-term power constraint the restriction to
scheduling one use per time slot is not needed, since the optimal solution from
[18] without this restriction will have this property.

the distributed system increases asymptotically at the same rate
as the optimal centralized system. From the previous section,
it follows that and are also asymptotically
equivalent to .

Note that Proposition 7 is not just valid asymptotically, but
holds for all finite . For each , consider the ratio

which can be viewed as a measure of the loss in throughput of
the medium access control protocol over a centralized scheduler.
Proposition 7 states that

for all . In a channel without fading, we can also define the
ratio of the throughput when using a standard ALOHA protocol,
compared to a centralized scheduler. In this case, the centralized
scheduler will have a normalized throughput of one transmis-
sion per slot independent of . Hence, the throughput ratio will
simply be

Therefore, for all finite , . In other words, the
penalty for lack of coordination is smaller in a fading channel for
any finite . Fig. 6 shows and for several different
average SNRs, as a function of in a Rayleigh-fading channel,
with given by (2). As expected for all ,
with the difference decreasing as the SNR increases.

A similar result to Proposition 7 applies for a system with
a long-term power constraint. In this case, the average sum
throughput with a centralized scheduler is given by

(20)

where denotes the optimal power allocation which
satisfies the long-term power constraints of for each user.
For a symmetric model with independent fading, it can be seen
that the optimal power allocation will only be a function of

. When is given by (2), this will again be
a water-filling allocation. Likewise, for the distributed system,
let denote the optimal variable-rate throughput when
each user transmits with probability using the optimal
power allocation when it transmits.15 In this case we
have the following.

Proposition 8: For all , .

The proof is given in Appendix M.

A. First-Order Constants

We have shown that the sum throughput of the optimal dis-
tributed system is increasing at the same rate as the throughput
of the optimal centralized system, but we have not specified the

15Note the optimal power allocation will be different in the centralized and
distributed systems.
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Fig. 6. The ratios r (n) and r (n) for several different average SNRs, as a function of n. The asymptote of is also shown.

first-order constants. Propositions 7 and 8 bound this constant
to be greater than , but do not show that this bound is tight.
In this subsection, we show that this bound is indeed tight with
an additional assumption on the tail of the fading distribution.
In the case of a short-term power constraint, this means that

. Combining this with our previous results it
follows that and are also strongly asymp-
totically equivalent to . In terms of the ratio de-
fined above, this implies that as , , the same
as the limit of for the nonfaded system. Referring to
Fig. 6, this means that each curve is asymptotically converging
to .

To characterize the first-order constant, we use the following
result from extreme order statistics.

Lemma 7 ([11]): Let be i.i.d. nonnegative random
variables with a complimentary distribution function and
probability density function (pdf) satisfying
for all , is twice differentiable for all , and

Then as

uniformly in , where is given by , and
.

In other words, the given conditions are sufficient to ensure
that with suitable normalization the distribution function of the
maximum will converge to a Gumble distribution ( ).

We will apply this result to analyze the throughput growth with a
centralized scheduler. To do this, we will assume that the fading
density satisfies the condition

(21)

This will be true for all common fading models, such as Ricean
and Rayleigh fading. The next lemma shows that the set of
fading distributions which satisfy this condition are nearly the
same as those which have a well-behaved tail.

Lemma 8: If a fading distribution satisfies (21), then it has
a well-behaved tail. Conversely, if a fading distribution has a
well-behaved tail and the limit in (21) exists, then the limit will
be zero.

The proof is a simple consequence of L’Hospital’s rule.
Note that the sum throughput with a centralized scheduler can

be written as

To analyze this throughput, we will apply Lemma 7 to the
random variables . The next lemma states that if
the random variables satisfy condition (21), then the random
variables will satisfy a similar condition.

Lemma 9: If the fading density, satisfies (21), then the
density of the random variables satisfies

(22)

The proof is given in Appendix N.
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Proposition 9: If the fading density satisfies (21), then
.

The proof of this is given in Appendix O.
Under an average constraint, consider a centralized system

where each user transmits a variable rate but uses a “flat” power
allocation of , i.e., when a users is scheduled, its transmission
rate is . Let denote the sum throughput of
this system. Using the same argument as in the proof of Propo-
sition 9 we have the following.

Corollary 3: If the fading density satisfies (21), then
.

