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Distributed Asynchronous Constrained

Stochastic Optimization

Kunal Srivastava and Angelia Nedić

Abstract

In this paper we study two problems which often occur in various applications arising in wireless

sensor networks. These are the problem of reaching an agreement on the value of local variables in

a network of computational agents and the problem of cooperative solution to a convex optimization

problem, where the objective function is the aggregate sum of local convex objective functions. We

incorporate the presence of a random communication graph between the agents in our model as a more

realistic abstraction of the gossip and broadcast communication protocols of a wireless network. An

added ingredient is the presence of local constraint sets to which the local variables of each agent is

constrained. Our model allows for the objective functions to be nondifferentiable and accommodates the

presence of noisy communication links and subgradient errors. For the consensus problem we provide a

diminishing step size algorithm which guarantees asymptotic convergence. The distributed optimization

algorithm uses two diminishing step size sequences to account for communication noise and subgradient

errors. We establish conditions on these step sizes under which we can achieve the dual task of reaching

consensus and convergence to the optimal set with probability one. In both cases we consider the constant

step size behavior of the algorithm and establish asymptotic error bounds.

I. INTRODUCTION

There has been a sustained effort in the research community over the years to develop algorithms for

distributed decision making and control. The main driver for these problems are the more application

specific problems arising in wireless and sensor networks, transmission control protocols for the internet,

distributed machine learning, multi-vehicle coordination and more recently social networks. The two

main mathematical abstractions which have been employed to address these problems are the problem
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of reaching consensus on the decision variables [1]–[5] in a network of computational agents and the

problem of cooperative solution to distributed optimization problems [6]–[11]. The algorithms for reaching

consensus have proven useful in a wide variety of contexts from formation control [3], distributed

parameter estimation [12], [13], load balancing [14], to synchronization of Kuramoto oscillators [15].

The problem of distributed optimization, where the objective is to minimize a sum of convex functions

appears widely in the context of wireless and sensor networks [16]–[18]. A more recent application area

for distributed optimization is the problem of distributed machine learning. In many machine learning

applications it is highly desirable to come up with distributed schemes to solve an optimization problem as

the ubiquity of large and distributed data sets makes it impractical to solve the problem in a centralized

fashion [19], [20]. In many cases it is not possible to store the massive amount of data at the node,

which makes algorithms that rely on multiple iterations over the data sets infeasible. This feature of the

problem makes stochastic gradient descent algorithms attractive for online learning problems, since these

algorithms typically require a single pass over the data. A related problem to distributed optimization is the

problem of fair allocation of resources. This has been thoroughly studied in the area of microeconomics

[21]. Recent interest in the resource allocation problem has arisen in the context of utility maximization

in communication networks [22]–[24]. One of the most important characteristics of the network utility

maximization problem is the fact that the objective function to be minimized has a separable form.

Under this structure various primal or dual decomposition methods can be applied to make the problem

amenable to a distributed solution.

In this paper we deal with both the consensus problem and the problem of distributed optimization

when the objective function has an additive, but not necessarily a separable structure. Most of the work

on the consensus problem deals with the unconstrained case when the variables on which the nodes need

to agree are free to lie in the Euclidean space. We deal with the case when the variables which are local

to nodes are also constrained to lie in closed convex sets. The constraint set for each local variable is

private information to the node. The objective is to design an algorithm which is adapted to the time

varying random nature of the underlying communication graph between nodes and guarantees asymptotic

consensus on the local variables while maintaining the feasibility of each variable with respect to its

constraint set. A distributed algorithm for this problem was proposed in [11]. However, the analysis there

was restricted to the case of a deterministic network, with noiseless communication links. Unlike [11], in

this paper we consider the case when the communication graph is random and the communication links

are noisy. In this case we extend the algorithm proposed in [11] by introducing a step size sequence that

attenuates the communication noise. A new feature of the algorithm is that the step sizes of the agents are
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asynchronous and are a function of their local clocks. We establish convergence of the algorithm (with

probability one) for such uncoordinated but diminishing step sizes, and we provide error bounds for the

case when the step sizes are constant. Then, we consider a distributed constrained stochastic optimization

problem. A distributed optimization algorithm for the case when the objective functions are deterministic

functions has been proposed in [11], but its convergence analysis was limited to two special cases: when

the local constraint sets are identical and when the network is fully connected (requiring the nodes to use

uniform weights). This present paper considers a more general problem than [11], by fully studying the

presence of local constraint sets and noisy communication along with the presence of stochastic errors in

the evaluation of subgradients. Once again we consider a random communication network. In this case we

need to introduce two step size sequences to damp out both communication noise and subgradient errors

arising from considering the stochastic optimization problem. Our distributed optimization algorithm is

asynchronous in nature and, for each agent, both the step sizes are functions of the agent’s local clock.

We prove that if the step size damping the subgradient error decays fast enough when compared to the

step size attenuating the communication noise, then the algorithm converges to a common point in the

optimal set with probability one. We also provide an error bound for the case when the agent step sizes

are uncoordinated but constant.

Our model of the random communication network is general enough to include both the gossip

communication protocol of [25] and the broadcast protocol of [26]. We also consider the case when

the algorithm is employed by using constant step sizes. As expected, in this case it is not possible to

achieve convergence to the optimal set with probability one. Instead, we derive asymptotic error bounds

on the iterates of the algorithm under some additional assumptions.

Consensus over noisy links in the lack of constraint sets has been studied in [27], [28] and [13] among

others. In [7], the authors studied the distributed optimization problem in the presence of subgradient

errors. However, the paper assumes a common constraint set and the absence of communication noise. A

related asynchronous scheme for the distributed optimization problem is the Markov incremental algorithm

proposed in [8]. According to this algorithm the index of agent updating the common decision vector is

decided by the evolution of a Markov chain. A limitation of this algorithm is its serial nature. In [9],

the authors consider a random network model for communication among agents, but the optimization

problem is unconstrained and the proposed approach is synchronous in nature in the sense that the step

sizes of the different agents are coordinated. Another relevant paper which considers the unconstrained

random network model for consensus is [29].

The rest of the paper is organized as follows. In Section II we setup the problem, state our algorithms
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for both the problem of constrained consensus and distributed optimization, and introduce our main

assumptions. In Section III we state some results regarding asymptotic properties of some deterministic

and random sequences which will be useful in deriving our result on asymptotic convergence and the

asymptotic error bounds. In Section IV we tackle the problem of constrained consensus. We prove the

asymptotic convergence result of our algorithm. We also consider the case of constant step size and

establish an asymptotic error bound for averaged iterates. Next, in Section V we provide an asymptotic

convergence result for our asynchronous distributed optimization algorithm, and derive an asymptotic

error bound for the case of constant step sizes. Finally in Section VI we provide the conclusion, and in

the Appendix, we prove one auxiliary result stated in Section III.

Notation and Terminology. The jth component of a vector x is denoted by xj . In many instances when

there are m vectors present, we denote the ith vector as xi. For an m×n real valued matrix A ∈ R
m×n,

we denote the element in the ith row and jth column of A by Aij or [A]ij . We use ‖ · ‖ to denote the

Euclidean norm, and PX [x] to denote the projection of a vector x on the set X .

We write Ir for the r × r-dimensional identity matrix and 1m for the m-dimensional vector with

each component equal to 1. We use D(ai) to denote a diagonal matrix with diagonal entries given by

{a1, . . . , aℓ}. The size of the diagonal matrix is thus given by the number of values the index i takes.

The null space of a matrix A is denoted by N (A). An m×m matrix W is stochastic if Wij ≥ 0 for all

i, j, and W1m = 1m.

Given a directed graph G = (V,E), the link (i, j) ∈ E is to be interpreted as the incoming edge from j

to i. For a bidirectional graph G, we have (i, j) ∈ E if and only if (j, i) ∈ E. We will sometimes denote

the edge set of a graph G as E(G). Given any graph G = (V,E) and a function F : V ×V → R, we use
∑

E F (i, j) to denote the sum where the function F (i, j) is evaluated for all (i, j) ∈ E. When the graph

G has bidirectional links, the sum
∑

E F (i, j) is assumed to be evaluated by taking every edge only

once. We use the terms “agent” and “node” interchangeably. We say that agent j is a neighbor of agent

i if (i, j) ∈ E, and we denote the set of all neighbors of agent i by Ni. A graph G = (V,E) is r-regular

if |Ni| = r for each node i. The Laplacian of a graph G is a matrix L such that Lij = −1 if (i, j) ∈ E,

Lii = |Ni| and Lij = 0 for all (i, j) /∈ E. For a bidirectional graph, the matrix L is symmetric, positive

semidefinite, and satisfies L1 = 0 and 1′L = 0. If the graph G is connected then {c1 : c ∈ R} is the

unique null space of the matrix L. Given m vectors in R
n, {x1, . . . , xm}, the consensus subspace is the

subspace of the mn-dimensional product space, and it is defined as:

C = {z ∈ R
mn : z = 1m ⊗ z, z ∈ R

n},

February 17, 2011 DRAFT



5

which is the subspace of m-copies of the same n-dimensional vector. Thus, the vectors x1, . . . , xm are

in consensus if the concatenated vector x = (x′1, . . . , x
′
m)′ lies in the consensus subspace, i.e., x ∈ C.

Given a finite set of scalars {αi}i∈I , we let ᾱ = maxi{αi} and α = mini{αi}. Furthermore, we let

∆α = ᾱ − α. We use χ{p} to denote the boolean indicator function which takes the value 1 when the

statement p is true, and 0 when p is false. Given a convex not necessarily differentiable function f(x),

a vector d is a subgradient of f at x if the following relation holds for every z in the domain of f :

d′(z − x) ≤ f(z) − f(x).

The set of all subgradients of a function f at a point x is the subdifferential set, denoted by ∂f(x).

II. NETWORK MODEL, OUTLINE OF ALGORITHMS AND ASSUMPTIONS

In this section we introduce the main problems we consider. We provide our algorithms for these

problems and discuss the assumptions we use in our convergence analysis. We consider a setup with a

set of m agents, which can be viewed as the node set V = {1, . . . ,m}. We further assume that the possible

communication links among agents are given by a bidirectional graph G = (V,E). The communication

graph at time slot k is represented by the random graph W(k) = (V, E(k)), with E(k) ⊂ E. Clearly the

random graph W(k) is a subgraph of the graph G. Note that W(k) is not required to be a bidirectional

graph. The use of random communication graphs enables us to include various communication protocols

which are prevalent in the wireless network literature such as gossip based protocols [25] and broadcast

based protocol [26].

In the current work we are mainly concerned with the problem of constrained consensus and distributed

optimization in the presence of various uncertainties including noisy communication links, random

communication graphs, and stochastic errors in the evaluation of subgradients of the objective function.

We will model the communication events (when any two agents i and j communicate) as occurring at the

ticks of a global Poisson clock Tp. It has been shown [25], [26], that this abstraction fits the framework of

asynchronous computation in both the gossip and broadcast framework. Let us denote the local decision

variable associated with node i as xi,k. Each local decision variable xi,k is restricted to lie in a local

constraint set Xi.

A. Constrained consensus

The constrained consensus problem is to achieve asymptotic consensus on the local decision variables

through information exchange with the neighboring nodes in the presence of the constraint sets. Alter-

natively, the problem can be cast as a quest for a distributed algorithm for the following optimization
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problem:

minimize
∑m

i=1 ‖x− PXi
[x]‖2

subject to x ∈ R
n.

