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Abstract

We propose a simple model for distributed query processing based on the concept
of a distributed array. Such an array has fields of some data type whose values can
be stored on different machines. It offers operations to manipulate all fields in par-
allel within the distributed algebra. The arrays considered are one-dimensional and
just serve to model a partitioned and distributed data set. Distributed arrays rest on a
given set of data types and operations called the basic algebra implemented by some
piece of software called the basic engine. It provides a complete environment for
query processing on a single machine. We assume this environment is extensible by
types and operations. Operations on distributed arrays are implemented by one basic
engine called the master which controls a set of basic engines called the workers.
It maps operations on distributed arrays to the respective operations on their fields
executed by workers. The distributed algebra is completely generic: any type or oper-
ation added in the extensible basic engine will be immediately available for distributed
query processing. To demonstrate the use of the distributed algebra as a language for
distributed query processing, we describe a fairly complex algorithm for distributed
density-based similarity clustering. The algorithm is a novel contribution by itself. Its
complete implementation is shown in terms of the distributed algebra and the basic
algebra. As a basic engine the Secondo system is used, a rich environment for exten-
sible query processing, providing useful tools such as main memory M-trees, graphs,
or a DBScan implementation.
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1 Introduction

Big data management has been a core topic in research and development for the last
fifteen years. Its popularity was probably started by the introduction of the MapReduce
paradigm [10] which allowed a simple formulation of data processing tasks by a
programmer which are then executed in a highly scalable and fault tolerant way on a
large set of machines. Massive data sets arise through the global scale of the internet
with applications and global businesses such as Google, Amazon, Facebook. Other
factors are the ubiquity of personal devices collecting and creating all kinds of data, but
also the ever growing detail of scientific experiments and data collection, for example,
in physics or astronomy, or the study of the human brain or the genome.

Dealing with massive data sets requires to match the size of the problem with a
scalable amount of resources; therefore distributed and parallel processing is essential.
Following MapReduce and its open source version Hadoop, many frameworks have
been developed, for example, Hadoop-based approaches such as HadoopDB, Hive,
Pig; Apache Spark and Flink; graph processing frameworks such as Pregel or GraphX.

All of these systems provide some model of the data that can be manipulated and
a language for describing distributed processing. For example, MapReduce/Hadoop
processes key-value pairs; Apache Spark offers resilient distributed data sets in main
memory; Pregel manipulates nodes and edges of a graph in a node-centric view. Pro-
cessing is described in terms of map and reduce functions in Hadoop; in an SQL-like
style in Hive; by a set of operations on tables in Pig; by a set of operations embedded in
a programming language environment in Spark; or by functions processing messages
between nodes in Pregel.

In this paper, we consider the problem of transforming an extensible query pro-
cessing system on a single machine (called the basic engine) into a scalable parallel
query processing system on a cluster of computers. All the capabilities of the basic
engine should automatically be available for parallel and distributed query processing,
including extensions to the local system added in the future.

We assume the basic engine implements an algebra for query processing called the
basic algebra. The basic algebra offers some data types and operations. The basic
engine allows one to create and delete databases and within databases to create and
delete objects of data types of the basic algebra. It allows one to evaluate terms (expres-
sions, queries) of the basic algebra over database objects and constants and to return
the resulting values to the user or store them in a database object.

The idea to turn this into a scalable distributed system is to introduce an additional
algebra for distributed query processing into the basic engine, the distributed algebra.
The distributed system will then consist of one basic engine called the master con-
trolling many basic engines called the workers. The master will execute commands
provided by a user or application. These commands will use data types and operations
of the distributed algebra. The types will represent data distributed over workers and
the operations be implemented by commands and queries sent to the workers.

The fundamental conceptual model and data structure to represent distributed data
is a distributed array. A distributed array has fields of some data type of the basic
algebra; these fields are stored on different computers and assigned to workers on these
computers. Queries are described as mappings from distributed arrays to distributed
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arrays. The mapping of fields is described by terms of the basic algebra that can be
executed by the basic engines of the workers. Further, the distributed algebra allows
one to distribute data from the master to the workers, creating distributed arrays, as
well as collect distributed array fields from the workers to the master.

These ideas have been implemented in the extensible DBMS Secondo which takes
the role of the basic engine. The Secondo kernel is structured into algebra mod-
ules each providing some data types and operations; all algebras together form the
basic algebra. Secondo provides query processing over the implemented algebras as
described above for the basic engine. Currently there is a large set of algebras providing
basic data types (e.g., integer, string, bool, ...), relations and tuples, spatial data types,
spatio-temporal types, various index structures including B-trees, R-trees, M-trees;
data structures in main memory for relations, indexes, graphs; and many others. The
distributed algebra described in this paper has been implemented in Secondo.

In the main part of this paper we design the data types and operations of the dis-
tributed algebra and formally define their semantics.

To illustrate distributed query processing based on this model, we describe an
algorithm for distributed density-based similarity clustering. That is, we show the
“source code” to implement the algorithm in terms of the distributed algebra and the
basic algebra.

The contributions of the paper are as follows:

– A generic algebra for distributed query processing is presented.
– Data types and operations of the algebra are designed and their semantics are

formally defined.
– The implementation of the distributed algebra is explained.
– A novel algorithm for distributed density-based similarity clustering is presented

and its complete implementation in terms of the distributed algebra is shown.
– An experimental evaluation of the framework shows excellent load balancing and

good speedup.

The rest of the paper is structured as follows. Related work is described in Sect. 2.
In Sect. 3, Secondo as a generic extensible DBMS is introduced, providing a basic
engine and algebra. In Sect. 4, the distributed algebra is defined. Sect. 5 describes
the implementation of this algebra in Secondo. In Sect. 6 we show the algorithm for
distributed clustering and its implementation. A brief experimental evaluation of the
framework is given in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related work

Our algebra for generic distributed query processing in Secondo has related work
in the areas of distributed systems, distributed databases, and data analytics. In the
application section of this paper, we present an algorithm for the density-based simi-
larity clustering (see Sect. 6). The most related work in these areas is discussed in this
section.
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2.1 Distributed system coordination

Developing a distributed software system is a complex task. Distributed algorithms
have to be coordinated on several nodes of a cluster. Apache ZooKeeper [29],
HashiCorp Consul [8] and etcd [16] are software components used to coordinate
distributed systems. These systems cover topics such as service discovery and con-
figuration management. Even these components are used in many software projects;
some distributed computing engines have also implemented their own specialized
resource management components (such as YARN—Yet Another Resource Negotia-

tor [54], which is part of Hadoop).
In our distributed array implementation, we send the information to coordinate

the system directly from the master node to the worker nodes. The worker nodes are
manually managed in the current version of our implementation. Topics such as high
availability or replication will be part of a further version.

2.2 Distributed file systems and distributed databases

2.2.1 General remarks

In this section we discuss systems for distributed analytical data processing.
A major distinction between those systems and the distributed algebra of this paper

is genericity. The systems to be discussed all have some data model that is manipulated
by operations, for example, tables or key-value pairs. In contrast, distributed algebra
does not have any fixed data model. What is predetermined is the model of a distributed
array which is just a simple abstraction of a partitioned (and distributed) data set.
Furthermore, it is fixed that sets of tuples are used for data exchange. The field types
of distributed arrays are absolutely generic.

This makes it possible to plug in a basic engine providing types and operations, if
you want, a “legacy system”, with all its data structures and capabilities. The clear
separation between the algebra describing distributed query processing and the basic
algebra (or engine) defining local data and query processing by workers is unique for
our approach.

Our implementation of the distributed algebra so far uses Secondo as a basic
engine; we are currently working on embedding other systems, PostgreSQL in partic-
ular.

Many systems provide some level of extensibility such as user defined data types
and functions. However, embedding a complete basic engine is a quite different matter:
we simply inherit everything there is, without doing extra work for every part, as in the
case of extensibility. The basic engine Secondo is a rich environment developed over
many years. Beyond standard relational query processing it has specialized “algebra
modules” for spatial and spatio-temporal data, index structures such as R-trees, TB-
trees, M-trees, symbolic trajectories, image and raster data, map matching algorithms,
DBScan, and so forth. There are persistent as well as main memory data structures,
allowing distributed in-memory processing.
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Moreover, the scope of extensibility within the basic engine Secondo is much
higher than in other systems. Whereas in most systems user defined types can be
added at the level of attribute types in tables, the architecture of Secondo is designed
around extensibility. A DBMS data model is implemented completely in terms of
algebra modules. Hence one can add not only atomic data types but also any kind
of representation structure such as an index, a graph, or a column-oriented relation
representation, for example.

In the following, we refer to Distributed Algebra as DA and to Distributed Algebra
with Secondo as a basic engine as DA/Secondo, respectively.

2.2.2 MapReduce and distributed file systems

In 2004, the publication of the MapReduce paper [10] proposed a new technique for
the distributed handling of computational tasks. Using MapReduce, calculations are
performed in two phases: (1) a map phase and (2) a reduce phase. These tasks are
executed on a cluster of nodes in a distributed and fault-tolerant manner. Map and
reduce steps are formulated directly in a programming language.

The Google File System (GFS) [21] and its open-source counterpart Hadoop File

System (HDFS) [45] are distributed file systems. These file systems represent the
backbone of the MapReduce frameworks; they are used for the input and output of
large datasets. Stored files are split up into fixed-sized chunks and distributed across a
cluster of nodes. To deal with failing nodes, the chunks can be replicated. Due to the
architecture of the file systems, data are stored in an append-only manner.

To exploit node level data locality, the MapReduce Master Node tries to schedule
jobs in a way that the chunks of the input data are stored on the node that processes the
data [21, p. 5]. If the chunks are stored on another node, the data need to be transferred
over a network, which is slow and time-consuming. HDFS addresses data locality only
on chunks and not based on the value of the stored data, which can lead to performance
problems [14].

In our distributed array implementation, data are directly assigned to the nodes in
a way that data locality is exploited, and the amount of transferred data is minimized.
The output of a query can be directly partitioned and transferred to the worker nodes
that are responsible for the next processing step (see the discussion of the dfmatrix

data type in Sect. 4). In addition, Secondo uses a type system. Before a query is
executed, the query is checked for type errors. Therefore, in our distributed array
implementation, the data are stored typed. On a distributed file system, data are stored
as raw bytes. Type and structure information need to be implemented in the application
that reads and writes the data.

2.2.3 Distributed databases and frameworks for analytic processing

HBase [27] (the open-source counterpart of BigTable [6]) is a distributed column-
oriented database built on top of HDFS. HBase is optimized to handle large tables
of data. Tables consist of rows of multiple column families (a set of key-value pairs).
Internally, the data are stored in String Sorted Tables (SSTables) [6,41], which are
handled by HDFS. HBase provides simple operations to access the data (e.g., get and
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scan) and does not support complex operations such as joins; MapReduce jobs can be
used to process the data. The DA can of course operate on data that is stored across
a cluster of systems in a distributed manner. In addition, DA/Secondo offers a wide
range of operators (such as joins), which can be used to process the data.

Key-Value Stores such as Amazon Dynamo [11] or RocksDB [49] provide a simple
data model consisting of a key and a value. Systems such as HBase, BigTable, or
Apache Cassandra [32] provide a slightly more complex data model. A key can have
multiple values; internally, the data are stored as key-value pairs on disk. The values
in these implementations are limited to scalar data types such as int, byte, or string.

Apache Hive [50] is a warehousing solution that is built on top of Apache Hadoop,
which provides an SQL-like query language to process in HDFS stored data. Hive
contains only a limited set of operations.

Apache Pig [18] provides a query language (called Pig Latin [40]) for processing
large amounts of data. With Pig Latin, users no longer need to write their own MapRe-
duce programs; they write queries which are directly translated into MapReduce jobs.
Pig Latin focuses primarily on analytical workloads.

Pig Latin provides an interesting data model built from atomic types and tuples,
bags and maps. Tuples may have flexible schemas and may be nested. A program is
expressed as a sequence of assignments to variables, applying one operation in each
step. Operations such as FILTER, FOREACH ... GENERATE, or COGROUP, JOIN,
ORDER, can be applied to distributed data sets.

Comparing to DA, we find a fixed, not a generic data model. Operations on dis-
tributed data sets are tied to this model and perform implicit redistribution. In DA, we
can nest operations (i.e., write sequences of operations) and we have a strict separation
between distributed and local computation. Comparing to DA/Secondo, of course,
the set of available data structures and operations is much more limited. For example,
we do not have any indexes or index-based join algorithms.

