
January 1984

revised November 1984 LIDS-P-1425

DISTRIBUTED ASYNCHRONOUS DETERMINISTIC AND STOCHASTIC GRADIENT

OPTIMIZATION ALGORITHMSt

by

John N. Tsitsiklis*

Dimitri P. Bertsekas*

Michael Athans*

ABSTRACT

We present a model for asynchronous distributed computation and then proceed to

analyze the convergence of natural asynchronous distributed versions of a large

class of deterministic and stochastic gradient-like algorithms. We show that

such algorithms retain the desirable convergence properties of their centralized

counterparts, provided that the time between consecutive communications between

processors and communication delays are not too large.

tResearch supported by Grants ONR/N00014-77-C-0532 and NSF-ECS-8217668.

Laboratory for Information and Decision Systems, Dept. of Electrical Engineering
and Computer Science, M.I.T., Cambridge, MA. 02139.

-2-

1. INTRODUCTION

Many deterministic and stochastic iterative algorithms admit a natural distributed

implementation [1,4,5] whereby several processors perform computations and exchange

messages with the end-goal of minimizing a certain cost function. If all processors

communicate to each other their partial results at each instance of time and perform

computations synchronously, the distributed algorithm is mathematically equivalent to

a single processor (serial) algorithm and its convergence may be studied by conven-

tional means. Synchronous algorithms may have, however, certain drawbacks:

a) Synchronism may be hard to enforce, or its enforcement may introduce substantial

overhead. b) Communication delays may introduce bottlenecks to the speed of the algo-

rithm (the time required for one stage of the algorithm will be constrained by the

slowest communication channel). c) Synchronous algorithms may require far more com-

munications than are actually necessary. d) Even if all processors are equally

powerful some will perform certain computations faster than others, due solely to the

fact that they operate on different inputs. This in turn, may lead to having many

processors idle for a large proportion of time. For these reasons, we choose to study

asynchronous distributed iterative optimization algorithms in which each processor does

not need to communicate to each other processor at each time instance; also, processors

may keep performing computations without having to wait until they receive the

messages that have been transmitted to them; processors are allowed to remain idle

some of the time; finally, some processors may perform computations faster than others.

Such algorithms can alleviate communication overloads and they are not excessively

slowed down by neither communication delays, nor by differences in the time it takes

processors to perform one computation. (A similar discussion of the merits of

asynchronous algorithms is provided by H.T. Kung [10].)

-3-

The algorithms that we consider are gradient-like, meaning that the (expected)

updates by each processor are in a. descent direction with respect to a cost function

being minimized. There may be certain limitations to our approach, because we restrict

attention to a special class of algorithms, whereas it could be the case that algo-

rithms with a different structure may offer some advantages over the ones we propose.

However, the problem of finding an "optimal" distributed algorithm, which minimizes,

say, the amount of information exchanged between processors, or some other measure of

communication and computation, can be very hard or intractable [i15,20] (NP-complete

or worse). For this reason, we prefer to assume a fixed structure and then proceed

to investigate the amount of asynchronism and the magnitude of the communication delays

that may be tolerated without adversely affecting the convergence of the algorithm.

In Section 2 we present the model of distributed computation to be employed. In

this model, there is a number of processors who perform certain computations and update

some of the components of a vector stored in their memory. In the meanwhile, they

exchange messages, thus informing each other about the results of their latest computa-

tions. Processors who receive messages use them either to update directly some of the

components of the vector in their memory, or they may.combine the message with the

outcome of their own computations, by forming a convex combination. Very weak assump-

tions are made about the relative timing and frequency of computations or message

transmissions by the processors.

In Section 3 we employ this model of computation and also assume that the

(possibly random) updates of each processor are expected to be in a descent direction,

when conditioned on the past history of the algorithm. Our main results show that,

under certain assumptions, asynchronous distributed algorithms have similar convergence

-4-

properties as their centralized counterparts, provided that the time between conse-

cutive communications between processors plus communication delays are not too large.

We distinguish two cases: a) constant step-size algorithms (e.g. deterministic

gradient-type algorithms) in which the time between consecutive communications has to

be bounded for convergence to be guaranteed and, b) decreasing step-size algorithms

(e.g. stochastic approximation-type algorithms) for which convergence is proved even

if the time between consecutive communications increases without bounds as the algo-

rithm proceeds. Section 2 and 3 are developed in parallel with a variety of examples

which are used to motivate and explain the formal assumptions that are being introduced.

Finally, Section 4 suggests some extensions and areas of application, together

with our conclusions. Appendix A contains the proof of Lemma 2.1. Appendix B contains

the proofs of our main results.

2. A MODEL OF DISTRIBUTED COMPUTATION

We present here the model of distributed computation employed in this paper. We

also define the notation and conventions to be followed. Related models of distributed

computation have been used in [3,4,5,8], in which each processor specialized in

updating a different component of some vector. The model developed here is more general,

in that it allows different processors to update the same component of some vector.

If their individual updates are different, their disagreement is (asymptotically)

eliminated through a process of communicating and combining their individual updates.

In such a case, we will say that there is overlap between processors. Overlapping

processors are probably not very useful in the context of deterministic algorithms,

unless redundancy is intended to provide a certain degree of fault tolerance and/or

safeguarding against malfunction of a particular processor. For stochastic algorithms,

however, overlap essentially amounts to having different processors obtain noisy

measurements of the same unknown quantity and effectively increases the "signal-to-

noise ratio."

Let H1, H2 ,...,HL be finite dimensional real vector spaces and let

H=HlxH2x...xHL, which we endow with the Euclidean norm. If x=(xl,x2,...,xL, x6H,

we will refer to xZ as the 2-th component of x.

Let {1,...,M} be the set of processors that participate in the distributed

computation. As a general rule concerning notation, we use subscripts to indicate a

component of an element of H, superscripts to indicate an associated processor; we

indicate time by an argument that follows.

The algorithms to be considered evolve in discrete time. Even if a distributed

algorithm is asynchronous and communication delays are real (i.e., not integer)

variables, the events of interest (an update by some processor, transmission or recep-

tion of a message) may be indexed by a discrete variable; so, the restriction to

discrete time entails no loss of generality.

It is important here to draw a distinction between "global" and "local" time.

The time variable we have just referred to corresponds to a global clock. Such a

global clock is needed only for analysis purposes: it is the clock of an analyst who

watches the operation of the system. On the other hand the processors may be working

without having access to a global clock. They may have access to a local clock or to

no clock at all. We will see later that our results, based on the existence of a

1All of our results generalize to the case where each Hi is a Banach space. No modifica-
tions whatsoever are needed in the assumptions or the proofs except that matrices
should be now called linear operators and that expressions like VJ(x) should be inter-
preted as elements of the dual of H rather than vectors in H.

-6-

global clock, may be used in a straightforward way to prove convergence of

algorithms implemented on the basis of local clocks only.

We assume that each processor has a buffer in its memory in which it keeps some

element of H. The value stored by the i-th processor at time n is denoted by x (n).

At time n, each processor may receive some exogenous measurements and/or perform

i
some computations. This allows it to compute a "step" s (n)eH, to be used in evalua-

ting the new vector xi(n+l). Besides their own measurements and computations, proces-

sors may also receive messages from other processors, which will be taken into account

in evaluating their next vector. The process of communications is assumed to be as

follows:

At any time n, processor i may transmit some (possibly all) of the components of

x (n) to some (possibly all or none) of the other processors. (In a physical implemen-

tation, messages do not need to go directly from their origin to their destination;

they may go through some intermediate nodes. Of course, this does not change the

mathematical model presented here). We will assume that communication delays are

bounded. For convenience, we also assume that for any pair (i,j) of processors, for

any component x9 and any time n, processor i may receive at most one message originating

from processor j and containing an element of HE. This leads to no significant loss

of generality: for example, a processor that receives two messages simultaneously could

keep only the one which was most recently sent; if messages do not carry timestamps,

there could be some other arbitration mechanism. Physically, of course, simultaneous

receptions are impossible; so, a processor may always identify and keep the most

recently received message, even if all messages arrived at the same discrete time n.

If a message from processor j, containing an element of HE is received by

processor i [(ij) at time n, let tJ(n)i denote the time that this message was sent.

2For algorithms with decreasing-step-size this assumption may be relaxed.

-7-

Therefore, the content of such a message is precisely xjt (r (n)). Naturally, we as-

sume that t (in)<n. For notational convenience, we also let tI (n)=n, for all i,k,n.