When the intersection ∩mi=1Xi is nonempty, a solution to the above problem is given by any vector x

which lies in the intersection. Clearly, in this case the objective function value is zero, which is also the

optimal value. A distributed algorithm for this problem was proposed in [11]. In the algorithm agent i’s

local variable xi,k evolves as follows:

xi,k+1 = PXi





m
∑

j=1

rij,k+1xj,k



 ,

where rij,k+1 denotes the weight assigned by node i to the estimate coming from node j. A crucial

assumption needed in the analysis in [11] was the requirement that if agent i receives data from agent j

then rij,k ≥ η > 0, uniformly in k. We are interested in the case when the communication links are noisy

and, hence, node i has access to a noise corrupted value of its neighbor’s local estimate. In this case it

is detrimental to impose the requirement that rij,k ≥ η since we need to asymptotically damp the impact

of the noise. We formulate our algorithm for the general case when, at the kth tick of the global Poisson

clock Tp, the communication graph W(k) = (V, E(k)) is random, i.e., the edge set E(k) is random. A

similar formulation to ours was carried out in [30], but without local set constraints. We will assume that

the noise is additive in nature. With this in consideration, let us define the random variables vi,k+1 for

all i ∈ V , as follows:

vi,k+1 = xi,k + αi,k+1

m
∑

j=1

aij,k+1[xj,k + ξij,k+1 − xi,k], (1)

where ξij,k+1 is the additive noise on the link (i, j). The weights aij,k+1 > 0 encode the random network

and the relative weights node i imposes on the communicated variables from its neighboring nodes at

instance k+1. If a node i doesn’t receive any information from node j at instance k+1, then aij,k+1 = 0.

Clearly aij,k+1 = 0 for all k, if the edges (i, j) /∈ E(W(k + 1)). We assign aii,k = 0, uniformly in k. If

an agent i doesn’t receive any information from its neighbors, then vi,k+1 = xi,k. We define the matrix

Wk ∈ R
m×m such that [Wk]ij = −aij,k for i 6= j and [Wk]ii =

∑

j 6=i aij,k. Then, Wk has the property
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Wk1m = 0 for all k. Under the new notation relation (1) can be written as

vi,k+1 =xi,k − αi,k+1

m
∑

j=1

[Wk+1]ijxj,k

− αi,k+1

∑

j 6=i

[Wk+1]ijξij,k+1 for all i ∈ V . (2)

Define the set Uk = {j ∈ V | [Wk]jℓ < 0 for some ℓ 6= j} and Γi,k =
∑k

t=1 χ{i∈Ut}. Essentially the set

Uk denotes the set of agents updating their iterates at instance k, and Γi,k denotes the number of times

agent i has updated its value until time k. The asynchronous behavior of the algorithm becomes apparent

in the way the agents use the step sizes αi,k. We start with the assumption that all the agents know the

functional form of the step sizes αi,k, for example αk = 1
kθ with a parameter θ. For an agent i updating

at time k+ 1, the step size is given by αi,k+1 = α(Γi,k+1). Let us denote the total noise experienced by

agent i at time k+ 1 in Eq. (2) by ξi,k+1. Then, our algorithm for the constrained consensus problem is

given as

vi,k+1 = xi,k − αi,k+1

m
∑

j=1

[Wk+1]ijxj,k − αi,k+1ξi,k+1

ξi,k+1 =
∑

j 6=i

[Wk+1]ijξij,k+1 (3)

xi,k+1 = PXi
[vi,k+1] ,

where PXi
[·] is the projection on the local constraint set Xi. The local variables always satisfy xi,k ∈ Xi,

and if at any instant the node i doesn’t receive any information from its neighbors ([Wk+1]ij = 0 for all

j 6= i), then xi,k+1 = xi,k. The initial points xi,0 ∈ Xi are assumed to be random with finite expectations

E[‖xi,0‖
2] and independent of the other random variables involved in the communications.

B. Distributed optimization

We now discuss the problem of distributed optimization. We consider the distributed optimization

problem when the objective function is a sum of m local convex objective functions corresponding to

m agents. The objective of the agents is to cooperatively solve the following constrained optimization

problem:

minimize

m
∑

i=1

fi(x)

subject to x ∈ X =

m
⋂

i=1

Xi,
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where each fi : R
n → R is a convex function, representing the local objective function of agent i, and

each set Xi ⊆ R
n is compact and convex, representing the local constraint set of agent i. Since the

objective function is continuous and the set X is compact, by Weierstrass theorem it follows that the

optimal set is nonempty. Let us denote the optimal set by X∗. We assume that the local constraint set

Xi and the objective function fi are known to agent i only. In our formulation we are not restricted to

the deterministic optimization. In many applications arising in sensor networks and distributed machine

learning [31], [32] the local objective functions can take the form of the following stochastic optimization:

fi(x) = Eω[gi(x, ω)] + Ω(x),

where ω is a random variable and the expectation is taken with respect to the distribution of ω. The

term Ω(x) is a regularization term that is often included to improve the generalization ability [33].

Recently a lot of interest in signal processing has been generated towards the use of the l1-norm as the

regularization term. In many cases it has been shown that such a regularization yields sparse solutions.

Since the l1-penalty is nondifferentiable, our algorithm which doesn’t require the objective function to

be differentiable is suitable for this problem. It is well known that the stochastic optimization problems

of the form above can be dealt with by using first-order stochastic gradient descent methods [34]–[38].

Such algorithms are also known as stochastic approximation algorithms. Our algorithm can be classified

as a stochastic approximation based method.

We propose the following update mechanism for each agent:

vi,k+1 = xi,k − αi,k+1

m
∑

j=1

[Wk+1]ijxj,k − αi,k+1ξi,k+1

ξi,k+1 =
∑

j 6=i

[Wk+1]ijξij,k+1 (4)

xi,k+1 = PXi

[

vi,k+1 − γi,k+1d̃i,k+1χ{i∈Uk+1}

]

.

The algorithm is an adjustment of the consensus algorithm in (3), where the agent i update of xi,k+1

is modified to account for the local objective function fi. The vector d̃i,k+1 is a noisy subgradient of

fi(x) at x = vi,k+1, given by d̃i,k+1 = di,k+1 + ǫi,k+1 for all k, where the vector di,k+1 is a subgradient

of fi(x) at x = vi,k+1 and ǫi,k is the error associated with the evaluation of the subgradient di,k+1.

A unique feature of our algorithm is the ability to handle both communication noise and subgradient

error. The presence of two sources of noise makes it imperative to use two step size sequences αi,k and

γi,k corresponding to the communication noise and subgradient error respectively. These stepsizes are

functions of the number of times agent i updates its variable, as given later (see (10)). Analogous to
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the consensus algorithm, here we also assume that the initial points xi,0 ∈ Xi are random with finite

expectations E[‖xi,0‖
2] and independent of the other random variables involved in the process.

C. Assumptions and implications

In this section we introduce various assumptions which we use to prove convergence of our algorithms

for both constrained consensus and the distributed optimization problem. We group the assumptions into

three categories; namely, network assumptions, constraint sets and objective functions assumptions, and

the assumptions on communication noise and subgradient errors. Typically in our results we only require

a subset of the following assumptions to hold. To prevent imposing blanket assumptions for our results,

we explicitly refer the assumptions required in each of our result.

Network Assumptions. Our first assumption lists all the conditions on the underlying communication

graph that will be used, not necessarily all at once. Recall that the graph G = (V,E) has the edge set E

consisting of all possible communication links between nodes, and that W(k) = (V, E(k)) is the random

communication graph at time k. Also, recall that the matrices Wk are defined by

[Wk]ij = −aij,k for i 6= j and [Wk]ii =
∑

j 6=i

aij,k, (5)

where aij,k are the relative weights. We use the following conditions on the graph G and the weight

matrices.

Assumption 1: Suppose that the following hold:

a) The graph G = (V,E) is bidirectional, connected and without self-loops i.e., (i, i) /∈ E for all i.

b) For all edges (i, j) ∈ E(k), we have 0 < aij,k ≤ η and aij,k = 0 otherwise.

c) The random matrix sequence {Wk} is independent identically distributed (i.i.d.). The expected matrix

W̄ = E[Wk] is positive semidefinite and the vector 1m is the unique (up to scaling) nonzero vector

satisfying W̄1m = 0.

d) The probability pi of update at any instance for each node i is positive, i.e., pi > 0 for all i.

By the definition of the weight matrices Wk in (5), Assumption 1-b implies that

−η ≤[Wk]ij < 0 for (i, j) ∈ E(k),

[Wk]ij = 0 for (i, j) 6∈ E(k). (6)

Note that Assumption 1-c does not require that the random communication graph W(k) is connected at

any instance. However, the expected graph W̄ = (V,E[E(k)]) is connected in view of the assumption

on the vector 1m. As shown later in Lemmas 1 and 2, the expected weight matrix arising in gossip
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and broadcast communication protocol satisfy the positive semidefiniteness condition of Assumption 1-c.

Furthermore, under the i.i.d condition of Assumption 1-c, the random variables χ{i∈Uk} are also i.i.d

for any i ∈ V . Thus, the stationary probability pi of update at any instance by agent i is well defined,

and we have pi = E
[

χ{i∈Uk}

]

.

Constraints sets and objective functions. We here discuss the assumptions we make on the sets Xi and

the functions fi.

Assumption 2: Let the following conditions hold:

a) The constraint sets Xi ⊆ R
n are closed and convex. Their intersection set X = ∩mi=1Xi is nonempty.

b) The constraint sets Xi are compact.

c) The intersection set X has a nonempty interior, i.e., there are z̄ ∈ X and δ > 0 such that {x :

‖x− z̄‖ ≤ δ} ⊂ X .

d) The functions fi(x) are defined and convex on R
n.

e) We assume that the subgradients of each function fi are uniformly bounded i.e., there is a scalar

C > 0 such that ‖d‖ ≤ C for all d ∈ ∂fi(x), all x ∈ R
n, and all i.

When the sets Xi are compact, we will use the notation

CXi
= max

x,y∈Xi

‖x− y‖ for all i ∈ V.

Under Assumption 2-d, it is known [39] that each function fi(x) is differentiable almost everywhere.

Wherever the functions are not differentiable, the subdifferential set ∂fi is nonempty. Note that even when

the sets Xi are compact, we still assume the subgradient boundedness for each fi since the optimization

algorithm in (4) uses the subgradients at points vi,k+1, which may lie outside the set Xi.

Communication noise and subgradient error. We now state the assumptions we use for the link noise

and the stochastic subgradient errors. For this, let us denote the σ-algebra generated by the entire history

of the algorithm up to time k, as follows:

Fk = {xi,0,Wℓ, ξij,ℓ, ǫi,ℓ; 1 ≤ ℓ ≤ k, i, j ∈ V }.

Assumption 3: Let the following hold:

a) The noise is zero mean, E [ξij,k+1 |Fk,Wk+1] = 0 for any link (i, j) ∈ E(k + 1).

b) For any realization of the random graph W(k+1), the noise on link (i, j) is independent of the noise

on link (i′, j′), where (i, j) 6= (i′, j′).

c) There is a uniform bound on the noise variance, i.e., there is µ > 0 such that for all (i, j) ∈ E(k+1)

and k ≥ 0,

E

[

‖ξij,k+1‖
2 |Fk,Wk+1

]

≤ µ2.
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d) The error ǫi,k+1 associated with the subgradient di,k+1 of the function fi(x) at x = vi,k+1 is such

that for k ≥ 0,

E [ǫi,k+1 |Fk,Wk+1, vi,k+1] = 0 for all i ∈ Uk+1.

e) The subgradient errors satisfy the following: for all k ≥ 0,

E

[

‖ǫi,k+1‖
2 |Fk,Wk+1, vi,k+1

]

≤ ν2 for all i ∈ Uk+1.

