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Abstract

Recently, Carbone, Nielsen and Sassone introduced the trust-
structure framework: a semantic model for trust-management in
global-scale distributed systems. The framework is based on the
notion of trust structures: a set of “trust-levels” ordered by two
distinct partial orderings. In the model, a unique global trust-
state is defined as the least fixed-point of a collection of local
policies assigning trust-levels to the entities of the system. How-
ever, the framework is a purely denotational model; it gives pre-
cise meaning to the global trust-state of a system, but without
specifying a way to compute this abstract mathematical object.

This paper complements the denotational model of trust struc-
tures with operational techniques. It is shown how the least
fixed-point can be computed using a simple, totally asynchronous
distributed-algorithm. In addition, two efficient protocols for ap-
proximating the least fixed-point are provided. These enable sound
reasoning about the global trust-state without computing the ex-
act fixed-point. Finally, dynamic algorithms are presented for safe
reuse of information between computations, in face of dynamic
trust-policy updates.
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1 Introduction

The need for flexible security mechanisms in emerging Internet-based
distributed-systems is evident. However, the diversity and scale of these
systems, combined with the lack of centralized authority, means that
traditional mechanisms for security decision-making, e.g. access-control
lists, are often too restrictive and complex to deploy [2]. The concept
of trust management, introduced by Blaze et al. [4], was presented as
a solution to the problems with authorization in large-scale distributed
systems. Traditional trust-management systems make security decisions
based on locally controlled security-policies, dealing with authorization
by deciding the so-called compliance-checking problem: given a request
to perform a certain action, together with a set of credentials; does the
request comply with the local security policy, given the credentials?

In dynamic trust-management-systems [15,16,21], trust-specifications
are often based on the past behaviour of principals, which gives rise to
a different, more flexible notion of trust than that of traditional trust-
management systems. The traditional systems often take an“all or noth-
ing” approach, in which no or partial credentials necessarily means no
interaction. By broadening the range of specifications of trust-levels, one
may encourage interaction in situations where the traditional approach
would be too restrictive.

While the traditional notion of trust management is well understood,
e.g. Mitchell et al. [8, 17, 18], and, to a large extent, captured concisely
in a mathematical framework of Weeks [23]; a lot of the “broader” dy-
namic systems lack such foundation in formal methods (this point is illus-
trated by the wide range of related systems in the survey [13]). This lack
prompted the development of a mathematical framework for trust [7],
inspired by that of Weeks, but departing from Weeks by emphasizing
the concept of information in contrast to authorization. The framework,
which was introduced by Carbone et al. [7], discussed also by Nielsen
et al. [19] and Krukow [15], is the focus of this paper. Our motivation
and contributions are to complement this model with a operational tech-
niques, and consequently, we recall the model now.

1.1 The Trust-Structure Framework

A trust model should be generic enough to be instantiated to support
authorization in a variety of distributed computing systems. The trust-
structure framework [7] is a generic model, parameterized by a set X
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of possible trust values representing distinct levels or degrees of trust,
relevant for a particular application. The framework is aimed at global-
computing environments, and is based on a domain-theoretic modelling
of trust information. The goal is to provide a unique global trust-state
for every set P of principal identities, where each principal p ∈ P defines
a trust policy πp which quantifies for any principal identity q ∈ P the
level of trust that p has in q.

Trust structures. In the framework, trust is something which exists
between pairs of principals; it is quantified and asymmetric in that we
care of “how much” or “to what degree” principal p trusts principal q
(which may not be to the same degree that q trusts p). Each ap-
plication instance of the framework defines a so-called trust structure,
T = (X,�,v), which consists of a set X of trust values, together with
two relations on X; the trust ordering (�) and the information ordering
(v). The elements s, t ∈ X express the levels of trust that are relevant
for the particular instance, and s � t means that t denotes at least as
high a trust-level as s. In contrast, the information ordering introduces
a notion of precision or information. The key idea is that the elements
of X embody various degrees of uncertainty. One may think of assertion
x v y as the statement that x can be refined into y, or that x approx-
imates y. Krukow has considered a categorical axiomatization of trust
structures [15], but here we are concerned with trust structures in their
most general form, given by the following definition.

Definition 1.1 (Trust Structure). A trust structure is a triple T =
(X,�,v), consisting of a set X of trust values, ordered by two binary
relations: � ⊆ X × X called the trust ordering of T , and v ⊆ X × X
called the information ordering of T . The trust ordering is a pre-order
on X, meaning that it is reflexive and transitive, and the information
ordering makes (X,v) an ω-complete partial order with a least element,
denoted ⊥v. For any v-ω-chain, x0 v x1 v · · · , the least upper-bound
in (X,v) is denoted by ⊔

i∈ω
xi

In simple cases, the trust values are just symbolic, e.g. unknown v
low � high, but they may also have more internal structure. As a simple
example of a trust structure, consider the so-called “MN” trust-structure
TMN [15]. In this structure, trust values are pairs (m, n) of (extended)
natural numbers, representing m + n interactions with a principal; each
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interaction classified as either “good” or “bad”. In a trust value (m, n),
the first component, m, denotes the number of “good” interactions, and
the second, the number of “bad” ones. The information-ordering is given
by: (m, n) v (m′, n′) only if one can refine (m, n) into (m′, n′) by adding
zero or more good interactions, and, zero or more bad interactions, i.e.,
iff m ≤ m′ and n ≤ n′. In contrast, the trust ordering is given by:
(m, n) � (m′, n′) only if m ≤ m′ and n ≥ n′. Nielsen et al. [7, 20], have
considered several additional examples of trust structures.

Trust Policies. Given a fixed trust structure T = (X,�,v), a global
trust-state of the system is a function gts : P → P → X. The interpreta-
tion is that gts represents the trust state where p’s trust in q (formalized
as an element of X) is given by gts(p)(q). The goal of the framework is
to uniquely define a global trust-state, denoted gts. Each principal p ∈ P
autonomously controls a trust policy, denoted πp, which then determines
p’s trust within the unique global trust-state, i.e. gts(p).

Definition 1.2 (Trust Policy). Let T = (X,�,v) be a trust structure.
A trust policy in T , is a function π : (P → P → X)→ P → X, which is
continuous with respect to the point wise extension of v.1 This continuity
property is called information continuity.

In the simplest case, πp could be a constant function, ignoring its first
argument gts : P → P → X. As an example, πp(gts) = λq.t0 (for some
t0 ∈ X) defines p’s trust in any q ∈ P as the constant t0. In general, policy
πp may refer to other policies (πz, z ∈ P), and the general interpretation
of πp is the following. Given that all principals assign trust values as
specified in the global trust-state gts : P → P → X, then p assigns trust
values as specified in function πp(gts) : P → X. For example, function
πp(gts) = λq ∈ P.(gts(A)(q) ∨� gts(B)(q)) ∧� medium, represents a pol-
icy saying“for any q ∈ P, the trust in q is the least upper-bound in (X,�)
of what A and B say, but no more than the constant medium ∈ X.”2 Such
policy references are very similar to the concept of delegation, known from
traditional trust management.

1We overload v (respectively �) to denote also the pointwise extension of v (�)
to the function space XP = P → X as well as to (XP)P = P → P → X .

2Assuming that (X,�) is a lattice, and that ∨� is an information-continuous
operation (which is often the case). We always denote information least upper bounds
by “square” symbols t, and trust least-upper-bounds/greatest-lower-bounds by ∨/∧.

4



Unique Trust-State. The collection of the trust policies of all prin-
cipals, denoted Π = (πp : p ∈ P), thus “spins a global web-of-trust” in
which the trust policies mutually refer to each other. Since trust policies
Π may give rise to cyclic policy-references, a crucial requirement is that
the information ordering makes (X,v) a complete partial order (cpo)
with a bottom element. Since all policies are information-continuous,
there exists a unique information-continuous function Πλ = 〈πp : p ∈ P〉,
of type XPP → XPP with the property that Projp◦Πλ = πp for all p ∈ P,
where Projp is the p’th projection.3 Since Πλ is information-continuous
and (P → P → X,v) is a cpo with bottom, Πλ has a (unique) least
fixed-point [24] which we denote lfpv Πλ (or simply lfpΠλ):

lfpv Πλ =
⊔

v
{Πi

λ(λp.λq.⊥v) | i ∈ N}

Hence, for any collection of trust policies Π, we can define the unique
global trust-state induced by that collection, as gts = lfpΠλ, which has
the type of global trust-states, P → P → X. This unique trust-state
thus satisfies the following fixed-point equation:

∀p ∈ P. m(p) = Projp(m)

= Projp(Πλ(m)) (since Πλ(m) = m)

= πp(m)

Reading this from the left to the right, any function m : P → P → X
satisfying this equation is consistent with the policies (πp | p ∈ P), i.e.
any fixed point of Πλ is consistent with all policies πp. Consider now
two mutually referring functions πp and πq, given by πp = λm.Projq(m),
and πq = λm.Projp(m). Intuitively, there is no information present
in these functions; p delegates all trust-questions to q and similarly q
delegates to p. In this case, we would like the global trust-state gts
induced by the functions to take the value ⊥v on any entry z ∈ P for
both p and q, i.e., for both x = p and x = q and for all z ∈ P we should
have gts(x)(z) = ⊥v. This is exactly what is obtained by choosing the
information-least fixed-point of Πλ. We summarize as a definition.