We will be assuming that the algorithm starts at time 1; accordingly, we assume that

that t j(n)> 1. Finally, we denote by T the set of all times that processor i

receives a message from processor j, containing an element of HR. To simplify matters

we will assume that, for any i,j,Z, the set TiJ is either empty or infinite.

Once processor i has received the messages arriving at time n and has also evaluated

i
s (n), it evaluates its new vector x (n+l)eH by forming (componentwise.) a convex

combination of its old vector and the values in the messages it has just received, as

follows:

x1(n+l) = I aj (n)xi(ti (n)) + i (n)si(n), n>l, (2.1)
j=1

where sl(n) is the Z-th component of s (n) and the coefficients a, (n) are scalars

satisfying:

ij
(i) a9 (n)>O, Vi,j,Z,n, (2.2)

M
(ii) X aj, (n)=1, Vi,Z,n, (2.3)

=1

(iii) aJ (n)=O, nT ij. (2.4)

Remarks:

1. Note that ti](n) has been defined only for those times n that processor i

receives a message of a particular type, i.e. for neTiJ. However, whenever

t (in) is undefined, we have assumed above that alJ (n)=0, so that equation (2.1)

has an unambiguous meaning.

2. When we refer to a processor performing a "computation," we mean the evaluation

and addition of the term y (n)si(n) in (2.1). With this terminology, forming

the convex combination in (2.1) is not called a computation. We denote by Ti

the set of all times that processor i performs a computation involving the M-th

component. Whenever n*T~, it is- understood that .sCn) in (2.1) equals zero.

We assume again that for any i,Z the set TZ is either infinite or empty.

Accordingly, processor i will be called computing, or non-computing, for component

.i

3. The quantities y (n) in (2.1) are nonnegative scalar step-sizes. These step-sizes

may be constant (e.g. y (n)=yo, Vn), or time-varying, e.g. y (n)=l/t , where

i
t n is the number of times that processor i has performed a computation up to

time n. Notice that with such a choice each processor may evaluate its step-size

using only a local counter rather than a global clock.

4. The envisaged sequence of events underlying (2.1) at any time n, is as follows:

For each component Z processor i

1. jij(i) Transmits xi(n) to processors and receives messages x (t(n)) from

processors j for which neT J .

i i(ii) Computes s (n) if neTI and sets S.Z(n)=O otherwise.

(iii) Evaluates xl(n+l) according to (2.1).

Examples

We now introduce a collection of simple examples representing various classes of

algorithms we are interested in, so as to illustrate the nature of the assumptions

to be introduced later. We actually start with a broad classification and then

proceed to more special cases. In these examples, we model the message receptions

and transmissions (i.e. the sets T j and the variables t J(n)), the times at

which computations are performed (i.e. the sets T~) and the combining coefficients

a2 J (n) as deterministic. (This does not mean, however, that they have to be a priori

known by the processors).

Specialization: This is the case considered by Bertsekas [4,5], where each processor

updates a particular component of the x-vector specifically assigned to it and

relies on messages from the other processors for the remaining components. Formally:

(i) M=L. (There are as many processors as there are components).

(ii) s [n)=O, VZ#i, Vn. (A processor may update only its own component;

Ta=~, ViPZ).

(iii) Processor j only sends messages containing elements of Hi; if processor i

receives such a message, it uses it to update xj by setting xj equal to

the value received. Equivalently,

(a) If ifj and j$Z, then T'j=~ and ai (n)=O, Vn.

(b) If processor i receives a message from processor j at time n,

i.e. if neTi j , then a j (n)=l. Otherwise, a j (n)=O, and a ii(n)=l.

Overlap: This is the other extreme, at which L=l (we do not distinguish components

of elements of H), messages contain elements of H (not just components) and each

processor may update any component of x. (For this case subscripts are redundant

and will be omitted.)

We now let H be finite-dimensional and assume that J: H-*[O,o) is a continuously

differentiable nonnegative cost function with a Lipschitz continuous derivative,

-10-

Example I: Deterministic Gradient Algorithm; Specialization. Let

i i
Y (n) = y>0, Vn,i. At each time nGTi that processor i updates xi, it computes

i 1

i DJ i
si (n) = - (x n)) and lets siCn)=O, for jHi. We assume that each processor i

communicates its component xi to every other processor at least once every B1 time

units, for some constant B1. Other than this restriction, we allow the transmission

and reception times to be arbitrary. (A related stochastic algorithm could be obtained

i aJ i i
by letting s i n) C (n)) l+t(n)), where wi.(n) is unit variance white noise,

independent for different i's).

Example II: Newton's Method; Overlap. For simplicity we assume that there are

only two processors (M=2). Let yi(n) = Yo>0, vn. We also assume that J is twice

continuously differentiable, strictly convex and its Hessian matrix, denoted by G(x),

satisfies 0<6LI<G(x)<62 I, VxGH. At each time n6T , processor i computes

s (n) = -G (x (n)) aJ (xi(n)). For nOTi , si (n)=O. If at time n processor 1
S ~n) = -G (i (n)> ax

2 12 1 21
(respectively, 2) receives a message x (t (n))(resp-.ix (t 2(n))), it updates its vectorby

1 1 212 1 1 2 121
x (n+l) = allx (n) + a1 2x (t (n)) + yl(n)s (n),(resp. x (n+l) = a21x (t (n)) +

a22x (n) + y (n)s (n)). Here we assume that O<aij<l and that a +a2=a2+a=l.
a22 1311 12 21 22

For other times n the same formula is used with a12=0 (a21=O). We make the same

assumptions on transmission and reception times as in Example 1.

Example III: Distributed Stochastic Approximation; Specialization. Let yi(n)

be such that, for some positive constants Al, A2, A1/n < y i(n)< A2/n, Vn. Notice

that the implementation of such a stepsize only requires a local clock that runs in

the same time scale (i.e. within a constant factor) as the global clock. For

neT , let si(n) = Cx (n)) +x w(n). Also, sj(n)=O, for isj and for all n.
i ax. '

We assume that w (n), conditioned on the past history of the algorithm has zero

mean and that E[ljjw(n)j 2 xi'(n)]< K(IIVJ(xi(n)) 12 +l1), for some constant K. We

assume that for some BlL>O, 8>l and for all n, each processor communicates its

component x i to every other processor at least once during the time interval

[Bln ,Bln+l)]. Other than the above restriction, we allow transmission and recep-

tion times to be arbitrary. Notice that the above assumptions allow the time between

consecutive communications to grow without bound.

Example IV: Distributed Stochastic Approximation; Overlap. Let yi (n) be as in

- iExample III and let M=2. For nGT 1
, let s (n) (x(n)) + w (n), where w (n) is

as in Example III. We make the same assumptions on transmission and reception times

as in Example III. Whenever a message is received, a processor combines its vector

with the content of that message using the combining rules of Example II.

Example V: This example is rather academic but will serve to illustrate some of

the ideas to be introduced later. Consider the case of overlap, assume that H is one-

dimensional, and let y (n)=l, en. Assume that, at each time n, either all processors

communicate to each other, or no processor sends any message. Let the communication

delays be zero (so, t (n)=n, whenever t (n) is defined) and assume that a j (n) = ai1

(constant) at those times n that messages are exchanged. We define vectors

x(n) = (x (n),...,x (n)) and s(n) = (s (n),...,s (n)). Then, the algorithm (2.1) may

be written as

x(n+l) = A(n)x(n) + s(n) (2.5)

For each time n, either A(n)=I (no communications) or A(n)=A, the matrix consisting of

the coefficients a1J. The latter is a "stochastic" matrix: it has nonnnegative entries

-12-

and each row sums to 1. We assume that aij is positive. It follows that A = lim An
n-),o

exists and has identical rows with positive elements. We assume that the time between

consecutive communications is bounded but otherwise arbitrary. Clearly then,

n
lim II A(m)=A, for all k. This example corresponds to a set of processors who
n-* m=k

individually solve the same problem and, from time to time, simultaneously exchange

their partial results. It is interesting to compare equation (2.5) with the generic

equation

x(n+l) = x(n) + y(n)sCn)

which arises in centralized algorithms.

Assumptions on the communications and the combining coefficients

We now consider a set of assumptions on the nature of the communications and

combining process, so that the preceding examples appear as special cases. In formula-

ting an appropriate set of assumptions, there is a trade-off between general-

ity and ease of verification. The assumptions below are not the most general possible,

but are very easy to enforce. Some generalizations will be suggested later.