For algorithm (4), we have ξi,k+1 =
∑

j 6=i[Wk+1]ijξij,k+1. Thus, as a consequence of Assumptions 3-a

and 3-b on the noise process and relation (6), which holds under Assumption 1-b on the weights, we

have

E

[

‖ξi,k+1‖
2 |Fk,Wk+1

]

=
∑

j 6=i

E

[

[W 2
k+1]ij ‖ξij,k+1‖

2 |Fk,Wk+1

]

≤ N̄η2µ2, (7)

where N̄ = maxi{|Ni|} and Ni is the set of neighbors of agent i in the graph G = (V,E).

As a consequence of the subgradient norm and subgradient error boundedness (Assumptions 2-e and 3-

e), it can be seen that for all i ∈ Uk+1 and k ≥ 0,

E

[

‖di,k+1 + ǫi,k+1‖
2 |Fk,Wk+1, vi,k+1

]

≤ (C + ν)2. (8)

Here we have used Hölder’s inequality, which states that for random vectors x and y there holds E [|x′y|] ≤
√

E[‖x‖2]
√

E[‖y‖2]. We now show that the two most widely studied communication protocols in the

consensus literature satisfy our assumptions on the random matrix Wk.

D. Gossip-based communication protocol

In [25], a widely used model for asynchronous gossip based communication protocol is provided,

which can be represented as follows. At each tick of the global Poisson clock Tp, an agent represented

by the random variable Ik, wakes up with uniform probability. Then, the agent Ik selects a neighboring

agent Jk with a stationary probability PIkJk
. Let us denote by W g

k the random matrix Wk corresponding

to this case. Then, the matrix W g
k takes the following form:

W g
k =

1

2
(eIk

− eJk
)(eIk

− eJk
)′ with probability 1

m
PIkJk

,

where ej is a vector with jth component equal to 1 and the other components equal to 1. The probability

of update for any agent i at any of the clock ticks is given by pi = 1
m

[

1 +
∑

j∈Ni
Pji

]

. For the special

case when the probability of selecting a neighboring agent is uniform, we have pi = 1
m

[

1 +
∑

j∈Ni

1
|Nj |

]

.
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Note that, in this case, when the underlying graph G = (V,E) is regular, the probability of update for all

agents is the same and is equal to p = 2
m

. We also have the following properties for the random matrix

W g
k .

Lemma 1: [25] The random matrix W g
k has the following properties:

a) W̄g = E[W g
k ] is a symmetric positive semidefinite matrix such that W̄g1 = 0 and 1′W̄g = 0.

b) Rg = E[(W g
k )′W g

k ] = W̄g.

Proof: We can explicitly compute the expected value of the random matrix W (k) as follows:

W̄g = E[W g
k ] =

1

2m

∑

(i,j)∈E

Pij(ei − ej)(ei − ej)
′,

which can be represented as W̄g = 1
2m(D − (P + P ′)), where D is a diagonal matrix with entries

Di =
∑

j 6=i[Pij + Pji]. Now, it can be verified that W̄g1 = 0 and 1′W̄g = 0. Moreover since we have

0 ≤ (W g
k )′W g

k = [W g
k ]2 = W g

k ,

upon taking the expectation, we obtain the desired result.

Observe that our notation is slightly different from that of [25], where the convergence properties of the

recursion x(k + 1) = W̃kx(k) is considered with W̃k = I −W g
k .

E. Broadcast-based communication protocol

The consensus algorithm based on a broadcast based communication protocol was discussed in [26].

According to the broadcast protocol once a node i wakes up at the tick of its local clock, it broadcasts

its local variable, which is successfully received by its neighbors. The random matrix Wk+1 in this case

is labeled W b
k . Formally, representing the random agent whose clock ticks in slot k by Ik, the matrix

W b
k takes the following form:

W b
k = β

∑

j∈NIk

(eje
′
j − eje

′
Ik

) with probability 1
m

.

The probability of update for any agent i is given as pi = |Ni|
m

. If the graph G is r-regular then the

probability of update for all agents is uniformly equal to p = r
m

. Furthermore, the following result holds.

Lemma 2: [40] Under the assumption that the graph G is bidirectional and connected, the random

matrix W b
k has the following properties:

a) W̄b = E[W b
k ] is a symmetric positive semidefinite matrix such that W̄b1 = 0 and 1′W̄b = 0.

b) Rb = E[(W b
k)

′W b
k ] = 2β2W̄b.
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Proof: The expected matrix can be computed as

W̄b = E[W b
k ] =

β

m

∑

i∈V

∑

j∈Ni

(eje
′
j − eje

′
i) =

β

m
L,

where L is the Laplacian of the graph G. By the definition of the graph Laplacian matrix L, and the

assumptions that the graph G is bidirectional and connected (Assumption 1-a), we have that the matrix

W̄b is a positive semidefinite matrix which satisfies W̄b1 = 0 and 1′W̄b = 0. It can also be seen that

Rb = E[(W b
k)

′W b
k ] = 2β2W̄b.

Recently in [40], a variant of the broadcast algorithm is presented including the possibility of collisions

between simultaneous transmissions. In this case it can be seen that, if the graph is r-regular then, for

the matrix W̄bc = E[Wk], we have W̄bc = βp(1 − p)rL, which is a positive semidefinite matrix with

W̄bc1 = 0 and 1′W̄bc = 0.

III. PRELIMINARY RESULTS

In this section we provide various results which will be useful in proving our main results. The following

is a well-known non-expansiveness property of the projection operator on a convex closed set X:

‖PX [x] − PX [y]‖ ≤ ‖x− y‖ for all x, y, (9)

see for example [39], Proposition 2.2.1, page 88.

The second method of Lyapunov has been instrumental in the stability analysis of dynamic systems. The

Foster-Lyapunov theorem [41] gives an analogous stability result for systems with stochastic dynamics.

However, the Foster-Lyapunov technique is not sufficient for our case. We need the following result of

Robbins and Siegmund, which is a generalization of the supermartingale convergence theorem.

Lemma 3: ( [36], page 50) Let {Xt}, {Yt}, {Zt} and {g(t)} be sequences of random variables and

let Ft, t = 0, 1, 2, . . . , be a filtration such that Ft ⊆ Ft+1 for t ≥ 0. Suppose that:

a) The random variables Yt, Xt, Zt and g(t) are nonnegative, and are adapted to the filtration Ft.

b) For each t, we have almost surely

E[Yt+1 | Ft] ≤ (1 + g(t))Yt −Xt + Zt.

c) There holds
∑∞

t=0 Zt <∞ and
∑∞

t=0 g(t) <∞ almost surely.

Then, almost surely,
∑∞

t=0Xt <∞ and the sequence {Yt} converges to a nonnegative random variable

Y .

The following result, as proven in [30], is helpful in establishing asymptotic error bounds associated

with constant step size algorithms.
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Lemma 4: ( [30]) Let β ∈ (0, 1), and let {dk} and {uk} be scalar sequences such that

dk ≤ βdk−1 + uk−1 for all k ≥ 1.

Then,

lim sup
k→∞

dk ≤
1

1 − β
lim sup
k→∞

uk.

In the current work we restrict ourself to step sizes of the form 1
kθ , where 1

2 < θ ≤ 1. Thus, in our

algorithms (3) and (4), we will use

αi,k =
1

[Γi,k]θ1
, γi,k =

1

[Γi,k]θ2
, (10)

where 1
2 < θ1, θ2 ≤ 1. In the following lemma, we give some results for these step sizes. The proof of

the lemma is in Appendix.

Lemma 5: Under the i.i.d assumption on the random network W(k) and pi > 0 (Assumptions 1-c

and 1-d), for any step size of the form 1
Γθ

i,k

with 1
2 < θ ≤ 1, the following hold with probability one: for

all i ∈ V ,

∞
∑

k=1

E

[

1

Γ2θ
i,k

|Fk

]

<∞,

∞
∑

k=1

E

[∣

∣

∣

∣

∣

1

Γθi,k
−

1

pθi k
θ

∣

∣

∣

∣

∣

|Fk

]

<∞.

We are now ready to discuss our main results regarding the asymptotic behavior of the consensus

and optimization algorithms given by Eqs. (3) and (4), respectively. We investigate the algorithms under

diminishing and constant step sizes.

IV. CONSTRAINED CONSENSUS

In this section we present our analysis of the constrained consensus algorithm (3) under both dimin-

ishing and constant step sizes. We adopt the classical Lyapunov kind of analysis for stochastic systems,

which is as follows. First, we derive a descent-type relation involving a particular choice of a Lyapunov

function in Lemma 6. Then, using the descent relation and a standard supermartingale convergence

result, in Theorem 1 we show the almost sure convergence of the local variables xi,k as generated by

the consensus algorithm (3) to a common random point in the intersection of the local constraint sets.

Following this, we consider the constant step size case in Theorem 2. It is well known that in this case,

an almost sure convergence of the algorithm cannot be guaranteed, but error bounds may be provided

for expected value of a Lyapunov function. We derive asymptotic error bounds based on a metric which

penalizes the expected deviations from the consensus subspace.
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We now proceed with some basic relations which will be valuable in deriving both the almost sure

convergence and the error bound for a constant step size. Let us introduce the notation for the joint state

vector as xk = (x′1,k, . . . , x
′
m,k)

′, where xi,k is the local variable at node i constrained to the set Xi.

Correspondingly, we denote the vector vk = (v′1,k, . . . , v
′
m,k)

′, where vi,k is given by Eq. (3). For a fixed

vector z ∈ R
n, we denote z ∈ R

mn as the vector consisting of m copies of the vector z, i.e., z = 1m⊗z.

By definition any such vector z belongs to the consensus subspace C ⊂ R
mn. To get further insight in

the problem, let us define the product constraint set X̃ = X1 × · · · × Xm. Then, clearly X̃ ⊂ R
mn.

According to this definition, the consensus algorithm (3) implies that xk ∈ X̃ for all k. The constrained

consensus problem can be equivalently thought of as the task of finding a point in the intersection set

X̃ ∩ C.

Recalling that D(ai) is a diagonal matrix with diagonal elements ai, we introduce the diagonal matrix

D(pθ1i ), where θ1 ∈ (1/2, 1] and the matrix Q = D(pθ1i )⊗ In. Also, we use the diagonal matrix D(αi,k)

to define Λ̄k = D(αi,k) ⊗ In. The matrix Wk is defined as Wk = Wk ⊗ In. Finally, we define the

net noise vector by ξ′k = (ξ′1,k, . . . , ξ
′
m,k)

′. According to this notation, we can represent the consensus

algorithm (3) in an equivalent form:

vk+1 =
[

I − Λ̄k+1Wk+1

]

xk − Λ̄k+1ξk+1

ξk+1 = Wk+1ξk+1 (11)

xk+1 = PX̃ [vk+1] .

Then, we have the following result.

Lemma 6: Consider a Lyapunov function of the form Vk = (xk− z∗)′Q(xk− z∗), where z∗ = 1m⊗ z∗

for any z∗ ∈ X . Then, for the consensus algorithm (3) under Assumption 2-a on the constraint sets and

the zero mean assumption on the communication noise (Assumption 3-a), we have for all k ≥ 0,

E[Vk+1 |Fk] ≤ Vk

+ (xk − z∗)′E
[

W′
k+1Λ̄

2
k+1QWk+1 |Fk

]

(xk − z∗)

− 2(xk − z∗)′E
[

QΛ̄k+1Wk+1 |Fk
]

(xk − z∗)

+ E
[

ξ′k+1Λ̄
2
k+1Qξk+1 |Fk

]

.

Proof: By the non-expansiveness property of the projection operator (cf. (9)), we obtain

pθ1i ‖xi,k+1 − z∗‖2 = pθ1i ‖PXi
[vi,k+1] − PXi

[z∗]‖2

≤ pθ1i ‖vi,k+1 − z∗‖2 .
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On summing the relations above over index i ∈ V and using Q = D(pθ1i ), we get

Vk+1 = (xk+1 − z∗)′Q(xk+1 − z∗)

≤ (vk+1 − z∗)′Q(vk+1 − z∗).

