Distributed Asynchronous Optimization with Unbounded Delays:
How Slow Can You Go?

Zhengyuan Zhou' Panayotis Mertikopoulos’ Nicholas Bambos' Peter Glynn' Yinyu Ye' Li-Jia Li® Li Fei-Fei'3

Abstract

One of the most widely used training meth-
ods for large-scale machine learning problems
is distributed asynchronous stochastic gradient
descent (DASGD). However, a key issue in its
implementation is that of delays: when a “worker”
node asynchronously contributes a gradient up-
date to the “master”, the global model parame-
ter may have changed, rendering this information
stale. In massively parallel computing grids, these
delays can quickly add up if a node is saturated,
so the convergence of DASGD is uncertain under
these conditions. Nevertheless, by using a judi-
ciously chosen quasilinear step-size sequence, we
show that it is possible to amortize these delays
and achieve global convergence with probability
1, even under polynomially growing delays, reaf-
firming in this way the successful application of
DASGD to large-scale optimization problems.

1. Introduction

With the advent of high-performance computing infrastruc-
tures that are capable of handling massive amounts of data,
distributed asychronous optimization has become the pre-
dominant paradigm in a broad range of large-scale machine
learning and data science applications — ranging from sta-
tistical inference (Meshi & Schwing, 2017; Smyth et al.,
2009; Grover & Ermon, 2016; Anand et al., 2016) and ma-
trix completion (Recht et al., 2011; Yun et al., 2014; Petroni
& Querzoni, 2014), to training deep neural networks (Dean
et al., 2012a; Zhang et al., 2013; Paine et al., 2013; Zhang
et al., 2015; Grover et al., 2015; Jiang et al., 2017) and
representation learning (Grover & Leskovec, 2016; Grover
et al., 2018a;b). As a result, recent years have witnessed a

!'Stanford University, Stanford, USA 2Univ. Grenoble Alpes,
CNRS, Inria, LIG, 38000 Grenoble, France. *Google,
Mountain View, USA. Correspondence to: Zhengyuan Zhou
<zyzhou@stanford.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

commensurate surge of interest in the asynchronous paral-
lelization of first-order methods such as (stochastic) gradient
descent (Agarwal & Duchi, 2011; Recht et al., 2011; Paine
et al., 2013; Chaturapruek et al., 2015; Lian et al., 2015;
Feyzmahdavian et al., 2016; Mania et al., 2017), coordinate
descent (Liu et al., 2014; Avron et al., 2015; Liu & Wright,
2015; Tappenden et al., 2017; Fercoq & Richtarik, 2015),
dual coordinate descent (Tran et al., 2015), block coordinate
descent (Wang et al., 2016; Marecek et al., 2015; Wright,
2015), ADMM (Zhang & Kwok, 2014; Hong, 2017), etc.

This popularity is a direct consequence of Moore’s law of
silicon integration and the commensurately increased dis-
tribution of computing power. For instance, in a typical
supercomputer cluster, up to several thousands of “workers”
perform independent computations with little to no synchro-
nization between them (as the cost of such coordination
quickly becomes prohibitive in terms of overhead and en-
ergy spillage). Similarly, massively parallel computing grids
and data centers may house up to several million computing
nodes and/or servers, all working asynchronously to exe-
cute a variety of different tasks. Finally, taking the concept
of distributed computing to its logical extreme, volunteer
computing grids (such as Berkeley’s BOINC infrastructure
or Stanford’s folding@home project) essentially span the
entire globe and harness the computing power of a vast, het-
erogeneous network of non-clustered nodes that receive and
process computational requests in a non-concurrent fashion,
rendering syncrhonization impossible. In this way, by elim-
inating the required coordination overhead, asynchronous
operations become simultaneously more appealing (in phys-
ically clustered systems) and more scalable (in massively
parallel and volunteer computing grids).

In this broad landscape, distributed asynchronous stochastic
gradient descent (DASGD) is one of the most widely de-
ployed methods for training large-scale machine learning
models, particularly when a stochastic gradient of the under-
lying learning objective is easily computable (Dean et al.,
2012a;b; Krizhevsky et al., 2012; Zhang et al., 2013; Paine
et al., 2013; Zhang et al., 2015). More concretely, there are
two types of distributed computing architectures that are
common in practice: The first is a shared-memory multi-
core/multi-GPU cluster where different processors indepen-
dently compute stochastic gradients and update a global

Title Suppressed Due to Excessive Size

model parameter using a shared memory (see e.g., Recht
et al., 2011; Chaturapruek et al., 2015; Feyzmahdavian et al.,
2016). The second is a “master-slave” architecture where
each worker independently computes a stochastic gradient
of the objective; these gradients are sent asynchronously to
the master as they become available, and the master sends
out new computation requests after updating the model’s
global parameter (for instance, as in Agarwal & Duchi, 2011
and Lian et al., 2015).