3Projp is given by: for all m : P → P → X . Projp(m) = m(p).
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Definition 1.3 (Global Trust-state). Let T = (X,�,v) be a trust
structure, P a set of principal identities, and Π = (πp | p ∈ P) be a
collection of trust policies in T , indexed by the principal identities. Let
Πλ = 〈πp | p ∈ P〉. The global trust-state induced by Π, denoted gts, is
given by

gts = lfpvΠλ

1.2 The Operational Problem

Many interesting systems are instances of the trust-structure framework
[7,15], but one could argue against its usefulness as a basis for the actual
construction of trust-management systems. In order to make security
decisions, each principal p will need to reason about its trust in others,
that is, the values of gts(p). While the framework does ensure the exis-
tence of a unique (theoretically well-founded) global trust-state, it is not
“operational” in the sense of providing a way for principals to actually
compute the trust values. Furthermore, as we shall argue in the follow-
ing, the standard way of computing least fixed-points is inadequate in
our scenario.

When the cpo (X,v) is of finite height h, the cpo (P → P → X,v)
has height |P|2 ·h.4 In this case, the least fixed-point of Πλ can, in princi-
ple, be computed by finding the first identity in the chain of approximants

(λp.λq.⊥v) v Πλ(λp.λq.⊥v) v Π2
λ(λp.λq.⊥v) v · · · v Π

|P|2·h
λ (λp.λq.⊥v)

[24]. However, in the environment envisioned, such a computation is in-
feasible. The functions (πp : p ∈ P) defining Πλ are distributed through-
out the network (typically, each principal stores its own policy). More
importantly, even if the height h is finite, the number of principals |P|,
though finite, will be very large. Furthermore, even if resources were
available to make this computation, we can not assume that any central
authority is present to perform it. Finally, since each principal p defines
its trust policy πp autonomously, an inherent problem with trying to com-
pute the fixed point is the fact that p might decide to change its policy
πp to π′p at any time. Such a policy update would be likely to invalidate
data obtained from a fixed-point computation done with global function
Πλ, i.e., one might not have time to compute lfp Πλ before the policies
have changed to Π′.

The above discussion indicates that exact computation of the fixed
point is infeasible, and hence that the framework is not suitable as an

4The height of a cpo is the size of its longest chain.
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operational model. Our motivation is to counter this by showing that the
situation is not as hopeless as suggested. The rest of the paper presents a
collection of techniques for approximating the idealized fixed-point lfpΠλ.

1.3 Technical Contents

Our work essentially deals with the operational problems left as “fu-
ture work” by Carbone et al. [7]. Firstly, techniques for actual dis-
tributed computation of approximations to the idealized trust-values,
over a global, highly dynamic, decentralized network. We start by show-
ing that although it may be infeasible to compute the global trust-state,
gts : P → P → X, one can instead try to compute so-called local fixed-
point values. We take the practical point-of-view of a specific principal R,
wanting to reason about its trust value for a fixed principal q. The basic
idea is that instead of computing the entire state gts, and then “looking
up”value gts(R)(q) to learn R’s trust in q, one may instead compute this
value directly. We prove a convergence result that enables us to apply
a robust totally-asynchronous distributed algorithm of Bertsekas [1] for
local fixed-point computation. This is developed in Section 2.

Secondly, often it is infeasible and even unnecessary to compute the
exact denotation of a set of policies. In many cases it is sufficient (in
order to make a trust-based decision) to know that a certain property of
this value is satisfied. In Section 3, we take very mild assumptions on the
relation between the two orderings in trust structures. This enables us
to prove the soundness of two efficient protocols for safe approximation
of the least fixed-point. Often this allows principals to take security-
decisions without having to compute the exact fixed-point. For example,
suppose we know a function p̄ : P → P → X with the property that
p̄ � gts. In many trust structures it is the case that if p̄ is sufficient to
authorize a given request, so is the actual fixed-point.

Finally, the inherently dynamic nature of the envisioned systems re-
quires algorithms that explicitly deal with the dynamic updating of trust
policies (rather than implicitly dealing with updates by doing a complete
re-computation of the trust-state). In Section 4 we address the problem
of dynamic policy-changes. We provide algorithms that reuse information
from “old” computations, when computing the “new” fixed-point values.
For specific (but commonly occurring) types of updates this is very ef-
ficient. For fully general updates we have an algorithm which is better
than the naive algorithm in many cases.

Future and related work is discussed in the concluding section.
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2 Computation of Local Least-Fixed-Points

In this section, we show how to compute the local fixed-point value
gts(R)(q) for two fixed principals R and q, without computing the com-
plete global trust-state gts. The reason for computing local values is
twofold. First, we can benefit from distributing the computational- and
storage-burdens, so that instead of centrally computing the complete
state gts, node will R maintain “entry” gts(R)(q) in the “distributed ma-
trix” gts. Second, although the semantics of trust policies are functions
of type (P → P → X) → P → X which (due to policy referencing)
in general may depend on the trust values of all principals, we expect
that in practice, policies will not be written in this way. Instead, policies
are likely to refer to a few known (and usually “trusted”) principals. For
fixed R and q, the set of principals that R’s policy actually depends on in
its entry for q, is often a significantly smaller subset of P. For example,
consider our policy from the previous section.

πR(gts) = λq ∈ P.(gts(A)(q) ∨� gts(B)(q)) ∧� medium

This policy independent of all entries of gts except for those of principals
A and B. This means that in order to evaluate πR with respect to some
principal q, R needs only information from A and B.

We first compute (distributedly) a dependency graph which contains
only the dependencies relevant for the computation of gts(R)(q), thus
excluding a (hopefully) large set of principals that do not need to be
involved in computation. We then proceed with computation of gts(R)(q)
by showing that the conditions of a general algorithmic convergence-
theorem of Bertsekas [1] are satisfied, and hence we can appeal to previous
results on the convergence of a certain totally asynchronous algorithm.

We present our problem in the more abstract setting of a distributed
computation of the least fixed-point of a continuous endo-function on a
cpo. We show that this indeed models our practical scenario (and of
course, many others).

Abstract setting. We are given a cpo (X,v) of finite height h, and
a natural number n ∈ N. Writing [n] for the set {1, 2, . . . , n}, we have
also a collection C = (fi : i ∈ [n]) of n continuous functions, each of
type fi : X [n] → X. These functions induce a unique, continuous, global
function F = 〈fi : i ∈ [n]〉 : X [n] → X [n] which has a unique least-fixed-
point, lfp F ∈ X [n]. Define a dependency graph G = ([n], E), where [n] is

8



the set of nodes, and the edges, given as a function E : [n]→ 2[n], model
(possibly an over-approximation of) the dependencies of the functions in
C, i.e., have j 6∈ E(i) implies that function fi does not depend on the
value of “variable” j. We consider the nodes [n] as network nodes that
have memory and computational power. Each node i ∈ [n] is associated
with function fi, and we assume that each node knows all nodes that it
depends on, i.e., node i knows all edges E(i).

Computational problem. Let R ∈ [n] denote a designated node,
called the root. The computational problem is for the root to compute
the local fixed-point value (lfpF )R.

Concrete setting. We translate the trust-structure setting into our
abstract setting by defining function fR as policy πR’s entry for principal
q. One then finds the dependencies of fR by looking at which other
policies this expression depends on. If fR depends on entry w in πz, then
z is a node in the graph, and the function fz is given by πz ’s entry for w,
with the dependencies of fz given by the dependencies in the expression
for w in πz, and so on. From now on, we shall work in the abstract setting
as it simplifies notation.

Note, that this translation might lead to a node z appearing several
times in the dependency graph, e.g. with entries for principals w and y
in πz. We shall think of these as distinct nodes in the graph, although a
concrete implementation would have node z play the role of two nodes,
zw and zy. Note also, that the (minimal) dependency-graph is not mod-
eling any network topology. Although the nodes of the graph represent
concrete nodes in a physical communication-network, its edges do not
represent any communication-links.

Communication model. We use an asynchronous communication-
model, assuming no known bound on the time it takes for a sent message
to arrive. We assume that communication is reliable in the sense that
any message sent eventually arrives, exactly once, unchanged, to the
right node, and that messages arrive in the order in which they are sent.
We assume (in the spirit of the global-computing vision) an underlying
physical communication-network allowing any node to send messages to
any other node. Furthermore, we assume that all nodes are willing to
participate, and that they do not fail. The assumptions of non-failure
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and correct order of delivery ease the exposition, but the fixed-point
algorithm we apply is highly robust [1].

Our algorithm for fixed-point computation consists of two stages. In
the first stage, the dependency graph G = ([n], E) is distributedly com-
puted so that each node knows the set of nodes that depend on it for
the computation. In the second stage, this information is used in an
asynchronous algorithm, performing the actual fixed-point computation.

2.1 Computing Dependencies

In this sub-section, we describe how the nodes distributedly compute the
dependency graph described above. Two goals are to be fulfilled by the
dependency computation. First, each node must obtain a list of the nodes
that depend on it for the computation. Second, we want to compute a
spanning tree TR ≤ GR with root R, so that each node knows its parent
and its children in this tree. We denote TR = ([n], S), S : [n] → 2[n],
with S(i) ⊆ E(i) for all i ∈ [n]. Note that we are not making use of this
tree until Section 3.

For any node i, we denote the set E(i) by i+, and the set of nodes
k for which i ∈ E(k) (i.e. E−1({i})), by i−. So to summarize, after the
computation, any node i knows i+ and i−, and it knows its parent pi and
its children S(i) in a spanning tree TR rooted at R. Node i will store
i+ and i− in variables of the same name, and will store pi and S(i) in
variables i.p and i.S.