Taking the expectation conditional on the past Fk, we obtain

E[Vk+1 |Fk] ≤ E[(vk+1 − z∗)′Q(vk+1 − z∗) |Fk]. (12)

We have Wk+1z∗ = 0 which holds by Wk+1 = Wk+1 ⊗ In and the definition of Wk in Eq. (5). Using

this and the expression for vk+1 as given in relation (11), we obtain

E[(vk+1 − z∗)′Q(vk+1 − z∗) |Fk]

= Vk + (xk − z∗)′E
[

W′
k+1Λ̄

2
k+1QWk+1 |Fk

]

(xk − z∗)

− 2(xk − z∗)′E
[

QΛ̄k+1Wk+1 |Fk
]

(xk − z∗)

+ E
[

ξ′k+1Λ̄
2
k+1Qξk+1 |Fk

]

− 2E

[

(

[I − Λ̄k+1Wk+1]xk − z∗
)′

QΛ̄k+1ξk+1 |Fk
]

. (13)

Using the iterated expectation rule and E[ξk+1 |Fk,Wk+1] = 0 (Assumption 3-a), we have

E

[

(

[I − Λ̄k+1Wk+1]xk − z∗
)′

QΛ̄k+1ξk+1 |Fk
]

= 0. (14)

The desired relation follows by combining Eqs. (12)-(14).

A. Almost sure convergence

The following theorem brings together our various assumptions and the preliminary results to provide

conditions guaranteeing almost sure convergence of the consensus algorithm.

Theorem 1: Let Assumption 1 on the network hold. Also, let Assumptions 2-a and 2-b on the constraint

sets, and Assumptions 3-a, 3-b, and 3-c on the noise process hold. Let the step size αi,k be of the form

αi,k = 1
Γ

θ1
i,k

, where 1
2 < θ1 ≤ 1. Then, the iterations of the consensus algorithm (3) satisfy with probability

one for all i and some random vector z∗ ∈ X:

lim
k→∞

‖xi,k − z∗‖ = 0.

Proof: The starting point of our analysis for almost sure convergence is the relation derived in

Lemma 6. Let us focus on the term −2(xk − z∗)′E
[

QΛ̄k+1Wk+1 |Fk
]

(xk − z∗), where z∗ = 1m ⊗ z∗

for an arbitrary z∗ ∈ X . According to our notation, we have QΛ̄k+1 = D(pθ1i αi,k+1) ⊗ In, where
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D(pθ1i αi,k+1) is the diagonal matrix with diagonal entries given by pθ1i αi,k+1, i = 1, . . . , n. Thus, we

can write

pθ1i αi,k+1 =
pθ1i

Γθ1i,k+1

=
pθ1i

pθ1i (k + 1)θ1
+ pθ1i

(

1

Γθ1i,k+1

−
1

pθ1i (k + 1)θ1

)

.

Let us denote Hk,θ1 = D

(

1
Γ

θ1
i,k

− 1
p

θ1
i kθ1

)

and H̄k,θ1 = Hk,θ1 ⊗ In. Then, we have

QΛ̄k+1Wk+1 =
1

(k + 1)θ1
Wk+1 + QH̄k+1,θ1Wk+1.

Since W̄1m = 0 (Assumption 1-c), it follows that

− 2(xk − z∗)′E[QΛ̄k+1Wk+1 |Fk](xk − z∗)

= −
2

(k + 1)θ1
x′kW̄xk

− 2(xk − z∗)′E
[

QH̄k+1,θ1Wk+1 |Fk
]

(xk − z∗). (15)

Now, using pθ1i ≤ 1, |[Wk+1]ij | ≤ η for i 6= j and |[Wk+1]ii| ≤ |Ni|η (cf. Eq. (5) as implied by

Assumption 1-b), the boundedness of constraint sets (Assumption 2-b), we can upper bound the last term

in Eq. (15) as follows:

− 2(xk − z∗)′E
[

QH̄k+1,θ1Wk+1 |Fk
]

(xk − z∗)

≤ 2
∑

i,j

|xi,k − z∗| |xj,k − z∗|E [|[Wk+1]ij [Hk+1,θ1 ]i| |Fk]

≤ 2ηN̄
∑

i,j

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk] , (16)

where CXi
is the diameter of the set Xi (i.e., CXi

= maxx,y∈Xi
‖x − y‖) and N̄ is the maximal node

degree in the graph G (i.e., N̄ = maxi |Ni|). Similarly we can derive the following bound

(xk − z∗)′E
[

W′
k+1Λ̄

2
k+1QWk+1 |Fk

]

(xk − z∗)

≤ N̄2η2
∑

j,j′

CXj
CXj′

∑

i∈V

E
[

α2
i,k+1 |Fk

]

. (17)

Under zero mean, independent across the links, and bounded second moment assumptions on the link

noise (Assumptions 3-a, 3-b, and 3-c), the term involving communication noise in Lemma 6 can be bound

February 17, 2011 DRAFT



18

as follows:

E
[

ξ′k+1Λ̄
2
k+1Qξk+1 |Fk

]

=
∑

i∈V

E

[

pθ1i α
2
i,k+1 ‖ξi,k+1‖

2 |Fk
]

=
∑

i∈V

E

[

pθ1i α
2
i,k+1E[‖ξi,k+1‖

2 |Fk,Wk+1] |Fk
]

≤ N̄η2µ2
∑

i∈V

E
[

α2
i,k+1 |Fk

]

. (18)

Here, we have used the inequality in Eq. (7).

Now substituting the bounds from Eqs. (15), (16), (17) and (18) in the relation of Lemma 6, we obtain

E [Vk+1 |Fk] ≤ Vk −
2

(k + 1)θ1
x′kW̄xk

+ 2ηN̄
∑

i,j

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk]

+



N̄η2µ2 + N̄2η2
∑

j,j′

CXj
CXj′





∑

i∈V

E
[

α2
i,k+1 |Fk

]

.

Note that from Lemma 5, we have the result that for the choice of step size αi,k+1 = 1
Γ

θ1
i,k+1

the last two

terms are summable with probability one. Thus, we can apply the supermartingale convergence result of

Lemma 3 to deduce that, with probability one, both the sequence Vk = (xk − z∗)′Q(xk − z∗) converges

for any z∗ ∈ X and the following holds:

∞
∑

k=0

1

(k + 1)θ1
x′kW̄xk <∞. (19)

Since θ1 ∈ (1/2, 1], we have
∑∞

k=0
1

(k+1)θ1
= ∞. Moreover, since W̄ is positive semidefinite (As-

sumption 1-c), from Eq. (19) it follows that with probability one lim infk→∞ x′kW̄xk = 0. Thus, with

probability one, there exists a subsequence such that

lim
ℓ→∞

x′kℓ
W̄xkℓ

= 0.

Now, under Assumption 1-c, the consensus subspace C is the null space of the matrix W̄, hence for all

agents i and j we have with probability one

lim
ℓ→∞

‖xi,kℓ
− xj,kℓ

‖ = 0. (20)

Since the constraint sets are compact (Assumption 2-b) and {xi,k} ⊂ Xi for all i, without loss of

generality, we may assume that limℓ→∞ ‖xi,kℓ
− z̃i‖ = 0 with probability one for some random vector

z̃i ∈ Xi and for all i. In view of (20), it follows that z̃1 = . . . = z̃m = z̃∗. Hence, with probability one,
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limℓ→∞ V kℓ = limℓ→∞
∑

i p
θ1
i ‖xi,kℓ

− z̃∗‖2 = 0. But, Vk converges almost surely for any z̃∗ ∈ X , so

the sub-sequential limit is also the sequential limit, implying that almost surely

lim
k→∞

Vk = lim
k→∞

m
∑

i=1

pθ1i ‖xi,k − z̃∗‖2 = 0.

Since pi > 0, we have limk→∞ ‖xi,k − z̃∗‖ = 0 almost surely for all i and a random point z̃∗ ∈ X .

B. Constant step size error bound

In this section we focus on a constant step size algorithm, where αi,k = αi for all i and k > 0. Using

constant step sizes does not give us almost sure convergence to the consensus subspace, but in this case

we can provide an asymptotic error bound on the iterations of the consensus algorithm.

Theorem 2: Let Assumption 1 on the network hold. Also, let Assumptions 2-a and 2-b on the constraint

set hold together with Assumptions 3-a, 3-b and 3-c on the link noise. Then, for the iterates generated

by consensus algorithm (3), we have the following asymptotic bound:

lim sup
T→∞

E
[

(x̂T − z∗)′W̄(x̂T − z∗)
]

≤
η∆αN̄

α

∑

E

CXi
CXj

+
ᾱ2

2α

[

mN̄η2µ2 + ‖R‖
m
∑

i=1

C2
Xi

]

,

where x̂T = 1
T

∑T−1
k=0 xk, W̄ = E[Wk], R = E

[

W′
k+1Wk+1

]

, ‖R‖ is the matrix norm of R induced by

the Euclidean vector norm, and z∗ = 1m ⊗ z∗ for any point z∗ ∈ X .

Proof: Using a line of analysis similar to that of Lemma 6, it can be seen that for the constant step

sizes αi, the following relation holds with probability one for all k ≥ 0:

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2

+ (xk − z∗)′E
[

W′
k+1Λ̄

2Wk+1 |Fk
]

(xk − z∗)

− 2(xk − z∗)′E
[

Λ̄Wk+1 |Fk
]

(xk − z∗)

+ E
[

ξ′k+1Λ̄
2ξk+1 |Fk

]

,

where Λ̄ = D(αi)⊗ In and D(αi) is diagonal matrix with diagonal entries αi. Similar to the derivation

of relation (18), we can show that the following bound is valid for all k ≥ 0,

E
[

ξ′k+1Λ̄
2ξk+1 |Fk

]

≤ N̄η2µ2
∑

i∈V

α2
i ≤ mN̄η2µ2ᾱ2,
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with ᾱ = maxi∈V αi. From the preceding two relations, we obtain

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2

+ ᾱ2(xk − z∗)′R(xk − z∗)

− 2(xk − z∗)′Λ̄W̄(xk − z∗) +mN̄η2µ2ᾱ2, (21)

where R = E
[

W′
k+1Wk+1

]

and W̄ = E [Wk+1]. Using Λ̄ = D(αi) ⊗ In, we can derive the following

estimate:

−2(xk − z∗)′Λ̄W̄(xk − z∗) ≤ −2α(xk − z∗)′W̄(xk − z∗)

+ 2η∆αN̄
∑

E

CXi
CXj

, (22)

where α = mini∈V αi and δα is the difference between the maximum and the minimum values of the

step sizes αi. By substituting (22) in (21) and taking total expectation, we obtain

2αE
[

(xk − z∗)′W̄(xk − z∗)
]

≤ E

[

‖xk − z∗)‖2
]

− E

[

‖xk+1 − z∗‖2
]

+ 2η∆αN̄
∑

E

CXi
CXj

+mN̄η2µ2ᾱ2 + ᾱ2
E
[

(xk − z∗)′R(xk − z∗)
]

. (23)

Using the compactness condition (Assumption 2-b), we can see that (xk−z∗)′R(xk−z∗) ≤ ‖R‖
∑m

i=1C
2
Xi

,

implying that

E[(xk − z∗)′R(xk − z∗)] ≤ ‖R‖
m
∑

i=1

C2
Xi
.