Clearly, and from Proposition 5, when
is given by (2), . Hence, from this corol-

lary and Proposition 8, it follows that , and
we have the following.

Corollary 4: If the fading density satisfies (21), and is
given by (2) then .

In other words, when is given by (2), then under a long-
term power constraint, the ratio of the throughputs of the optimal
centralized and distributed schemes again converges to .

V. RANDOM ARRIVALS

In the previous sections, all nodes were always backlogged.
Now, we relax this assumption and briefly examine a simple
model where packets randomly arrive with total arrival rate .
Specifically, we consider an infinite user model, where each new
packet arrives to a new user [7]. Such a model is reasonable for
a system with a large number of users, each with a small arrival
rate. In this case, the number of backlogged users will change
from slot to slot. We still assume that the current value of is
known in each slot. Since the backlog is now changing, this is
a more questionable assumption. Practically, it would have to
be estimated using an algorithm such as the pseudo-Bayesian
algorithm [7].

We continue to study a channel-aware Aloha protocol where
users base their transmission on whether their channel gain is
above a threshold ; however, now we allow this threshold to
change with the backlog. Specifically we assume that

for
for .

(23)

Here, is a minimum threshold above which the user will
transmit regardless of the backlog.16

We consider a symmetric, fixed-rate model with a short-term
power constraint of . Given that users are backlogged, each
user will transmit at rate if successful. As in-
creases, the transmission rate will also increase. As-
suming all packets have a fixed length of bits, the time needed
to transmit a packet is , which will decrease as
increases. We consider a slotted-time model, where the length of
time slots vary with the backlog according to this relationship.
Packet arrivals are assumed to be independent in each time slot
with an expected arrival rate of . We still assume

16For a fixed rate system, a threshold h > 0 is needed for similar reasons
as in the TDM system of Section III-E.

that the channel variation is memoryless between slots. Since
the slot sizes are now variable, this may seem to be a question-
able assumption. However, as discussed in [26], this may be rea-
sonable for a range of in a fixed-rate model. The basic idea is
that for a fixed-rate model, the key parameter is the probability
that the channel exceeds the transmission threshold in each slot.
For a reasonable channel model, the correlation in this threshold
crossing probability will increase with the slot length, but de-
crease with the threshold level. Over a limited range these two
effects can balance out making the i.i.d. assumption reasonable.
A more detailed discussion of this assumption and extensions
to other channel models can be found in [26]; here, we simply
take this as an idealized model to convey the basic ideas.

Given the above assumptions, we consider over what range of
arrival rates, , the system is stable. The following proposition
states that if is unbounded (as in the Rayleigh-fading
model), then the system will be stable for any total arrival rate.
Of course, for high enough arrival rates this requires a prohib-
itively high diversity gain and the underlying physical model
becomes unrealistic.

Proposition 10: If is unbounded, then the infinite
user, channel-aware ALOHA system is stable for any total arrive
rate .

The proof is given in Appendix P. Fig. 7 illustrates the basic
idea behind this result. This figure shows both the total arrival
rate and departure rate normalized in units of packets per time
slot, as a function of the backlog. The parameters used in the
figure are 0.6 packets/s, 1000 bits/packets, 1 kHz,
and . For small backlogs, the normalized arrival rate
is larger than the departure rate, and so the backlog will tend
to increase. Eventually, for high enough backlogs, the arrival
rate will drop below the departure rate; the system will stabilize
around the point where these curves cross. As the arrival rate
increases, the system will stabilize around a larger backlog; this
is because more users are needed to provide the multiuser diver-
sity gain necessary to stabilize the system. The higher backlog
results in a larger delay. This is illustrated in Fig. 8. This figure
shows simulation results of the average delay for a system with
a finite number of users and various total arrival rates, . In
the simulations, each user has a queue and arriving packets are
queued before transmission. Packet arrivals are modeled as a
Poisson process. For each curve, the total arrival rate is fixed as
the number of users varies. Notice that for a given arrival rate,
the delay decreases as the number of users increase; this is due
to the increased multiuser diversity.

We note that Proposition 10 does not imply that a system
with a finite number of users is stable for any arrival rate. For
example, consider a system with users and symmetric traffic.
If the total arrival rate satisfies , the system will be
unstable. What this result does say is that if any arrival rate is
spread across enough users, then the system can be stabilized.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a distributed protocol, channel-
aware ALOHA, for exploiting multiuser diversity in a fading
multiple-access channel without a centralized controller. For a

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 5, 2009 at 19:25 from IEEE Xplore.  Restrictions apply.