Pigeon [13] is a spatial extension to Pig which supports spatial data types and
operations. Pig was not extensible by atomic data types; any other type than number
or string needed to be represented as bytearray. Hence the Pigeon extension represents
spatial data types as Well-Known Text or Well-Known Binary exchange formats within
Pig. Spatial functions need to convert from and to this format when working on the
data.

Remarkable for a spatial extension is that there are no facilities for spatial indexing
or spatial join. In the examples in [13], spatial join is expressed as cross product and
filtering (CROSS and FILTER operators of PigLatin), a very inefficient evaluation.
This is simply due to the fact that extensions by index structures or spatial join operators
are not possible in the Pig framework.

In contrast, spatial data types, spatial indexing and spatial join are supported in
DA/Secondo as demonstrated later in this paper.

The publication of the MapReduce paper created the foundation for many new
applications and ideas to process distributed data. A widely used framework to process
data in a scalable and distributed manner is Apache Spark [57]. In Spark, data are stored
in resilient distributed datasets (RDDs) [56] in a distributed way across a cluster of
nodes. In contrast to earlier work, RDDs can reside in memory in a fault-tolerant way.
Hence Spark supports in particular distributed in-memory processing.
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Spark defines an interesting set of operations on RDDs that may be compared
to those of DA. For example, there is an operation (called transformation) map( f :

T => U ), parameterized by a function mapping values of type T into those of type U .
Applied to an RDD[T ], i.e., an RDD with partitions of type U , it returns an RDD[U ].

One can see that RDDs are generic and parameterized by types, hence they are fairly
similar to the distributed arrays of this paper. Also the map transformation corresponds
to our dmap operator, introduced later.

Differences are that RDDs and operations on them are not formalized, especially
the way fields of RDDs are mapped to workers and are remapped by operations is
determined only by the implementation. In DA, field indices do play a role, are con-
trolled by a programmer and are part of the formalization. It is unclear whether in
Spark the number of fields of an RDD can be chosen independently from the number
of workers, as in DA. This is relevant for load balancing as shown later in the paper.

Another difference is that only some of the operations are generic; others assume
types for key-value pairs or sequences. For example, groupByK ey, join or cogroup

transformations assume key-value pairs. In contrast, DA has only generic operations
and all the transformation operations of RDDs can be expressed in DA/Secondo by
combining DA operations with basic engine operations. How data are repartitioned is
precisely defined in the DA.

Dryad [30] is a distributed execution engine that is developed at Microsoft.
DryadLINQ [55] provides an interface for Dryad which can be consumed by Microsoft
programming languages such as C#. In contrast to Secondo and our algebra imple-
mentation, the goal of Dryad is to provide a distributed environment for the parallel
execution of user-provided programs such as Hadoop. The goal of our implementation
is to provide an extensible environment with a broad range of predefined operators
that can be used to progress data and which can also be enhanced with new operators
by the user.

Another popular framework to process large amounts of data these days is Apache

Flink [5]. This software system, originating from the Stratosphere Platform [1], is
designed to handle batch and stream processing jobs. Processing batches (historical
data or static data sets) is treated as a special form of stream processing. Data batches
are processed in a time-agnostic fashion and handled as a bounded data stream. Like our
system, Flink performs type checking and can be extended by user-defined operators
and data types. However, Secondo ships with a larger amount of operators and data
types. For example, it can handle spatial and spatio-temporal data out of the box.

Parallel Secondo [33] and Distributed Secondo [38] are two already exist-
ing approaches to execute queries in Secondo [24] in a distributed and parallel manner.
Both approaches are integrating an existing software component into Secondo to
achieve the distributed query execution. Parallel Secondo uses Apache Hadoop
(the open source counterpart of the MapReduce framework) to distribute tasks over
several Secondo installations on a cluster of nodes. Distributed Secondo uses
Apache Cassandra as a distributed key-value store for the distributed storage of data,
service discovery, and job scheduling. Both implementations use an additional com-
ponent (Hadoop or Cassandra) to parallelize Secondo. The algebra for distributed
arrays works without further components and provides the parallelization directly in
Secondo.
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2.3 Array databases and data frames

Array databases such as Rasdaman (raster data manager) [3], SciDB [47], or SciQL

[58] focus on the processing of data cubes (multi-dimensional arrays). In addition to
specialized databases, there are raster data extensions for relational database manage-
ment systems such as PostGIS Raster [44] or Oracle GeoRaster [42]. Array databases
are used to process data like maps (two dimensional) or satellite image time series
(three dimensional).

Our distributed array implementation works with one-dimensional arrays. The array
is just used to structure the data for the workers, representing a partitioned distributed
data set. Array databases use the dimensions of the array to represent the location of
the data in the n-dimensional space, which is a different concept. Secondo works
with index structures (such as the R-Tree [26]) for efficient data access. In addition,
in array databases, the values of the array cells are restricted to primitive or common
SQL types like integers or strings. In our model and implementation, the data types
of the fields can be any type provided by the basic engine, hence an arbitrary type
available in Secondo.

Libraries for processing array structured data (also called data frames), such as
Pandas [36] or NumPy [39], are widely used in scientific computing these days. Such
libraries are used to apply operations such as filters, calculations, or mutations on array
structured data. SciHadoop [4] is using Hadoop to process data arrays in a distributed
and parallel way. SciHive [19] is a system that uses Hive to process array structured
data. AFrame [46] is another implementation of a data frame library which is built
on top of Apache AsterixDB [2]. The goal of the implementation is to process the
data frames in a distributed manner and hide the complexity of the distributed system
from the user. These libraries and systems are intended for direct integration into the
source code. These libraries simplify the handling of arrays, bring along data types
and functions, and some also allow the distributed and parallel processing of arrays.
Our system instead works with a query language to describe operator trees. Further,
Secondo is an extensible database system that can be extended with new operators
and data types by a user.

In [17] a Query Processing Framework for Large-Scale Scientific Data Analysis is
proposed. Using the described framework, large amounts of data can be processed by
using an SQL-like query language. This framework enhances the Apache MRQL [37]
language in such a way that array data can be efficiently processed. MRQL uses com-
ponents, such as Hadoop, Flink or Spark, for the execution of the queries. In contrast
to our distributed array implementation, the paper focuses on the implementation of
matrix operations to speed up algorithms to process the data arrays.

2.4 Clustering

In Sect. 6, we present an algorithm for distributed density-based similarity clustering.
The main purpose of the section in the context of this paper is to serve as an illustration
of distributed algebra as a language for formulating and implementing distributed
algorithms. Nevertheless, the algorithm is a novel contribution by itself.
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Density-based clustering, a problem introduced in [15], is a well established tech-
nology that has numerous applications in data mining and many other fields. The basic
idea is to group together objects that have enough similar objects in their neighbor-
hood. For an efficient implementation, a method is needed to retrieve objects close to
a given object. The DBScan algorithm [15] was originally formulated for Euclidean
spaces and supported by an R-tree index. But it can also be used with any metric
distance function (see for example [31]) and then be supported by an M-tree [7].

Here we only discuss algorithms for distributed density-based clustering. There
are two main classes of approaches. The first can be characterized as (non-recursive)
divide-and-conquer, consisting of the three steps:

1. Partition the data set.
2. Solve the problem independently for each partition.
3. Merge the local solutions into a global solution.

It is obvious that a spatial or similarity (distance-based) partitioning is needed for
the problem at hand. Algorithms falling in this category are [9,28,43,53]. They differ
in the partitioning strategy, the way neighbors from adjacent partitions are retrieved,
and how local clusters are merged into global clusters. In [53] a global R-tree is
introduced that can retrieve nodes across partition (computer) boundaries. The other
algorithms [9,28,43] include in the partitioning overlap areas at the boundaries so that
neighbors from adjacent partitions can be retrieved locally. [28] improves on [53] by
determining cluster merge candidate pairs in a distributed manner rather than on the
master. [9] strives to improve partitioning by placing partition boundaries in sparse
areas of the data set. [43] introduces a very efficient merge technique based on a
union-find structure.

These algorithms are all restricted to handle objects in vector spaces. Except for
[53] they all have a problem with higher-dimensional vector spaces because in d

dimensions 2d boundary areas need to be considered.
A second approach is developed in [34]. This is based on the idea of creating a

k-nearest-neighbor graph by a randomized algorithm [12]. This is modified to cre-
ate edges between nodes if their distance is less than Eps, the distance parameter
of density-based clustering. On the resulting graph, finding clusters corresponds to
computing connecting components.

This algorithm is formulated for a node-centric distributed framework for graph
algorithms as given by Pregel [35] or GraphX [52]. In contrast to all algorithms of the
first class, it can handle arbitrary symmetric distance (similarity) functions. However,
the randomized construction of the kNN graph does not yield an exact result; therefore
the result of clustering is also an approximation.

The algorithm of this paper, called SDC (Secondo Distributed Clustering), follows
the first strategy but implements all steps in a purely distance-based manner. That is,
we introduce a novel technique for balanced distance-based partitioning that does not
rely on Euclidean space. The computation of overlap with adjacent partitions is based
on a new distance-based criterion (Theorem 1). All search operations in partitioning
or local DBScan use M-trees.
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Another novel aspect is that merging clusters globally is viewed and efficiently
implemented as computing connected components on a graph of merge tasks. Repeated
binary merging of components is avoided.

Compared to algorithms of the first class, SDC is the only algorithm working with
arbitrary metric similarity functions. Compared to [34] it provides an exact instead of
an approximate solution.

3 A basic engine: Secondo

As described in the introduction, the concept of the Distributed Algebra rests on the
availability of a basic engine, providing data types and operations for query processing.
In principle, any local1 database system should be suitable. If it is extensible, the
distributed system will profit from its extensibility.

The basic engine can be used in two ways: (i) it can provide query processing, and
(ii) it can serve as an environment for implementing the Distributed Algebra. In our
implementation, Secondo is used for both purposes.

3.1 Requirements for basic engines

The capabilities required from a basic engine to provide query processing are the
following:

1. Create and delete, open and close a database (where a database is a set of objects
given by name, type, and value);

2. create an object in a database as the result of a query and delete an object;
3. offer a data type for relations and queries over it;
4. write a relation resulting from a query2 efficiently into a binary file or distribute it

into several files;
5. read a relation efficiently from one or several binary files into query processing.

The capabilities (1) through (3) are obviously fulfilled by any relational DBMS.
Capabilities (4) and (5) are required for data exchange and might require slight exten-
sions, depending on the given local DBMS. In Sect. 4 we show how these capabilities
are motivated by operations of the Distributed Algebra.

3.2 Secondo

In this section we provide a brief introduction to Secondo as a basic engine. It also
shows an environment that permits a relatively easy implementation of the Distributed
Algebra.

Secondo is a DBMS prototype developed at University of Hagen, Germany, with
a focus on extensible architecture and support of spatial and spatio-temporal (moving
object) data. The architecture is shown in Fig. 1.

1 By this we mean a database server running on a single computer.
2 For efficiency, it is preferable to avoid writing it into the database.
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Fig. 1 a Secondo components,
b Kernel architecture

(a) (b)

There are three major components: the graphical user interface, the optimizer and
the kernel, written in Java, Prolog, and C++, respectively. The kernel uses Berke-
leyDB as a storage manager and is extensible by so-called algebra modules. Each
algebra module provides some types (type constructors in general, i.e., parameterized
types) and operations. The query processor evaluates expressions over the types of the
available algebras. Note that the kernel does not have a fixed data model. Moreover,
everything including relations, tuples, and index structures is implemented within
algebra modules.

The data model of the kernel and its interface between system frame and algebra
modules is based on the idea of second-order signature [22]. Here a first signature
provides a type system, a second signature is defined over the types of the first signature.
This is explained in more detail in Sect. 4.3.

To implement a type constructor, one needs to provide a (usually persistent) data
structure and import and export functions for values of the type. To implement an oper-
ator, one needs to implement a type mapping function and a value mapping function,
as the objects manipulated by operators are (type, value) pairs.

A database is a pair (T , O) where T is a set of named types and O is a set of named
objects. There are seven basic commands to manipulate such a generic database:

type <identifier> = <type expression>

delete type <identifier>

create <identifier>: <type expression>

update <identifier>:= <value expression>

let <identifier> = <value expression>

delete <identifier>

query <value expression>

Here a type expression is a term of the first signature built over the type constructors
of available algebras. A value expression is a term of the second signature built by
applying operations of the available algebras to constants and database objects.