Using this bound and summing relations (23) from k = 0 to k = T − 1 for some T > 0, we have

1

T

T−1
∑

k=0

E
[

(xk − z∗)′W̄(xk − z∗)
]

≤
1

2αT

[

E

[

‖x0 − z∗)‖2
]

− E

[

‖xT − z∗‖2
]]

+
η∆αN̄

α

∑

E

CXi
CXj

+
ᾱ2

2α

[

mN̄η2µ2 + ‖R‖
m
∑

i=1

C2
Xi

]

.
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Letting x̂T = 1
T

∑T−1
k=0 xk, and using Jensen’s inequality and the convexity of the function g(y) = y′W̄y,

we obtain

E
[

(x̂T − z∗)′W̄(x̂T − z∗)
]

≤
1

2αT

[

E

[

‖x0 − z∗)‖2
]

− E

[

‖xT − z∗‖2
]]

+
η∆αN̄

α

∑

E

CXi
CXj

+
ᾱ2

2α

[

mN̄η2µ2 + ‖R‖
m
∑

i=1

C2
Xi

]

.

The result follows by taking the limsup as T → ∞ and noting that, by the compactness of the sets Xi

(Assumption 2-b), the limsup of the first term on the right-hand side converges to 0, as T → ∞.

In Theorem 2, the error term η∆αN̄
α

∑

E CXi
CXj

is due to misaligned step sizes. In other words, this

term would be zero if all step sizes αi take the same value (∆α = 0). The error term ᾱ2

2αmN̄η
2µ2 is due

to the noise in the communication links, which would not be present if the links are perfect (µ = 0).

Note that this term is of the order ᾱ2

2α and, hence, diminishes with diminishing step sizes. The error term

ᾱ2

2α‖R‖
∑m

i=1C
2
Xi

can also be controlled by controlling the step sizes. In the case of gossip and broadcast

protocols, we have Rg = W̄g and Rb = 2β2W̄b, thus the last error term can be written in terms of the

expected matrices W̄g and W̄b, respectively. Here, W̄g and W̄b are the expected weighted communication

matricess for the gossip and broadcast protocols, as discussed in Sections II-D and II-E.

V. DISTRIBUTED OPTIMIZATION

In this section we discuss the asymptotic properties of the optimization algorithm given in Eq. (4)

using both diminishing and constant step sizes. As mentioned earlier, a novel aspect of the proposed

algorithm is the use of two step size sequences to damp communication noise and subgradient errors. As

in the problem of constrained consensus, for the case of diminishing step sizes we can show almost sure

convergence of the iterates to the optimal solution set X∗ ⊆ X . An interesting feature which emerges

out of our analysis is the requirement that, for almost sure convergence, the step size corresponding to

the subgradient error needs to decay to zero at a faster rate than the step size sequence corresponding to

the communication noise.

To study the convergence properties of the proposed algorithm, once again we use tools from Lyapunov

analysis. First we start with establishing a bound as given in Lemma 7, which is crucial for the later

development. To derive this bound we need to impose that the intersection of the constraint sets have

a nonempty interior as stated in Assumption 2-c. This was also required to prove convergence of the

alternating projection method to find the intersection of convex sets in [42]. It was also used in [11] to

establish convergence of a distributed algorithm and the rate of convergence guarantees.
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We then proceed to derive a descent-type inequality for the iterates of the algorithm, which is done in

two steps. At first, we derive an auxiliary bound in Lemma 8 which holds for diminishing step sizes αi,k

and γi,k and, at second, in Lemma 9 we refine the result for a specific choice of the form of the step sizes

to get the desired descent-type inequality. Then, we proceed by showing almost sure convergence of the

optimization algorithm in Theorem 3 and Theorem 4. These theorems differ in their set of assumptions

on the network and the step sizes employed by the agents. Finally, we establish an asymptotic error

bound for the algorithm in Theorem 5, when both the step sizes corresponding to the subgradient step

and the alignment task are constant. In this case, under strong convexity assumption on the objective

functions fi(x), we obtain a contractive property which enables us to derive the result.

A. Preliminary results

In this section we provide several results which we use when deriving our main result. The first result

provides a way to bound an error term of the form ‖xi,k − PX [xi,k]‖. The bound is established by using

some of the techniques in [42].

Lemma 7: Let Assumptions 2-a, 2-b and 2-c on the constraint sets hold, and let xi ∈ Xi for all i ∈ V .

Then, we have the following bound:

‖xi − PX [xi]‖ ≤
B

δ

m
∑

j=1

‖xi − xj‖ for all i,

where B = maxi{CXi
} is a uniform upper bound on the diameters of the sets Xi and δ is the radius

from the interior point Assumption 2-c.

Proof: Let i ∈ V be arbitrary. Define λi =
∑m

j=1 ‖xi − PXj
[xi]‖ and the variable si as follows:

si =
λi

λi + δ
z̄ +

δ

λi + δ
xi,

where z̄ is the interior point of the set X from Assumption 2-c. Then, we can write

si =
λi

λi + δ

[

z̄ +
δ

λi

(

xi − PXj
[xi]
)

]

+
δ

λi + δ
PXj

[xi].

From definition of λi, it is clear that
∥

∥xi − PXj
[xi]
∥

∥ ≤ λi for any j, implying by the interior point

assumption that the vector z̄ + δ
λi

(

xi − PXj
[xi]
)

lies in the set X and hence, in set Xj for any j. Since

the vector si is a convex combination of two vectors in the set Xj , by the convexity assumption on the

set Xj , we have that si ∈ Xj for any j. Therefore, we have si ∈ X . Now, we can see that

‖xi − si‖ ≤
λi

λi + δ
‖xi − z̄‖ ≤

‖xi − z̄‖

δ

m
∑

j=1

∥

∥xi − PXj
[xi]
∥

∥ .
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By our assumption the sets Xi are compact (Assumption 2-b), so ‖xi − z̄‖ ≤ B for B > 0. Since

xj ∈ Xj , by the properties of the projection operator it follows
∥

∥xi − PXj
[xi]
∥

∥ ≤ ‖xi − xj‖. Thus,

‖xi − PX [xi]‖ ≤ ‖xi − si‖ ≤
B

δ

m
∑

j=1

‖xi − xj‖ .

We now provide a basic iterate relation for algorithm (4), which we use later on to establish convergence

and error bounds.

Lemma 8: Let Assumption 1 on the network hold. Also, let Assumption 2 on the constraint sets and

objective functions hold as well as Assumption 3 on the link noise and subgradient errors. Further, let

the step sizes be such that limk→∞ αi,k = 0 for all i. Then, for the iterates generated by algorithm (4)

the following inequality holds for any z∗ ∈ X∗ and for all large enough k,

E[‖xk+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vk+1 − z∗‖2 |Fk,Wk+1]

+ 2(C + ν)2
∑

i∈Uk+1

γ2
i,k+1 − 2

∑

i∈Uk+1

γi,k+1[fi(sk) − fi(z
∗)]

+ 2CK
∑

i∈Uk+1

γi,k+1

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ ,

where z∗ = 1m ⊗ z∗, sk = 1
m

∑m
i=1 PX [xi,k] and K = mB+δ

mδ
.

Proof: By definition we have xi,k+1 = PXi
[vi,k+1 − γi,k+1d̃i,k+1χ{i∈Uk+1}]. We see that for any

z∗ ∈ X∗ ⊆ X and all i ∈ V ,

‖xi,k+1 − z∗‖2

=
∥

∥

∥
PXi

[vi,k+1 − γi,k+1d̃i,k+1χi∈Uk+1
] − PXi

[z∗]
∥

∥

∥

2

≤
∥

∥

∥vi,k+1 − z∗ − γi,k+1d̃i,k+1χi∈Uk+1

∥

∥

∥

2

= ‖vi(k + 1) − z∗‖2

+
(

γ2
i,k+1‖d̃i,k+1‖

2 − 2γi,k+1d̃
′
i,k+1(vi,k+1 − z∗)

)

χ{i∈Uk+1}.

February 17, 2011 DRAFT



24

Taking conditional expectation with respect to the past information Fk and the matrix Wk+1, we obtain

for any z∗ ∈ X∗,

E[‖xi,k+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

+ 2γ2
i,k+1E

[

‖d̃i,k+1‖
2 |Fk,Wk+1

]

χ{i∈Uk+1}

− 2γi,k+1E[d′i,k+1(vi,k+1 − z∗) |Fk,Wk+1]χ{i∈Uk+1}

− 2γi,k+1E[ǫ′i,k+1(vi,k+1 − z∗) |Fk,Wk+1]χ{i∈Uk+1}. (24)

By Assumption 3-d we have E[ǫi,k+1|Fk,Wk+1, vi,k+1] = 0, thus by the iterated expectation, we get

E[ǫ′i,k+1(vi,k+1 − z∗) |Fk,Wk+1] = 0.

Also, using the fact that di,k+1 is a subgradient of fi at vi,k+1 and the bound on the subgradient error

of Eq. (8) (implied by Assumptions 2-e and 3-e), we have

E[‖xi,k+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

+ 2γ2
i,k+1(C + ν)2χ{i∈Uk+1}

− 2γi,k+1E[fi(vi,k+1) − fi(z
∗) |Fk,Wk+1]χ{i∈Uk+1}.

Since fi is a convex function, by Jensen’s inequality we have −E[fi(vi,k+1) |Fk,Wk+1] ≤ −f(E[vi,k+1 |Fk,Wk+1]).

By the definition of vi,k+1 in Eq. (4) and E[ξij,k |Fk,Wk+1] = 0 (Assumption 3-a), we have for i ∈ Uk+1,

E[vi,k+1 | Fk,Wk+1] = xi,k − αi,k+1

m
∑

j=1

[Wk+1]ijxj,k.

Letting yi,k = xi,k − αi,k+1
∑m

j=1[Wk+1]ijxj,k, we obtain

E[‖xi,k+1 − z∗‖2 |Fk,Wk+1]

≤ E[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

+ 2γ2
i,k+1(C + ν)2χ{i∈Uk+1}

− 2γi,k+1[fi(yi,k) − fi(z
∗)]χ{i∈Uk+1}. (25)

Summing over all i in Eq. (25) and using vector notation yield

E[‖xk+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vk+1 − z∗‖2 |Fk,Wk+1]

+ 2(C + ν)2
∑

i∈Uk+1

γ2
i,k+1 − 2

∑

i∈Uk+1

γi,k+1[fi(yi,k) − fi(z
∗)]. (26)

February 17, 2011 DRAFT



25

Define sk = 1
m

∑m
i=1 PX [xi,k]. Upon adding and subtracting the term

∑

i∈Uk+1
fi(sk) in Eq. (26) we

get

E[‖xk+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vk+1 − z∗‖2 |Fk,Wk+1]

+ 2(C + ν)2
∑

i∈Uk+1

γ2
i,k+1

− 2
∑

i∈Uk+1

γi,k+1[fi(sk) − fi(z
∗)] (27)

− 2
∑

i∈Uk+1

γi,k+1[fi(yi,k) − fi(sk)].

Let us now focus on the last term in Eq. (27), which we can bound as follows:

− 2
∑

i∈Uk+1

γi,k+1[fi(yi,k) − fi(sk)]

≤ 2
∑

i∈Uk+1

γi,k+1 |fi(yi,k) − fi(sk)| .

By the convexity and subgradient boundedness of each fi(x), we have

|fi(yi,k) − fi(sk)| ≤ C ‖yi,k − sk‖ . (28)

We now derive an upper bound on the term ‖yi,k − sk‖. Since αi,k → 0 and yi,k = xi,k−αi,k+1
∑m

j=1[Wk+1]ijxj,k,

the matrix Im − αi,k+1Wk+1 is a stochastic matrix for all k large enough. Therefore, it follows by the

convexity of the norm function and the fact that 0 ≤ 1 − αi,k+1[Wk+1]ij ≤ 1 for all i, j and all k large

enough

‖yi,k − sk‖ ≤
m
∑

j=1

‖xj,k − sk‖ . (29)

Now, consider ‖xi,k − sk‖. Since sk = 1
m

∑m
j=1 PX [xj,k], by adding and subtracting the term PX [xi,k]

inside the norm and using the convexity of norm function, we have

‖xi,k − sk‖ =

∥

∥

∥

∥

∥

∥

xi,k −
1

m

m
∑

j=1

PX [xj,k]

∥

∥

∥

∥

∥

∥

≤ ‖xi,k − PX [xi,k]‖ +
1

m

m
∑

j=1

‖PX [xi,k] − PX [xj,k]‖ .