The distributed algorithm for the dependency computation is de-
scribed by a process that runs at each node. We use syntax inspired
by process calculi to describe these processes. The semantics should be
clear, perhaps except for the two constructs ||I and join-then. Let L
denote a set of labels (e.g. A,B,. . . ). The construct ||I , for I ⊆ L, de-
scribes the parallel execution of |I| processes (e.g. threads), where the
behaviour of process i ∈ I is described by an expression i : Proc, where
Proc is a process. The construct join J then Proc, with J ⊆ L, waits
until each process j ∈ J has terminated, and then executes process Proc.
Note also that non-prefixed, capital, italicized letters (e.g. X, Y, M , not
i.S) are variables that become bound at reception of a message, e.g.
receive (mark) from X is executed as soon as the reception of a mark

message occurs, and in the following code, X is bound to the (identity
of the) sender of that message.

Non-root nodes run a process given by Figure 1. The root node runs
a special process which similar to that of Figure 1, but it has no parent,
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Process: Dependency Algorithm for non-root node i
receive (mark) from X;
i− ← {X}; i.p ← X; i.S ← ∅;
||{A,B,C}

A : replicate
[ receive (mark) from Y ;
i− ← i− ∪ {Y };
send (ack, ok) to Y ]

B : ||c∈i+

c : send (mark) to c;
receive (ack, M) from c;
if (M=marker) then i.S ← i.S ∪ {c}

C : || join i+ then send (ack, marker) to X

Figure 1: Dependency Algorithm - Generic node behaviour

and it will initiate the computation. One way to think of the algorithm
is as a simple distributed graph-marking algorithm: the initial message
that a node i receives from a node j “marks” the node i, and j is then
the “marker” for i. The edges between “marker” and“marked”nodes, will
constitute the spanning tree TR. Furthermore, once a node is marked
it starts a “server” sub-process (labelled A) which accepts mark-messages
from any node Y , adds Y to its dependency set i−, and acknowledges
with an “ok” message. A sub-process running in parallel (B), notifies all
nodes that i depends on (i.e. i+) of this dependency, and waits for each
node to acknowledge. This acknowledgment is either “ok” in case i is
not the marker, or “marker” in case i is the marker. Finally, when an
acknowledgment has been received from each child, i acknowledges its
“marker”. Once the root node has received acknowledgment from each of
its children, the algorithm terminates.

The following statements hold. The number of messages sent is
O(|E|), each message of bit length O(1). This follows from the observa-
tion that for each edge in the graph there flows at most two messages, one
mark and one acknowledgment. When the root node R has received ac-
knowledgment from all its children then every node i, which is reachable
from R, stores in the variable i−, the set i− (by abuse of notation), stores
in variable i.S, the children of i in TR, and in variable i.p, i’s parent in
TR. Note, that we only mark the nodes that are reachable from R, which
amounts to excluding any node that R does not depend on (directly or
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by transitivity) for computing its trust value for q ∈ P.

2.2 An Asynchronous Algorithm

In this section, we assume that the dependency graph has already been
computed. We show that we a now in a situation in which we can apply
existing work of Bertsekas for computation of the least fixed-point. Bert-
sekas has a class of algorithms, called totally asynchronous (TA) itera-
tive fixed-point algorithms, and a general theorem which gives conditions
ensuring that a specific TA fixed-point algorithm will converge to the de-
sired result. In our case, “converge to” means that each principal i ∈ P
will compute a sequence of values ⊥v = i.t0 v i.t1 v · · · v i.tk = (lfp F )i.
The general theorem is called the “Asynchronous Convergence Theorem”
(ACT), and we use this name to refer to Proposition 6.2.1 of Bertsekas’
book [1]. The ACT applies in any scenario in which the so-called “Syn-
chronous Convergence Condition” and the “Box Condition” are satisfied.
Intuitively, the synchronous convergence condition states that if the al-
gorithm is executed synchronously, then one obtains the desired result.
In our case, this amounts to requiring that the “synchronous” sequence
⊥v v F (⊥v) v · · · converges to the least fixed-point, which is true. In-
tuitively, the box condition requires that one can split the set of possible
values appearing during synchronous computation into a product (“box”)
of sets of values that appear locally at each node in the asynchronous
computation. As a consequence of v-monotonicity of the policies, the
conditions of the Asynchronous Convergence Theorem are satisfied (the
following Proposition 2.1), and so, we can deploy a TA distributed algo-
rithm.

We now describe the algorithm and argue for its correctness. We
will assume that each node i allocates variables i.tcur and i.told of type
X, which will later record the “current” value and the last computed
value in X. Each node i has also an array, denoted by i.m. The array
i.m is of type X array, and will be indexed by the set i+. Initially,
i.tcur = i.told = ⊥v, and the array is also initialized with ⊥v. For any
nodes i and j ∈ i+, when i receives a message from j (which is always a
value t ∈ X), it stores this message in i.m[j].

Asynchronous algorithm. Any node is always in one of two states:
sleep or wake. All nodes start in the wake state, and if a node is in the
sleep state, the reception of a message triggers a transition to the wake
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state. In the wake state any node i repeats the following: it starts by
assigning to variable i.tcur the result of applying its function fi to the
values in i.m, i.e., node i executes assignment i.tcur ← fi(i.m). If there
is no change in the resulting value of fi(i.m) (compared to the last value
computed, which is stored in i.told), it will go to the sleep state unless a
message was received since fi(i.m) was computed. Otherwise, if a new
value resulted from the computation (i.e., if told 6= fi(i.m)), this value is
sent to all nodes in i−. Concurrently with this we can run a termination
detection algorithm, which will detect when all nodes are in the sleep-
state and no messages are in transit. Bertsekas has already addressed
this problem with his termination-detection algorithm [1], which directly
applies, yielding only a constant overhead in the message complexity.

The Asynchronous Convergence Theorem. We recall the defini-
tion of the Synchronous Convergence Condition (SCC) and the Box Con-
dition (BC) (Section 6.2 [1]). Let X be any set, and F : X [n] → X [n] be
any function with F = 〈f1, f2, . . . , fn〉.
Definition 2.1 (SCC and BC). Let {X(k)}∞k=0 be a sequence of subsets
X(k) ⊆ X [n] satisfying ∀k.X(k + 1) ⊆ X(k).

SCC The sequence {X(k)}∞k=0 satisfies the Synchronous Convergence
Condition if

∀x ∈ X(k).F (x) ∈ X(k + 1)

and furthermore, if {yk}k∈ω is a sequence with yk ∈ X(k) for all k,
then every limit point of {yk}k∈ω is a fixed-point of F .

BC The sequence {X(k)}∞k=0 satisfies the Box Condition if for every k,
there exist sets Xi(k) ⊆ X such that

X(k) =
n∏

i=1

Xi(k)

We state a version of the Asynchronous Convergence Theorem of
Bertsekas which matches our notation. We need some preliminary ter-
minology. Assume that before starting the asynchronous algorithm, the
arrays of the nodes are initialized with a vector x̄ ∈ X [n], called the initial
solution estimate. That is, for all nodes i ∈ [n], and all j ∈ i+ assume
that i.m[j] = x̄j and that i.told = x̄i.
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A limit point of the asynchronous algorithm (with initial estimate
x̄) is a vector x̂ ∈ X [n] which can be written x̂i = i.tcur, where there
exists some state of the distributed system in which the algorithm has
converged, and i.tcur is the current value of node i in this state (the
algorithm has converged when all nodes are in the sleep-state, and no
messages are in transit).

Theorem 2.1 (ACT [1]). Assume there exists a sequence of subsets
X(k) ⊆ X [n] with ∀k.X(k + 1) ⊆ X(k), satisfying the SCC and the BC.
Assume that the arrays of the nodes are initialized with x̄ ∈ X(0), called
the initial solution estimate. Then every limit point of the asynchronous
algorithm is a fixed point of F .

Note that the ACT ensures that the algorithm converges to a fixed
point of F . In our specific scenario, X [n] is ordered by v, and, further-
more, we want the algorithm to converge to the v-least fixed-point of
F .

Correctness. To prove correctness of the asynchronous algorithm, one
might attempt to prove that the assumption of the ACT is satisfied
when all nodes initialize their trust-values (i.m and i.told) to ⊥v. We
instead prove a slightly more general convergence-result which is useful
when considering the interplay between the asynchronous-algorithm and
policy-updates. We must also prove that any limit point of the algorithm
is the least fixed-point of F . The following concept of an information ap-
proximation is central.

Definition 2.2 (Information Approximation). Let F : X [n] → X [n]

be continuous. Say that a value t̄ ∈ X [n], is an information approxima-
tion for F if t̄ v lfp F and t̄ v F (t̄).

The following Proposition 2.1 shows that we can indeed appeal to the
ACT. In the following (X,v) is a finite-height cpo, and F : X [n] → X [n]

is continuous.

Proposition 2.1 (Correctness). Let t̄ be any information approxima-
tion for F . Assume that the arrays of the nodes are initialized with t̄.
Then there exist a decreasing sequence {X(k)} of subsets of X [n] with
t̄ ∈ X(0), satisfying the synchronous convergence condition and the box
condition. Furthermore, any limit point of the asynchronous algorithm
with initial estimate t̄ is lfp F , and hence, limit points are unique.
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Proof. Define a sequence of subsets of X [n], X(0) ⊇ X(1) ⊇ · · · ⊇
X(k) ⊇ X(k + 1) ⊇ · · · by

X(k) = {m ∈ X [n] | F k(t̄ ) v m v lfp F}

Note that X(k+1) ⊆ X(k) follows from the fact that F k(t̄ ) v F k+1(t̄ ) for
any k ∈ N, which, in turn, holds since t̄ is an information approximation.
For the synchronous convergence condition, assume that m ∈ X(k) for
some k ∈ N. Since F k(t̄) v m v lfp F , we get by monotonicity F k+1(t̄ ) v
F (m) v F (lfp F ) = lfp F . Let (yk)k∈ω be so that yk ∈ X(k) for every k.

Since t̄ is an information approximation, we have
⊔

i F
i(t̄ ) = lfpF .