The most important commands are let and query. let creates a new database
object whose type and value result from evaluating a value expression. query evalu-
ates an expression and returns a result to the user. Note that operations may have side
effects such as updating a relation or writing a file. Some example commands are:

let x = 5;

query x;

delete x;

let inc = fun(x: int) x + 1;

query inc;

query inc(7);

query 3 * 5;
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query Cities feed filter[.Name = "New York"] consume;

query Cities_Name_btree Cities exactmatch["New York"] consume;

The first examples illustrate the basic mechanisms and that query just evaluates an
arbitrary expression. The last two examples show that expressions can in particular be
query plans as they might be created by a query optimizer. In fact, the Secondo opti-
mizer creates such plans. Generally, query plans use pipelining or streaming to pass
tuples between operators; here the feed operator creates a stream of tuples from a rela-
tion; the consume operator creates a relation from a stream of tuples. The exactmatch

operator takes a B-tree and a relation and returns the tuples fulfilling the exact-match
query by the third argument. Operators applied to types representing collections of
data are usually written in postfix notation. Operator syntax is decided by the imple-
mentor. Note that the query processing operators used in the examples and in the main
algorithm of this paper can be looked up in the Appendix.

Obviously Secondo fulfills the requirements (1) through (3) stated for basic
engines. It has been extended by operators for writing streams of tuples into (many)
files and for reading a stream from files to fulfill (4) and (5).

4 The distributed algebra

The Distributed Algebra (technically in Secondo the Distributed2Algebra) provides
operations that allow one Secondo system to control a set of Secondo servers running
on the same or remote computers. It acts as a client to these servers. One can start
and stop the servers, provided Secondo monitor processes are already running on
the involved computers. One can send commands and queries in parallel and receive
results from the servers.

The Secondo system controlling the servers is called the master and the servers
are called the workers.

This algebra actually provides two levels for interaction with the servers. The lower

level provides operations

– to start, check and stop servers
– to send sets of commands in parallel and see the responses from all servers
– to execute queries on all servers
– to distribute objects and files

Normally a user does not need to use operations of the lower level.
The upper level is implemented using operations of the lower level. It essentially

provides an abstraction called distributed array. A distributed array has slots of some
type X which are distributed over a given set of workers. Slots may be of any Secondo

type, including relations and indexes, for example. Each worker may store one or more
slots.

Query processing is formulated by applying Secondo queries in parallel to all slots
of distributed arrays which results in new distributed arrays. To be precise, all workers
work in parallel, but each worker processes its assigned slots sequentially.

Data can be distributed in various ways from the master into a distributed array.
They can also be collected from a distributed array to be available on the master.
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Fig. 2 A distributed array. Each slot is represented by a square with its slot number

In the following, we describe the upper level of the Distributed Algebra in terms
of its data types and operations. We first provide an informal overview. In Sect. 4.3
the semantics of types and operations is defined formally and the use of operations is
illustrated by examples.

4.1 Types

The algebra provides two types of distributed arrays called

– darray(X ) - distributed array - and
– dfarray(Y ) - distributed file array.

There exist also variants of these types called pdarray and pdfarray, respectively,
where only some of the fields are defined (p for partial).

Here X may be any Secondo type3 and the respective values are stored in databases
on the workers. In contrast, Y must be a relation type and the values are stored in binary
files on the respective workers. In query processing, such binary files are transferred
between workers, or between master and workers. Hence the main use of darray is for
the persistent distributed database; the main use of dfarray and dfmatrix (explained
below) is for intermediate results and shuffling of data between workers.

Figure 2 illustrates both types of distributed arrays. Often slots are assigned in
a cyclic manner to servers as shown, but there exist operations creating a different
assignment. The implementation of a darray or dfarray stores explicitly how slots are
mapped to servers. The type information of a darray or dfarray is the type of the slots,
the value contains the number of slots, the set of workers, and the assignment of slots
to workers.

A distributed array can be constructed by partitioning data on the master into par-
titions P1, ..., Pm and then moving partitions Pi into slots Si . This is illustrated in
Fig. 3.

A third type offered is

– dfmatrix(Y ) - distributed file matrix

Slots Y of the matrix must be relation-valued, as for dfarray. This type supports
redistributing data which are partitioned in a certain way on workers already. It is
illustrated in Fig. 4.

3 Except the distributed types themselves, so it is not possible to nest distributed arrays.
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Fig. 3 Creating a distributed array by partitioning data on the master

Fig. 4 A distributed file matrix

Fig. 5 A distributed file matrix is collected into a distributed file array

The matrix arises when all servers partition their data in parallel. In the next step,
each partition, that is, each column of the matrix, is moved into one slot of a distributed
file array as shown in Fig. 5.

4.2 Operations

The following classes of operations are available:

– Distributing data to the workers
– Distributed processing by the workers
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– Applying a function (Secondo query) to each field of a distributed array
– Applying a function to each pair of corresponding fields of two distributed

arrays (supporting join)
– Redistributing data between workers
– Adaptive processing of partitioned data

– Collecting data from the workers

4.2.1 Distributing data to the workers

The following operations come in a d-variant and a df-variant (prefix). The d-variant
creates a darray, the df-variant a dfarray.

ddistribute2, dfdistribute2 Distribute a stream of tuples on the master into a dis-
tributed array. Parameters are an integer attribute, the
number of slots and a Workers relation. A tuple is
inserted into the slot corresponding to its attribute value
modulo the number of slots. See Fig. 3.

ddistribute3, dfdistribute3 Distribute a stream of tuples into a distributed array.
Parameters are an integer i , a Boolean b, and the Work-

ers. Tuples are distributed round robin into i slots, if b

is true. Otherwise slots are filled sequentially, each to
capacity i , using as many slots as are needed.

ddistribute4, dfdistribute4 Distribute a stream of tuples into a distributed array.
Here a function instead of an attribute decides where
to put the tuple.

share An object of the master database whose name is
given as a string argument is distributed to all worker
databases.

dlet Executes a let command on each worker associated
with its argument array; it further executes the same
command on the master. This is needed so that the mas-
ter can do type checking on the query expressions to
be executed by workers in following dmap operations.

dcommand Executes an arbitrary command on each worker asso-
ciated with its argument array.

4.2.2 Distributed processing by the workers

Operations:

dmap Evaluates a Secondo query on each field of a distributed array
of type darray or dfarray. Returns a dfarray if the result is a
tuple stream, otherwise a darray. In a parameter query, one
refers to the field argument by “.” or $1.
Sometimes it is useful to access the field number within a

123



1024 Distributed and Parallel Databases (2021) 39:1009–1064

parameter query. For this purpose, all variants of dmap oper-
ators provide an extra argument within parameter functions.
For dmap, one can refer to the field number by “..” or by $2.

dmap2 Binary variant of the previous operation mainly for processing
joins. Always two fields with the same index are arguments
to the query. One refers to field arguments by “.” and “..”,
respectively, the field number is the next argument, $3.

dmap3, ..., dmap8 Variants of dmap for up to 8 argument arrays. One can refer
to fields by “.”, “..”, or by $1, ..., $8.

pdmap, ..., pdmap8 Variants of dmap which take as an additional first argument
a stream of slot numbers and evaluate parameter queries only
on those slot numbers. They return a partial darray or dfarray

(pdarray or pdfarray) where unevaluated fields are undefined.
dproduct Arguments are two darrays or dfarrays with relation fields.

Each field of the first argument is combined with the union of
all fields of the second argument. Can be used to evaluate a
Cartesian product or a generic join with an arbitrary condition.
No specific partitioning is needed for a join. But the operation
is expensive, as all fields of the second argument are moved to
the worker storing the field of the first argument.

partition, partitionF Partitions the fields of a darray or dfarray by a function (sim-
ilar to ddistribute4 on the master). Result is a dfmatrix. An
integer parameter decides whether the matrix will have the
same number of slots as the argument array or a different one.
Variant partitionF allows one to manipulate the input relation
of a field, e.g., by filtering tuples or by adding attributes, before
the distribution function is applied. See Fig. 4.

collect2, collectB Collect the columns of a dfmatrix into a dfarray. See Fig. 5.
The variant collectB assigns slots to workers in a balanced
way, that is, the sum of slot sizes per worker is similar. Some
workers may have more slots than others. This helps to balance
the work load for skewed partition sizes.

areduce Applies a function (Secondo query) to all tuples of a partition
(column) of a dfmatrix. Here it is not predetermined which
worker will read the column and evaluate it. Instead, when
the number of slots s is larger than the number of workers m,
then each worker i gets assigned slot i , for i = 0, ..., m −

1. From then on, the next worker which finishes its job will
process the next slot. This is very useful to compensate for
speed differences of machines or size differences in assigned
jobs.

areduce2 Binary variant of areduce, mainly for processing joins.
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Fig. 6 A simple type system

4.2.3 Collecting data from the workers

Operations:

dsummarize Collects all tuples (or values) from a darray or dfarray into a tuple
stream (or value stream) on the master. Works also for pdarray and
pdfarray.

getValue Converts a distributed array into a local array. Recommended only for
atomic field values; may otherwise be expensive.

getValueP Variant of getValue applicable to pdarray or pdfarray. Provides a
parameter to replace undefined values in order to return a complete
local array on the master.

tie Applies aggregation to a local array, e.g., to determine the sum of
field values. (An operation not of the Distributed2Algebra but of the
ArrayAlgebra in Secondo).

4.3 Formal definition of the distributed algebra

In this section, we formally define the syntax and semantics of the Distributed Algebra.
We also illustrate the use of operations by examples.

Formally, a system of types and operations is a (many-sorted) algebra. It consists of
a signature which provides sorts and operators, defining for each operator the argument
sorts and the result sort. A signature defines a set of terms. To define the semantics,
one needs to assign carrier sets to the sorts and functions to the operators that are
mappings on the respective carrier sets. The signature together with carrier sets and
functions defines the algebra.

We assume that data types are built from some basic types and type constructors.
The type system is itself described by a signature [22]. In this signature, the sorts are
so-called kinds and the operators are type constructors. The terms of the signature are
exactly the available types of the type system.

For example, consider the signature shown in Fig. 6.
It has kinds BASE and ARRAY and type constructors int, real, bool, and array.

The types defined are the terms of the signature, namely, int, real, bool, array(int),
array(real), array(bool). Note that basic types are just type constructors without argu-
ments.

4.3.1 Types

The Distributed Algebra has the type system shown in Fig. 7.
Here BASIC is a kind denoting the complete set of types available in the basic

engine; REL is the set of relation types of that engine. In our implementation BASIC
corresponds to the data types of Secondo. The type constructors build distributed
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Fig. 7 Type system of the
distributed algebra

array and matrix types in DARRAY and DMATRIX. Finally, we rely on a generic
array data type of the basic engine used in data transfer to the master.

Semantics of types are their respective domains or carrier sets, in algebraic termi-
nology, denoted At for a type t .

Let α be a type of the basic engine, α ∈ B ASI C , and let WR be the set of possible
(non-empty) worker relations.

The carrier set of darray is:

Adarray(α) = { ( f , g, n, W ) | n ∈ N
+, W ∈ WR,

f : {0, ..., n − 1} → Aα,

g : {0, ..., n − 1} → {0, ..., |W | − 1} }

Hence the value of a distributed array with fields of type α consists of an integer
n, defining the number of fields (slots) of the array, a set of workers W , a function f

which assigns to each field a value of type α, and a mapping g describing how fields
are assigned to workers.

The carrier set of type dfarray is defined in the same way; the only difference is
that α must be a relation type, α ∈ RE L . This is because fields are stored as binary
files and this representation is available only for relations.

Types pdarray and pdfarray are also defined similarly; here the difference is that
f and g are partial functions.

Let α ∈ RE L . The carrier set of dfmatrix is:

Adfmatrix(α) = { ( f , n, W ) | n ∈ N
+, W ∈ WR, m = |W |,

f : {0, ..., n − 1} × {0, ..., m − 1} → Aα }

This describes a matrix with m rows and n columns where each row defines a
partitioning of a set of tuples at one worker and each column a logical partition, as
illustrated in Fig. 4.

The array type of the basic engine is defined as follows:

Aarray(α) = {( f , n)|n ∈ N
+, f : {0, ..., n − 1} → Aα}
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4.3.2 Operations for distributed processing by workers

Here we define the semantics of operators of Section 4.2.2. For each operator op, we
show the signature and define a function fop from the carrier sets of the arguments to
the carrier set of the result.

All operators taking darray arguments also take dfarray arguments.
All dmap, pdmap and areduce operators may return either darrays or dfarrays.

The result type depends on the resulting field type: If it is a stream(tuple((α))) type,
then the result is a dfarray, otherwise a darray. Hence in writing a query, the user can
decide whether a darray or a dfarray is built by applying consume to a tuple stream
for a field or not.