For each component £e{l,...,L} we introduce a directed graph G,=(V,E.) with

nodes V={1,...,M} corresponding to the set of processors. An edge (j,i) belongs to

EZ if and only if T1 3 is infinite, that is, if and only if processor j sends (in the

long run) an infinite number of messages to processor i with a value of the Z-th

component x3,.

Assumption 2.1: For each component lG{1,...,L}, the following hold:

a) There is at least one computing processor for component Z.

b) There is a directed path in Gi, from every computing processor (for component Z)

to every other processor (computing or not).

-13-

c) There is some c0O such that:

(i) If processor i receives a message from processor j at time n

(i.e. if nG6T'), then a jin) >a.

(ii) For every computing processor i, a iCn)>a, vn.

(iii) If processor i has in-degree (in Gz) larger or equal than 2,

then al (n)>a, Vn.

Let us pause to indicate the intuitive content of part (c) of Assumption 2.1.

Part (i) states that a processor should not ignore the messages it receives. Part (ii)

requires the past updates of any computing processor to have a lasting effect on its

state of computation. Finally, part (iii) implies that if processor i receives

messages from two processor (say il,i2), it does not forget the effects of messages

of processor i! upon reception of a message from processor i2. These conditions,

together with part (b) of the Assumption, guarantee that any update by any computing

processor has a lasting effect on the states of computation of all other processors.

Assumption 2.2: The time between consecutive transmissions of component xZ from

processor j to processor i is bounded by some B1>O, for all (j,i)eEI.

Assumption 2.3: There are constants B >O, S>1 such that, for any (j,i)GEl, and for

any n, at least one message x~ is sent from processor j to processor i during the

time interval [BlnS, BC1 n+l)]. Moreover, the total number of messages transmitted

and/or received during any such interval is bounded.

Assumption 2.4: Communication delays are bounded by some B >0, i.e. for all i,jZ

and neT 3j we have n-tJ (n)<Bo.

3The in-degree of a processor (node) i (in G9) is the number of edges in EB
pointing to node i.

-14-

Note that Assumption 2.2 is a special case of 2.3, with S=l. Assumption 2.1

holds for all the examples introduced above. Assumption 2.2 holds for Examples I,

II,V; Assumption 2.3 holds for Examples III,IV, except for its last part which has

to be explicitly introduced.

Equation (2.1) which defines the structure of the algorithm is a linear system

driven by the steps si(n). In the special case where communication delays are zero,

we have t'i(n)=n, and (2.1) becomes a linear system with state vector

M
(xl(n),...,x (n)). Equation (2.5) of Example V best illustrates this situation. In

general, however, the presence of communication delays necessitates an augmented state

if a state space representation is desired . (Notice that actually (2.1) defines a

decoupled set of linear systems, one for each component Ze{l,...,L}.) Exploiting

linearity, we conclude that there exist scalars ij (nlk), for n>k, such that

M n-l M
x (n) = (Z (n[O)x(l) + X y'(k)j(nlk)sj (k). (2.6)

j=- k=l j=l

The coefficients (j (nlk) are determined by the sequence of transmission and reception

times and the combining coefficients. Consequently, they are unknown, in general.

Nevertheless, they have the following qualitative properties.

Lemma 2.1: (i) O<i J(nk), Vi,j,Z,n>k, (2.7)

M

I ' (nlk)< 1, vi,Z,n>k . (2.8)
j=l

(ii) Under Assumptions2.1, 2.4 and either Assumption 2.2 or 2.3, lim Dj (nik)
n-~O

exists, for any i,j,k,Z. The limit is independent of i and will be denoted by Z3(k).

4 Such an augmented state should incorporate all messages that have been transmitted
but not yet received. Since we are assuming bounded communication delays, there can
only be a bounded number of such messages and the augmented system may be chosen
finite dimensional.

Moreover, there is a constant r>0 such that, if j is a computing processor for

component Z, then

4)z (k) >T1.9 ~~V~k. ~(2.9)

The constant n, depends only on the constants introduced in our assumptions (i.e.

BoB 1,8,c).

(iii) Under Assumptions 2.1, 2.2, 2.4, there exist de[0,1), B>0 (depending only on

Bo ,B 1,a) such that

max 1I (nJ Il k) - Ij(k) I<Bd , V,n>k . (2.10)
i,j

(iv) Under Assumptions 2.1, 2.3, 2.4, there exist dG[0,1), S6(0,1], B>0

(depending only on Bo,Bl,S,a) such that

max 1ijk(njk) --lak)j< Bdn , VZ,n>k . (2.11)
i,j

Proof: See Appendix A.

In the light of equation (2.6), Lemma 2.1 admits the following interpretation:

part (ii) states that if all processors cease updating (that is if they set s (n)=0)

from some time on, they will asymptotically converge to a common limit. Moreover,

this common limit depends by a non-negligible factor on all past updates of all

computing processors. Parts (iii) and (iv) quantify the natural relationship between

the frequency of interprocessor communications and the speed at which agreement is

reached.

-16-

For any pair (i,j) of processors we may also define a linear transformation

ij (nlk):H+H by

Xji(nIk) = (j(Cnlk)xl -,.,j(nlk)xL) (2.12)

where x=(xl,...,XL). Note that if each HQ is one-dimensional then Dij(n1k) may be

represented by a diagonal matrix. In general, it corresponds to a block-diagonal

matrix, each block being a constant multiple of the identity matrix of suitable

dimension. Clearly, lim ijC(nlk) also exists, is independent of i and will be
n-ew

denoted by J(k).

We can now define a vector y(n)GH by

M n-l M
y(n) = &j (0)xj (1) + E i y (k) &(k)s j (k) (2.13)

j=l k=l j=l

and note that y(n) is recursively generated by

M
y(n+l) = y(n) + I yjC (n)sj (n) n) (2.14)

j=l

The vector y(n) is the element of H at which all processors would asymptotically

agree if they were to stop computing (but keep communicating and combining) at a time

n. It may be viewed as a concise global summary of the state of computation at

itime n, in contrast with the vectors x in) which are the local states of computation;

it allows us to look at the algorithm from two different levels: an aggregate and

a more detailed one. We will see later that this vector y(n) is also a very

convenient tool for proving convergence results. We have noted earlier that equation

(2.1) is a linear system. However, it is a fairly complicated one, whereas the

-17-

recursion (2.14) corresponds to a very simple linear system in standard state space

form. The content of the vector y(n) and of the & (n)'s is easiest to visualize

in two special cases:

Specialization: (e.g. Examples I and III). Here i(n) takes each component from

the processor who specializes in that component. That is, y(n) = n n))

Accordingly, ci(n)=O, for ifj, and QJ(n)=l.
j J

n-l
Example V: Here i (nlk) is the ij-th entry of the matrix 11 A(m). It follows

m=k+l

that the limit of ij(nik) is the ij-th entry of A, which by our assumptions depends

only on j. Moreover, y(n) equals any component of Ax(n). (All components are equal

by our assumptions). If we multiply both sides of (2.5) by A and note that AA(n)=A,

M
we obtain y(n+l)=y(n) + I A. .s(n), which is precisely (2.14).

j=l]3

The model of computation introduced in this section may be generalized in several

directions [7,19]. To name a few examples, the updating rules of each processor need

not have the linear structure of equation (2.1); also, it may be convenient to com-

municate other information (e.g. derivatives of the cost function) and not just the

values of components of x. However, the present model is sufficient for the class of

algorithms under consideration. Let us also mention that, while all of the above

examples refer to either specialization or overlap, we may think of intermediate

situations in which some of the components are updated by a single processor while

some of the components are updated by all processors simultaneously (partial overlap).

Finally, Assumptions 2.1, 2.4 are unnecessary, as long as the conclusions of

Lemma 2.1 may be somehow independently verified.

-18-

3. CONVERGENCE RESULTS

There is a large number of well-known centralized deterministic and stochastic

optimization algorithms which have been analyzed using a variety of analytical

tools [2,11,12,16]. A large class of them, the so-called "pseudo-gradient" algo-

rithms [16], have the distinguishing feature that the (expected) direction of update

(conditioned upon the past history of the algorithm) is a descent direction with

respect to the cost function to be minimized. The Examples of Section 2 certainly

have such a property. Reference [16] presents a larger list of examples. It is

also shown there that the development of results for pseudo-gradient algorithms leads

easily to results for broader classes of algorithms, such as Kiefer-Wolfowitz

stochastic approximation. In this section we present convergence results for the

natural distributed asynchronous versions of pseudo-gradient algorithms. We adopt

the model of computation and the corresponding notation of Section 2.