Since X is of finite height there exists kh ∈ N so that for all k′ ≥ kh,
X(k′) = {lfp F}. Thus any such (yk)k∈ω converges to lfp F . The box
condition is also easy:

X(k) =

n∏
i=1

{m(i) ∈ X | m ∈ X [n] and F k(t̄ ) v m v lfpF }

To prove correctness of our algorithm, we simply invoke Proposition
2.1 in the case of the trivial information-approximation t̄ = ⊥n

v. The
asynchronous convergence theorem ensures that the asynchronous algo-
rithm converges towards the right values at all nodes, and, because of
our assumption of finite height cpos, the distributed system will even-
tually reach a state which is stable. In this state, each node i will have
computed (lfpF )i.

Remarks. Since any node sends values only when a change occurs,
by monotonicity of fi, node i will send at most h · |i−| messages, each
of size O(log |X|) bits.5 Node i will receive at most h · |i+| messages,
each message (possibly) triggering a computation of fi. Globally, the
number of messages is O(h · |E|) each of bit size O(log |X|). Hence,
the communication complexity of our algorithm is linear in the height
of the lattice used by the policies. An important global invariant in this
algorithm is that any value computed locally at a node (by the assignment
i.tcur ← fi(i.m)) is a component in an information approximation for F .
That is, it holds everywhere, at any time, that (1) i.tcur v (lfp F )i and

5In fact, there will be only O(h) different messages, each sent to all of i−. Conse-
quently, a broadcast mechanism could implement the message delivery efficiently.
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(2) i.tcur v fi(i.m). To see this, note that (1, 2) hold initially, and that
both properties are preserved by the update i.tcur ← fi(i.m) whenever
i.m[y] v (lfpF )y for all y ∈ i+ (which is always true). We state this
fact as a lemma, as it becomes very useful in the next section where we
consider fixed-point approximation-algorithms.

Lemma 2.1. Any value i.tcur ∈ X computed by any node i ∈ [n], at any
time in the algorithm by the statement i.tcur ← fi(i.m), is a part of an
information approximation for F , in the sense that i.tcur v (lfpF )i and
i.told v i.tcur.

2.3 An example computation

In this subsection, we give a small example of a run of the asynchronous
algorithm. Let us consider an example with 5 principals, named R, A, B, C
and D. The example is meant to illustrate the situation where R wants
to compute its trust value in a certain fixed subject S (which won’t be
involved in the computation). We will use the MN trust-structure TMN

(Section 1) in the example.

Policies. The policies of the principals have the following entries for S.

πR = (pAq(S) ∨ pCq(S)) t Loc(S)

πA = pBq(S) t Loc(S)

πB = pRq(S) t Loc(S)

πC = pDq(S) t Loc(S)

πD = pCq(S) t Loc(S)

The construct p·q is policy-reference (as in Section 3.1), ∨ is �-join and t
is v-join. The construct Loc(S) is a special construct for the TMN trust
structure; it refers to the trust-value derived from the local observations
made by a principal about the subject in question (this construct is dis-
cussed also by Nielsen and Krukow [20]). For example, R’s policy for the
subject is to take the �-join in TMN of the values that A and C specify for
the subject, and then the v-join of this value and the trust-value given
by the local observations made by R about the subject.

It is not hard to see that both (TMN ,�) and (TMN ,v) are lattices, and
that the joins are given by the following formulas; for any (m, n), (m′, n′) ∈
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Figure 2: Example dependency-graph.
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TMN we have:

(m, n) ∨ (m′, n′) = (max(m, m′), min(n, n′))

(m, n) t (m′, n′) = (max(m, m′), max(n, n′))

The dependency graph derived from the policies is given in Figure 2.

Local data. We assume that the principals have the following local
data, representing observations made about the subject.

R A B C D
Loc(S) (0, 0) (1, 5) (3, 0) (2, 5) (4, 6)

E.g., A has recorded one ‘good’, but five ‘bad’ observations about subject
S.

Synchronous computation. Let us first illustrate the least fixed-
point of the policies by showing sequence of computations corresponding
to the “synchronous” iterations (i.e., ⊥v, Πλ(⊥v), Πλ(Πλ(⊥v)), . . .). In
the table below, column x of row i + 1 is obtained by applying policy πx

to row i, e.g., the value (3, 5) in column A of row 2 is obtained by πA and
row 1, illustrated by the following informal “calculation:”

pBq(S)(”row 1”) t Loc(S) = (3, 0) t (1, 5) = (3, 5)

It is easy to verify that the last row in the table below is the least fixed-
point of the policies (i.e., iterating round 6 will give the same row as
iteration 5).

iteration R A B C D
0 ⊥v ⊥v ⊥v ⊥v ⊥v
1 (0, 0) (1, 5) (3, 0) (2, 5) (4, 6)
2 (2, 5) (3, 5) (3, 0) (4, 6) (4, 6)
3 (4, 5) (3, 5) (3, 5) (4, 6) (4, 6)
4 (4, 5) (3, 5) (4, 5) (4, 6) (4, 6)
5 (4, 5) (4, 5) (4, 5) (4, 6) (4, 6)
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An asynchronous run. We now show a possible run of the asyn-
chronous algorithm for the same set of policies as above. We illustrate
the algorithm by showing the local-states of the nodes in the network at
various points in time. The nodes are denoted by boxes describing the
local state in terms of values of arrays i.m, and the values of i.tcur. Fur-
thermore, messages that are in transit are visible on the “dependency”
edges between the nodes. Note that messages “flow against” the direction
of the arrowhead since arrows denote dependencies.

Network Snapshot 1. We assume that the initial states of the nodes
are given by the following. All nodes are wake, the arrays (i.m) are
initialized to ⊥v = (0, 0). Each node has i.tcur = πi(i.m).

R : wake
R.tcur = (0, 0)
m[A] = (0, 0)
m[C] = (0, 0)

��

-- C : wake
C.tcur = (2, 5)
m[D] = (0, 0)

��
A : wake

A.tcur = (1, 5)
m[B] = (0, 0)

11
B : wake

B.tcur = (3, 0)
m[R] = (0, 0)

cc

D : wake
D.tcur = (4, 6)
m[C] = (0, 0)

LL

Network Snapshot 2. Here R has received value (1, 5) from A and
(2, 5) from C. Further values are in transit, e.g. value R : (2, 5)
“on” edge B→ R represents a message in transit from R to B.

R : sleep
R.tcur = (2, 5)
m[A] = (1, 5)
m[C] = (2, 5)

��

-- C : sleep
C.tcur = (2, 5)
m[D] = (0, 0)

D:(4,6)

��
A : sleep

A.tcur = (1, 5)
m[B] = (0, 0) B:(3,0)

11
B : sleep

B.tcur = (3, 0)
m[R] = (0, 0)

R:(2,5)cc

D : sleep
D.tcur = (4, 6)
m[C] = (0, 0)

C:(2,5)

LL

Network Snapshot 3. Two messages are in transit on the (presumably
slow) path from C to D (we are assuming a reliable network, so
the first sent will also arrive first). B has just finished computing
πB(B.m) = (3, 5), but has not yet sent this value.

R : sleep
R.tcur = (2, 5)
m[A] = (1, 5)
m[C] = (2, 5)

A:(3,5)

��

C:(4,6)
-- C : sleep
C.tcur = (4, 6)
m[D] = (4, 6)

��
A : sleep

A.tcur = (3, 5)
m[B] = (3, 0)

11
B : wake

B.tcur = (3, 5)
m[R] = (2, 5)

cc

D : sleep
D.tcur = (4, 6)
m[C] = (0, 0)

C:(4,6);
C:(2,5)

LL
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Network Snapshot 4.

R : sleep
R.tcur = (3, 5)
m[A] = (3, 5)
m[C] = (2, 5)

��

C:(4,6)
-- C : sleep
C.tcur = (4, 6)
m[D] = (4, 6)

��
A : sleep

A.tcur = (3, 5)
m[B] = (3, 5)

11
B : sleep

B.tcur = (3, 5)
m[R] = (2, 5)

R:(3,5)cc

D : sleep
D.tcur = (4, 6)
m[C] = (2, 5)

C:(4,6)

LL

Network Snapshot 5. Notice that the component consisting of C and
D has converged. No more messages are exchanged between them
for the remainder of the algorithm; this is in contrast to the globally
synchronous iteration.

R : sleep
R.tcur = (4, 5)
m[A] = (3, 5)
m[C] = (4, 6)

��

-- C : sleep
C.tcur = (4, 6)
m[D] = (4, 6)

��
A : sleep

A.tcur = (3, 5)
m[B] = (3, 5)

11
B : sleep

B.tcur = (3, 5)
m[R] = (3, 5)

R:(4,5)cc

D : sleep
D.tcur = (4, 6)
m[C] = (4, 6)

LL

Network Snapshot 6.

R : sleep
R.tcur = (4, 5)
m[A] = (3, 5)
m[C] = (4, 6)

��

-- C : sleep
C.tcur = (4, 6)
m[D] = (4, 6)

��
A : sleep

A.tcur = (3, 5)
m[B] = (3, 5) B:(4,5)

11
B : sleep

B.tcur = (4, 5)
m[R] = (4, 5)

cc

D : sleep
D.tcur = (4, 6)
m[C] = (4, 6)

LL

Network Snapshot 7. When R receives the final value from A, the
algorithm has converged.