We omit these cases in the sequel, showing the definitions only for darray, to keep
the formalism simple and concise.

dmap : darray(α) × (α → β) → darray(β)

Here (α → β) is the type of functions mapping from Aα to Aβ .

fdmap(( f , g, n, W ), h) = ( f ′, g, n, W ) such that

f ′ : {0, ..., n − 1} → Aβ ,

∀i ∈ 0, ..., n − 1 : f ′(i) = h( f (i))

To illustrate the use of operators, we introduce an example database with spatial data
as provided by OpenStreetMap [48] and GeoFabrik [20]. We use example relations
with the following schemas, originally on the master. Such data can be obtained for
many regions of the world at different scales like continents, states, or administrative
units.

Buildings(Osm_id: string, Code: int, Fclass: string, Name: text, Type: string,

GeoData: region)

Roads(Osm_id: string, Code: int, Fclass: string, Name: text, Ref:string,

Oneway: string, Maxspeed: int, Layer: int, Bridge: string, Tunnel: string,

GeoData: region)

Waterways(Osm_id: string, Code: int, Fclass: string, Width: int, Name: text,

GeoData: line)

Example 1 Assume we have created distributed arrays for these relations called
BuildingsD, RoadsD, and WaterwaysD by commands shown in Sect. 4.3.3.
Then we can apply dmap to retrieve all roads with speed limit 30:

let RoadsD30 = RoadsD dmap["RoadsD30", . feed filter[.Maxspeed = 30] consume]

The first argument to dmap is the distributed array, the second a string, and the third
the function to be applied. In the function, the “.” refers to the argument. The string
argument is omitted in the formal definition. In the implementation, it is used to name
objects in the worker databases; the name has the form <name>_<slot_number>,
for example, RoadsD30_5. One can give an empty string in a query where the
intermediate result on the workers is not needed any more; in this case a unique name
for the object in the worker database is generated automatically.
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The result is a distributed array RoadsD30 where each field contains a relation
with the roads having speed limit 30.

dmap2 : darray(α1) × darray(α2) × (α1 × α2 → β) → darray(β)

fdmap2(( f1, g1, n, W ), ( f2, g2, n, W ), h)

= ( f , g1, n, W ) such that

f : {0, ..., n − 1} → Aβ ,

∀i ∈ 0, ..., n − 1 : f (i) = h( f1(i), f2(i))

Note that the two arrays must have the same size and that the mapping of slots to
workers is determined by the first argument. In the implementation, slots of the second
argument assigned to different workers than for the first argument are copied to the
first argument worker for execution.

Example 2 Using dmap2, we can formulate a spatial join on the distributed tables
RoadsD andWaterwaysD. It is necessary that both tables are spatially co-partitioned
so that joins can only occur between tuples in a pair of slots with the same index. In
Sect. 4.3.3 it is shown how to create partitions in this way.

“Count the number of intersections between roads and waterways.”

query RoadsD WaterwaysD dmap2["", . feed {r} .. feed {w}

itSpatialJoin[GeoData_r, GeoData_w] filter[.GeoData_r intersects .GeoData_w]

count, myPort]

getValue tie[. + ..]

Here for each pair of slots an itSpatialJoin operator is applied to the respective pair
of (tuple streams from) relations. It joins pairs of tuples whose bounding boxes overlap.
In the following refinement step, the actual geometries are checked for intersection.4

The notation {r} is a renaming operator, appending _r to each attribute in the tuple
stream.

The additional argument myPort is a port number used in the implementation for
data transfer between workers.

Further operations dmap3, ..., dmap8 are defined in an analogous manner. For all
these operators, the mapping from slots to workers is taken from the first argument
and slots from other arguments are copied to the respective workers.

pdmap : stream(int) × darray(α) × (α → β) → pdarray(β)

fpdmap(< io, ..., ik >, ( f , g, n, W ), h)

= ( f ′, g′, n, W ) such that

f ′ : {0, ..., n − 1} → Aβ partial,

f ′(i) =

{

h( f (i)) if i ∈ {io, ..., ik}

⊥ otherwise

4 It is further necessary to avoid duplicate reports for pairs of objects detected in different partitions (pairs
of slots). This is omitted here for simplicity.
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g′ : {0, ..., n − 1} → {0, ..., |W | − 1} partial,

g′(i) =

{

g(i) if i ∈ {io, ..., ik}

⊥ otherwise

Here a stream of integer values is modeled formally as a sequence of integers.
Operator pdmap can be used if it is known that only certain slots can yield results in
an evaluation; for an example use see [51]. The operators pdmap2, ..., pdmap8 are
defined similarly; as for dmap operators, slots are copied to the first argument workers
if necessary.

The dproduct operator is defined for two distributed relations, that is, α1, α2 ∈

RE L .

dproduct : darray(α1) × darray(α2) × (α1 × α2 → β) → darray(β)

fdproduct(( f1, g1, n1, W ), ( f2, g2, n2, W ), h)

= ( f , g1, n1, W ) such that

f : {0, ..., n − 1} → Aβ ,

∀i ∈ 0, ..., n − 1 : f (i) = h( f1(i),

n2−1
⋃

j=0

f2( j))

Here it is not required that the two arrays of relations have the same size (number of
slots). Each relation in a slot of the first array is combined with the union of all relations
of the second array. This is needed to support a general join operation for which no
partitioning exists that would support joins on pairs of slots. In the implementation,
all slots of the second array are copied to the respective worker for a slot of the first
array. For this, again a port number argument is needed.

Example 3 “Find all pairs of roads with a similar name.”

let NamedRoadsD = RoadsD dmap["NamedRoads", . feed filter[isdefined(.Name)]

filter[.Original] project[Osm_id, Name]

consume];

let Similar = NamedRoadsD NamedRoadsD dproduct["Similar",

. feed {a} .. feed {b}

symmjoin[ldistance(tostring(.Name_a), tostring(..Name_b)) between[1, 2]]

filter[.Name_a < .Name_b]

consume, myPort]

Before applying the dproduct operator, we reduce to named roads, eliminate dupli-
cates from spatial partitioning, and project to the relevant attributes. Then for all pairs
of named roads, the edit distance of the names is determined by the ldistance operator
and required to lie between 1 and 2. The symmjoin operator is a symmetric variant of
a nested loop join. The filter condition after the symmjoin avoids reporting the same
pair twice.

partition : darray(rel(tuple(α))) × (tuple(α) → int) × int
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→ dfmatrix(rel(tuple(α)))

fpartition(( f , g, n, W ), h, p) = ( f ′, n′, W ) such that

n′ =

{

n if p = 0

p otherwise

f ′ : {0, ..., n′ − 1} × {0, ..., |W | − 1} → Arel(tuple(α))

f ′(i, j) = {t ∈
⋃

i∈{0,...,n−1},g(i)= j

f (i)|h(t) mod n′ = i}

Here the union of all relations assigned to worker j is redistributed according to
function h. See Fig. 4. The variant partitionF allows one to apply an additional
mapping to the argument relations before repartitioning. It has the following signature:

partitionF :darray(rel(tuple(α)))

× (rel(tuple(α)) → (stream(tuple(β))

× (tuple(β) → int) × int

→ dfmatrix(rel(tuple(β)))

The definition of the function is a slight extension to the one for fpartition and is
omitted.

collect2 : dfmatrix(rel(tuple(α))) → dfarray(rel(tuple(α)))

fcollect2(( f , n, W )) = ( f ′, g, n, W ) such that

f ′ : {0, ..., n − 1} → Arel(tuple(α)),

f ′(i) =
⋃

j∈{0,...,|W |−1}

f (i, j),

g : {0, ..., n − 1} → {0, ..., |W | − 1},

g(i) = i mod |W |

This operator collects columns of a distributed matrix into a distributed file array,
assigning slots round robin. The variant collectB assigns slots to workers, balancing
slot sizes. For it the value of function g is not defined as it depends on the algorithm
for balancing slot sizes which is not specified here. Together, partition and collect2

or collectB realize a repartitioning of a distributed relation. See Fig. 5.

Example 4 “Find all pairs of distinct roads with the same name.”
Assuming that roads are partitioned spatially, we need to repartition by names

before executing the join.

let SameName = RoadsD

partitionF["", . feed filter[isdefined(.Name)] filter[.Original]

project[Osm_id, Name], hashvalue(..Name, 999997), 0]

collect2["", myPort]

dmap["", . feed {a}, . feed {b} itHashJoin[Name_a, Name_b]

filter[.Name_a < .Name_b]]

dsummarize consume
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Here after repartitioning, the self-join can be performed locally for each slot.
Assuming the result is relatively small, it is collected on the master by dsummarize.

areduce : dfmatrix(rel(tuple(α))) × (rel(tuple(α)) → β) → darray(β))

fareduce(( f , n, W ), h) = ( f ′, g, n, W ) such that

f ′ : {0, ..., n − 1} → Aβ ,

f ′(i) = {h(t)|t ∈
⋃

j∈{0,...,|W |−1}

f (i, j)},

g : {0, ..., n − 1} → {0, ..., |W | − 1}

Semantically, areduce is the same as collect2 followed by a dmap. In collecting
the columns from the different servers (workers), a function is applied. The reason to
have a separate operator and, indeed, the dfmatrix type as an intermediate result, is the
adaptive implementation of areduce. Since the data of a column of the dfmatrix need
to be copied between computers anyway, it is possible to assign any free worker to do
that at no extra cost. Similar as for collectB, the value of function g is not defined for
areduce as the assignment of slots to workers cannot be predicted.

Example 5 The previous query written with areduce is:

let SameName = RoadsD

partitionF["", . feed filter[isdefined(.Name)] filter[.Original]

project[Osm_id, Name], hashvalue(..Name, 999997), 0]

areduce["", . feed {a}, . feed {b} itHashJoin[Name_a, Name_b]

filter[.Osm_id_a < .Osm_id_b], myPort]

dsummarize consume

Here within partitionF “.” refers to the relation and “..” refers to the tuple
argument in the first and second argument function, respectively.

The binary variant areduce2 has signature:

areduce2 :dfmatrix(rel(tuple(α1))) × dfmatrix(rel(tuple(α2)))

× (rel(tuple(α1)) × rel(tuple(α2)) → β) → darray(β))

The formal definition of semantics is similar to areduce and is omitted.

4.3.3 Operations for distributing data to the workers

The operators ddistribute2, ddistribute3, and ddistribute4 and their dfdistribute

variants distribute data from a tuple stream on the master into the fields of a distributed
array.5 We define the first and second of these operators which distribute by an attribute
value and randomly6, respectively. Operator ddistribute4 distributes by a function on
the tuple which is similar to ddistribute2.

5 The numbering starts with 2 because another algebra in Secondo already has a ddistribute operator.
6 Randomly in the sense that the distribution does not depend on the value of the tuple.
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Let W R denote the set of possible worker relations (of a relation type). For a tuple
type tuple(α) let attr(α, β) denote the name of an attribute of type β. Such an attribute
a represents a function attra on a tuple t so that attra(t) is a value of type β.

ddistribute2 :stream(tuple(α)) × attr(α, int) × int × WR

→ darray(rel(tuple(α)))

In the following, we use the notation < s1, ..., sn | f (si ) > to restrict a sequence
to the elements si for which f (si ) = true. Functions f (si ) are written in λx .expr(x)

notation.

fddistribute2(< t0, ..., tk−1 >, a, n, W ) = ( f , g, n, W ) such that

f : {0, ..., n − 1} → Arel(tuple(α)),

f (i) =< t0, ..., tk−1|λt j .attra(t j ) mod n = i >,

g : {0, ..., n − 1} → {0, ..., |W | − 1}, g(i) = i mod |W |

Hence the attribute a determines the slot that the tuple is assigned to. Note that all
ddistribute operators maintain the order of the input stream within the slots.

ddistribute3 : stream(tuple(α)) × int × bool × WR → darray(rel(tuple(α)))

fddistribute3(< t0, ..., tk−1 >, n, b, W ) = ( f , g, m, W ) such that

f : {0, ..., m − 1} → Arel(tuple(α)),

f (i) =

{

< t0, ..., tk−1|λt j . j mod n = i > if b = true

< t0, ..., tk−1|λt j . j ÷ n = i > if b = false

g : {0, ..., m − 1} → {0, ..., |W | − 1}, g(i) = i mod |W |,

m =

{

n if b = true

⌈k ÷ n⌉ if b = false

The operator distributes tuples of the input stream either round robin to the n slots
of a distributed array, or by sequentially filling each slot except the last one with n

elements, depending on parameter b.