1 M
We allow the initialization {x (l),...,x (1)} of the algorithm to be random, with

finite mean and variance. We also allow the updates s (n) of each processor to be

random. On the other hand, we assume that yi(n) is deterministic; we also model the

combining coefficients, a J(n) and the sequence of transmission and reception times

as being deterministic. This is not a serious restriction because they do not need

to be known by the processors in advance, in order to carry out the algorithm. We

assume that all random variables of interest are defined on a probability space (Q,F,P).

We introduce {Fn}, an increasing sequence of a-fields contained in F and describing the

history of the algorithm up to time n. In particular, Fn is defined as the smallest

a-field such that s (k), k<n-l, and xi(1), ie{l,...,M} are F -measurable.

We assume that the objective of the algorithm is to minimize a nonnegative cost

function J:H+[O,o). For the time being, we only assume that J is a smooth function.

In particular, J is allowed to have several local minima.

Assumption 3.1: J is continuously differentiable and its derivative satisfies the

Lipschitz condition

I IJ(x)-VJ(x') I I< KI IXXt I 1, vx,xtCH, (3.1)

where K is some nonnegative constant.

Assumption 3.2: The updates si(n) of each processor satisfy

x (X (n))EE[s(n) IFn]< 0, a.s., ¥i,Z,n. (3.2)

This assumption states that each component of each processor's updates is in a

descent direction, when conditioned on the past history of the algorithm and it is

satisfied by Examples I-IV. A slightly weaker version, under which our results

remain true would be

VJ(x (n)) i(n)E[si(n)lFn]< 0, a.s., Vi, k,n.

On the other hand, it can be shown that the condition

VJ(x (n))E[s (n)IFn]< 0, a.s.

is not sufficient for proving convergence.

The next assumption is easily seen to hold for Examples I and II. For stochastic

algorithms, it requires that the variance of the updates (and hence of any noise

contained in them) goes to zero, as the gradient of the cost function goes to zero.

5 aJ
5In (3.2), if H A has dimension larger thanl 1, ax should be interpreted as a row

vector. In general, the appropriate interpretation should be clear from the
context.

-20-

Assumption 3.3: For some K >0 and for all i,Z,n,
0-

El[IIs(n)l <- K0 E [L (x(n))s(n)]

As a matter of verifying Assumption 3.3, one would typically check the validity

of the slightly stronger condition

[(n)l F] - K (xi(n))E [s(n)F]E Is i(n)I 2 IFn] -- Ko Dx (3n)iF 1

Also, using Lemma 2.1 (ii) and Assumption 3.3 we obtain

E[is (n) I I < E[Is(n) I]< o E[a (xi (n))c ,(n)s' (n)]

= -K E[VJ(x (n)) ns (n)], (3.3)

Where Ko=Ko/ > 0. It turns out that (3.3) is all we need for our results to hold.

Our first convergence result states that the algorithm converges in a suitable

sense, provided that the step-size employed by each processor is small enough and

that the time between consecutive communications is bounded, and applies to Examples

I and II. It should be noted, however, that Theorem 3.1 (as well as Theorem 3.2 later)

does not prove yet convergence to a minimum or a stationary point of J. In particular,

there is nothing in our assumptions that prohibits having s (n)=O, Vi,n. Optimality

is obtained later, using a few auxiliary and fairly natural assumptions

(see Corollary 3.1).

Theorem 3.1: Let Assumptions 2.1, 2.2, 2.4, 3.1, 3.2, 3.3 hold. Suppose also that

i i
y (n)> 0 and that sup y (n) = yo0 < . There exists a constant y*>Q (depending on the

i,n

-21-

constants introduced in the Assumptions) such that the inequality O<yo<Y*

implies:

a) J(x (n)), i=l,2,...,M, as well as J(y(n)), converge almost surely, and to

the same limit.

b) lim (xi(n)-x (n)) = lim (x (n)-y(n))=O, vi,j,
fn-wco nflw

almost surely and in the mean square.

c) The expression

0Co M

I i y1 (n) VJ(x (n))E[s (n) Fn] (3.4)
n-l i=l

is finite, almost surely. Its expectation is also finite.

Proof: See Appendix B.

Leaving technical issues aside, the idea behind the proof of the above (and

the next) Theorem is rather simple: the difference between y(n) and x (n), for any

i, is of the order of Byo, where B is proportional to a bound on communication

delays plus the time between consecutive communications between processors. Therefore,

as long as yo remains small, VJ(xi(n)) is approximately equal to VJ(y(n)); hence

s (n) (and consequently i(n)s (n)) is approximately in a descent direction, starting

from point y(n). Therefore, iteration (2.14) is approximately the same as a centralized

descent (pseudo-gradient) algorithm which is, in general convergent [16].

Decreasing Step-Size Algorithms

We now introduce an alternative set of assumptions. We allow the magnitude of

i i
the updates s (n) to remain nonzero, even if VJ(x (n)) is zero (Examples III and IV).

Such situations are common in stochastic approximation algorithms or in system

-22-

identification applications. Since the noise is persistent, the algorithm can be

made convergent only by letting the step-size yi (n) decrease to zero. The choice

y (n)=l/n is most commonly used in centralized algorithms and in the sequel we will

assume that y (n) behaves like 1/n.

Since the step-size is decreasing, the algorithm becomes progressively slower

as n-+oo. This allows us to let the communications process become progressively slower

as well, provided that it remains fast enough, when compared with the natural time

scale of the algorithm, the latter being determined by the rate of decrease of the

step-size. Such a possibility is captured by Assumption 2.3.

The next assumption, intended to replace Assumption 3.3, allows the noise to

be persistent. It holds for Examples I-IV. As in Assumption 3.3, inequality (3.5)

could be more naturally stated in terms of conditional expectations, but such a

stronger version turns out to be unnecessary.

Assumption 3.4: For some K1, K >0, and for all i,Z,n,

E[II S(n)l]2J< -K1E [(x (n))s Cn)]+ K2 (3.5)

Theorem 3.2: Let Assumptions 2.1, 2.3, 2.4, 3.1, 3.2, 3.4, hold and assume that for

some K3_>, y (n)< K3/n, vn,i. Then, conclusions (a),(b),(c), of Theorem 3.1 remain

valid.

Proof: See Appendix B.

Theorem 3.2 remain valid if (3.5) is replaced by the much weaker assumption

E[Isi (n) 23 < KoEJ(xi(n))] -K1EVJ(x (n))& (n)s (n)] + K2 ' (3.6)

-23-

The proof may be found in [19] and is significantly more complicated. Theorems

3.1, 3.2 also remain valid even if Assumptions 3.2, 3.3 or 3.4 hold after some

finite time n0, but are violated earlier. We only need to assume that s (k) has

finite mean and variance, for k<n .
--o

We continue with a corollary which shows that, under reasonable conditions,

convergence to a stationary point or a global optimum may be guaranteed. We only

need to assume that away from stationary points some processor will make a positive

improvement in the cost function. Naturally, we only require the processors to make

positive improvements at times that they are not idle.

Corollary 3.1: Suppose that for some K4>0, Y (n)> K4/n, Vn,i. Assume that J has

compact level sets and that there exist continuous functions g.: H-+[O,-) such that

3J i 3i
ax ix 1 (n))E[s (n) IFn]< -gi (xl (n), nT1 (3.7)

M L
We define g: H4-[0,-) by g(x) = i I gg(x) and we assume that any point x6H

i=l Z=l

satisfying g(x)=O is a stationary point of J. Finally, suppose that the difference

between consecutive elements of T l is bounded, for any i,9 such that T ~. Then,

a) Under the Assumptions of either Theorem 3.1 or 3.2,

liminf jVJ(x l(n)) I=O, vi, a.s. (3.8)
n-eoo

b) Under the Assumptions of Theorem 3.1 and if (for some >0O) y (n)>e, Vi,n,

we have

lim IIVJ(xi(n)) 11=0, Vi, a.s. (3.9)
and any limit point of is a stationary point of J

and any limit point of {xi (n)} is a stationary point of J.

-24-

c) Under the Assumptions. of either- Theorem 3.1 or 3.2 and if every point

satisfying g(x)=O is a minimizing point of J (this is implicitly assuming

that all stationary point of J are minima), then

lim J(x (n)) = inf J(x) . (3.10)
n->o x6H

Proof: See Appendix B.

We now discuss the above corollary and apply it to our examples. Notice first

that the assumption on T% states that, for each component Q, the time between

successive computations of s~ is bounded, for any computing processor i for that

component. Such a condition will be always met in practice. The assumption

y (n)> K4/n may be enforced without the processor having access to a global clock.