In both cases, DASGD is inherently susceptible to delays,
a key impediment that is absent in centralized stochastic
optimization settings. For instance, in a master-slave sys-
tem, when a worker sends its gradient update to the master,
the master may have already updated the model parameters
several times (using updates from other workers), so the
received gradient is already stale by the time it is received.
In fact, even in the perfectly synchronized setting where all
workers have the same speed and send input to the master in
an exact round-robin fashion, there is still a constant delay
that grows roughly proportinally to the number of work-
ers in the system (Agarwal & Duchi, 2011). This situation
is exacerbated further in volunteer computing grids: here,
workers typically volunteer their time and resources follow-
ing a highly erratic and inconstant update/work schedule,
often being turned off and/or being used for different tasks
for hours (or even days) on end. In such cases, there is no
lower bound on the fraction of resources used by a worker
to compute an update at any given time (this is especially
true in heterogeneous computing grids such as BOINC and
SimGrid), meaning in turn that there is no upper bound on
the induced delays (this can also happen in parallel comput-
ing environments where many tasks with different priorities
are executed at the same time across different machines).

Our Contributions and Related Work. In this paper, we
focus on the impact of outdated information on the conver-
gence of DASGD. To begin with, in distributed determin-
istic optimization, it is well-known that convex problems
can be solved by asynchronous descent with perfect gra-
dient computations, even if the delays grow sublinearly
over time (Bertsekas & Tsitsiklis, 1997). In the context
of stochastic convex programming (where the objective is
to minimize a function of the form f(z) = E[F(z,w)]
for some random variable w), recent works by Agarwal
& Duchi (2011), Recht et al. (2011), Chaturapruek et al.
(2015), Lian et al. (2015), Feyzmahdavian et al. (2016)
and Mania et al. (2017) have derived convergence rates
for DASGD under bounded delays, typically in the sense
of mean ergodic averages. Extending these results to a
non-convex setting, Lian et al. (2015) showed that the
global state parameter X,, of DASGD enjoys the guarantee
n~ 'SP B[V f(X)|2] = 0asn — oo, again under

bounded delays.! Albeit powerful, this convergence result
does not imply that DASGD converges to a stationary point,
even in expectation; however, without further assumptions,
it does not seem possible to refine this result further.

Our aim in this paper is to obtain sharper global convergence
guarantees for DASGD with unbounded delays in a wide
class of unimodal non-convex objectives known as varia-
tionally coherent. First introduced by Zhou et al. (2017a),
this functional class properly includes, among others, all
star- and quasi-convex stochastic programs (and hence all
stochastic convex programs as well). Our main result may
then be stated as follows: in stochastic variationally co-
herent problems, the global state parameter X,, of DASGD
converges to a global minimizer with probability 1, even
when the delays between gradient updates and requests
grow at a polynomial rate.

This analysis extends the works mentioned above in several
directions: it shows that a) convexity is not required to ob-
tain almost sure global convergence; and ») bounded delays
are not necessary to ensure the robustness of DASGD (in
particular, even in the determinstic case, our analysis im-
proves the sublinear requirement of Bertsekas & Tsitsiklis
(1997) to polynomial). From this point of view, our results
can be viewed as a contribution to the following question:
is vanilla DASGD robust to delays, and if so, to what ex-
tent? We provide an affirmative answer to this question
which, together with the existing rich literature on the topic,
helps explain and reaffirm the prolific empirical success of
DASGD in large-scale machine learning problems.

Our analysis relies on several novel ideas from the the-
ory of stochastic approximation that were leveraged in a
series of recent papers to examine descent schemes in a
game-theoretic/continuous-time setting (Zhou et al., 2017b;
Mertikopoulos & Staudigl, 2018a;b; Mertikopoulos & Zhou,
2018). Specifically, instead of focusing on the discrete-time
algorithm directly, we first establish the convergence of
an underlying, deterministic dynamical system, and then
connect the continuous- and discrete-time systems via the
stochastic approximation machinery of asymptotic pseu-
dotrajectories (APTs), as pioneered by Benaim & Hirsch
(1996) and Benaim (1999).

2. Problem Setup

Let X be a convex and compact subset of R? and let
(Q, F,P) be some underlying (complete) probability space.
Throughout this paper, we will focus on the stochastic opti-

"Lian et al. (2015) and Mania et al. (2017) also examined both
master-slave and multi-processor with shared memory, allowing
for inconsistent reads and writes in the latter case.