Example 6 We distribute the Buildings relation round robin into 50 fields of a
distributed array. A relation Workers is present in the database.

let BuildingsD = Buildings feed ddistribute3["BuildingsD", 50, TRUE, Workers]

Example 7 We create a grid-based spatial partitioning of the relations Roads and
Waterways.

let RoadsD = Roads feed extendstream[Cell: cellnumber(bbox(.GeoData), grid)]

extend[Original:

.Cell = cellnumber(bbox(.GeoData), grid) transformstream extract[Elem]]

ddistribute2["RoadsD", Cell, 50, Workers];

123



Distributed and Parallel Databases (2021) 39:1009–1064 1033

Fig. 8 A regular grid defining
cell numbers

The distribution is based on a regular grid as shown in Fig. 8. A spatial object is
assigned to all cells intersecting its bounding box. The cellnumber operator returns a
stream of integers, the numbers of grid cells intersecting the first argument, a rectangle.
The extendstream operator makes a copy of the input tuple for each such value,
extending it by an attribute Cell with this value. So we get a copy of each road tuple
for each cell it intersects. The cell number is then used for distribution.

In some queries on the distributed Roads relation we want to avoid duplicate
results. For this purpose, the tuple with the first cell number is designated as original.
See Example 3.

The relation Waterways is distributed in the same way. So RoadsD and
WaterwaysD are spatially co-partitioned, suitable for spatial join (Example 2).

The following two operators serve to have the same objects available in the master
and worker databases. Operator share copies an object from the master to the worker
databases whereas dlet creates an object on master and workers by a query function.

share : string × bool × WR → text

The Boolean parameter specifies whether an object already present in the worker
database should be overwritten. W R defines the set of worker databases.

The semantics for such operators can be defined as follows. These are operations
affecting the master and the worker databases, denoted as M and D1, ..., Dm , respec-
tively. A database is a set of named objects where each name n is associated with a
value of some type, hence a named object has structure (n, (t, v)) where t is the type
and v the value. A query is a function on a database returning such a pair. Technically,
an object name is represented as a string and a query as a text.

We define the mapping of databases denoted δ. Let (n, o) be an object in the master
database.

δshare(n)((M, D1, ..., Dm)) = (M, D1 ∪ {(n, o)}, ..., Dm ∪ {(n, o)})

Example 8 Operator share is in particular needed to make objects referred to in queries
available to all workers.
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“Determine the number of buildings in Eichlinghofen.” This is a suburb of Dort-
mund, Germany, given as a region value eichlinghofen on the master.

query share("eichlinghofen", TRUE, Workers);

query BuildingsD

dmap["", . feed filter[.GeoData intersects eichlinghofen] count]

getValue tie[. + ..]

Note that a database object mentioned in a parameter function (query) of dmap

must be present in the master database, because the function is type checked on the
master. It must be present in the worker databases as well because these functions are
sent to workers and type checked and evaluated there.

Whereas persistent database objects can be copied from master to worker databases,
this is not possible for main memory objects used in query processing. Again, such
objects must exist on the master and on the workers because type checking is done in
both environments. This is exactly the reason to introduce the following dlet operator.

dlet : darray(α) × string × text → stream(tuple(β))

The dlet operator creates a new object by a query simultaneously on the master
and in each worker database. The darray argument serves to specify the relevant set
of workers. The operator returns a stream of tuples reporting success or failure of the
operation for the master and each worker. Let n be the name and µ the query argument.

δdlet(n,µ)((M, D1, ..., Dm)) =(M ∪ {(n, µ(M))}, D1 ∪ {(n, µ(D1))}, ...,

Dm ∪ {(n, µ(Dm))})

An example for dlet is given in Sect. 6.5.

dcommand : darray(α) × text → stream(tuple(β)

The dcommand operator lets an arbitrary command be executed by each worker.
The command is given as a text argument. The darray argument defines the set of
workers. The result stream is like the one for dlet.

Example 9 To configure for each worker how much space can be used for main memory
data structures, the following command can be used:

query RoadsD dcommand[query meminit(4000)] consume

4.3.4 Operations for collecting data fromworkers

The operator dsummarize can be used to make a distributed array available as a
stream of tuples or values on the master whereas getValue transforms a distributed
into a local array.
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dsummarize : darray(rel(tuple(α))) → stream(tuple(α))

darray(α) → stream(α)

The operator is overloaded. For the two signatures, the semantics definitions are:

fdsummarize(( f , g, n, W )) =< t0, ..., tk−1 >

such that {t0, ..., tk−1} =
⋃

i∈{0,...,n−1}

f (i)

fdsummarize(( f , g, n, W )) = < f (0), ..., f (n − 1) >

getValue : darray(α) →array(α)

fgetValue(( f , g, n, W )) = ( f , n)

The operator getValueP allows one to transform a partial distributed array into a
complete local array on the master.

getValueP : pdarray(α) × α → array(α)

fgetValueP(( f , g, n, W ), v) = ( f ′, n) such that f ′(i) =

{

f (i) if f (i) 
= ⊥

v if f (i) = ⊥

Finally, the tie operator of the basic engine is useful to aggregate the fields of a
local array.

tie : array(α) × (α × α → α) → α

ftie(( f , n), h) = g(n − 1) where

{

g(0) = f (0)

g(m) = h( f (m), g(m − 1)) if m > 0

Example 10 Let X be an array of integers. Then

query X tie[. + ..]

computes their sum. Here “.” and “..” denote the two arguments of the parameter
function which could also be written as

query X tie[fun(x: int, y: int) x + y]

Further, examples 2 and 4 demonstrate the use of these operators.

4.4 Final remarks on the distributed algebra

Whereas the algebra has operations to distribute data from the master to the workers,
this is not the only way to create a distributed database. For huge databases, this
would not be feasible, the master being a bottleneck. Instead, it is possible to create
a distributed array “bottom-up” by assembling data already present on the worker
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computers. They may have got there by file transfer or by use of a distributed file system
such as HDFS [45]. One can then create a distributed array by a dmap operation that
creates each slot value by reading from a file present on the worker computer. Further,
it is possible to create relations (or any kind of object) in the worker databases, again
controlled by dmap operations, and then to collect these relations into the slots of
a distributed array created on top of them. This is provided by an operation called
createDarray, omitted here for conciseness. Examples can be found in [23,51].

Note that any algorithm that can be specified in the MapReduce framework can
easily be transferred to Distributed Algebra, as map steps can be implemented by
dmap, shuffling between map and reduce stage is provided by partition and collect

or areduce operations, and reduce steps can again be implemented by dmap (or
areduce) operations.

An important feature of the algebra design is that the number of slots of a distributed
array may be chosen independently from the number of workers. This allows one to
assign different numbers of slots to each worker and so to compensate for uneven
partitioning or more generally to balance work load over workers, as it is done in
operators collectB, areduce, and areduce2.

5 Implementation

5.1 Implementing an algebra in Secondo

To implement a new algebra, data types and operators working on it must be provided.
For the data types, a C++ class describing the type’s structure and some functions
for the interaction with Secondo must be provided. In the context of this article,
the Secondo supporting functions are less important. They can be found e.g., in the
Secondo Programmer’s Guide [25].

An operator implementation consists of several parts. The two most important ones
are the type mapping and the value mapping. Other parts provide a description for the
user or select different value mapping implementations for different argument types.

The main task of the type mapping is to check whether the operator can handle
the provided argument types and to compute the resulting type. Optionally further
arguments can be appended. This may be useful for default arguments or to transfer
information that is available in the type mapping only to the value mapping part.

Within the value mapping, the operator’s functionality is implemented, in particular
the result value is computed from the operator’s arguments.

5.2 Structure of themain types

All information about the subtypes, i.e. the types stored in the single slots, is handled by
the Secondo framework and hence not part of the classes representing the distributed
array types.

The array classes of the Distributed2Algebra consist of a label (string),
a defined flag (bool), and connection information (vector). Furthermore, an addi-
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tional vector holds the mapping from the slots to the workers. The label is used to
name objects or files on the workers. An object corresponding to slot X of a distributed
array labeled with myarray is stored as myarray_X . The defined flag is used in case
of errors. The connection information corresponds to the schema of the worker relation
that is used during the distribution of a tuple stream. In particular, each entry in this
vector consists of the name of the server, the server’s port, an integer corresponding
to the position of the entry within the worker relation, and the name of a configuration
file. This information is collected in a vector of DArrayElement.

The partial distributed arrays (arrays of type pdarray or pdfarray) have an additional
member of type set<int> storing the set of used slot numbers.

The structure of a dfmatrix is quite similar to the distributed array types. Only the
mapping from the slots to the workers is omitted. Instead the number of slots is stored.

5.3 Class hierarchy of array classes

Figure 9 shows a simplified class diagram of the array classes provided by the
Distributed2Algebra.

Note that the non-framed parts are not really classes but type definitions only, e.g.,
the definition of the darray type is justtypedef DArrayT<DARRAY> DArray;.

5.4 Worker connections

The connections the to workers are realized by a class ConnectionInfo. This class
basically encapsulates a client interface to a Secondo server and provides thread-safe
access to this server. Furthermore, this class supports command logging and contains
some functions for convenience, e.g., a function to send a relation to the connected
server.

Fig. 9 The class hierarchy for distributed array classes
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Instances of this class are part of the Distributed2Algebra instance. If a
connection is requested by some operation, an existing one is returned. If no connection
is available for the specified worker, a connection is established and inserted into
the set of existing connections. Connections will be held until closing is explicitly
requested or the master is finished. This avoids the time consuming start of a new
worker connection.

5.5 Distribution of data

All distribution variants follow the same principle. Firstly the incoming tuple stream
is distributed to local files on the master according to the distribution function of the
operator. Each file contains a relation in a binary representation. The number of created
files corresponds to the number of slots of the resulting array. After that, these files
are copied to the workers in parallel over the worker connections. If the result of the
operation is a darray, the binary file on the worker is imported into the database as a
database object by sending a command to the worker. Finally, intermediate files are
removed. In case of the failure of a worker, another worker is selected adapting the
slot→worker mapping of the resulting distributed array.

5.6 The dmap family

Each variant of the dmap Operator gets one or more distributed arrays, a name
for the result’s label, a function, and a port number. The last argument is omit-
ted for the simple dmap operator. As described above, the implementation of an
operator consists of several parts where the type mapping and the value mapping
are the most interesting ones. By setting a special flag of the operator (calling the
SetUsesArgsInTypeMapping function), the type mapping is fed not only with
the argument’s types but additionally with the part of the query that leads to this
argument. Both parts are provided as a nested list. It is checked whether the types
are correct. The query part is only exploited for the function argument. It is slightly
modified and delivered in form of a text to the value mapping of the operator.

Within the value mapping it is checked whether the slot-worker-assignment is equal
for each argument array. If not, the slot contents are transferred between the workers to
ensure the existence of corresponding slots on a single worker. In this process, workers
communicate directly with each other. The master acts as a coordinator only. For the
communication, the port given as the last argument to the dmapX operator is used.
Note, that copying the slot contents is available for distributed file arrays only but not
for the darray type.

For each slot of the result, a Secondo command is created mainly consisting of the
function determined by the type mapping applied to the current slot object(s). If the
result type is a darray, a let command is created, a query creating a relation within
a binary file otherwise. This command is sent to the corresponding worker. Each slot
is processed within a single thread to enable parallel processing. Synchronization of
different slots on the same worker is realized within the ConnectionInfo class.

At the end, any intermediate files are deleted.
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5.7 Redistribution

Redistribution of data is realized as a combination of the partition operator followed
by collect2 or areduce.

The partition operator distributes each slot on a single worker to a set of files.
The principle is very similar to the first part of the ddistribute variants, where the
incoming tuple stream is distributed to local files on the master. Here, the tuples of
all slots on this worker are collected into a common tuple stream and redistributed to
local files on this worker according to the distribution function.

At the beginning of the collect2 operator, on each worker a lightweight server is
started that is used for file transfer between the workers. After this phase, for each slot
of the result darray, a thread is created. This thread collects all files associated to this
slot from all other workers. The contents of these files are put into a tuple stream, that
is either collected into a relation or into a single file.

The areduce operator works as a combination of collect2 and dmap. The a in the
operator name stands for adaptive, meaning that the number of slots processed by a
worker depends on its speed. This is realized in the following way. Instead for each
slot, for each worker a thread is created performing the collect2-dmap functionality.
At the end of a thread, a callback function is used to signal this state. The worker that
called the function is assigned to process the next unprocessed slot.