For example, apart from the trivial case of constant step-size, we may let

Y (n) = 1/t where ti is the number of times, before time n, that processor i hasn n

performed a computation.

For Examples I and III, (3.7) holds with g ix) a constant multiple of (aJ/3xi)

for Examples II and IV, it holds with g (x) a constant multiple of IIVJ(x) 1 2 . We

may conclude that Corollary 3.1 applies and proves convergence for Examples I-IV.

We close this section by pointing out that our results remain valid if we model

the combining coefficients, the transmission and reception times as random variables

defined on the same probability space (i,F,P), subject to some restrictions. Notice

that such a generalization allows the processors to decide when and where to transmit

based on information related to the progress of the algorithm. Hence, for stochastic

algorithms, we have to avoid the possibility that a processor judiciously choosesto

-25-

transmit at those times that it receives a "bad measurement" s in), or somehow

ensure that the long-run outcome is independent of such decisions. It turns out

that one only needs to assume that, for any ie{l,...,M} and any m<n, the random

variables i (m) and s (n), are conditionally independent given the history of the

algorithm up to time n [19]. This assumption holds if communications and the

combining coefficients are independent of the noise in the computations (this is

true, in particular, for deterministic algorithms), as well as for the specialization

case because ' (n) turns out to be deterministic and a priori known, even if the

communication times are random.

4. EXTENSIONS, APPLICATIONS AND CONCLUSIONS

A main direction along which our results may be extended is in analyzing the

convergence of distributed algorithms with decreasing step-size and with correlated

noise, for which the pseudo-gradient assumption fails to hold. Such algorithms

arise frequently, for example in system identification. Very few global convergence

results are available, even for the centralized case [17]. However, as in the central-

ized case an ordinary differential equation (ODE) may be associated with such algo-

rithms, which may be used to prove local convergence subject to an assumption that

the algorithm returns infinitely often to a bounded region [11,12,19].

Another issue, arising in the case of constant step-size algorithms, concerns

the choice of a step-size which will guarantee convergence. We may trace the steps

in the proof of Theorem 3.1 and find some bounds on ¥o so as to ensure convergence,

but these boundswill not be particularly tight. For a version of a distributed

deterministic gradient algorithm, tighter bounds have been obtained in [19] which

quantify the notion that the frequency of communications between different pro-

cessors should in some sense reflect the degree of coupling inherent in the

optimization problem.

-26-

It should be clear that the bounds on the time between successive communications

and delays are imposed so as to guarantee that processors are being informed, without

excessive delays, about changes in the state of computation of other processors.

The same effect, however, could be accomplished by having each processor monitor its

state and inform the others only if a substantial change occurs. It seems that such

an approach could lead to some savings in the number of messages being exchanged.

However, more research is needed on this issue and, in particular, the notion of a

"substantial change" in the state of computation of a processor needs to be made

more precise.

A final issue of interest is the rate of convergence of distributed algorithms.

With perfect synchronization, the rate of convergence is the same as for their

centralized counterparts. Asynchronism should be expected to bring about some

deterioration. We may then ask how much asynchronism may be tolerated before such

deterioration becomes significant. For decreasing step-size stochastic algorithms,

as long as communications do not become too infrequent, it is safe to conjecture

that the convergence rate will not deteriorate at all; still, there would be some

deterioration in the transient performance of such algorithms which is also worth

investigating.

Concerning possible applications, there are three broad areas that come to

mind. There is first the area of parallel computation, where an asynchronous

algorithm could avoid several types of bottlenecks [10]. Then, there is the area

data communication networks in which there has been much interest for distributed

algorithms for routing and flow control [6,9]. Such algorithms resemble the ones

that we have analyzed and our methods of analysis, with a few modifications, are

-27-

applicable [18]. Finally, certain common algorithms for system identification or

adaptive filtering fall into the framework of decreasing step-size stochastic algo-

rithms and our approach may be used for analyzing the convergence of their distri-

buted versions [19]. Our results may not be applicable without any modifications or

refinements to such diverse application areas. Nevertheless, our analysis indicates

what kind of results should be expected to hold and provides tools for proving them.

As a conclusion, the natural distributed asynchronous versions of a large

class of deterministic and stochastic optimization algorithms retain the desirable

convergence properties of their centralized (or synchronous) counterparts, under mild

assumptions on the timing of communications and computations and even in the presence

of communication delays. It appears that there are many and promising applications

of such algorithms in fields as diverse as parallel computation, data communication

networks and distributed signal processing.

-28-

REFERENCES

1. Arrow, K.J. and L. Hurwicz, "Decentralization and Computation in Resource
Allocation," in Essays in Economics and Econometrics, R.W. Pfouts, (ed.)
Univ. of North Carolina Press, Chapel Hill, N.C., 1960, pp. 34-104.

2. Avriel, M., Nonlinear Programming, Prentice-Hall, Englewood Cliffs, N.J.,
1976.

3. Baudet, G.M., "Asynchronous Iterative Methods for Multiprocessors," Journal of
the ACM, Vol. 25, No. 2, 1978, pp. 226-244.

4. Bertsekas, D.P., "Distributed Dynamic Programming," IEEE Transactions on
Automatic Control, Vol. AC-27, No. 3, 1982, pp. 610-616.

5. Bertsekas, D.P., "Distributed Asynchronous Computation of Fixed Points,"
Mathematical Programming, Vol. 27, 1983, pp. 107-120.

6. Bertsekas, D.P., "Optimal Routing and Flow Control Methods for Communication
Networks," in Analysis and Optimization of Systems, A. Bensoussan and J.L.
Lions, (eds.), Springer Verlag, Berlin, 1982, pp. 615-643.

7. Bertsekas, D.P., J.N. Tsitsiklis and M. Athans, "Convergence Theories of
Distributed Iterative Processes: A Survey," submitted to SIAM Review, 1984.

8. Chazan, D. and W. Miranker, "Chaotic Relaxation," Linear Algebra and Applications,
Vol. 2, 1969, pp. 199-222.

9. Gallager, R.G., "A Minimum Delay Routing Algorithm Using Distributed Computation,"
IEEE Transactions on Communications, Vol. COM-25, .No. 1, 1977, pp. 73-85.

10. Kung, H.T., "Synchronized and Asynchronous Parallel Algorithms for Multiprocessors,"
in Algorithms and Complexity, Academic Press, 1976, pp. 153-200.

11. Kushner, H.J. and D.S. Clark, Stochastic Approximation Methods for Constrained
and Unconstrained Systems, Applied Math. Series, No. 26, Springer Verlag,
Berlin, 1978.

12. Ljung, L., "Analysis of Recursive Stochastic Algorithms," IEEE Transactions on
Automatic Control, Vol. AC-22, No. 4, 1977, pp. 551-575.

13. Ljung, L., and T. Soderstrom, Theory and Practice of Recursive Identification,
MIT Press, Cambridge, MA, 1983.

14. Meyer, P.A., Probability and Potentials, Blaisdell, Waltham, MA, 1966.

15. Papadimitriou, C.H. and J.N. Tsitsiklis, "On the Complexity of Designing Distri-
buted Protocols," Information and Control, Vol. 53, No. 3, June 1982, pp. 211-218.

16. Poljak, B.T. and Y.Z. Tsypkin, "Pseudogradient Adaptation and Training Algorithms,"
Automation and Remote Control, No. 3, 1973, pp. 45-68.

17. Solo, V., "The Convergence of AML," IEEE Transactions on Automatic Control,
Vol. AC-24, 1979, pp. 958-962.

18. Tsitsiklis, J.N., and D.P. Bertsekas, "Distributed Asynchronous Optimal Routing
for Data Networks," Proceedings of the 23d Conference on Decision and Control,
Las Vegas, Nevada, December 1984.

19. Tsitsiklis, J.N., "Problems in Decentralized Decision Making and Computation,"
Ph.D. Thesis, Dept. of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, 1984.

20. Yao, A.C., "Some Complexity Questions Related to Distributed Computing,"
Proceedings of the 14th STOC, 1979, pp. 209-213.

APPENDIX A

Proof of Lemma 2.1: We only need to prove the Lemma for each component

separately, since (2.1)> corresponds to a decoupled set of linear systems.