By Lemma 7, ‖xi,k − PX [xi,k]‖ ≤ B
δ

∑m
j=1 ‖xi,k − xj,k‖ , and by the non-expansiveness property of

projection, ‖PX [xi,k] − PX [xj,k]‖ ≤ ‖xi,k − xj,k‖ (cf. Eq. (9)). Hence, for all i,

‖xi,k − sk‖ ≤
mB + δ

mδ

m
∑

j=1

‖xi,k − xj,k‖ . (30)
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Combining relations in Eqs. (28), (29) and (30), we obtain for k large enough,

|fi(yi,k) − fi(sk)| ≤ C
mB + δ

mδ

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ .

Therefore, for all k large enough, we have

− 2
∑

i∈Uk+1

γi,k+1[fi(yi,k+1) − fi(sk)]

≤ 2C
mB + δ

mδ

∑

i∈Uk+1

γi,k+1

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ .

Letting K = mB+δ
mδ

and substituting the preceding relation in Eq. (27), we obtain the desired result.

Lemma 8 is true for any step size sequence γi,k. We next give a corollary of the lemma for the special

case when αi,k = 1
[Γi,k]θ1

and γi,k = 1
[Γi,k]θ2

with 1
2 < θ1, θ2 ≤ 1. Let us define P = P ⊗ In, where P is

defined by P = D
(

1
p

θ1
i

)

.

Lemma 9: In addition to the assumptions in Lemma 8, let the step sizes be given by αi,k = 1
[Γi,k]θ1

and γi,k = 1
[Γi,k]θ2

with 1
2 < θ1, θ2 ≤ 1. Then, the following relation holds for all large enough k, any

z∗ ∈ X∗, and z∗ = 1m ⊗ z∗,

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2 −
2x′kPW̄xk

(k + 1)θ1

+

(

N̄η2µ2 + N̄2η2
∑

E

CXj
CXj′

)

∑

i∈V

E
[

α2
i,k+1 |Fk

]

+ 2ηN̄
∑

E

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk]

+ 2(C + ν)2E





∑

i∈Uk+1

γ2
i,k+1 |Fk





−
2

(k + 1)θ2

m
∑

i=1

p1−θ2
i [fi(sk) − fi(z

∗)]

+
2CK

(k + 1)θ2

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖
m
∑

i=1

p1−θ2
i

+ 2C



‖sk − z∗‖ +K

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖





× E





∑

i∈Uk+1

|[Hk+1,θ2 ]i| |Fk



 .
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Proof: Consider the result of Lemma 8, and focus on the term E

[

‖vk+1 − z∗‖2 | Fk
]

. Note that we

can proceed as in Eq. (13) to get

E

[

‖vk+1 − z∗)‖2 |Fk
]

= ‖xk − z∗‖2

+ (xk − z∗)′E
[

W′
k+1Λ̄

2
k+1Wk+1 |Fk

]

(xk − z∗)

− 2(xk − z∗)′E
[

Λ̄k+1Wk+1 |Fk
]

(xk − z∗)

+ E
[

ξ′k+1Λ̄
2
k+1ξk+1 |Fk

]

, (31)

where we have used the assumption that noise is zero mean. Proceeding similarly as in Eqs. (15) and (16)

we can write

Λ̄k+1Wk+1 =
1

(k + 1)θ1
PWk+1 + H̄k+1,θ1Wk+1,

and obtain

− 2(xk − z∗)′E
[

Λ̄k+1Wk+1 |Fk
]

(xk − z∗)

≤ −
2x′kPW̄xk

(k + 1)θ1
+ 2ηN̄

∑

E

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk] , (32)

where we use PW̄z∗ = 0, and z∗
′

PW̄ = 0. Identically to Eqs. (18) and (17), we can see that

(xk − z∗)′E
[

W′
k+1Λ̄

2
k+1Wk+1 |Fk

]

(xk − z∗)

+ E
[

ξ′k+1Λ̄
2
k+1ξk+1 |Fk

]

≤

(

N̄η2µ2 + N̄2η2
∑

E

CXj
CXj′

)

∑

i∈V

E
[

α2
i,k+1 |Fk

]

. (33)

Combining Eqs. (31), (32) and (33), we obtain

E

[

‖vk+1 − z∗)‖2 |Fk
]

≤ ‖xk − z∗‖2

+

(

N̄η2µ2 + N̄2η2
∑

E

CXj
CXj′

)

∑

i∈V

E
[

α2
i,k+1 |Fk

]

−
2x′kPW̄xk

(k + 1)θ1
+ 2ηN̄

∑

E

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk] . (34)

We now focus on the last two terms in the relation of Lemma 8. Using the given forms of the step sizes,

we can write

γi,k+1 =
1

[Γi,k+1]θ2

=
1

pθ2i (k + 1)θ2
+

(

1

[Γi,k+1]θ2
−

1

pθ2i (k + 1)θ2

)

.
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Define [Hk+1,θ2 ]i = 1
[Γi,k+1]θ2

− 1
p

θ2
i (k+1)θ2

. Then, we can bound the terms under consideration as

− 2
∑

i∈Uk+1

γi,k+1[fi(sk) − fi(z
∗)]

+ 2CK
∑

i∈Uk+1

γi,k+1

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖

≤ −2
1

(k + 1)θ2

∑

i∈Uk+1

1

pθ2i
[fi(sk) − fi(z

∗)]

+ 2CK
∑

i∈Uk+1

1

pθ2i (k + 1)θ2

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖

+ 2C
∑

i∈Uk+1

|[Hk+1,θ2 ]i| ‖sk − z∗‖

+ 2CK
∑

i∈Uk+1

|[Hk+1,θ2 ]i|
m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ ,

where we have used |fi(sk) − fi(z
∗)| ≤ C ‖sk − z∗‖ which follows from the bounded subgradient

condition (Assumption 2-e). Now, taking conditional expectation we have

E



−2
∑

i∈Uk+1

γi,k+1[fi(sk) − fi(z
∗)]

+2CK
∑

i∈Uk+1

γi,k+1

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ |Fk





≤ −2
1

(k + 1)θ2

m
∑

i=1

p1−θ2
i [fi(sk) − fi(z

∗)]

+
2CK

(k + 1)θ2

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖
m
∑

i=1

p1−θ2
i

+ 2C



‖sk − z∗‖ +K

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖





× E





∑

i∈Uk+1

|[Hk+1,θ2 ]i| |Fk



 .

The result follows from the above relation and Eq. (34).

B. Almost sure convergence

We are now ready to derive one of our main results regarding the almost sure convergence of the

algorithm in Eq. (4). In this section we prove that almost sure convergence holds under two cases. In
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one case we assume that the quadratic form generated by the matrix PW̄ is positive everywhere except

on the consensus subspace C, where it vanishes. In this case, we can prove asymptotic convergence for

the step size γi,k = 1
Γi,k

, i.e., θ2 = 1. We also require that αi,k = 1
Γ

θ1
i,k

with the condition θ1 ∈ (1/2, 1).

Note that this is a stricter requirement than in the constrained consensus part, where θ1 could take the

value 1. Thus, we need the step sizes γi,k to decay at a faster rate than αi,k for all i.

In the second case we assume that the random network has the property that the probability of update

pi is the same for all agents i, i.e., p1 = . . . = pm = p. In this case the earlier condition reduces to

positive semidefiniteness of W̄ together with the requirement that N (W̄) = C. However in this case we

are free to chose a wider class of step sizes γi,k = 1
[Γi,k]θ2

. The faster decay constraint on γi,k in this

case arises as the requirement that 1+θ1
2 < θ2 ≤ 1. Note that as illustrated in the section on Gossip

and Broadcast communication protocols the requirement of a uniform update probability translates to

the requirement that the graph G is regular. In this case the update probability is p = 2
m

for gossip and

p = r
m

for broadcast algorithm, where r is the common degree of each node.

The following theorem considers the first case. The theorem relies on the positive semidefiniteness of

the matrix PW̄ , for which we recall that P = D
(

1
p

θ1
i

)

, pi is the probability of update at any instance

by agent i, and W̄ = E[Wk].

Theorem 3: Let Assumption 1 on the network hold. Also, let Assumption 2 on the constraint sets

and objective functions hold as well as Assumption 3 on the link noise and subgradient errors. Further,

let the step sizes be such that γi,k = 1
Γi,k

and αi,k = 1
Γ

θ1
i,k

with θ1 ∈ (1/2, 1). Assume that the matrix

PW̄ is positive semidefinite and that the vector 1m is unique (up to scaling) nonzero vector such that

PW̄1m = 0. Then, almost surely, the iterate sequences {xi,k} generated by optimization algorithm (4)

converge to a common random point z̃∗ in the optimal set X∗.

Proof: We use Lemma 9 with θ2 = 1 and obtain for any z∗ ∈ X∗,

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2 −
2

(k + 1)θ1
x′kPW̄xk

−
2

k + 1
[f(sk) − f∗] +

2mCK

k + 1

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ + ϕk,
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where f(x) =
∑m

i=1 fi(x), f
∗ is the optimal value of the problem, z∗ = 1m ⊗ z∗, and ϕk is given by

ϕk =

(

N̄η2µ2 + N̄2η2
∑

E

CXj
CXj′

)

∑

i∈V

E
[

α2
i,k+1 |Fk

]

+ 2(C + ν)2E





∑

i∈Uk+1

γ2
i,k+1 | Fk





+ 2ηN̄
∑

E

CXi
CXj

E [|[Hk+1,θ1 ]i| |Fk]

+ 2C



‖sk − z∗‖ +K

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖





× E





∑

i∈Uk+1

|[Hk+1,θ2 ]i| |Fk



 .

Now, for each pair {i, j} of nodes in the graph G = (V,E), we can find a path i = s1, . . . , sℓ = j from

node i to node j, where (sτ−1, sτ ) ∈ E for τ = 2, . . . , ℓ. Thus, each term ‖xi,k − xj,k‖ can be bounded

above by
∑ℓ

r=2

∥

∥xsr,k − xsr−1,k

∥

∥. Using this we arrive at the bound

2mCK

(k + 1)θ2

m
∑

i=1

m
∑

j=1

‖xi,k − xj,k‖

≤
2mCK

k + 1

(

m

2

)

∑

E

‖xi,k − xj,k‖ . (35)

For convenience of notation, we define K1 = mCK
(

m
2

)

, then for any constant ψ > 0 we have

2K1(k + 1)
θ1

2

ψ(k + 1)

ψ

(k + 1)
θ1

2

∑

E

‖xi,k − xj,k‖

≤
K2

1

ψ2(k + 1)2−θ1
+

ψ2

(k + 1)θ1

∑

E

‖xi,k − xj,k‖
2

=
K2

1

ψ2(k + 1)2−θ1
+

ψ2

(k + 1)θ1
x′kLxk,

where L = L⊗ In, and L is the graph Laplacian for the bidirectional graph G. Substituting this estimate

in the relation for E

[

‖xk+1 − z∗‖2 |Fk
]

, we obtain

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2 +
K2

1

ψ2(k + 1)2−θ1

−
1

(k + 1)θ1
x′k
[

2PW̄ − ψ2L
]

xk −
2

k + 1
[f(sk) − f∗] + ϕk.