5.8 Fault tolerance

Inherent to parallel systems is the possibility of the failure of single parts. The
Distributed2Algebra provides some basic mechanisms to handle missing
workers. Of course this is possible only if the required data are stored not exclu-
sively at those workers. Conditioned by the two array types, the system must be able
to handle files and database objects, i.e., relations. In particular, a redundant storage
and a distributed access are required.

In Secondo there are already two algebras implementing these features. The
DBService algebra is able to store relations as well as any dependent indexes in a
redundant way on several servers. For a redundant storage of files, the functions of the
DFSAlgebra are used. If fault tolerance is switched on, created files and relations
are stored at the desired worker and additionally given to the corresponding parts of
these algebras for replicated storage. In the case of failure of a worker, the created
command is sent to another worker and the slot-worker assignment is adapted. In the
case the slot content is not available, a worker will get the input from the DFS and the
DBService, respectively.

However, at the time of writing fault tolerance does not yet work in a robust way
in Secondo and is still under development. It is also beyond the scope of this paper.
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6 Application example: distributed density-based similarity
clustering

In this section, we demonstrate how a fairly sophisticated distributed algorithm can be
formulated in the framework of the Distributed Algebra. As an example, we consider
the problem of density-based clustering as introduced by the classical DBScan algo-
rithm [15]. Whereas the original DBScan algorithm was applied to points in the plane,
we consider arbitrary objects together with a distance (similarity) function. Hence the
algorithm we propose can be applied to points in the plane, using Euclidean distance as
similarity function, but also to sets of images, twitter messages, or sets of trajectories
of moving objects with their respective application-specific similarity functions.

6.1 Clustering

Let S be a set of objects with distance function d. The distance must be zero for two
equal objects; it grows according to the dissimilarity between objects.

We recall the basic notions of density-based clustering. It uses two parameters
Min Pts and Eps. An object s from S is called a core object if there are at least
Min Pts elements of S within distance Eps from s, that is, |NEps(s)| ≥ Min Pts

where NEps(s) = {t ∈ S|d(s, t) ≤ Eps}. It is called a border object if it is not a core
object but within distance Eps of a core object.

An object p is directly density-reachable from an object q if q is a core object and
p ∈ NEps(q). It is density-reachable from q if there is a chain of objects p1, p2, ..., pn

where p1 = q, pn = p and ∀1 ≤ i < n : pi+1 is directly density-reachable from
pi . Two objects p, r are density-connected, if there exists an object q such that both
p and r are density-reachable from q. A cluster is a maximal set of objects that are
pairwise density-connected. All objects not belonging to any cluster are classified as
noise.

6.2 Overview of the algorithm

A rough description of the algorithm is as follows.

1. Compute a small subset of S (say, a few hundred elements) as so-called partition
centers.

2. Assign each element of S to its closest partition center. In this way, S is decomposed
into disjoint partitions. In addition, assign some elements of S not only to the closest
partition center but also to partition centers a bit farther away than the closest one.
The resulting subsets are not disjoint any more but overlap at the boundaries. Within
each subset we can distinguish members of the partition and so-called neighbors.

3. Use a single machine DBScan implementation to compute clusters within each
partition. Due to the neighbors available within the subsets, all elements of S can
be correctly classified as core, border, or noise objects.

4. Merge clusters that extend across partition boundaries and assign border elements
to clusters of a neighbor partition where appropriate.
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(a) (b)

Fig. 10 Determining neighbors of a partition

In Step 2, the problem arises how to determine the neighbors of a partition. See
Fig. 10a. Here u and v are partition centers; the blue objects are closest to u, the red
objects are closest to v; the diagonal line represents equi-distance between u and v.
When partition P(u) is processed in Step 3 by a DBScan algorithm, object s needs
to be classified as a core or border object. To do this correctly, it is necessary to find
object t within a circle of radius Eps around s. But t belongs to partition P(v). It
is therefore necessary to include t as a neighbor into the set P ′(u), the extension of
partition P(u).

Hence we need to add elements of P(v) to P ′(u) that can lie within distance Eps

from some object of P(u). Theorem 1 says that such objects can lie only 2 · Eps

further away from u than from their own partition center v. The proof is illustrated in
Fig. 10b.

Theorem 1 Let s, t ∈ S and T ⊂ S. Let u, v ∈ T be the elements of T with minimal

distance to s and t, respectively. Then t ∈ NEps(s) ⇒ d(u, t) ≤ d(v, t) + 2 · Eps.

Proof t ∈ NEps(s) implies s ∈ NEps(t). Let x be a location within NEps(t) with
equal distance to u and v, that is, d(u, x) = d(v, x). Such locations must exist,
because s is closer to u and t is closer to v. Then d(v, x) ≤ d(v, t) + Eps. Further,
d(u, t) ≤ d(u, x)+Eps = d(v, x)+Eps ≤ d(v, t)+Eps+Eps = d(v, t)+2·Eps.

⊓⊔

Hence to set up the relevant set of neighbors for each partition, we can include an
object t into all partitions whose centers are within distance dt + 2 · Eps, where dt is
the distance to the partition center closest to t .

6.3 The algorithm

In more detail, the main algorithm consists of the following steps. Steps are marked as
M if they are executed on the master, MW if they describe interaction between master
and workers, and W if they are executed by the workers.

Initially, we assume the set S is present in the form of a distributed array T where
elements of S have been assigned to fields in a random manner, but equally distributed
(e.g., round robin).
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As a result of the algorithm, all elements are assigned a cluster number or they are
designated as noise.

algorithm SimilarityClustering

input: T - a distributed array containing a set of objects S

Min Pts, Eps - parameters for density-based clustering
k - integer parameter for placing partition centers

output: X - a distributed array containing the elements of
S augmented by cluster ids or a characterization as noise.

method:

1. MW Collect a sample subset SS ⊂ S from array T to the master, to be used in the
following step.

2. M Based on SS, compute a subset PC ⊂ S as partition centers using algorithm
SimilarityPartitioning (Sect. 6.6). Let PC = {pc1, ..., pcn}. Subsequently, S will
be partitioned in such a way that each object is assigned to its closest partition
center.

3. MW Share PC and some constant values with workers.
4. W Compute for each object s in Ti its closest partition center pc j and the distance

to it. Add to s attributes N and Dist representing the index j and the distance
d(s, pc j ). Further, compute for s all partition centers within distance Dist+2·Eps

and add their indices in attribute N2. Repartition the resulting set of objects (tuples)
by attribute N2, resulting in a distributed array V .
The field V j now contains the objects of S closest to pc j (call this set U j ) plus
some objects that are closer to other partition centers, but can be within distance
Eps from an object in U j according to Theorem 1.
The idea is that for each object q ∈ U j we can compute NEps(q) within V j because
NEps(q) ⊂ V j . So we can determine correctly whether q is a core or a border
object, even across the boundaries of partition U .
Elements of U j are called members, elements of V j \U j neighbors of the partition
U , respectively. An element of V j is a member iff N2 = N .

5. W To each set V j apply a DBScan algorithm using parameters Min Pts and Eps.
Objects within subset U j (members) will be correctly classified as core objects
and border objects; for the remaining objects in V j \U j (neighbors) we don’t care
about their classification. Each object s from V j is extended by an attribute C I D0
for the cluster number (-2 for noise) and a boolean attribute I sCore with value
|NEps(s)| ≥ Min Pts. Cluster identifiers are transformed into globally unique
identifiers by setting C I D = C I D0 · n + j . The result is stored as X j . The subset
of X j containing the former members of U j is called W j ; X j \ W j contains the
neighbors of partition W .
The remaining problem is to merge clusters that extend beyond partition bound-
aries.

6. W For each q ∈ (X j \ W j ) retrieve NEps(q) ∩ W j . For each p ∈ NEps(q) ∩ W j ,
insert tuple (p, C I Dp, I sCorep, Np, q) into a set Neighbors j .
Redistribute Neighbors, once by the P and once by the Q attribute into distributed
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arrays Neighbors By P and Neighbors ByQ, respectively, to prepare a join with
predicate P = Q.

7. W For each pair of tuples
(q, C I Dq , I sCoreq , Nq , p) ∈ Neighbors ByQ,

(p, C I Dp, I sCorep, Np, q) ∈ Neighbors By P:

(a) If both p and q are core objects, generate a task (C I Dp, C I Dq) to merge
clusters with these numbers; store tasks in a distributed table Merge.

(b) If p is a core object, but q is not, generate a task (q, Nq , C I Dp) to assign to
q the C I D of p, since q is a boundary object of the cluster of p. Store such
assignment tasks in a table Assignments.7

(c) If p is not a core object, but q is, generate a task (p, Np, C I Dq) to assign the
C I D of q to p.

(d) If neither p nor q are core objects, leave their cluster numbers unchanged.

Redistribute assignments by the N attribute into distributed array Assignments.
8. MW Collect table Merge to the master as MergeM . Further, set MaxC N on the

master to the maximal component number over all W j .
9. M Compute connected components in MergeM , adding to each node C I Di a new

component number, resulting in a pair (C I Di , C I Dnew j ). Collect pairs (C I Di ,

C I Dnew j + MaxC N ) in a table of renumberings R.
10. MW Share R with workers.
11. W For each partition W j , apply the renumberings from Assignments j and those

of R to all elements. Now all objects in W j have received their correct cluster
number.

end SimilarityClustering.

6.4 Tools for implementation

In the Secondo environment, we find the following useful tools for implementing this
algorithm:

– Main memory relations
– A main memory M-tree
– A DBScan implementation relying on this M-tree
– A data structure for graphs in main memory

Memory Relation A stream of tuples can be collected by an mconsume operation
into a main memory relation which can be read, indexed, or updated. As long as enough
memory is available, this is of course faster in query processing than using persistent
relations.

7 q may have been classified as a boundary object of another cluster. For simplicity we don’t check that,
as an object that is boundary object to two clusters may be assigned arbitrarily to one of them.
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M-tree The M-tree [7] is an index structure supporting similarity search. In contrast
to other index structures like R-trees it does not require objects to be embedded into a
Euclidean space. Instead, it relies solely on a supplied distance function (which must
be a metric). Secondo has persistent as well as main memory data types for M-trees.
Operations used in the algorithm are

– mcreatemtree to create an M-tree index on a main memory relation,
– mdistRange to retrieve all objects within a given distance from a query object,

and
– mdistScan to enumerate objects by increasing distance from a query object.

More precise descriptions of these and following operations can be found in the
Appendix. The M-tree is used to support all the neighborhood searches in the algo-
rithm.

DBScan Secondo provides several implemented versions of the DBScan algorithm
[15] implementing density-based clustering, using main memory R-trees or M-trees
as index structure, with an implicit or explicit (user provided) distance function. An
implicit distance function is registered with the type of indexed values. Here we use
the version based on M-trees with the operator

– dbscanM It performs density-based clustering on a stream of tuples based on some
attribute, extending the tuples by a cluster number or a noise identification.

This is used to do the local clustering within each partition.

Graph There exist some variants of graph data structures (adjacency lists) in memory.
Here we use the type mgraph2 with operations:

– createmgraph2 Creates a graph from a stream of tuples representing the edges,
with integer attributes to identify source and target nodes, and a cost measure.

– mg2connectedcomponents Returns the connected components from the graph as
a stream of edge tuples extended by a component number attribute.

The computation of connected components is needed in the final stage of the algorithm
for the global merging of clusters.

6.5 Implementation

We now show for each step of the algorithm its implementation based on Distributed
Algebra. As an example, we use a set Buildings from OpenStreetMap data with the
following schema:

Buildings(Osm_id: string, Code: int, Fclass: string, Name: text, Type: string,

GeoData: region)

The data represent buildings in the German state of North Rhine-Westphalia (NRW);
the GeoData attribute contains their polygonal shape. For clustering, we compute the
center of the polygon. We assume a dense area if there are at least 10 buildings within
a radius of 100 meters.
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let S = Buildings feed extend[Pos: center(bbox(.GeoData))]

remove[GeoData] consume

A distributed array T may have been created as follows:

let nfields = ...;

let T = S feed ddistribute3["T", nfields, TRUE, Workers];

The distributed array T is initially present in the database; also the W orkers relation
exists. The database is open already.

We explain the implementation of the first steps in some detail and hope this is
sufficient to let the reader understand also the remaining queries. All query processing
operators can be looked up in the Appendix.

1. MW Collect a sample subset SS ⊂ S from array T to the master, to be used in the
following step.

let sizeT = size(T);

query share("sizeT", TRUE, Workers)

let SS = T dmap["", . feed some[10000 div sizeT]] dsummarize consume

Here the number of fields of T is determined by the size operator and shared with
the workers. On each field, a random sample is taken by the some operator. The
resulting streams are collected by dsummarize to the master and written there into
a relation by the consume operator which is stored as SS.