We may therefore assume that there is only one component; so, the subscript ,

will be omitted and ij (nk) becomes a scalar.

ij
The coefficient k (njk) being the impulse response of the linear system

(2.1) is determined by the following"experimene: let us fix a processor j

and some time k; let x (1)=0, Vh, s (m)=O, Vh,m, unless if h=j and m=k in

which case we let yJ (k)s (k)=v, some nonzero element of H. For all times n and

for all processors i, x (n) will be a scalar multiple of v. This proportionalitv

factor is precisely equal to P ij(nlk). Since this experiment takes place in a

one-dimensional subspace of H, we may assume -without loss of generality- that H

is one-dimensional and that v=l. We then have, for the above "experiment",

i j (njk) = xi (n), Vi,n. A trivial induction based on (2.1) and using (2.2)

shows that x (n)>O, Vi,n, which proves (2.7).

For inequality (2.8) we consider a different "experiment": let us fix

some time k and let xh (1)=0, Vh, s h(m)=0, Vm,h, unless if m=k in which case

h h
we let y (k)s (k)=l, Vh. (H is still assumed one-dimensional). We then use

(2.1) and (2.3) to show by a simple inductive argument that x (n)<l, Vi,n

which concludes the proof of part (i).

For the proof of the remaining catts of the Lemma we first perform a reduc-

tion to a simpler case. It is relatively easy to see that we may assume, with-

out loss of generality, that communication delays are nonzero. For example, we

could redefine the time variable so that one time unit for the old time variable

corresponds to two time units for the new one and so that any message that

had zero delay for the original description has unit delay for the new descrip-

tion. If any of the Assumptions 21, - 2.2, 2.3, 2.4 holds in terms

of the old time variable, it also remains true with the new one.

Next, we perform a reduction to the case where all messages have zero

delay, as follows: for any (i,j)~E, we introduce a finite set of dummy processors,

between i and j (see Fig. A.1) which act as buffers. Any message from i to j

is first transmitted to a buffer processor (with zero delay) which holds it for

time equal to the desired delay and then transmits it to j, again with zero

delay. (So, whenever a buffer processor h receives a message, it lets

a (n)=l). The buffer processor which is to be employed for any particular

message is determined by a round-robin rule. Note that for each pair (i,j)eE

the number of buffer processors that needs to be introduced is equal to the

maximum communication delay for messages from i to j, which has been assumed

6
finite. Note also that the buffer processors are non-computing ones and have

in-degree equal to 1.

It is easy to see that if Assumptions 2.2, 2.3 are valid for

the original description of the algorithm, they are also valid for the above

introduced augmented description, possibly with a different choice of constants.

Assumption 2.1 also remains valid except for part c(iii) which may be

violated. (If in Figure A.1 processor j had originally in-degree equal to 1, it

now has in-degree equal to 4, but there is nothing in our assumptions that

guarantees that aj j (n)>tA, Vn). We have, nevertheless, the following condition:

6.This procedure is equivalent to a state augmentation for the linear system

(2.2).

-32-

Fr Iu i l

Fg 1 Ro0R

Figure i: Reduction to the zero delay case.

-33-

Assumption A.l: For any processor i with in-degree larger than i, either

1o Assumption 2olc(iii) holds, or

2. All predecessors of i are non-computing, have in-degree I and a common

predecessor.

From now on, we assume, without loss of generality, that cormmunication

delays are zero, provided that we replace Assumption 2.ic(iii) by Assumption

A.l.

Let A(n), V(n jk) be the matrices with coefficients a (n;, e (rn;k),

respectively. Because of the zero delay assumption it is easy to see t.haa
n-I

(nik) = 1I A(m) , n>k+l
m=k+l

We first prove the desired results under Assumptions 2.1 and 2.2.

By combining Assumptions 2.lc(i) and 2.2, note that there exists a constant

B such that, for any (i,j)EE and any time interval I of length B, there exists

some tIe such that aj (t)>ca> 0. (These are times that i communicates to j.)

Let us fix a computing processor j and some time k. By relabeiling, let

us assume that j=l. We will show by induction (with respect to a particular

numbering of the processors) that for any processor i, there exists some ai >0,

independent of k, such that il (nIk)>pa, for all ne[k+(i-l)B+i, k+£tBi -I.

To start the induction, consider first the case i=l and notice thatc

n-I~11 11 n-k-l MB >
(n k)> II a (t)> ane. > CL Vn= .

t=k+l

7.Since each A(n) is a "stochastic matrix (nonnegative entries, eacih row sums to),
questions of convergence of P((nlk) are equivalent to questions about the long-
run behavior of a finite (time-varying) Markov chain.

Suppose now that a subset S of the processors has been numbered

{l,...,i-l}, for some i>2, and that the induction hypothesis has been proved

for all processors in S. We show that it is always possible to find a new

processor in V/S, rename it to i and prove the induction hypothesis for i as

well.

Consider the set Q of processors qqS such that (p,q)eE, for some pES.

If Q=-, then S is the set of all processors (because of AssuTmption 2.1b) and

we are done. If not, we choose one processor from Q, and rename it to i,

subject to the following restriction: we choose a processor with in-degree more

than one only if no processor with in-degree equal to one belongs to Q.

We now prove the induction hypothesis for processor i. Let hES be some

predecessor of i, belonging to S. Then, h<i and, by the induction hypothesis,

hl (n I k) >0 V nEIc I.i_ Moreover, for some tE[k+(i-2)B+l,...,k+(i-l)BJ

ih il
we have a (t) >a and consequently, (t+Lfk) >cta

We first suppose that i has in-degree 1. We prove by induction on n, for

il
ne[t+l,...,k+MB]D .i that ~ (n k)>ac. = C.>O. Indeed,

(n+11k aih 'hl ii iii(n+lk) = a (n)l (nik) + a (n)i (nlk)>

> min{h (nik) ,i(nlk)}> min ,(A. = CLa. .
- n a

Suppose now that i has in-degree more than I and that Assumption 2.lc(iii)

holds. Then,

~il (I) Ln-= i a n-t MB A

(i (njk)> I a (m) (t+L ih)> >X ah a >o VnEI

The last possibility is that i has in-degree more than 1 (hence all

processors in Q have in-degree more than 1) and Assumption 2.lc(iii) fails.

Then the set of predecessors of i (denoted by U) has a single common predecessor,

denoted by j. Since ieQ, some hEU must being to S. Since any hEU is non-

computing, we have hl1 and its predecessor j must belong to S. Now, for any pSU,

p does not belong to Q (since it has in-degree 1) and therefore, pUS. We conclude

that all predecessors of i belong to S (UC). We now perform an easy induction

on n, for ne(t+l,...,k+MB] to show that ~ (nik)>x min {ah} A .>O. Indeed,
heU

il ih hl hi

i (n+lk)a (n) EP (n k)> min (nlk)>
.EUU1 i } heUUt{i}l

> mintaC, rain {ah }} = a

heU

This completes our inductive argument.

'We may now conclude that O(k+MBtk) is a stochastic matrix with the

property that all entries in some column (corresponding to any computing processor)

are positive and bounded away from zero by a constant ca>0 which does not depend on

k. We combine this fact with Lemma A.1 below to conclude that the assertions of

Lenmma 2.1 are true.

Lemma A.l: Consider a sequence {D } of nonnegative matrices with the properties

that:

(i) Each row sums to 1.

(ii) For some a>0 and for some column (say the first one), all entries of Dn,

for any n, in that column are larger or equal than a.

-- -- -- - ----- - ----- -- -

-36-

Then,

n

a) D = im 1 Dk exists.
n-n k=l

b) All rows of D are identical.

c) The entry in the first column of D is bounded below by a.

d) Convergence to D takes place at the rate of a geometric progression.

Proof of Lemma A.1: Given any vector x=(xl,...,xM) we decompose it as x=y+ce,

where c is a scalar, eis the vector with all entries equal to 1 and y has one

zero entry and all other entries are nonnegative. (So c equals the minimum of

the components of x.

n

Let x(n) f= Dkx(O), Vn and x(n)=y(n) c (n) e. It is easy to see that
k=l

j|y(n+l) (I_ < (1-CL) y(n) j|, where |*j |*| denotes the max-norm on R , which

shows that y(n) converges geometrically to zero. Moreover, c(n)< c(n+l)< c(n) +

I y(n) jl, which shows that c(n) also converges geometrically to some c. Hence,

x(n) converges geometrically to ce. Since this is true for any x(O)e R , parts

(a),(b), (d) ;of the Lemma follow. Part (c) is proved by an easy induction, for

the finite products of the Dk's and, therefore, it holds for D as well. C

We now consider the case where Assumption 2.2. is replaced by 2.3.