QIN AND BERRY: DISTRIBUTED APPROACHES FOR EXPLOITING MULTIUSER DIVERSITY IN WIRELESS NETWORKS 405

Fig. 7. The total arrival and departure rate of a channel-aware ALOHA system with an infinite number of users. Both rates are in units of packets per time slot as
a function of the number of backlogged users. As the number of users increases, the time-slot length decreases and hence so does the normalized arrival rate.

Fig. 8. Average delay versus the number of users with Poisson arrivals and various arrival rates.

backlogged model, we characterized the throughput scaling for
such a system under both long-term and short-term power con-
straints. The total throughput was shown to scale at the same rate
as in an optimal centralized system, with an asymptotic ratio
of . Moreover, with sufficient users, the throughput of this
approach exceeds that of a static TDM approach without con-
tention. This shows that even with backlogged users, such a con-
tention-based approach may be useful in a fading environment.
We have also shown that there is little advantage to be gained
in such a system from allocating transmission power and rate

based on the channel state. Finally, in the random arrival case,
this ALOHA system was shown to be stable for any arrival rate
in an infinite user model, but at the expense of large backlogs.

As we have noted, in practice one may be able to imple-
ment more sophisticated random-access protocols as well as uti-
lize more sophisticated physical-layer processing (i.e., to enable
multiuser reception). Such approaches will naturally improve
the performance over that obtained by channel-aware ALOHA.
However, we note that under a long-term power constraint, our
results suggest that any such technique cannot improve the order
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of the asymptotic growth rate, but could increase the constant
of . This is because under a long-term power constraint,
we are comparing to the capacity achieving scheduling policy.
Under a short-term power constraint, however, the order could
improve with multiuser reception. This is because with a short-
term power constraint, a centralized system that used joint de-
coding will have a capacity that scales like instead
of the achieved by channel-aware ALOHA, as-
suming Rayleigh fading.

In related work, [28], we have considered a splitting protocol
for this setting, which can reduce the contention loss at the ex-
pense of an increase in overhead. We have also considered ex-
tensions of this model to parallel channel models, as in an or-
thogonal frequency-division multiplexing (OFDM) system [29].

APPENDIX A

A. Proof of Proposition 1

The growth rate of

(24)

with depends on the behavior of . This
quantity is upper-bounded by

(25)

where we have used that . Since is
increasing, it follows that

and so

(26)

Next, we lower-bound . Since has

a well-behaved tail, for any , there exists , such that
for all , . It follows that for all

Therefore, for large enough values of

Substituting this into (24) and using the monotonicity of
yields that for large enough

(27)

Next note that since is convex, for any

where the second step follows because
. Combining this with (27), we have for large

enough

and so

(28)

Since, can be arbitrarily small, from (26) and (28), it follows
that as desired.

APPENDIX B

A. Proof of Lemma 2

For each , let , so that will be the value of
in that maximizes

(29)

This is the product of two terms. The first, , is max-
imized by choosing ; the remaining term is decreasing in

. Therefore, for any , it must be that . To complete
the proof, we show that for large enough, , for some

.
Since is strictly increasing, will also maximize

Differentiating the first term on the right-hand side with respect
to yields

where we have applied the inverse function theorem to
. Rearranging terms, we have

where and . Note that as
, then and . Since the asymptotic elas-

ticity of is zero and has a well-behaved tail, it fol-
lows that for any and , there exists ,
such that for all and

Hence, for all and
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And so, there must exist some such that for all
and , . Therefore, since

maximizes , it must be that for all , .

APPENDIX C

A. Proof of Lemma 3

By assumption, is a positive and strictly decreasing
function on . Let

so that . Note that since is a nonnegative
random variable, . Likewise, let

so that . In this case, we have

Now, note that

where the last step follows because is decreasing.
Therefore,

Notice that as , both and .
Hence, L’Hospital’s rule can be applied, yielding

Combining the above observations, we have that

Therefore, for any , when is small enough,
, or equivalently

Taking limits as , the desired results follows.