We next discuss how to choose ψ so that the matrix 2PW̄ − ψ2L is positive semidefinite. Let the

eigenvalues of both PW̄ and L be denoted in the increasing order 0 = λ1(PW̄) < λ2(PW̄) ≤ . . . ≤
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λm(PW̄), and 0 = λ1(L) < λ2(L) ≤ . . . ≤ λm(L). Note that according to our definition of the matrices

PW̄ and L, each of the eigenvalues λi has multiplicity n. According to our assumption that 1m is the

unique null vector of the matrix PW̄ , we have λ2(PW̄) > 0. Moreover, under the assumption that the

graph G = (V,E) is connected, we also have λ2(L) > 0. Since L1m = 0 and PW̄1m = 0, it follows

C ⊂ N (2PW̄ − ψ2L). Any vector can be decomposed as x = a1x1 + a2x2, where x1 ∈ C and x2 ⊥ x1,

so that

x′[2PW̄ − ψ2L]x = a2
2x′2[2PW̄ − ψ2L]x2.

From the variational characterization of eigenvalues, we have for all vectors x2 ⊥ C,

2λ2(PW̄) ‖x2‖
2 ≤ 2x′2PW̄x2,

−ψ2λm(L) ‖x2‖
2 ≤ −ψ2x′2Lx2.

Hence, we see that for any vector x and ψ > 0,

(

2λ2(PW̄) − ψ2λm(L)
)

‖x2‖
2 ≤ x′[2PW̄ − ψ2L]x.

Thus, for ψ > 0 such that ψ <
√

2λ2(PW̄)
λm(L) , we see that 2PW̄ − ψ2L is positive semidefinite and its

null-space coincides with the consensus space C, i.e., x′k[2PW̄ − ψ2L]xk ≥ 0 with equality holding only

for x ∈ C. Next, note that since θ1 ∈ (1/2, 1), we have that
∑∞

k=0
K2

1

ψ2(k+1)2−θ1
<∞. Also, by Lemma 5

and the compactness assumption on the sets Xi, we deduce that
∑∞

k=0 ϕk < ∞ with probability one.

Now, we apply the supermartingale convergence result of Lemma 3 and obtain that, with probability one,

both ‖xk − z∗‖2
converges for every z∗ ∈ X∗ and the following sum

∞
∑

k=0

[

1

(k + 1)θ1
x′k
[

2PW̄ − ψ2L
]

xk +
2

k + 1
[f(sk) − f∗]

]

is finite. Since 1
k+1 <

1
(k+1)θ1

for θ1 < 1, we have

∞
∑

k=0

1

k + 1

[

x′k
[

2PW̄ − ψ2L
]

x(k) + [f(sk) − f(z∗)]
]

<∞.

Furthermore, since
∑∞

k=0
1

k+1 = ∞ it follows that, with probability one, there exists a subsequence such

that limℓ→∞ x′kℓ

[

2PW̄ − ψ2L
]

xkℓ
= 0 and limℓ→∞[f(skℓ

) − f∗] = 0. By our choice of ψ, the matrix

2PW̄ − ψ2L is positive semidefinite and it vanishes only on the consensus subspace C; therefore, the

sequence {xkℓ
} approaches the consensus subspace C with probability one, i.e., limℓ→∞ ‖xi.kℓ

− xj,kℓ
‖ =

0 for every i, j with probability one. On the other hand, using Eq. (30), we obtain

m
∑

i=1

‖xi,kℓ
− skℓ

‖ ≤
mB + δ

δ

m
∑

i=1

m
∑

j=1

‖xi,kℓ
− xj,kℓ

‖ . (36)
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Thus, with probability one we have for every i,

lim
ℓ→∞

‖xi,kℓ
− skℓ

‖ = 0. (37)

Since limℓ→∞ f(skℓ
) = f∗ and the function f is continuous, and since the sets Xi are compact

(Assumption 2-b), we conclude that there exists a subsequence along which skℓ
converges almost surely

to a (random) point z̃∗ that lies in the set X∗. Without any loss of generality, we can assume that

the sequence {skℓ
} itself converges to the limit point z̃∗ almost surely. By Eq. (37) it follows that

xi,kℓ
converges to z̃∗ for all i almost surely. This and the fact ‖xk − z∗‖2

converges almost surely for

z∗ = 1m ⊗ z∗ with any z∗ ∈ X∗ (as established earlier), imply that the sequence {xk} must converge to

1m ⊗ z̃∗ almost surely. Hence, the sequences {xi,k}, i = 1, . . . ,m, converge almost surely to a common

(random) point in the set X∗.

We now provide a convergence result for the case when the probability of updates for each agents is

the same. We have the following result.

Theorem 4: Let Assumption 1 on the network hold. Also, let Assumption 2 on the constraint sets and

objective functions hold as well as Assumption 3 on the link noise and subgradient errors. Assume that

pi = p for all i. Further, let the step sizes be such that γi,k = 1
Γ

θ2
i,k

and αi,k = 1
Γ

θ1
i,k

, where θ2 >
1+θ1

2 and

θ1 ∈ (1/2, 1). Then, almost surely, the iterate sequences {xi,k} of optimization algorithm (4) converge

to a common random point in the optimal set X∗.

Proof: We use Lemma 9 where pi = p for all i, and we obtain

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2 −
2p−θ1

(k + 1)θ1
x′kW̄xk

−
2p1−θ2

(k + 1)θ2
[f(sk) − f∗]

+
2p1−θ2CK

(k + 1)θ2

m
∑

j=1

m
∑

r=1

‖xj,k − xr,k‖ + ϕk, (38)

where ϕk denotes the remaining terms, f(x) =
∑

i fi(x), and f∗ is the optimal value of the problem.

Proceeding similarly as in the derivation of Eq. (35), we arrive at the following:

2p1−θ2CK

(k + 1)θ2

m
∑

i=1

m
∑

j=1

‖xi,k − xj,k‖

≤
2p1−θ2CK

(k + 1)θ2

(

m

2

)

∑

E

‖xi,k − xj,k‖ .
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Let us define K2 = p1−θ2CK
(

m
2

)

, so we can write

2K2(k + 1)
θ1

2

ψ(k + 1)θ2
ψ

(k + 1)
θ1

2

∑

(i,j)∈E

‖xi,k − xj,k‖

≤
K2

2

ψ2(k + 1)2θ2−θ1
+

ψ2

(k + 1)θ1

∑

E

‖xi,k − xj,k‖
2

=
K2

2

ψ2(k + 1)2θ2−θ1
+

ψ2

(k + 1)θ1
x′kLxk.

Substituting this relation in Eq. (38) we obtain

E

[

‖xk+1 − z∗‖2 |Fk
]

≤ ‖xk − z∗‖2 +
K2

2

ψ2(k + 1)2θ2−θ1

−
1

(k + 1)θ1
x′k

[

2p−θ1W̄ − ψ2L
]

xk

−
2p1−θ2

(k + 1)θ2
[f(sk) − f∗] + ϕk.

Now, by assumption we have θ2 >
1+θ1

2 , implying that
∑∞

k=0
K2

2

ψ2(k+1)2θ2−θ1
< ∞. We choose ψ such

that 0 < ψ <
√

2p−θ1λ2(W̄)
λm(L) , so that the matrix 2p−θ1W̄ − ψ2L is positive semidefinite. The rest of the

proof follows using similar arguments as in the proof of Theorem 3.

C. Constant step size error bound

In this section we derive asymptotic error bounds when each agent uses constant step sizes αi, and

γi. The main additional assumption we need the requirement that the local agent functions fi(x) are

continuously differentiable and strongly convex, i.e., for all i ∈ V ,

(∇fi(x) −∇fi(y))
T (x− y) ≥ σi ‖x− y‖2

for all x, y.

Note that the convexity parameter σi of each agent is allowed to be different. This problem was also

considered in [43] in the absence of local constraint sets Xi on the decision variables.

Theorem 5: Let Assumption 1 on the network hold. Let also Assumptions 2 and 3 hold. Further assume

that each function fi is continuously differentiable and strongly convex with a constant σi > 0. Also,

assume that the step size αi is such that αi ≤
1

η ¯|Ni|
and the step size γi satisfies γi <

1
2σi

for all i.

Then, for the iterate sequences {xi,k} of the optimization algorithm in Eq. (4), we have the following

asymptotic bound:

lim sup
k→∞

E

[

‖xk − z∗‖2
]

≤
ǫ1

2γσ p
+ ǫ2,
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where z∗ = 1m ⊗ z∗ for any z∗ ∈ X∗, and

ǫ1 = 2(C + ν)2
∑

i∈V

piγ
2
i + 2m∆γ,pCCX

+ 2∆γ,σ(1 − p)
∑

i∈V

C2
Xi

+ (1 − 2γσ)

(

2η∆αN̄
∑

E

CXi
CXj

+mN̄η2µ2ᾱ2 + ᾱ2‖R‖
∑

i

C2
Xi

)

ǫ2 =
γ̄2C2λm(L)K̃2

γσ p(1 − 2γσ)αλ2(W̄)
, K̃ = m

mB + δ

2δ

(

m

2

)

.

Proof: From Eq. (24) we have the following relation

E[‖xi,k+1 − z∗‖2 |Fk,Wk+1] ≤ E[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

+ 2γ2
i E

[

‖d̃i,k+1‖
2 | Fk,Wk+1

]

χ{i∈Uk+1}

− 2γiE[d′i,k+1(vi,k+1 − z∗) | Fk,Wk+1]χ{i∈Uk+1}, (39)

where di,k = ∇fi(vi,k) and d̃i,k is a noisy gradient. Under the assumption of strong convexity of the

function fi, we obtain

d′i,k+1(vi,k+1 − z∗) = (di,k+1 −∇fi(z
∗))′(vi,k+1 − z∗)

+ ∇fi(z
∗)′(vi,k+1 − z∗)

≥ σi ‖vi,k+1 − z∗‖2 + ∇fi(z
∗)′(vi,k+1 − z∗).

Let i ∈ Uk+1. Then, we add and subtract the term −2γi∇fi(z
∗)′sk, where sk = 1

m

∑m
i=1 PX [xi,k] to

get

− 2γid
′
i,k+1(vi,k+1 − z∗) ≤ −2γiσi ‖vi,k+1 − z∗‖2

− 2γi∇fi(z
∗)′(sk − z∗) + 2γi∇fi(z

∗)′(sk − vi,k+1).

Then, letting yi,k = E[vi,k+1|Fk,Wk+1] and using the gradient boundedness, we obtain

− 2γiE[d′i,k+1(vi,k+1 − z∗) |Fk, Uk+1]

≤ −2γiσiE[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

− 2γi∇fi(z
∗)′(sk − z∗) + 2γiC ‖yi,k − sk‖ .

February 17, 2011 DRAFT



35

Thus, plugging back in Eq. (39), we get the relation

E[‖xi,k+1 − z∗‖2 |Fk,Wk+1]

≤ E[‖vi,k+1 − z∗‖2 |Fk,Wk+1] + 2γ2
i (C + ν)2χ{i∈Uk+1}

− 2γiσiE[‖vi,k+1 − z∗‖2 |Fk,Wk+1]χ{i∈Uk+1}

+ 2γi
(

C ‖yi,k − sk‖ − ∇fi(z
∗)′(sk − z∗)

)

χ{i∈Uk+1}.

Using the fact that vi,k+1 = xi,k for i /∈ Uk+1, the preceding relation can equivalently be written as

E[‖xi,k+1 − z∗‖2 |Fk, Uk+1]

≤ (1 − 2γiσi)E[‖vi,k+1 − z∗‖2 |Fk,Wk+1]

+ 2γ2
i (C + ν)2χ{i∈Uk+1}

+ 2γiσi ‖xi,k − z∗‖2 (1 − χ{i∈Uk+1})

+ 2γi
(

C ‖yi,k − sk‖ − ∇fi(z
∗)′(sk − z∗)

)

χ{i∈Uk+1}.