R : sleep
R.tcur = (4, 5)
m[A] = (3, 5)
m[C] = (4, 6)

A:(4,5)

��

-- C : sleep
C.tcur = (4, 6)
m[D] = (4, 6)

��
A : sleep

A.tcur = (4, 5)
m[B] = (4, 5)

11
B : sleep

B.tcur = (4, 5)
m[R] = (4, 5)

cc

D : sleep
D.tcur = (4, 6)
m[C] = (4, 6)

LL
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3 Approximation techniques

In this section, we present two techniques for safe and efficient approxima-
tion of the fixed-point. Consider a situation in which a client principal
p wants to access a resource controlled by server v. Assume that the
access-control policy of v is that, to allow access, its trust in p should
be trust-wise above some threshold t0 ∈ X, i.e., the fixed-point should
satisfy t0 � (lfp Πλ)(v)(p). The goal of the approximation techniques
is to allow the server to (soundly) make its security decision without
having to actually compute the exact fixed-point value. Instead, the
server is able to efficiently compute an approximating global trust-state
p̄ : P → P → X which is related to the fixed point in such a way that
the desired property can be asserted.

We need some preliminary terminology. Let T = (X,�,v) be a trust
structure, i.e. (X,v) is a cpo with bottom ⊥v and (X,�) is a partial
order (not necessarily complete). We assume also that (X,�) has a least
element, denoted ⊥�. If for any countable v-chain C = {xi ∈ X | i ∈ N}
and any x ∈ X we have (i) x � C implies x � ⊔

C and (ii) C � x implies⊔
C � x, then � can be said to be v-continuous.

3.1 Bounding “Bad Behaviour”

This first technique lets a client convince a server that its trust in the
client is (trust-wise) above a certain level. The technique is based on the
following proposition.

Proposition 3.1. Let (X,�,v) be a trust structure in which � is v-
continuous. Let p̄ ∈ X [n], and F : X [n] → X [n] be any function that
is v-continuous and �-monotonic. If we have p̄ � (λk ∈ [n].⊥v) and
p̄ � F (p̄ ), then p̄ � lfpv F .

Proof. We have p̄ � λk.⊥v which implies F (p̄) � F (λk.⊥v) by �-
monotonicity. Since p̄ � F (p̄), transitivity implies that p̄ � F (p̄) �
F (λk.⊥v). So again by �-monotonicity of F and transitivity

p̄ � F (p̄) � F 2(p̄) � F 2(λk.⊥v)

Now since for all i ≥ 0 we have p̄ � F i(λk.⊥v), the fact that � is
v-continuous implies that

p̄ �
⊔

i
F i(λk.⊥v) = lfpvF
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Note that the conclusion of the proposition is an assertion that is
useful for authorization; if the server knows a p̄ ∈ X [n] which is sufficient
to allow an authorization, and knows also that p̄ � lfpv F , then since the
ideal global trust-state is trust-wise above p̄, then it is a sound decision
to allow the authorization. This idea is the basis of an efficient protocol
for a kind of “proof-carrying” authorization.

Consider for simplicity the “MN” trust-structure TMN from Section
1, which satisfies the information-continuity requirement. Recall that, in
this structure, trust values are pairs (m, n) of natural numbers, repre-
senting m + n past interactions; m of which where classified ‘good’, and
n, classified as ‘bad’.6 The orderings are given by (m, n) v (m′, n′) ⇐⇒
m ≤ m′ and n ≤ n′, and (m, n) � (m′, n′) ⇐⇒ m ≤ m′ and n ≥ n′.

Suppose principal p wants to efficiently convince principal v, that v’s
trust value for p is a pair (m, n) with the property that n is less than
some fixed bound N ∈ N (i.e., giving v an upper bound on the amount of
recorded “bad behaviour” of p). Let us assume that v’s trust policy πv is
monotonic, also with respect to �, and that it depends on a large set S
of principals. Assume also that it is sufficient that principals a and b in S
have a reasonably “good” trust-value for p, to ensure that v’s trust-value
for p is not too “bad”. An example policy with this property could be
written in the language of Carbone et al. [7] as

πv ≡ λx : P.(paq(x) ∧ pbq(x)) ∨
∧

s∈S\{a,b}
psq(x)

The construct p·q represents policy reference or delegation, e.g., if a and
x are principal identities then expression paq(x) “evaluates” to the value
that a’s trust policy specifies for x. The construct e ∨ e′ represents least
upper-bound in the trust-ordering (intuitively, “trust-wise maximum” of
e and e′), and similarly ∧ represents greatest lower-bound (“trust-wise
minimum”).7 Thus, informally, the above policy says that any principal
p should have “high trust” with a and b, or, with all of s ∈ S \ {a, b}, for
the v to assign “high trust” to p. Now, if p knows that it has previously
performed well with a and b, and knows also that v depends on a and b
in this way, it can engage in the following protocol.

6To be precise, the set N
2 is completed by allowing also value ∞ as “m” or “n” or

both.
7The example policy assumes that (X,�) is a lattice, meaning that for any x, y ∈ X

both x∨ y and x∧ y exist. Furthermore operations ∨ and ∧ must be continuous also
with respect to the information ordering. In many trust-structure this is often the
case [7].
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Protocol. Principal p sends to v the “trust-state”

t = [(v, p) 7→ (0, N), (a, p) 7→ (0, Na), (b, p) 7→ (0, Nb)]

which can be thought of as a“proof”(analogous to a ‘proof-of-compliance’)
or a “claim” made by p, stating that (0, N) � (lfp Πλ)(v)(p) (and sim-
ilarly for a and b). Upon reception, v first extends t to a global trust
state, which is the extension of t to a function p̄ of type P → P → TMN ,
given by

p̄ = λx ∈ Pλy ∈ P.




(0, N) if x = v and y = p

(0, Na) if x = a and y = p

(0, Nb) if x = b and y = p

(0,∞) otherwise

To check the proof, principal v must verify that p̄ satisfies the conditions
of Proposition 3.1. First, v must check that p̄(x)(y) � ⊥v = (0, 0)
for all x, y. But this holds trivially if y 6= p or x 6= v, a, b because
then p̄(x)(y) = (0,∞) = ⊥�. For the other few entries it is simply
an order-theoretic comparison p̄(x)(y) � (0, 0). Now v tries to verify
that p̄ � Πλ(p̄ ). To do this, v verifies that (0, N) � πv(p̄ )(p). If this
holds then v sends the value t to a and b, and ask a and b to perform
a similar verification (e.g. (0, Na) � πa(p̄ )(p)). Then a and b reply with
‘yes’ if this holds and ‘no’ otherwise. If both a and b reply ‘yes’, then p
is sure that p̄ � Π(p̄): by the checks made by v, a and b, we have that
p̄(x)(y) � Πλ(p̄ )(x)(y) holds for pairs (x, y) = (v, p), (a, p), (b, p), but for
all other pairs it holds trivially since p̄ is the �-bottom on these. By
Proposition 3.1, we have p̄ � lfp Πλ, and so, v is ensured that its trust
value for p is �-greater than (0, N).

We have illustrated the main idea of the protocol by way of an ex-
ample, but the general technique for verifying a proof should be clear.
In general, the proof p̄ may include a larger number of principals, which
would then have to be involved in the verification process.

Remarks. Our approximation protocol has very much the flavour of
a proof-carrying authorization: the requester (or prover) must provide a
proof that its request should be granted. It is then the job of the service-
provider (or verifier) to check that the proof is correct. The strength of
this protocol lies in replacing an entire fixed-point computation with a
few local checks made by the verifier, together with a few checks made
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by a subset of the principals that the verifier depends on. An interesting
property of this protocol is that part of the information that the prover
needs to supply should already be known to the prover; it should already
know who it has performed well with in the past (e.g. in our example
above, p could know the bounds Na and Nb because of its previous inter-
action with a and b). There are, however, two important restrictions to
this approach. First, as in the example, in order to construct its proof,
the prover needs information about the verifiers trust policy and of the
policies of those whom the verifier depends on. If policies are secret, it is
not clear how the verifier would construct this proof. Second, because of
the requirement in Proposition 3.1 that p̄ � ⊥v, the protocol can usually
only be used to prove properties stating “not too much bad behaviour,”
and not properties guaranteeing sufficiently “good” behaviour.

Notice that the protocol for exploiting Proposition 3.1 has a message
complexity which is independent of the height of the cpo; in particu-
lar, it works also for infinite height cpos. In contrast, the algorithm for
computing fixed-points has message complexity O(h · |E|).

We present now another approach which requires more computation
and communication, but does not have the two mentioned restrictions.

3.2 Exploiting Information Approximations

The approximation technique developed in this section is different from
that of the “proof-carrying” protocol in the previous section. In this
section, we not require the “prover” (client) to provide any information.
Instead, we derive an approximation from a “snapshot” of the state of
the asynchronous fixed-point algorithm from Section 2.2. The “verifiers”
(servers) are then able make a collection of local checks on this snapshot,
allowing them to infer that the fixed-point value must be trust-wise above
the snapshot-value. The technique is based on the following proposition.

Proposition 3.2. Let (X,�,v) be a trust structure in which � is v-
continuous. Let t̄ ∈ X [n], and F : X [n] → X [n] be any function that
is v-continuous and �-monotonic. Assume that t̄ is an information
approximation for F . If t̄ � F (t̄ ) then t̄ � lfp F .

Proof. Since t̄ is an information approximation for F , we have by easy
induction that for all k ∈ N, F k(t̄) v F k+1(t̄) v lfp F , and so by conti-
nuity of F ,

⊔
k∈N

F k(t̄) = lfp F . Since t̄ � F (t̄), an easy induction gives
t̄ � F k(t̄) for all k. Then the information continuity of � implies that
t̄ � lfp F .

23



This proposition is very useful because, by Lemma 2.1, a global invari-
ant in the asynchronous fixed-point algorithm is that all values computed
are information approximations for F . This means that we can combine
the algorithm with a protocol that, intuitively, implements the check for
the condition t̄ � F (t̄ ) in the above proposition.