APPENDIX D

A. Proof of Proposition 2

From Lemma 1 we have that

where is given by (9). Likewise

Therefore, it is sufficient to show that

From the definition of it follows that

Also, note that since maximizes , then

To complete the proof, we show that

First, note that since is concave

(30)

Using the mean value theorem, there exists a
such that

where . Let and note that as
, , since has a well-behaved tail. Substituting

this into (30), we have

(31)

From Lemma 2, for large enough, . Therefore,
for large enough
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Substituting this into (31), dividing by , and
taking limits yields

The last step follows from Lemma 3 and the fact that has
zero asymptotic elasticity.

APPENDIX E

A. Proof of Lemma 4

We use a similar argument as in Appendix B; the key differ-
ence here is that has a different argument. In this case, for
each , let , so that will be the value of in

which maximizes

(32)

By the same argument as in Appendix B, for any , it must be
that . To complete the proof, we show that for large
enough, , for some . We do this by showing that
the derivative of

is strictly positive for large enough and small enough. Dif-
ferentiating the first term on the right with respect to using the
inverse function and rearranging terms, we have

where and . As , then
and . Since the asymptotic elasticity of is

zero and has a well-behaved tail, it follows that for any
and , there exists an such that for

all and

The remainder of the proof is exactly the same as in Appendix B.

APPENDIX F

A. Proof of Proposition 3

This proof follows a similar argument as in Appendix D.
Since is optimal

Also, as in Appendix D

We complete the proof by showing that

Since is concave

(33)

Using the mean value theorem, there exists an
such that

Substituting this into (33), we have

(34)

From Lemma 4, there exists an such that for large
enough, . Therefore, for large enough ,
from (34) we have

(35)

where . Using that has zero asymptotic
elasticity, has a well-behaved tail, and Lemma 3, it can be
shown that the right-hand side of (35) converges to as ,
yielding the desired result.

APPENDIX G

A. Proof of Proposition 4

From their definitions it can be seen that showing
is equivalent to showing that

Clearly, the of this ratio is greater than or equal to . So,
the proof will be complete by showing that the of this
ratio is no greater than one.

Since is concave, for all and

It follows that

(36)
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(37)

(38)

where . The last term on the right-hand side in
(38) is the product of two terms. The first term goes to zero as

because has zero asymptotic elasticity. We show
that the second term also goes to zero as . This term can
be written as

(39)

Since has a finite mean, as , both
and must go to zero. Hence, L’Hospital’s rule can
be applied yielding

The last step follows since has a well-behaved tail. Sub-
stituting this into (39), the desired result follows.

APPENDIX H

A. Proof of Proposition 5

From Lemma 1, it follows that for given by (2)

Likewise, for large enough, is given by (14). Hence,
it is sufficient to show that

where is given by (13). Since the optimal variable rate
policy will always have a greater throughput than the corre-
sponding fixed rate policy, it follows that the of this ratio
must be no less than . To complete the proof, we show that the

of this ratio is no greater than .
Using the concavity of , it can be shown that

We next show that the second term on the right-hand side goes
to zero as . Using the definition of , this term can be
written as

(40)

As , the quantity

as shown in Appendix G. It can be seen that the other terms on
the right-hand side of (40) also go to zero as . Combining
these observations, the desired result follows.

APPENDIX I

A. Proof of Lemma 5

First note that if and have similar tails, then
clearly

Combining this with Lemma 3, it follows that for any ,
there exists some constant such that

(41)

Since is concave, using a first-order Taylor expansion
around we have

From the asymptotic elasticity of and (41), it follows that

Switching the roles of and , the same
result follows. Therefore,

as desired.
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APPENDIX J

A. Proof of Lemma 6

First we show that has a well-behaved tail. From its
definition, it follows that

and

Using these two expressions, we have

where the last step follows since and have sim-
ilar tails (and therefore both have well-behaved tails). Hence,

has a well-behaved tail.
Finally, note that

where we have again used that and have similar
tails. Therefore, and have similar tails. The same
argument can be applied for .

APPENDIX K

A. Proof of Proposition 6

Let . Consider a symmetric model with
users,17 where each user has a short-term power

constraint of and fading distribution , as defined in
Lemma 6. If each user transmits with probability with a fixed
rate, then the sum throughput for this symmetric model is

(42)

First, we show that for all and , ,
i.e., the throughput of this symmetric system upper-bounds the
throughput of the asymmetric system with the same param-
eters. To see this, first note that by definition for

. Therefore, since the complementary distri-
bution is strictly decreasing, we have for ,

, for any . It follows that

Using this we have

17Of course, for some values ofn, (1+��)nmay not be an integer; however,
this does not affect our analysis.