2. M Based on SS, compute a subset PC ⊂ S as partition centers using algorithm

SimilarityPartitioning (Sect. 6.6). Let PC = {pc1, ..., pcn}. Subsequently, S will

be partitioned in such a way that each object is assigned to its closest partition

center.

let k = 50;

@&Scripts/SimilarityPartitioning.sec;

let n = PC count;

let MinPts = 10;

let Eps = 100.0;

let wgs84 = create_geoid("WGS1984");

let myPort = ...

The second line computes the set of partition centers PC , using SS and parameter
k. The contents of the script SimilarityPartitioning.sec are shown in Sect. 6.6.

3. MW Share PC and some constant values with workers.

query share("PC", TRUE, Workers);

query share("MinPts", TRUE, Workers);

query share("Eps", TRUE, Workers);

query share("wgs84", TRUE, Workers);

query share("n", TRUE, Workers);

4. W Compute for each object s in Ti its closest partition center pc j and the distance
to it. Add to s attributes N and Dist representing the index j and the distance
d(s, pc j ). Further, compute for s all partition centers within distance Dist+2·Eps
and add their indices in attribute N2. Repartition the resulting set of objects (tuples)
by attribute N2, resulting in a distributed array V .

query memclear(); query T dcommand[query memclear()] consume;1

query T dcommand[query meminit(3600)] consume;2
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3

query T dlet["PCm", PC feed mconsume] consume;4

query T dlet["PCm_Pos_mtree", PCm mcreatemtree[Pos, wgs84]] consume5

6

let V = T7

dmap["", . feed8

loopjoin[fun(t: TUPLE) PCm_Pos_mtree PCm mdistScan[attr(t, Pos)] head[1]9

projectextend[N; Dist: distance(attr(t, Pos), .Pos, wgs84)]]10

loopjoin[fun(u: TUPLE) PCm_Pos_mtree PCm mdistRange[attr(u, Pos),11

attr(u, Dist) + (2 * Eps)] projectextend[; N2: .N]] ]12

partition["", .N2, n]13

collectB["V", myPort]14

In lines 1-2, main memory objects on the master and on the workers are deleted and
for each worker, a bound of 3600 MB is set for main memory data objects. In lines
4-5, at each worker, the set PC is set up as a main memory relation together with
an M-tree index over the Pos attribute. Using the wgs84 geoid, distances can be
specified in meters, consistent with the definition of Eps. Note that the distributed
array T is only used to specify the set of workers; its field values are not used.
These data structures are used in the next step in lines 7-16. For each field of T ,
for each tuple t representing an element s ∈ S the distance to the nearest partition
center is computed (lines 10-11) and added to tuple t in attribute Dist ; the index
of the partition center is added in attribute N .
Tuples are further processed in the next loopjoin, determining for each tuple the
elements of PC within Dist + 2 · Eps; the current tuple is joined with all these
tuples, keeping only their index in attribute N2.
Finally the resulting stream of tuples is repartitioned by attribute N2. Slot sizes are
balanced across workers to achieve similar loads per worker in the next step.

5. W To each set V j apply a DBScan algorithm using parameters Min Pts and Eps.
Objects within subset U j (members) will be correctly classified as core objects and
border objects; for the remaining objects in V j \ U j (neighbors) we don’t care
about their classification. Each object s from V j is extended by an attribute C I D0
for the cluster number (-2 for noise) and a boolean attribute I sCore with value
|NEps(s)| ≥ Min Pts. Cluster identifiers are transformed into globally unique
identifiers by setting C I D = C I D0 · n + j . The result is stored as X j . The subset
of X j containing the former members of U j is called W j ; X j \ W j contains the
neighbors of partition W .

let X = V

dmap["X", $1 feed extend[Pos2: gk(.Pos)] dbscanM[Pos2, CID0, Eps, MinPts]

extend[CID: (.CID0 * n) + $2] consume

]

The remaining problem is to merge clusters that extend beyond partition boundaries.
6. W For each q ∈ (X j \ W j ) retrieve NEps(q) ∩ W j . For each p ∈ NEps(q) ∩ W j ,

insert a tuple (p, C I Dp, I sCorep, Np, q) into a set Neighbors j .
An equivalent formulation is:
For each p in W j retrieve NEps(p)∩(X j \W j ). For each q ∈ NEps(p)∩(X j \W j ),
insert a tuple (p, C I Dp, I sCorep, Np, q) into a set Neighbors j .
An advantage of the second formulation is that we need to search on the much
smaller set (X j \ W j ) instead of W j . As we will use a main memory index for this
set, far less memory is needed and larger data sets can be handled.
Redistribute Neighbors, once by the P and once by the Q attribute into distributed
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arrays Neighbors By P and Neighbors ByQ, respectively, to prepare a join with
predicate P = Q.

query T dcommand[query memclear()] filter[.Ok] count;

let Wm = X dmap["Wm", . feed filter[.N # .N2] mconsume];

let Wm_Pos_mtree = Wm dmap["Wm_Pos_mtree", . mcreatemtree[Pos, wgs84]];

let Neighbors = X Wm_Pos_mtree Wm

dmap3["Neighbors", $1 feed filter[.N = .N2]

loopsel[fun(t: TUPLE) $2 $3 mdistRange[attr(t, Pos), Eps]

projectextend[; P: attr(t, Osm_id), PosP: attr(t, Pos),

CID0: attr(t, CID0), CIDp: attr(t, CID), IsCoreP: attr(t, IsCore),

Np: attr(t, N), Q: .Osm_id, QPos: .Pos]]

, myPort]

let NeighborsByP = Neighbors partition["", hashvalue(.P, 999997), 0]

collect2["NeighborsByP", myPort];

let NeighborsByQ = Neighbors partition["", hashvalue(.Q, 999997), 0]

collect2["NeighborsByQ", myPort];

7. W For each pair of tuples (q, C I Dq , I sCoreq , Nq , p) ∈ Neighbors ByQ,

(p, C I Dp, I sCorep, Np, q) ∈ Neighbors By P:

(a) If both p and q are core objects, generate a task (C I Dp, C I Dq) to merge

clusters with these numbers; store tasks in a distributed table Merge

(b) If p is a core object, but q is not, generate a task (q, Nq , C I Dp) to assign to

q the C I D of p, since q is a boundary object of the cluster of p. Store such

assignment tasks in a table Assignments.
(c) If p is not a core object, but q is, generate a task (p, Np, C I Dq) to assign the

C I D of q to p.
(d) If neither p nor q are core objects, leave their cluster numbers unchanged.

Redistribute assignments by the N attribute into distributed array Assignments.

let Merge = NeighborsByQ NeighborsByP

dmap2["Merge", . feed {n1} .. feed {n2} itHashJoin[Q_n1, P_n2]

filter[.P_n1 = .Q_n2]

filter[.IsCoreP_n1 and .IsCoreP_n2]

project[CIDp_n1, CIDp_n2]

rduph[]

consume, myPort

]

let Assignments = NeighborsByQ NeighborsByP

dmap2["", . feed {n1} .. feed {n2} itHashJoin[Q_n1, P_n2]

filter[.P_n1 = .Q_n2]

filter[.IsCoreP_n1 and not(.IsCoreP_n2)]

projectextend[; P: .P_n2, N: .Np_n2, CID: .CIDp_n1]

krduph[P]

consume, myPort

]

partition["", .N, 0]

collect2["Assignments", myPort]
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For the Assignments, we remove duplicates with respect to only attribute P

because we can assign the object p to only one cluster, even if it should be in
the neighborhood of two different clusters.

8. MW Collect table Merge to the master into a graph MergeM . Further, set

MaxC N on the master to the maximal component number over all W j .

let MergeM = Merge dsummarize rduph[] createmgraph2[CIDp_n1, CIDp_n2, 1.0];

let MaxCN = X dmap["", . feed max[CID] feed transformstream]

dsummarize max[Elem];

9. M Compute connected components in MergeM , adding to each node C I Di a new

component number, resulting in a pair (C I Di , C I Dnew j ). Collect pairs

(C I Di , C I Dnew j + MaxC N ) in a table of renumberings Renumber .

let Renumber = MergeM mg2connectedcomponents projectextend[; CID: .CIDp_n1,

CIDnew: .CompNo + MaxCN] rduph[] consume

10. MW Share Renumber with workers.

query share("Renumber", TRUE, Workers);

11. W For each partition W j , apply the renumberings from Assignments j and those
of Renumber to all elements. Now all objects in W j have received their correct
cluster number.

query X Assignments

dmap2["", $1 feed addid filter[.N = .N2] $2 feed krduph[P] {a}

itHashJoin[Osm_id, P_a] $1 updatedirect2[TID; CID: .CID_a] count, myPort

]

getValue tie[. + ..]

query X

dmap["", $1 feed addid filter[.N = .N2] Renumber feed krduph[CID] {a}

itHashJoin[CID, CID_a] $1 updatedirect2[TID; CID: .CIDnew_a] count

]

getValue tie[. + ..]

6.6 Balanced partitioning

In Step 2 of the algorithm SimilarityClustering, partition centers are determined. Since
in parallel processing each partition will be processed in a task by some worker,
partition sizes should be as similar as possible. This is the easiest way to balance
workloads between workers. As partition sizes are solely determined by the choice of
partition centers, a good placement of partition centers is crucial.

To adapt to the density of the data set S to be clustered, there should be more partition
centers in dense areas than in sparse areas. We therefore propose the following strategy:
Compute for each element of S its radius r(s) as the distance to the k-th nearest
neighbor, for some parameter k. We obtain for each s ∈ S a disk with radius r(s).
The disk will be small in dense areas, large in sparse areas. Place these disks in some
arbitrary order but non-overlapping into the underlying space. That is, a disk can be
placed if it does not intersect any disks already present; otherwise it is ignored.

The algorithm is shown in Fig. 11. In practice, it is not necessary to apply the
algorithm to the entire data set to be clustered. Instead, a small random sample can be
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Fig. 11 Algorithm for computing partition centers

Fig. 12 Result of algorithm SimilarityPartitioning for buildings in the German state NRW

selected that reflects the density distribution. In our experiments, we use a sample of
size 10000.

Figure 12 shows the result of the algorithm for the set of buildings in the German
state of North-Rhine Westphalia. One can observe that small disks lie in the area of
big cities.8

Implementation

An efficient implementation of this algorithm must rely on a data or index structure
supporting k-nearest-neighbor search as well as distance range search. In Secondo,
we can again use a main memory M-tree providing such operations.

query memclear();1

2

let SSm = SS feed mconsume;3

let SSm_Pos_mtree = SSm mcreatemtree[Pos]4

5

let Balls = SS feed6

extend[Radius: fun(t: TUPLE)7

8 Disks are drawn as circles in geographic coordinates. They appear as ovals due to mercator projection
for the background map.
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distance(attr(t, Pos),8

SSm_Pos_mtree SSm mdistScan[attr(t, Pos)] head[k] tail[1] extract[Pos])]9

sortby[Radius]10

mconsume11

12

let maxRadius = Balls mfeed max[Radius]13

In line 3, a main memory relation SSm is created from the sample SS. Next, a main
memory M-tree index SSm_Pos_mtree indexing elements by Pos is built over SSm.

In lines 6-11, a main memory relation Balls is created where each tuple of SS is
extended by an attribute Radius containing the distance to the kth-nearest neighbor.
The distance is determined by an mdistScan operation which enumerates indexed
tuples by increasing distance from the starting point, the position of the current tuple.
The head operator stops requesting tuples from its predecessor after k elements; from
its output via tail the last element is taken and the position value extracted.

In line 13 we determine the maximum radius of any element.

let PCm = Balls mfeed head[0] mconsume;1

let PCm_Pos_mtree = PCm mcreatemtree[Pos]2

3

query Balls mfeed filter[fun(t: TUPLE)4

PCm_Pos_mtree PCm mdistRange[attr(t, Pos), attr(t, Radius) + maxRadius]5

filter[distance(attr(t, Pos), .Pos) < attr(t, Radius) + .Radius]6

count = 0]7

minsert[PCm]8

minsertmtree[PCm_Pos_mtree, Pos]9

count10

11

let PC = PCm mfeed project[Osm_id, Pos, Radius] addcounter[N, 0]12

extend[C: circle(.Pos, .Radius, 20)]13

consume14

In lines 1-2, an empty main memory relation PCm is created with the same schema
as that of Balls. Also an index PCm_Pos_mtree is built over it, initially empty as
well.