Imagine that during the execution of the asynchronous algorithm,
there is a point in time, in which no messages are in transit, all nodes i
have computed their function fi, and sent the value fi(i.m) to all that
depend on it. Thus we have a “consistent” state in the sense that for
any node x and any node y ∈ x+ we have x.m[y] = y.tcur. In particular
if x and z both depend on y, then they agree on y’s value: x.m[y] =
y.tcur = z.m[y]. In this ideal state, there is a consistent vector t̄ which,
by Lemma 2.1, is an information approximation for F , i.e. t̄ contains
the values t̄i = i.tcur for nodes i ∈ [n]. If the state of the distributed
system was frozen at this point, and all nodes x, simultaneously make
the check x.tcur � fx(x.m), then vector t̄ satisfies t̄ � F (t̄ ). Since t̄ is
an information approximation for F, by Proposition 3.2, the root node R
knows that t̄R � lfp FR, which is what we want.

Of course, the ideal situation described above would rarely occur in a
real execution. The aim of the approximation technique in this section,
is to enforce, during execution of the asynchronous algorithm, a consis-
tent view of such an ideal situation. In so-called snapshot-algorithms
(see Bertsekas [1]), the (local views of the) global state of the system is
recorded during execution of an algorithm. Our problem is slightly less
complicated since we are not interested in the status of communication
links, but slightly more complicated since each snapshot-value must be
propagated to a specific set of nodes.

We describe now a distributed algorithm implementing this. We as-
sume that the asynchronous algorithm is running, and at some point the
root node decides to run the approximation check (e.g. because it has
computed a (non fixed-point) value R.tcur which is sufficient to allow ac-
cess). We assume that each node i ∈ P has additional variables i.tapp : X
and i.mapp : X array, indexed by i+. The array will eventually store only
consistent values. The algorithm, as usual, consists of a special process
run by the root, and another similar process running at non-root nodes,
given by Fig. 3.

Recall, that the dependency-graph algorithm has generated also a
spanning tree TR, rooted at R. The root initiates the approximation
algorithm. It starts by sending an init message to each of it’s children
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Process: non-root nodes i
||{A,B,C}

A : receive (init);
||{A1,A2}

A1: ||c∈i.S c : send (init) to c;
A2: [ //wait until consistent state];

i.tapp ← i.tcur;
||j∈i− j : send (copy) to j;

B : ||{B1,B2}
B1: ||k∈i+

k : receive (copy) from k;
i.mapp[k]← i.m[k];

B2: join {B1, A2} then
i.b : bool← (i.tapp � fi(i.mapp));

C : ||{C1,C2}
C1: ||c∈i.S

c : receive (i.bc : bool) from c;
C2: join {C1, B2} then

send (i.b ∧ (
∧

c∈i.S i.bc)) to i.p;

Figure 3: Snapshot Algorithm - Generic node behaviour
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listed in R.S (Fig. 3, label A1). Now it waits until it is in a locally
consistent state (A2), which means that, in the asynchronous algorithm,
it has just computed R.tcur ← fR(R.m), and (if necessary) has sent that
value to each of R−. Once in such a state, R saves the value by doing
R.tapp ← R.tcur – this value will become the value for R in the consistent
vector we are seeking. R now sends a copy message to each node in
R− (A2). A node y ∈ R− which receives a copy message from R will
copy the last value received from R into its approximation array, i.e.
y.mapp[R] ← y.m[R] (B1). Since we are assuming a reliable network,
the copied value is R.tapp, and so we are propagating consistent values.
Root R now waits until each node z ∈ R+ has sent a copy message, and
computes then R.tapp � fR(R.mapp) (B2). Finally, the root waits for all
children in the spanning tree to have replied with a boolean, and if all of
these are true and the check succeeded (C1, C2), then the root is ensured
that R.tapp � (lfp F )R. Non-root nodes i, once initiated, do almost the
same. The only difference is that after the check has been made, and all
children in the spanning tree have replied with a boolean, i sends value
true to its parent i.p only if all i.S sent true and i’s own check succeeded.

Since there is a constant number of messages sent for each edge in GR,
the message complexity of the snapshot algorithm is O(|E|) messages,
each of size O(1) bits.

A useful property of this algorithm is that it can be run concur-
rently with the asynchronous fixed-point algorithm - there is no reason to
stop! One may simply allocate a thread implementing the approximation-
check, which runs concurrently with the asynchronous fixed-point algo-
rithm.

Note that, the style of this protocol is different than that of the previ-
ous section. In the previous protocol the client presents a “proof” t which
the servers then verifies. It is not clear how one could use Proposition
3.2 in this style. In particular, if a client presented a “proof” t, then it
is not clear how the servers would check that t v lfp F without already
knowing lfp F .

3.3 An example run

We illustrate the snapshot-algorithm on the policies from Section 2.3.
Again we illustrate the algorithm by a sequence of network-states. We
assume that the asynchronous algorithm has been running for some time
(as in Section 2.3). Let us assume that R now wants to run the snapshot
algorithm with respect to its current value, (2, 5).
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Network snapshot 1. R initiates the algorithm by sending init mes-
sages to A and C. Concurrently it sends a copy message to B to
indicate that the last message received by B from R should be used
for approximation. (Note the it is not a problem that B receives
the copy message before it is initiated).

R.tcur = (2, 5)
m[A] = (1, 5)
m[C] = (2, 5)

R:init

��

R:init -- C.tcur = (2, 5)
m[D] = (0, 0)

D:(4,6)

��
A.tcur = (1, 5)
m[B] = (0, 0)

C:(3,0)

11
B.tcur = (3, 5)
m[R] = (2, 5)

R:copy

ee

D.tcur = (4, 6)
m[C] = (0, 0)

C:(2,5)

KK

Network snapshot 2. Here C has received message D : (4, 6). It then
receives the R : init message. C proceeds by sending its current
value to R and D, followed by copy-messages, and an init-message
(only) to D. A behaves similarly.

R.tcur = (2, 5)
m[A] = (1, 5)
m[C] = (2, 5)A:(3,5);

A:copy

��

C:=(4,6);C:copy
-- C.tcur = (4, 6)
m[D] = (4, 6)

C:init

��
A.tcur = (3, 5)
m[B] = (3, 0) A:init 00

B.tcur = (3, 5)
mapp[R] = (2, 5)

ee

D.tcur = (4, 6)
m[C] = (2, 5)

C:copy;
C:(4,6)

KK

Network snapshot 3. Here D has asserted that D.tcur � πD(D.mapp) is
true. Since it has no children in the spanning tree, it immediately
sends value true to its (spanning-) parent C (illustrated by the
dotted edges).

R.tcur = (2, 5)
mapp[A] = (3, 5)
mapp[C] = (4, 6)

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

D:copy;
D:true

��
A.tcur = (3, 5)
m[B] = (3, 0)

B:(3,5);B:copy

00
B.tcur = (3, 5)

mapp[R] = (2, 5)

ff

D.tcur = (4, 6)
mapp[C] = (4, 6)

KK

Network snapshot 4. B has made its assertion, and similarly, once C
receives true from D, it makes assertion C.tcur � πC(C.mapp), and
sends true to R.

R.tcur = (2, 5)
m[A] = (3, 5)
m[C] = (4, 6)

��

C:true .. C.tcur = (4, 6)
mapp[D] = (4, 6)

��
A.tcur = (3, 5)

mapp[B] = (3, 5)
B:true

00
B.tcur = (3, 5)

mapp[R] = (2, 5)

ee

D.tcur = (4, 6)
mapp[C] = (4, 6)

KK
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Network snapshot 5. Finally, A makes its assertion, and once R re-
ceives value true, R knows that (2, 5) � lfp(Πλ)(R)(S) (recall that
S is the subject of the trust-computation).

R.tcur = (2, 5)
m[A] = (3, 5)
m[C] = (4, 6)

A:true

��

.. C.tcur = (4, 6)
mapp[D] = (4, 6)

��
A.tcur = (3, 5)

mapp[B] = (3, 5) 00
B.tcur = (3, 5)

mapp[R] = (2, 5)

ee

D.tcur = (4, 6)
mapp[C] = (4, 6)

KK

3.4 Dual Propositions and Generalization

Note that both the propositions in this section have “dual” versions.

Proposition 3.3. Let (X,�,v) be a trust structure in which � is v-
continuous. Let p̄ ∈ X [n], and F : X [n] → X [n] be any function that is
v-continuous and �-monotonic. If ⊥v � p̄ and F (p̄ ) � p̄ then lfpF � p̄.

The dual of Proposition 3.2 is the following.

Proposition 3.4. Let (X,�,v) be a trust structure in which � is v-
continuous. Let t̄ ∈ X [n], and F : X [n] → X [n] be any function that
is v-continuous and �-monotonic. Assume that t̄ is an information
approximation for F . If F (t̄ ) � t̄ then lfp F � t̄.

We can deploy similar algorithms for the duals. At first sight Propo-
sition 3.3 does not seem as useful as its dual. The conclusion lfp F � p̄
can usually only be used to deny a request, and a prover in the pro-
tocol for Proposition 3.3 would probably not be interested in supplying
information which would help refuting its request. However, this is not
always so. For example, suppose one is using trust structures conveying
probabilistic information (e.g. [5, 20]), and that p̄ � p̄′ expresses (infor-
mally) that, when interacting with a certain principal, the probability of
a specific outcome given p̄, is lower than the probability of that outcome
given p̄′. In this case, an assertion of the form lfpF � p̄, can convince
the verifier that when interacting with the prover, the probability of a
“bad” outcome is below a certain threshold.

Essentially, we can use the same algorithm as that of Section 3.2 for
exploiting Proposition 3.4. Servers can incorporate the check F (t̄ ) � t̄
together with the dual check t̄ � F (t̄ ).