Now, taking conditional expectation with respect to the history Fk, we obtain

E[‖xi,k+1 − z∗‖2 |Fk] ≤ (1 − 2γiσi)E[‖vi,k+1 − z∗‖2 |Fk]

+ 2piγ
2
i (C + ν)2 + 2γiσi ‖xi,k − z∗‖2 (1 − p)

+ 2γiCE
[

‖yi,k − sk‖χ{i∈Uk+1} |Fk
]

− 2γipi∇fi(z
∗)′(sk − z∗),

where p = mini{pi}. Letting ∆γ,p = maxi{γipi} − minj{γjpj} and similarly defining ∆γ,σ, we have

−γipi ≤ −γp+ ∆γ,p and γiσi ≤ γσ + ∆γ,σ. Therefore, it follows

E[‖xi,k+1 − z∗‖2 |Fk] ≤ (1 − 2γσ)E[‖vi,k+1 − z∗‖2 |Fk]

+ 2piγ
2
i (C + ν)2 + 2γσ(1 − p) ‖xi,k − z∗‖2

+ 2γ̄CE
[

‖yi,k − sk‖χ{i∈Uk+1} |Fk
]

− 2γp∇fi(z
∗)′(sk − z∗) + 2∆γ,pCCX + 2∆γ,σ(1 − p)C2

Xi
.
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Summing over all i we obtain

E[‖xk+1 − z∗‖2 |Fk] ≤ (1 − 2γσ)E[‖vk+1 − z∗‖2 |Fk]

+ 2(C + ν)2
∑

i∈V

piγ
2
i + 2γσ(1 − p) ‖xk − z∗‖2

+ 2γ̄CE





∑

i∈Uk+1

‖yi,k − sk‖ |Fk



+ 2∆γ,σ(1 − p)
∑

i∈V

C2
Xi

− 2γp∇f(z∗)′(sk − z∗) + 2m∆γ,pCCX .

Using relations in (31) and (33), where we only use the bound on the term with noise, we can see that

E

[

‖vk+1 − z∗)‖2 |Fk
]

= ‖xk − z∗‖2

− 2(xk − z∗)′Λ̄W̄(xk − z∗) + ᾱ2x′kRxk +mN̄η2µ2ᾱ2.

Further, we have

−2(xk − z∗)′Λ̄W̄(xk − z∗) ≤ −2α(xk − z∗)′W̄(xk − z∗)

+ 2η∆αN̄
∑

E

CXi
CXj

,

and ᾱ2x′kRxk ≤ ᾱ2‖R‖
∑

iC
2
Xi

. We also have ∇f(z∗)′(sk− z
∗) ≥ 0 since z∗ is the optimal point of the

objective f(x) =
∑

i∈V fi(x) and sk ∈ X (recall that sk is the average sum of the projections PX [xj,k]).

Thus, by neglecting this term and using 1 − 2γσ < 1, we obtain

E[‖xk+1 − z∗‖2 |Fk] ≤ (1 − 2γσ p)E[‖xk − z∗‖2 |Fk]

+ 2(C + ν)2
∑

i∈V

piγ
2
i + 2γ̄CE





∑

i∈Uk+1

‖yi,k − sk‖ |Fk





+ 2m∆γ,pCCX + 2∆γ,σ(1 − p)
∑

i∈V

C2
Xi

+ (1 − 2γσ)ᾱ2‖R‖
∑

i

C2
Xi

+ (1 − 2γσ)

(

2η∆αN̄
∑

E

CXi
CXj

+mN̄η2µ2ᾱ2

)

.

We can write the preceding relation more compactly as:

E[‖xk+1 − z∗‖2 |Fk] ≤ (1 − 2γσ p)E[‖xk − z∗‖2 |Fk]

+ 2γ̄CE





∑

i∈Uk+1

‖yi,k − sk‖ |Fk



+ ǫ1, (40)
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where ǫ1 includes all the other terms. Note that from Eqs. (29) and (30), similar to the derivation of

relation (35), we can see that

∑

i∈Uk+1

‖yi,k − sk‖ ≤ m
mB + δ

δ

m
∑

i=1

m
∑

j=1

‖xi,k − xj,k‖

≤ 2K̃
∑

E

‖xi,k − xj,k‖ ,

where K̃ = mmB+δ
2δ

(

m
2

)

. We further have

2K̃
∑

E

‖xi,k − xj,k‖ =
2K̃

ψ

∑

E

ψ ‖xi,k − xj,k‖

≤
K̃2

ψ2
+ ψ2

∑

E

‖xi,k − xj,k‖
2

=
K̃2

ψ2
+ ψ2x′kLxk,

where ψ > 0 is an arbitrary scalar to be chosen later. When substituted back in Eq. (40) this yields

E[‖xk+1 − z∗‖2 |Fk] ≤ (1 − 2γσ p)E[‖xk − z∗‖2 |Fk] + ǫ1

+ 2γ̄C
K̃2

ψ2
− (1 − 2γσ)x′k

[

2αW̄ − 2
γ̄Cψ2

1 − 2γσ
L

]

xk.

According to the condition on step sizes γi, we have 1 − 2γσ > 0. Moreover, under the connectivity

of the network, we have λ2(W̄) > 0 and λ2(L) > 0. Then, it can be seen that for any ψ such that

0 < ψ ≤

√

(1 − 2γσ)αλ2(W̄)

γ̄Cλm(L)
,

the matrix 2αW̄−2 γ̄Cψ2

1−2γσL is positive semidefinite. Neglecting that term and taking full expectation, we

obtain

E[‖xk+1 − z∗‖2] ≤ (1 − 2γσ p)E[‖xk − z∗‖2] + ǫ1

+ 2γ̄C
K̃2

ψ2
.

Now we can apply the result of Lemma 4 to deduce

lim sup
k→∞

E

[

‖xk − z∗‖2
]

≤
ǫ1

2γσ p
+

γ̄C

γσ p

K̃2

ψ2
.

We can minimize the error by letting ψ =

√

(1−2γσ)αλ2(W̄)

γ̄Cλm(L) , which when substituted in the preceding

relation yields the desired result.
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Note that the condition γi <
1

2σi
can be easily implemented in a distributed manner as each agent

knows its own objective function. The error ǫ2 = γ̄2C2λm(L)K̃2

γσ p(1−2γσ)αλ2(W̄)
emphasizes the effect of the network

structure on the asymptotic error. It can be seen that networks with large eigenvalue λ2(W̄) have reduced

asymptotic error. To see the effect of step size on the error ǫ2, let us assume that the step sizes γi = γ

for all i. Then, the error ǫ2 reduces to ǫ2 = γC2λm(L)K̃2

σp(1−2γσ)αλ2(W̄)
, which evidently decreases with decreasing

step size γ. Note that for the special case when all the step sizes αi and γi are chosen to be equal across

the agents, the probability of update for all agents is p, and the functions fi have the same convexity

parameter σ, the upper bound reduces to ǫ = m(C+ν)2

σ
γ+ 1

p
( 1
2γσ −1)(mN̄η2µ2α2 +α2‖R‖

∑

iC
2
Xi

)+ǫ2.

It is clear that the first term is the contribution of the subgradient error and the term involving µ2 is the

contribution of the communication noise. As noted earlier, for gossip and broadcast algorithms the norm

‖R‖ can be written in terms of λm(W̄). We can choose to minimize the total error bound by choosing

the various step sizes carefully. Another interesting fact is that the convexity parameters affect the error

bound inversely. This implies that the asymptotic error is smaller when the objective functions have a

higher curvature as characterized by their strong convexity parameter.

VI. CONCLUSION

In this paper we considered the problem of reaching agreement on a set of local variables and the

problem of minimizing the sum of local objective functions when the local variables are constrained to

local convex constraint sets. We proposed algorithms for these problems which can be applied over a

random communication network. We showed that our model of the random communication network is

general enough to include the widely used gossip and broadcast based communication protocols arising

in wireless networks. Further, our algorithms are robust to the presence of communication noise and

errors in the evaluation of subgradients of the objective functions. This generality allows us to consider

the distributed stochastic optimization problem in our framework. We established conditions under which

we can guarantee almost sure convergence of our algorithms, and provided asymptotic error bounds when

almost sure convergence cannot be achieved.

APPENDIX

Proof of Lemma 5: Note that according to our definition Γi,k =
∑k

t=1 χEi(t), where Ei(t) = {i ∈

U(t)}, and χEi(t) is the indicator function of the event that agent i updates its local variable at instance

t. Since according to our assumption the random graph sequence {W(k)} is assumed to be drawn in

an i.i.d fashion, this implies that the events Ei(t) are i.i.d and E[χEi(t)] = P{i ∈ U(t)} = pi for each
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i ∈ V . By the law of iterated logarithms ( [44], pages 476–479), for any q > 0, the following holds with

probability 1,

lim sup
k→∞

|Γi,k − kpi|

k
1

2
+q

= 0 for all i ∈ V.

Hence, given any constant c there exists a large enough k̃ with probability one such that

|Γi,k − kpi|

k
1

2
+q

≤ c for all k > k̃.

Then it can be shown [45] that the following bound holds with probability one

1

Γi,k
≤

2

kpi
for all k > k̃. (41)

Now, we consider the term

∣

∣

∣

1
Γi,k

− 1
pik

∣

∣

∣. Clearly, we have with probability one

∣

∣

∣

∣

1

Γi,k
−

1

pik

∣

∣

∣

∣

=
1

Γi,kpik
|Γi,k − pik| ≤

2

p2
i k

2
ck

1

2
+q =

2c

p2
i k

3

2
−q
.

Using the notation p = mini{pi} we have
∣

∣

∣

∣

1

Γi,k
−

1

pik

∣

∣

∣

∣

≤
2c

p2k
3

2
−q
.

The above bound was derived for the case of gossip and broadcast communication in [31] and [45]

respectively. Now for our general case we need a similar bound on the difference

∣

∣

∣

1
[Γi,k]θ − 1

pθ
i k

θ

∣

∣

∣
, where

θ ∈ (1/2, 1]. By applying the mean value theorem to the function xθ we get
∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

≤
θ

x1−θ

∣

∣

∣

∣

1

[Γi,k]
−

1

pik

∣

∣

∣

∣

,

where x is between 1
Γi,k

, and 1
pik

. However since both Γi,k ≤ k, and pik ≤ k, we get 1
x
≤ k. Thus

using this as an upper bound and using the earlier bound, we get that the following bound holds with

probability one for every i ∈ V and k ≥ k̃,
∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

≤
2θck1−θ

p2k
3

2
−q

=
2θc

k
1

2
+θ−qp2

.

Then, clearly we have that with probability one

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

≤
2θck1−θ

p2k
3

2
−q

=
2θc

k
1

2
+θ−qp2

,
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for all k ≥ k̃. Now summing up we obtain

∞
∑

k=1

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

=

k̃
∑

k=1

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

+

∞
∑

k=k̃+1

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

≤
k̃
∑

k=1

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

+

∞
∑

k=k̃+1

2θc

k
1

2
+θ−qp2

.

However since θ ∈ (1/2, 1], and q > 0 is any arbitrary constant, we have
∑∞

k=k̃+1
2θc

k
1
2
+θ−qp2

< ∞ with

probability one. Thus, with probability one,

∞
∑

k=1

E

[∣

∣

∣

∣

1

[Γi,k]θ
−

1

pθi k
θ

∣

∣

∣

∣

|Fk

]

<∞.

A similar argument can be carried out starting from Eq. (41) to show that with probability one,

∞
∑

k=1

E

[

1

Γ2θ
i,k

| Fk

]

<∞.
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[11] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE

Transactions on Automatic Control, vol. 55, pp. 922–938, 2010.
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