Lines 4-10 implement the second for each loop of algorithm SimilarityPartitioning.
Each tuple from Balls is checked in the filter operator, using the condition that in a
distance range search on the already present elements of PCm no tuples are found
whose distance to this tuple is less than the sum of their radii. That is, their disks or
balls would overlap. If no such tuple is found, the current tuple is inserted into PCm

and the index over it.
Finally, from the main memory relation PCm a persistent relation PC with the

partition centers is created, adding an index N , used in the main algorithm, and a
circle for visualization.

7 Experimental evaluation

In this section we provide a brief experimental evaluation of the framework, address-
ing the quality of balanced partitioning, load balancing over workers, and speedup.
A detailed evaluation of the clustering algorithm and comparison with competing
approaches is left to future work.
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Fig. 13 Slot sizes for the partitioning of buildings in NRW (slots horizontal, slot size vertical)

Fig. 14 Worker loads by round
robin assignment for the
partitioning of buildings in NRW

7.1 Balanced partitioning

We consider the data set introduced in Sect. 6.5 of Buildings in the German state of
NRW. There are 7842728 buildings. They are partitioned by the method of Sect. 6.6
yielding 123 partition centers as shown in Fig. 12. Each building is then assigned to
its closest partition center (and possibly some more centers as explained in Step 4 of
the algorithm). The total number of buildings assigned to slots is 8046065, so there
are about 2.6 % duplicates assigned to several centers. The size distribution of the
resulting partitions is shown in Fig. 13.

One can see that slot sizes are somewhat balanced in the sense that there are no
extremely large or small slots. Nevertheless they vary quite a bit. To describe this
variation, we introduce a measure called utilization. The term utilization results from
the idea that slots could be processed in parallel on different computers and the total
time required is defined by the computer processing the largest slot. Utilization is the
work done by all computers relative to what they could have done. Hence for a set of

slot sizes S = {s1, ..., sn}, it is defined as Util(S) =

∑

i=1,...,n si

n×maxi=1,...,n si
which is the same

as avg(S)/max(S).
For the slot sizes S shown in Fig. 13, we have Util(S) = 50.75%. Hence assigning

these slots directly to different computers would not be very efficient.

7.2 Load balancing over workers

Fortunately in our framework slots are distributed over workers so that each worker
processes several slots sequentially. By the standard “round robin” assignment of slots
to workers, different slot sizes already balance out to some extent. The resulting worker
loads are shown in Fig. 14. Here we have Util(WL) = 67.7%.

A still better load balancing between workers can be achieved by the collectB

operator. It assigns partitions to workers based on their size (number of tuples) when
they are transferred from a dfmatrix. The algebra definition does not prescribe by
which algorithm this is done. In our implementation, the following heuristic is used:

1. Divide the set of available workers into standard and reserve workers (e.g., designate
5 % as reserve workers).

2. Sort slots descending by size into list S.
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3. Traverse list S, assigning slots sequentially to standard workers. In each assignment,
select a worker with the minimal load assigned so far.

4. Sort the worker loads descending by size into list A.
5. Traverse list A, removing from each assignment the last slot and assigning it to the

reserve worker with the smallest assignment so far, until reserve worker loads get
close to the average worker load (computed beforehand).

Here the basic strategy is to assign large slots first, small slots last to the worker with
smallest load so far, which lets worker loads fill up equally. This happens in Steps 1 to
3. The last two steps 4 and 5 are motivated by the fact that sometimes in a relatively
well balanced distribution there are a few workers with higher loads. The idea is to
take away from them the last (small) assigned slots and move these to the reserve
workers.

We have evaluated these strategies in a series of experiments on the given example
database with Buildings in NRW. We vary the size of the sample SS using sizes 10000,
20000, and 50000; for each size the partitioning and assignment algorithm is run three
times. The parameter k is fixed to 50. Note that with increasing sample size the number
of partitions grows, because from each point a circle enclosing the closest k neighbors
gets smaller. Hence more circles fit into the same space. Due to the randomness of
samples, the numbers of partitions and all results vary a bit between experiments.

Table 1 shows the results. Here the last four columns have the following meaning:

UtilSizes Utilization for the distribution of partition sizes as in Sect. 7.1
UtilRR Utilization for worker loads with round robin assignment
UtilS Utilization for worker loads with assignment descending by size (Steps

1 through 3 of the algorithm) without reserve workers
UtilSR Utilization for worker loads with assigment descending by size and reas-

signment (Steps 1 through 5)

One can observe that we have about 3 slots per worker for sample size 10000 (as
there are 40 workers), about 6 for 20000, and about 15 for 50000. The variation in slot
sizes and the respective utilization (UtilSizes) remains at around 50% for the increasing
number of partitions. However, the round robin utilization (UtilRR) improves from
about 70% to about 85%.

Assignment descending by size (UtilS) is clearly better than round robin assignment
and reaches already 95% for 6 slots per worker and 98% for 15 slots per worker. Using
reserve workers and reassignment (UtilSR) can in some cases still improve utilization
by a small percentage.

The fact that the partitioning algorithm returns slots of somewhat varying size is
actually an advantage as having small slots allows one to fill up worker loads evenly.
At the same time it is crucial not to have single slots that are extremely large.

In any case, by using enough slots per worker (e.g., 6 in this experiment) we can
achieve an almost perfect load balancing in terms of the sizes of data to be processed.
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Table 1 Evaluation of Load Balancing Strategies

Experiment Sample Size # Partitions UtilSizes UtilRR UtilS UtilSR

10a 10000 122 0.521 0.765 0.874 0.901

10b 10000 124 0.530 0.635 0.857 0.878

10c 10000 127 0.593 0.671 0.866 0.866

20a 20000 243 0.568 0.808 0.943 0.980

20b 20000 246 0.502 0.779 0.950 0.984

20c 20000 243 0.517 0.777 0.945 0.981

50a 50000 618 0.469 0.852 0.982 0.989

50b 50000 618 0.460 0.830 0.982 0.992

50c 50000 622 0.529 0.845 0.983 0.991

7.3 Speedup

In this section we describe experiments with a larger data set to examine the speedup
behaviour of the framework. Experiments are run on a small cluster consisting of 5
server computers, each with the following configuration:

– 8 cores, 32 GB main memory, 4 disks, Intel Xeon CPU E5-2630, running Ubuntu
18.04

– (up to) 8 workers, each using one core, 3.6 GB main memory, two workers sharing
one disk

In addition, the master runs on one of the computers, using all memory, if needed. For
the algorithm of this paper, the master uses almost no memory.

The data set to be clustered consists of the nodes of the OpenStreetMap data set for
Germany. Each node defines a point in the plane; all geometries (e.g., roads, buildings,
etc.) are defined in terms of nodes. There are 315.113.976 nodes. For clustering, we
use the same parameters as in Sect. 6.5, namely Eps = 100 meters, Min Pts = 10.
In all experiments we use the same sample SS of size 30888 and parameter k = 100
which leads to 188 partitions.

The algorithm of Sect. 6.5 was run 4 times, for sets of 10, 20, 30, and 40 workers
denoted W 10, ..., W 40. W 10 is considered as a baseline and we observe the speedup
achieved relative to W 10. Table 2 shows the elapsed time for the 11 steps of the
algorithm.9

Due to the fact that the same precomputed sample was used in all 4 experiments,
the computation of SS is missing in Step 1, which would add about 53 seconds. One
can observe that Steps 1, 2, 3, 8, 9, 10 have negligible running times. Note that the
global computation on the master in Steps 8 through 10 is in no way a bottleneck.

The remaining steps we consider in more detail for 10 to 40 workers in Table 3.
Here within each step the running times for queries are given by the names of the
resulting objects. The right part of the table shows the respective speedups defined as
time(W 10)/time(W x). The numbers are visualized in Fig. 15.

9 Some steps have a few seconds more than the sums of Table 3 due to bookkeeping operations added for
experimental evaluation.
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Table 2 Running Times for Similarity Clustering, 10 Workers

Steps W10 1 2 3 4 5 6

Time [seconds] 0,6 25,2 1,3 3857,7 17746,3 1933,7

Steps W10 7 8 9 10 11 -

Time [seconds] 3207,3 178,3 0,5 0,6 1199,2 -

Especially Fig. 15a illustrates that by far most of the time is spent in the local
DBScans (Step 5, X ) and the initial partitioning of the data (Step 4, V ). Regardless of
running times, the right part of the table and Fig. 15a show the speedups for various
queries. One can observe that computations involving shuffling of data have a weaker
speedup (e.g., Step 6, NeighborsBy...). This is because for more workers there is more
data exchange. But for most queries good speedups can be achieved, e.g., by a factor
around 3 going from 10 to 40 workers.

The overall running times and speedups are shown in Table 4.
Finally, Fig. 16 illustrates the result of the algorithm. The largest 3 clusters dis-

covered have sizes of 158.798.786, 15.279.845, and 7.539.633, respectively. Fig. 16a
shows the partition centers for Germany and two clusters at ranks 29 and 30 with
462.800 and 445.079 elements, respectively (of which only a few sample elements are
selected for visualization). Figure 16b shows the bottommost cluster in more detail; the
four local clusters that have been merged to the global cluster are illustrated by color.
The boundaries of local clusters are defined by the Voronoi diagram over partition
centers.

8 Conclusions

In this paper, we have proposed an algebra with formal semantics which allows a pre-
cise formulation of distributed algorithms or distributed query processing in general. It
is based on the simple and intuitive concept of a distributed array, an array whose fields
lie on and are processed by different computers. The algebra focuses on the aspect
of distribution and is generic with respect to the possible field types or operations on
them. It does, however, provide some specific operations to deal with collections of
objects represented as relations. Otherwise, field types and operations are supplied by
some single server database system, called the basic engine in this paper. Different
such systems may be used in principle.

It would not be satisfactory to present such an algebra without demonstrating its
application to formulate distributed algorithms. Therefore, we have included a fairly
advanced algorithm for distributed clustering. The algorithm is interesting in its own
right: It includes a new technique for purely distance-based partitioning using any
metric similarity function and it is the first precise distributed algorithm for density-
based similarity clustering relying only on distance.

The formulation of the algorithm shows a new style of describing distributed algo-
rithms. In addition to a precise mathematical formulation, it is possible to show the
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Fig. 15 a Running time, b

Speedup, by Steps of the
algorithm, for 10 to 40 workers

Table 4 Overall Running Times
and Speedups

Running Time [seconds] Speedup

W10 W20 W30 W40 W10 W20 W30 W40

28151 16506 12212 9740 1,00 1,71 2,31 2,89

Fig. 16 a Partition centers for Germany and two clusters. b One cluster in detail, composed of four local
clusters

123



Distributed and Parallel Databases (2021) 39:1009–1064 1057

complete implementation in terms of high level operations of a database system with
defined semantics, either of the distributed algebra or of the basic engine. One can
see precisely which data structures and algorithms are used. This is in contrast to
many published algorithms where certain steps are only vaguely described and hard
to understand.

The framework has been implemented and is publicly available. In a brief experi-
mental evaluation, we have studied the variation of partition sizes in the distance based
partitioning, load balancing over workers, and speedup. The results show that partition
sizes vary but are not extreme, and load balancing over workers can provide almost
perfect load distribution, using a sufficient number of slots. Here it is crucial that the
number of slots of a distributed array can be chosen independently from the number
of workers. Finally, a good linear speedup is achieved for most queries.

Future work may address the following aspects:

– Provide fault tolerance for the distributed persistent database, for intermediate
results in files, and for intermediate results in memory. For the persistent database
and memory data, fault tolerance must maintain extensibility, that is, support arbi-
trary new indexes and other data types that are added to the basic engine.

– The presented algebra offers a basic generic layer for distributed query processing.
On top of it more specialized layers may be added. This may include an algebra
for distributed relations, providing several partitioning techniques and keeping
track of partitioning in the data type, handling duplicates in spatial partitioning,
and repartition automatically for joins. Another algebra may handle updates on
distributed relations. All of this can be expressed in the Distributed Algebra, but
will be easier to use at the higher level algebras.

– Provide an SQL level with cost-based optimization, handling of spatial partitioning
in at least two and three dimensions (which includes moving objects) and spatial
duplicate elimination.

– The given distributed arrays are static in their mapping of slots to workers. Provide
dynamic distributed arrays which can adapt to a dataset whose density changes
under updates, as well as to changing available resources.

– Embed other database systems such as PostgreSQL/PostGIS or MySQL in the role
of basic engines.
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