Interestingly, it turns out that the two propositions of this section
are actually instances of a more general theorem, which gives rise to a
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generalized approximation-protocol, that can be seen as a combination
of the two techniques presented in this section.

Proposition 3.5. Let (X,�,v) be a trust structure in which � is v-
continuous. Let p̄ ∈ X [n], and F : X [n] → X [n] be any function that is
v-continuous and �-monotonic. Assume that p̄ satisfies p̄ � F (p̄). If
there exists an information approximation t̄ ∈ X [n] for F , with property
that p̄ � t̄, then p̄ � lfp F .

Proof. The proof of Proposition 3.5 is similar to that of Proposition 3.1.
We use the diagram:

p̄ � F (p̄) � . . . � F i(p̄) � . . .

� � � . . .

t̄ v F (t̄) v . . . v F i(t̄) v . . .

By continuity of � we have p̄ � ⊔
i F

i(t̄).

Note that one obtains Proposition 3.1 with the trivial information
approximation t̄ = ⊥v, and Proposition 3.2 by taking the proof to be the
approximation, i.e. p̄ = t̄.

In fact, this proposition can be used for a protocol, which can be
seen as a merger of the ideas of proof-carrying-authorization and the
snapshot protocol. The prover p sends a proof p̄ to the verifier v. The
condition p̄ � Π(p̄) can be checked in the same manner as in the proof-
carrying authorization protocol. Now v needs to assert the existence of
an information approximation t̄, with p̄ � t̄. This can be done by running
the asynchronous algorithm until property t̄i � p̄i is satisfied locally at
each node i, which can be checked in a manner similar to that in the
snapshot algorithm for Proposition 3.2. This protocol is analogous to
that in Section 3.1 without the restriction p̄ � ⊥v, but requiring more
work for the verifiers to check the proof (in the worst case they must
compute their local fixed-point-values).

We note finally that the v-continuity property, required of � in
our propositions, is satisfied for all interesting trust-structures we are
aware of: Theorem 3 of Carbone et al. [7] implies that the information-
continuity condition is satisfied for all interval-constructed structures.
Furthermore, their Theorem 1 ensures that interval-constructed struc-
tures are complete lattices with respect to � (thus ensuring existence of
⊥�). Several natural examples of non-interval domains can also be seen
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to have the required properties [15]. The requirement that all policies
πp are monotonic also with respect to � is not unrealistic. Intuitively, it
amounts to saying that if everyone raises their trust-levels in everyone,
then policies should not assign lower trust levels to anyone.

4 Dynamics

In this section, we briefly outline what can be done in the case of some
function fi changing to f ′i (denoted fi 7→ f ′i). Denote by F ′ = F [f ′i/i] =
〈f1, f2, . . . , fi−1, f

′
i , fi+1, . . . fn〉 the updated ‘global function’. Suppose

that the fixed-point computation has terminated, i.e. each node i knows
its value i.tcur along with values i.m[j] for j ∈ i+, so that for all i,
i.tcur = (lfp F )i. Suppose now that some node i makes a policy update,
i.e. changes its function fi to f ′i , e.g. due to new information being
available. One could now let node i broadcast a “reset”-message to all
nodes, and computation, including dependency graph discovery, could
restart. However, in this approach there is a lot of information which
is unnecessarily discarded. In many systems it is likely that observing
interactions between principals will cause information-increasing changes
in policies [15,20]. An update F 7→ F ′ is information increasing if for all
t̄ ∈ X [n], F (t̄) v F ′(t̄). This constitutes a very important restricted class
of updates which can be resolved very efficiently. It is easy to see that, in
the case of information increasing updates, the current values (i.tcur)i∈[n]

are an information approximation also to F ′. This means that one can
invoke Prop. 2.1, and so the asynchronous fixed-point algorithm can
continue with the old values.

Clearly, also more general types of updates will occur, but we conjec-
ture that in many systems they will be less frequent, i.e. policy changes
are rare whereas obtaining new information about behaviour is not, but
both trigger a change in the trust-policy function. In the case of general
updates, there are two issues which can largely be considered indepen-
dently.

Firstly, an update fi 7→ f ′i may or may not change the structure of
the dependency graph. It may add new edges and/or delete edges. This
can easily be dealt with, essentially by running the dependency-graph
algorithm from Section 2.1, but with the updating node i running in the
role of the root node. The only interesting difference is the case where i
initiates a new node j, which has an edge to a node k, which was already
in the old dependency graph. In this case, there is no reason for j to
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assume ⊥v for k, instead, k acknowledges and sends its current value,
k.tcur.

The second issue is the fact that when fi changes to f ′i , in general,
any node j that has a path to i in the dependency graph will no longer
have a valid estimate of the (updated) trust values in variables j.tcur and
j.m. Our idea is to ensure that any such node j, takes on an information
approximation for the updated function F ′ for all entries in its array
j.m[k] where k ∈ [n] has a path to i. If this can be ensured, we can
invoke our Proposition 2.1 with respect to the updated function F ′, which
ensures that the asynchronous algorithm, when run with the updated
functions F ′, will converge to lfp F ′. An important simple observation
is that if j ∈ [n] does not have a path to i, then j is unaffected by the
update. This means that any node k ∈ [n], does not need to reset its
entries k.m[j] for such unaffected nodes j.

4.1 Edge-adding Updates

Consider an update, fi 7→ f ′i , where the dependencies of fi are contained
in the dependencies of f ′i , i.e. node i adds additional edges to the de-
pendency graph, but deletes none. Clearly, one must extend the current
dependency graph to a larger graph in order to proceed with compu-
tation. Furthermore, since function fi has changed, any node j that
depends on i, either directly or indirectly, will have inconsistent values in
their arrays j.m. The idea in our algorithm is for those nodes (and only
those nodes!) to take on a safe approximation to the updated function.
Since the update can be arbitrary, we choose value ⊥v as our approxima-
tion, to ensure that this value is, in fact, an information approximation.
Once all these nodes have taken a safe approximation, we can invoke our
Proposition 2.1, to ensure that the Asynchronous Convergence Theorem
is satisfied, and computation can proceed in the updated graph.

Concretely, node i will now run two algorithms concurrently. Firstly, i
will run, in the role of a root node, a generalized version of the dependency-
graph algorithm from Section 2. More specifically, it is the same algo-
rithm, except that we allow generalized acknowledgment-messages which
carry values from X. The reason is that i might initiate a new node j,
which has an edge to a node k, which was already in the old dependency
graph (see Figure 4). In this case, there is no reason for j to assume ⊥v
for k, instead, k acknowledges and sends its current value, k.tcur. This
leads to a sound approach when combined with the second algorithm.

In the second algorithm, the node i ensures that all nodes that de-
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Old Graph

k

R

i

j

Extended Graph

Figure 4: Situation where node i initiates a new node j which has an
edge back to an old node k. Old nodes are black and new nodes white.
Edges in the new graph are full lines, whereas dotted lines denote paths
in the old graph.

pend on it, either directly or indirectly, take on a safe approximation to
the new function. This algorithm is given by Figure 5. Node i will set
i.tcur ← i.told ← ⊥v, while leaving its array i.m unchanged. The algo-
rithm will terminates by a principle similar to that of the dependency-
graph algorithm. In contrast to that algorithm, the messages “flow” in
the opposite direction of the edges, e.g. from i to i−. Node i starts by
sending reset messages to each node j ∈ i−. It expects to receive a reply
from each of these nodes, and once received, the algorithm is terminated.
Any node j (including possibly i itself) which receives a reset message
from a node k, starts by setting its entry for k, j.m[k] ← ⊥v. It then
sets j.told ← j.tcur ← ⊥v, which is a safe approximation of its value, with
respect to the updated fixed point. Unless i = j, node j then propagates
the reset message to each j′ ∈ j−. The propagation is only done for the
first reset message received. Subsequent message are simply acknowl-
edged immediately after the array entry has been updated. Once j has
received acknowledgments from each of its “parents” (i.e. j−), it either
sends an acknowledgment to the first node which sent it the reset mes-
sage, or, in case of i = j, it stops. The effect of this algorithm is the
following. For each node j ∈ [n], j will receive a reset message from
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Process: nodes j(6= i)
receive (reset) from X;
j.told ← j.tcur ← j.m[X] ← ⊥v;
||{A,B}

A : replicate
[ receive (reset) from Y ;
j.m[Y ] ← ⊥v;
send (ack) to Y ]

B : ||k∈j−

k : send (reset) to k;
receive (ack) from k;

|| join j− then send (ack) to X

Figure 5: Reset Algorithm - Generic node behaviour

each l ∈ j+ which has a path to i. Each of the array entries for these
nodes, j.m[l], is set to ⊥v in order to take a safe approximation to the
updated fixed point. Note however, that any node n which does not have
a path to i, will never receive a reset message, and thus any n′ ∈ n−

which depends on n, will not reset its entry for n.
Finally, one must consider how the two algorithms work concurrently.

Say that a node is “new” if it is in the dependency graph for the updated
function F ′ but not in that for F . Similarly an“old”node is one that is in
the dependency graph for F . Suppose first that i initiates a new node j,
which depends on an old node k. If j informs k of the dependency before k
“is reset” (receives a reset message), then j will receive the current value
of k, which can later be reset to ⊥v if the reset-algorithm requires it (see
Figure 4). Suppose instead that k has received its reset message before
it is informed of j’s dependency. In this case j will receive ⊥v. In either
case, when both algorithms have terminated, then we have extended the
dependencies to the new dependency graph, and furthermore, any node
j in the extended graph stores in its current value, and in its array j.m
only information approximations to the fixed point value. In this case, by
Prop. 2.1 the conditions of the Asynchronous Convergence Theorem are
satisfied, and computation with respect to the new function F ′ = F [f ′i/fi]
can proceed.