The key observation here is that during an interval of the form [B n , B (n+l)B]

a bounded number of messages is transmitted; hence, A(k)=I, except for a bounded

number of times in that interval. If we redefine the time variable so that time

is incremented only at communication times, we have reduced the problem to the case

of Assumption 2.2. The only difference, due to the change of the time variable,

-37-.

is in the rate of convergence. Under Assumption 2.2, 1 l|(n1k)-(k) || decreases

by a constant factor during intervals of constant length. This implies that,

under Assumption 2.3, j |D(njk)-D(k)jj decreases by a constant factor during

intervals of the form [Bt 3Bl (t+c) 1] for some appropriate constant c. Therefore,

' B I t9(nfk)-9~k) [< Em'n/c
if B.t"=k and Bl(t+m) =n, we have | (nlk)-(k) !< Bd , for some B> d e3i)

Eliminating t and solving for m, we obtain

.(Bv) 4m . ()- -

which finallT yields

1-*

cB 1/ c

Let 6=1/a and d=d , to recover the desired result. m
o

-38-

APPENDIX B

This Appendix contains the proofs of the results of Section 3.

Remark on Notation: In the course of the proofs in this section, we will use

the symbol A to denote non-negative constants which are independent of n, Y ,

i i I
y (n), x (n), s (n) etc., but which may depend on the constants introduced in the

various assumptions (that is, M, L, K, K0, B B, a, etc.). When A appears in

different expressions, or even in different sides of the same equality (or

inequality), it will not necessarily represent the same constant. (With this

convention, an inequality of the form A + i<A is meaningful and has to be inter-

preted as saying that A+1, where A is some constant, is smaller than some other

constant, denoted again by A.) This convention is followed so as to avoid the

introduction of unnecessarily many symbols.

Without loss of generality, we will assume that the algorithm is initialized

so that x (l)=0, Vi. In the general case where x (1)#0, we may think of the

algorithm as having started at time 0, with x (0)=O; then, a random update

i i
s (0) sets x (1) to a nonzero value. So, the case in which the processors initially

disagree may be easily reduced to the case where they initially agree.

-i Y .n)
Note that we may define s (n) = (n) (n) and view s (n) as the new

Y0

step with step-size yo. It is easy to see that Assumptions (3.2) and (3.3) also

hold for s (r). For these reasons, no generality is iost if we assume t2hat

y (n) = y0, vn and this is what we will do.

Let us define

M

b(n) = i Isi(n) I (B.1)
i=l

and note that

2 2 2
b (n) < M (n) < b

(n) .
i=l

-39-

Using (Z.6).,- (2.13) and Lemma 2.1 (iii), we obtain

n-I M

I ly(n)-xi(nll< ! f 'o l| j (k) - iJ (nl k) |k | | s (k) ! 1
k=l j=L

n-I
n-k (B.2)

< AyO d b (k)
k=l

From a Taylor series expansion for J we obtain

J(y(n+l)) = J (n)+ () iL (n) (n

M M

< J(y(n)) + y0 7J(y(n)) Z ' (n) s (n)+ Aly Y i i (n)si(n) 2

< J(y(n)) + y 0 VJ(y(n))) Ci(n) s (n) + Ay 0 b(n (B.3)
i=i

Assumption 3.2 is in terms of 7J(x (n)), whereas above we have 7J(y(n)) . To

overcome this difficulty, we use the Lipschitz continuity of the derivative of J

and invoke (B..2:) to obtain

iM . i

|tVJ(y(n)) I D (n)sA (n)- Z 7J(xi(n) (n) (n) 1

i-l i=l

M

< A Iy(n)-xi(n) t I I s(n) I <_
i-=i

n-l M n-l
n n-k n-k

CyOA I dn b(k) s i si(n) i = y 0OA n d b(k)b(n) <
k=l i=l k=l

n-!

<y A n' dn - k [b2 (k) +b 2 (n)] (B.4)
k=i

Let us define

G (n) = -7J(x (n))((n)s (n) , (B.5)

M
G(n) = G (n), (.6)

i=l

and note that Assumption 3.2 implies that E[G(n)]>-0. We now rewrite inequality

-40-

(B,3) using (B.4) to replace the derivative term, to obtain:

J(y(n+l))< J(y(n)) - Y0G(n) + Ay0b
2 (n) + AY dn [b (k)+b (n)]<

k=l

(J(y(n)) - yOG(n) + Ay d b (k) (B..7)
k=l

Assumption 3.3 implies that [cf. inequality (3.3)]

E2Lb (k)I< AE[G(k) . (B.8)

Taking expectations in (B.7) and using (B.8) we obtain

n
2 - dn-k

E[J(y(n+l))]< E[J(y(n))]- YOEL (n)] + AyO i d E(k) (B.9)

We then sum -(B.9) ~ for different values of n, to obtain

n~n

0 .

<EJ(y(+l))]< E[J ())]+ A EG(, k) (B.ll)

k=lk=l

-41-

By Assumption 3.2, E[G(k) IFk >O, Vk; we may apply the monotone convergence

theorem to' (B.12) and obtain

E E E[G(k)F Z k E E[(k) <'B 1o3)
-k=l k=l

which implies

cO

E[G(k) IFk<co, a.s. (14)
k=1

From (B.14) we obtain

7 7zJ(x (n))E (n) s(n) IF] >-co, a.s.
n=1t

NIow use the fact (Lemma 5.2.1 (ii), inequality (2.9)) that g(n)>o>O, for

any computing processor i for component Z. This implies that

VJ(x (n))E[s (n)IF]>-0, a.s.
21 Z n

k=l

and establishes part (c) of the theorem.

Lemma B. 1: Let X(n), Z(n) be non-negative stochastic processes (with finite

expectation) adapted to (F } and such that
n

E[X(n.+) IF]< X(n) + Z(n), (B.5)

i EtZ(n)n]< - (B.16)

n=l

Then X(n) converges almost surely, as new.

Proof of Lemma 5.3.1: By the monotone convergence theorem and (5.3.23) it

follows that X Zn <, almost surely. Then, Lemma 5.3.1 becomes the same
n=l

as Lemma 4.C.1 in [13, p.4531, which in turn is a consequence of the super-

martingale convergence theorem [14]. O

Now let A be the constant in the right hand side of (B.7) and let

A k~lC n-k 2
Z(n) = Ay I d b (k) IFj (B-.17)

Then, Z(n)> 0 and by (B.8)

EZ(n)]< A I d EkEG(k)I . (B.18)
k=l

Therefore,

ECZ(n)]< A I dn-kE[G(k)] =
n-l n=l k=l

= A I1d I E[G(k)3]<0 (B.19)
k=l

where the last inequality follows from (B.12) Therefore, Z(n) satisfies

(B.16). We take the conditional expectation of (B.7), given F . Note that

J(y(n)) is F -measurable and that E(G(n)IF]> 0. Therefore Lemma B.1 applies
n n-

and J(y(n)) converges almost surely.

Using Assumption 3.3 once more, together with (B.12),

r b)<A E[GXk)]< (B.20)

k 1 k=l

-43-

which implies that b(k) converges to zero, almost surely. Recall (B.2) to

conclude that y(n)-x (n) converges to zero, almost surely. Also, by squaring

(B.2), taking expectations and using the fact that E[b (k)] converges to zero

we conclude that E[j ly(n)-xi(n) 112] also converges to zero, and this proves part

(b) of the Theorem.

Now, let us use Assumption 3.1 and a second order expansion of J to obtain,

for any aeR

O<J(x-aVJ(x))<J(x) - aA 1 VJ(x) | + a 2A VJ(X2) , (B.21)

where A1, A2 are positive constants not depending on a. Assuming that a was

chosen small enough, we may use (B.21) and the nonnegativity of J to conclude

InVJ(x) I I < AJ(x), VxedH. (B.22)

Since J(y(n)) converges, it is bounded; hence VJ(y(n)) is also bounded, by

(B.22). We then use the fact that y(n)-x i(n) converges to zero, to concludes

that J(x (n))-J(y(n)) also converges to zero. This proves part (a) and concludes

the proof of the Theorem. !

In the following Lemma we bound certain infinite series by corresponding

infinite integrals. This is justified as long as the integrand cannot change by

more than a constant factor between any two consecutive integer points. For

notational convenience, we use c(nlk) to denote d , where d and 6 are as in

Lemma 2.1(iv).

Lemma B.2: The following hold:

-- E m c(mln)<co, (B.23)
n mn n

n=l m=n

-44-

m m
lim i 2 c(mlk) = lim I k c(mlk)=O, (B.24)
mno k=l k mno k=l

lim I c (kjm)=0. (B.o25)
mnr0 k=m

1

Proof of Lemma B.2: Let t =y; then, t=y / and dt=(l/6)y dy. Therefore,

1 t -s 1 1 1 Y 1 1
dt = dy <

6 dY dy < (B.26)

t=s y=s y=s

1A
where A does not depend on s. Equation (B.25) follows. Since -A is an

s 6

integrable function of s, (B.23) follows as well.