Here we have used that since and , then
.

Let be the optimal transmission probability for the sym-
metric system, i.e., the probability that maximizes in
(42). For all , it follows that

Hence, it is sufficient to prove that

Furthermore, from Lemma 6, has a well-behaved tail and
so Proposition 3 applies, i.e.

Therefore, it is sufficient to show that

(43)

From Lemma 6, and have similar tails for
. Thus, Lemma 5 applies. Using this, (43) follows.

APPENDIX L

A. Proof of Proposition 7

Note that

Thus, the desired result is equivalent to showing that

(44)
where . For this, we use the fol-
lowing stochastic ordering result [30]: for two random vari-
ables, and , if for all , then

for all increasing functions .
Let be the channel gain conditioned on a transmission

attempt occurring in the ALOHA system, so that for any

and so

for all
otherwise.

Let , so that . For
all , clearly . For all

, using that for all , we
have . By assumption, is monotonically
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increasing; thus, applying the above result, with ,
(44) follows.

APPENDIX M

A. Proof of Proposition 8

The difficulty here, as opposed to proof of Proposition 7, is
that with a long-term power constraint the centralized and the
distributed systems may use different power allocations. Let

denote the optimal centralized power allocation that each
user employs as a function of its own channel gain. In a sym-
metric system, this power allocation will satisfy

where represents the probability that a
user has the best channel gain and its channel gain is .18 The
optimal sum throughput can then be written as

(45)

If the users in the distributed system use power allocation
when they transmit, then by a similar argument as in

Appendix L it can be shown that

i.e., this power allocation is not feasible in the distributed
system. Instead, we consider a suboptimal distributed system,
where for every channel gain, each user transmits probabilis-
tically with probability , using power .
This distributed system will meet the average power constraint,
and each user will still transmit with probability

where equality would hold if for all . The
throughput of this system is lower-bounded by

(46)
Clearly, this system has a lower throughput than a system where
the users transmit only when their channels exceed and
use the optimal power allocation, i.e., . This
follows because the two systems have the same probability of
success, but the second system has a higher throughput when
successful. Combining this with (45) and (46), the desired re-
sults follows.

APPENDIX N

A. Proof of Lemma 9

The complementary distribution function of is
given by

(47)

18Note that when R() is given by (2), then each user will use a water-filling
power allocation over the channel with distribution f (h)(1� �F (h)) .

Hence, using the inverse function theorem

(48)

Next note that

Therefore, to prove the lemma it is sufficient to show that
.

Using (47) and (48), can be expressed as

Changing variables to and simplifying we have

To complete the proof we show that and
.

First, consider the term. Note that

By assumption, the left-hand side of this equality approaches
zero; hence, , as desired.

Next, consider the term. Note that

From Lemma 8, has a well-behaved tail, and so

Therefore, it is sufficient to show that is bounded as
. Since , then .

Otherwise, would be bounded. It follows
that for large enough , . Equivalently, for
large enough , . And so

assuming the limit exists. Applying L’Hospital’s rule to this ex-
pression, we have that

Combining the preceding observations, it follows that
as , and so as

desired.
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APPENDIX O

A. Proof of Proposition 9

Since satisfies (21), from Lemma 9, will satisfy
(22). Using this and the assumed properties of and ,
it can be seen that the random variables will
satisfy the assumptions of Lemma 7.

Let . From Lemma 7, as

uniformly in . Here and

where .
It follows that as

(49)

Note that

Therefore, using the asymptotic elasticity of and that
has a well-behaved tail, we have that

Multiplying both sides of (49) by , it follows that

Equivalently, . Comparing this to (8),
the desired result follows.

APPENDIX P

A. Proof of Proposition 10

For let denote the backlog at the start
of the th time slot. Given the memoryless assumption,
will be a Markov chain. To show that the system is stable, it is
sufficient to show the following drift condition [7]: there exists
some , such that

(50)

for all .
Given that , each user will transmit with probability

in each slot, therefore, the departure rate in packets per time
slot is . The arrival rate in packets per time slot is

. Thus, we have

(51)

As approaches to infinity, decreases to , while
approaches to . Therefore, for any ,

an can be found such that (50) is satisfied with .
Hence, the system is stable.
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