In the worst case, in which every other node depends on i, this al-
gorithm will reduce to the trivial “reset” algorithm, in which the reset

message is broadcast to all nodes. Is not hard to see that the global
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number of messages sent in this algorithm is O(|E ′|), where E ′ denotes
the edges in the extended graph. Each message has bit-size O(1), or
O(log2 |X|) in case of generalized acknowledgments.

4.2 Non Edge-adding Updates

Consider an update, fi 7→ f ′i , where the dependencies of fi are a super
set of the dependencies of f ′i , i.e. node i deletes edges, but adds none.
In some ways, this case is simpler. One could just let i send a delete

message to each j that “was deleted”. Then i simply runs the “reset”-
algorithm described in the previous section. This is safe, but one might
argue that we might still have redundant “dangling” edges in the graph.
This occurs in the case where a deleted edge ij disconnects from the
root node, a set of nodes k, which are reachable only from j. If such
disconnected k has a dependency back to a node l, which is still reachable
from the root, then l will be sending values to k even though k is really
not needed in order for the root to compute its value. It is not clear, short
of a complete re-computation of the dependency graph (which could be
acceptable), how to efficiently (dynamically) deal with this problem.

4.3 General Updates

It should be clear that a combination of these two algorithms can be used
to recover from arbitrary updates, leaving still the problem of “dangling”
edges. One simply initiates, a concurrent execution of the algorithms for
updating the dependency graph (deletion and addition of edges), together
with the reset-algorithm described previously.

4.4 An example run

We illustrate a simple policy update on the functions from Section 2.3.
Let us assume that the root node R decides to update πR from

πR = (pAq(S) ∨ pCq(S)) t Loc(S)

to policy π′R by replacing the trust-join by the more restrictive trust-meet.

π′R = (pAq(S) ∧ pCq(S)) t Loc(S)

Its dependencies are unchanged. Again we illustrate the algorithm with
a sequence of network-states, starting with the converged state from Sec-
tion 2.3.
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Network snapshot 1. Initial state, corresponding to the fixed point of
the old policies.

R.tcur = (4, 5)
m[A] = (4, 5)
m[C] = (4, 6)

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

��
A.tcur = (4, 5)
m[B] = (4, 5) 11

B.tcur = (4, 5)
m[R] = (4, 5)

ee

D.tcur = (4, 6)
m[C] = (4, 6)

KK

Network snapshot 2. R updates, πR 7→ π′R, and initiates the update
algorithm.

R.tcur = (0, 0)
m[A] = (4, 5)
m[C] = (4, 6)

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

��
A.tcur = (4, 5)
m[B] = (4, 5) 11

B.tcur = (4, 5)
m[R] = (4, 5)

R:resetee

D.tcur = (4, 6)
m[C] = (4, 6)

KK

Network snapshot 3. B resets its value for R, and sends a reset mes-
sage to A.

R.tcur = (0, 0)
m[A] = (4, 5)
m[C] = (4, 6)

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

��
A.tcur = (4, 5)
m[B] = (4, 5)

B:reset

11
B.tcur = (0, 0)
m[R] = (0, 0)

ee

D.tcur = (4, 6)
m[C] = (4, 6)

KK

Network snapshot 4.

R.tcur = (0, 0)
m[A] = (4, 5)
m[C] = (4, 6)

A:reset

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

��
A.tcur = (0, 0)
m[B] = (0, 0) 11

B.tcur = (0, 0)
m[R] = (0, 0)

ee

D.tcur = (4, 6)
m[C] = (4, 6)

KK
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Network snapshot 5. No further reset-messages are sent. We do not
illustrate the sequence of ack messages flowing back.

R.tcur = (0, 0)
m[A] = (0, 0)
m[C] = (4, 6)

��

-- C.tcur = (4, 6)
m[D] = (4, 6)

��
A.tcur = (0, 0)
m[B] = (4, 5) 11

B.tcur = (0, 0)
m[R] = (0, 0)

ee

D.tcur = (4, 6)
m[C] = (4, 6)

KK

It is important to notice that the component consisting of C and D
is completely unaffected by the update, and, more importantly, that R
keeps the old information from C, i.e., entry R.m[C] = (4, 6). If the asyn-
chronous algorithm is run from this point, it will converge much faster
than if run from scratch since this information is immediately incorpo-
rated by R.

5 Conclusion

We have presented concrete algorithmic techniques for computation and
approximation of the least fixed-point of a collection of continuous func-
tions on trust structures. We have shown that the assumptions of the
Asynchronous Convergence Theorem of Bertsekas are satisfied if one ini-
tiates computation with a consistent information-approximation, which
means that we can apply a well-established asynchronous fixed-point al-
gorithm for both approximation and computation of the least fixed-point.
We have considered trust structures in which the two orderings are re-
lated in that the information ordering is continuous with respect to the
trust ordering. For these trust structures, we have proved two proposi-
tions which relate the two orderings, allowing one to reason about the
least fixed-point of continuous functions that are also monotonic with
respect to the trust ordering. The propositions are theoretically simple,
but their novelty lies in that we are relating the two different orderings
in a way that gives rise to efficient protocols that allows principals to
reason about the fixed-point values without having to compute the exact
fixed-point. The second approximation technique (Prop. 3.2) relies on an
algorithm which supplies an information approximation. This is used to
reason about the trust-relation between the current value (i.tcur) and the
actual fixed-point value (lfp F )i. This gives a nice connection between the
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asynchronous fixed-point algorithm, which automatically provides infor-
mation approximations, and the idea of safe fixed-point approximation.
In the final section, we have presented techniques to deal with dynamic
updates of the policy functions, fi. For information-increasing updates,
this is very efficient as all current estimates are still valid (invoking Prop.
2.1), in the sense that that the asynchronous algorithm will converge
to the correct value. For completely general updates, we have given an
algorithm which does not discard the information that is definitely not
affected by the update.

One can imagine the system starting from scratch, i.e. there is a col-
lection of nodes, each with a trivial policy π = ⊥v, implying that no
nodes are connected in the dependency graph. As the system evolves,
edges are added, reflecting creation of new trusting relationships. One
runs the dynamic algorithms for policy updates to ensure that the compu-
tations are always consistent. The techniques are dynamic, which allows
new nodes to enter and leave the network, without affecting the algo-
rithms.

Apart from its application in implementing trust-structure-based sys-
tems, the technique for fixed-point computation presented in this paper
is general enough to be used for order-theoretic fixed-point computation
in any cpo with bottom, or complete lattice. In particular, the techniques
could be the basis of a distributed implementation of a variant of Weeks’
model of trust-management systems [23], in which credentials are stored
by the issuing authorities instead of being presented by clients. This
would allow also for revocation, implemented simply as a trust-policy
update at the authority revoking the credential.

Interesting future work is to explore to which extent the area of ab-
stract interpretation [10] can be applied for trust-structure fixed-points,
e.g. using widening and narrowing to speed up computation, and allow
possibly infinite height cpos. Also, it could be interesting to try and
analyze the amortized complexity of our system. For example, if princi-
pal R wants to know its trust in q, it can run the algorithm presented
in this paper to compute this value. Now, after some time has passed,
principals might have made additional observations about q. Supposing
that R at some point later wants to compute its trust in q, then since
one reuses the information gained from the last computation, the sec-
ond re-computation would be significantly faster. In general, one might
consider the amortized cost of a sequence of operations which are either
’computation of the fixed-point value’, or ’policy update’.
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5.1 Related Work

As mentioned previously, Weeks has developed a mathematical frame-
work [23] suitable for modelling many traditional trust-management sys-
tems (e.g. [3, 4, 9, 11, 12]). The framework is based on defining a global
trust-state (“authorization map” [23]) by existence of least fixed-points
of monotonic endo-functions on complete lattices. The trust-structure
framework [7,19], introduces a notion of information into the framework
of Weeks. The primary difference between the two frameworks is that,
in trust structures, least fixed-points are with respect to information,
whereas in Weeks’ framework they are with respect to trust (indeed, there
is no notion of ‘information ordering’, and ‘trust’ is identified with autho-
rization [23]). Another important difference is that in Weeks’ framework,
the trust policies (licenses) are carried by clients instead of being stored
at the issuing servers. This means that the operational approach is to
let clients present, along with their request, a set of licenses, which, to-
gether, give rise to what corresponds to function Πλ. It is now the job of
the server to (locally) compute the fixed-point, lfp Πλ, and decide how to
respond. In contrast, in the trust-structure framework, the trust policies
are naturally distributed. Each principal p, autonomously controls and
stores its policy, πp. This leads naturally to a distributed approach to
computation of fixed-points.

The trust-structure framework has been further developed [15], pro-
viding a categorical axiomatization of trust structures, and providing an
understanding of the interval construction, a general technique for con-
structing trust structures [7,19], as a functor, which is the full and faithful
left-adjoint in a co-reflection of a new category of trust structures, in a
category of complete lattices. The framework has a concrete instance in
the SECURE project [5, 6] which deploys a specific class of trust struc-
tures, allowing probabilistic information in its modelling of trust [15,20].

The idea of computing local fixed-points has been recognized also
by Vergauwen et al. in the non-distributed context of static program-
analysis [22]. Dimitri Bertsekas has developed a substantial body of work
on distributed- and parallel-algorithms for fixed points, and this paper
applies his asynchronous convergence theorem [1] to prove correctness of
a distributed fixed-point algorithm. Finally, the EigenTrust system also
defines its global trust-state by existence of unique (non order-theoretic)
fixed-points [14], and the basic EigenTrust algorithm is essentially Bert-
sekas’ globally synchronous algorithm.
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