The left hand side of (B.24) is bounded by

mt 1

Am= -t dt = 2/d - 6 dy
=1 tt~~~ y

6
m 1

A lm y - m -Ydy <Am

y=l

which converges to zero. The middle term in (B.24) is certainly smaller and

converges to zero as well. O

Proof of Theorem 3.2: Using the same arguments as in the proof of Theorem 3.1,

we may assume, without loss of generality, that xi(l)=0 and that Y (n)=l/n, Vi,n.

--i i
(Otherwise we could define s (n) = ny (n)s (n).)

-45-

65

We still use c(nlk) to denote dn . We define again b(n), G (n),

G(n) by (B.l), (B.5), (B.6), respectively, as in the proof of Theorem 5.3.1.

Also, let

n-
2 i - - c(njm), n=k,

n m=l

O(njk) 1= l- k c(nlk), n>k, (B.27)

0, n<k.

By replicating the steps leading to inequality (B.7) in the proof of Theorem 3.1

and using Lemma 2.1(iv) and (B.27) we obtain, for some A>0,

n 2
1 G(n) + A . (nIk)b2(k), V n (B.28)J(y(n+l))< J(y(n)) - G(n) 8 A

k=l

Taking expectations in (B.28), we have

E[J(y(n+l))]< E[J(y(n))] - E[G(n)] + A n I(nk)E[b (k)] , Vn.

k=l (B.29)

and using Assumption 3.4,

n
E E[G(n)] + A ~ ~(nlk)(E[G(k)]+l). (B.30)

~n ~ k=l

We then sum (B.30), for different values of n to obtain

n m. n n 1

O<E [J(y(n+l))]<EJ(y(l))+m A (mk)+ - EG (m)].
m=l k=l m=l k=m

The definition (B.27) and (B.23) imply that the middle term in the right hand

side of (B.31) is bounded. Moreover, using (B.27),

-46-

0 1 m-l -1

m I 4(kjm) = + I k c(mlk) + kc c(klm),
k=m k=l k=m

which converges to zero, as m:+o, by (B.24) and (B.25). Therefore, for large

enough m, I p(kjm)- - < It follows that E[J(y(n))] is bounded.
k=m m

co00

Inequality (B.31) and the above also imply that -1 E[G(m)]<o and part (c) of
m=l

the Theorem follows, as in the proof of Theorem 3.1.

We now define

z(n) = E k=l (nlk)b (k)IF'
_ k=l

and note that

0 co o00 00

[E[Z(n)]< A 'I Z (njk) E[G(k)]+l < A+A 1 k E[G(k)]<00
n=l k=l n=k k =1

Taking conditional expectations in (B.28) (with respect to F) and using Lemma

B.1, we conclude that J(y(n)) converges, almost surely.

We now turn to the proof of part (b). Using (3.5) and (B.22), we have

which finally implies that

iE[|si(n)]< AE[J(x (n))] + A. (B.33)
E[Isi(n)jI 1 AB[J(x (n))] + A. (B.33)

-47-

Now, using (B.22) once more,

J(x (n))-J(y(n))< I VJ(y(n)l II 11x (n)-y(n)II + A|Ix (n)-Y(n) i 12<

< 1 IIVJ(Y(n) 112 + All xi(n)-y(n)112< AJ(y(n)) A+ xi(n)-y(n) 112
(B.34)

Inequalities (B.33), (B.34) and the boundedness of E[J(y(n))] (which is a con-

sequence of (B.31)) yield

E[b2 (n)]< A+AEl Ix (n)-y(n)j 112] (B.35)

Similarly with (B.2), we have

n-l

i1y(n)-x (n)| < A Z k c(nlk)b(k) (B.36)
k=l

and

n-l 2 n-1c (nnk) b2 n c(n~k) 2

I ly)_(n) xit n) I 12< An I c l b (k)< An 2 b (k). (B.37)
k=l k= k

Therefore,

E[lly(n)-xi(n)l12]< S(n) max E[b (k)], (B.38)
1<k<n

w (n) = An converges to zero, by (B.24). Using (B.35),
k=l k

ElI ly(n)-x i (n) j12]< A(n) (l+max E[I |y(k)-xi (k) 12])
k<n

and since S(n) converges to zero, it follows that E[l y(n)-x (n)l 2] converges

to zero as well. We also conclude from (B.35) that sup E[b (n)]<o.

n

-48-

Let

Dk =E 1 b(1), k>l. (B.39)

k <i< (k+l)

Using the fact that there exists an A such that (k+1) /-k / <Ak (1 /)- 1
, Vk,

obtain from (B.39)

2

~ ELD k] < klk/< +l /6] sup E[b2 (n)]<

.l J.k=L k</6<i< (k+l)

co 1 1/6 1/6 o 1 (2/6)-2
<A 2 [(k+l) -k]< A I 2/6 k(/ <00 (B.40)

k=l k k=l k

If follows that Dk converges to zero, almost surely. Consequently, so does Dk

nd C n-k
and d Dk as well. Let us fix some n, let N denote the largest integer

k=l

such that N<n° and use (B.36) to obtain'

Ixi (n)- y (n) |j <A A k c(nlk)b(k)< A l< 6 k/6<i<(kl) b(i)

<AdN-'k+l N Nb(ki)< A N-k

1/6 1/6 I k
l<k<n -1 k <i<(k+l) / k=l

As n converges to infinity, so does N and, by the above discussion, x (n)-y(n)

converges to zero, as n->. Consequently, x (n)-xi (n) also converges to zero,

for any i,j, completing the proof of part (b).

Finally, since J(y(n)) converges and x (n)-y(n) converges to zero, part (a)

of the theorem follows, as in the proof of Theorem 3.1..

-49-

Proof of Corollary 5.3.1: From part (c) of either Theorem 3.1 or 3.2 and

(3.7) we obtain

M L

E i E Y(n) g'(x i())< a.s. (B.42)
i=l =l neT

Because of our assumption on the sets Tl, it follows that there exists a

positive integer c such that, for any i,Z,m, the interval {cm+l,cm+2,...,c(m+l)}

contains at least one element of TI. Let us choose sequences of such elements

denoted by t Q m . By (B.42), we have

M L X.

i Y
1 (tQ ,m)g))< a.s (B.43)

i=l X=l m=l ,m ,m

Now notice that, for some constant K5 0,

K K K5
y (tI)> > > 5, Vi,fm . (B.44)

Q,m - i - c(m+l) - m

t,m

Hence, (B.43) yields

X 1 M L

I m g))<X, a.s. (B.45)
m=l i=l =1

From either Theorem 3.1 or 3.2 and its proof we obtain

lim (x (n)-y(n)) = lim (y(n+l)-y(n))=O which implies that
n-00 n-Ko

lim (x (t im)-Y(t))=O' Vi (B46)

Since J has compact level sets and J(y(n)) converges, the sequence {y(n)} is

bounded. We therefore need to consider the functions gi only on a compact set

on which they are uniformly continuous. Therefore,

_. ; i ix)ig (Y(t 1 (B...).
Ur>0 m

-50-

By combining (B.45) and (B.47) we obtain

M L

liminf - g(y(t))=O . (B.48)
m&co i =l Z=1

a) By (B.48), there must be some subsequence of {t } along which

g(y(tl)) converges to zero. Let y* be a limit point of the corresponding
l,m

subsequence of {y(tl)}. By continuity, g(y*)=O and by assumption, y* must be

i l
a stationary point of J, so VJ(y*)=O. Moreover, x (t) also converges to y*

l,m

along the same subsequence. By continuity of VJ, (3.8) follows.

b) In this case, (B.43). implies

M L

lim I gI (x (t m))=, a.s. (B.49)
m00 i=l m=l

and the rest of the proof is the same as for part (a), except that we do not need

to restrict ourselves to a convergent subsequence.

c) From part (a) we conclude that some subsequence of fy(t 1)} converges to
l'm

some y* for which g(y*)=O. Consequently, y* minimizes J. Using the continuity

of J,

liminf J(y(n))< liminf J(y(tl))< J(y*) = inf J(x)
n-tcx,= ne= 'xeH

On the other hand, J(y(n)) converges (part (a) of either Theorem 3.1 or 3.2)

which shows that (3.10) holds.i