Title Suppressed Due to Excessive Size

mization problem:

/()

subjectto z € X,

minimize
(Opt)

where the objective function f: X — R is of the form
f(@) = E[F(z;w)] @1

for some random function F': X x 2 — R (not necessarily
convex on X). As is well-known in the distributed opti-
mization literature (Agarwal & Duchi, 2011; Krizhevsky
etal., 2012; Zhang et al., 2013; Paine et al., 2013; Lian et al.,
2015), the stochastic expectation in Eq. (2.1) contains as a
special case the common machine learning objectives of the
form N1 Zil fi(x), where each f;(z) is the loss associ-
ated with the i-th training sample.”> Objectives of the form
N1 Zfil fi(x) in fact encompasses a wide variety of ma-
chine learning tasks. For instance, even when f; is assumed
to be convex, least squares, logistic regression, SVM, matrix
completion with trace norm (see (Bubeck et al., 2015) for
more examples) can be seamlessly cast in this form.

In terms of regularity, we also make the following standard
assumptions in the rest of our paper:

Assumption 1. F satisfies the following:
1. F(z;w) is differentiable in z for P-almost all w € .

2. V F(z;w) has bounded second moments, that is,
]E[HVF(.I,O))H;] < ooforallx € X.

3. VF(z;w) is Lipschitz continuous in the mean:
E[VF(z;w)] is Lipschitz on X.

Assumptions 1 and 2 together imply that f is differentiable
because, by the dominated convergence theorem, V f(x) =
VE[F(z;w)] = E[VF(z;w)].> Assumption 3 then implies
that V f is Lipschitz continuous. Since f is continuous and
X is compact, the solution set X* = arg min f of (Opt) is
closed and nonempty.

2.1. Gradient Descent in Master-Slave Systems

Our main goal in this paper is to solve the optimization prob-
lem (Opt) in master-slave architectures, a widely used dis-
tributed computing framework for data-centers and parallel
computing grids. The standard way of deploying stochastic
gradient descent in such systems — and that which we adopt
here — is for the workers to asychronously compute stochas-
tic gradients and then send them to the master,” while the

2This setup corresponds to empirical risk minimization with
N7t Zfil fi(z) representing an average with uniform weights.

3Note that finite second moments automatically imply finite
first moments, which in turns guarantees that the expectation of
the gradient exists.

*In machine learning applications, this is done by sampling a
subset of the training data, computing the gradient for each data
point and averaging over all points in the sample.

master updates the global state of the system and pushes the
update back to the workers (Agarwal & Duchi, 2011; Lian
et al., 2015). This process is presented in Algorithm 1:

Algorithm 1 Running SGD on a Master-Slave Architecture

Require: 1 Master and K workers, k=1,..., K

1: repeat

2: Master:
(a) Receive a stochastic gradient from worker &
(b) Update current iterate
(c) Send updated iterate to worker k

3: Workers:
(a) Receive iterate
(b) Compute an i.i.d. stochastic gradient
(c) Send gradient update to master

4: until end

As discussed in the introduction, since workers asy-
chronously compute the gradients and then send updates to
the master, a gradient received by the master on any given
iteration can be stale (i.e., from a long-ago iteration). Since
the master is the node that updates the global state of the
system (the current solution candidate), we can get a clearer
representation of this scheme by taking the master’s point
of view. The resulting process, aptly called distributed asyn-
chronous stochastic gradient descent (DASGD) is encoded
in pseudocode form in Algorithm 2 below.

Algorithm 2 Distributed asynchronous stochastic gradient
descent

Require: Initial state Y; € R, step-size sequence v,
1: n+ 0
2: repeat
3 X, = prOjX(Yn);
4: Yn+1 =Y, - an+1vF(Xs(n)7ws(n)+l);
5 n<+<n+1;
6: until end
7: return solution candidate X,

In more detail, the master keeps track of a global counter n
and increments it every time it updates the current solution
candidate X,,. In what follows, we will write s(n) for the
iteration from which the gradient received at time n origi-
nated. In other words, the delay associated with iteration
s(n) is n — s(n), since it took n — s(n) iterations for the
gradient computed on iteration s(n) to be received by the
master at stage n. Notation-wise, we will write d,, for the
delay required to compute a gradient requested at iteration
n. This gradient is received at stage n + d,,, whereas the
delay for a gradient received at n is d(,) = n — s(n).

Title Suppressed Due to Excessive Size

2.2. Mean Variational Coherence

Our goal in this paper is to establish the convergence of
DASGD in as wide a class of problems as possible. Of
course, global convergence’ will not hold for all non-convex
stochastic optimization problems (even without delays). As
such, following Zhou et al. (2017a), we will focus on a class
of non-convex functions called coherent:

Assumption 2. The optimization problem (Opt) is varia-
tionally coherent in the mean if

E[(V F(z;w),x —x™)] > 0, (VO)

forallz € X, z* € X*, with equality if and only if z € X™.

By Assumption 1, we can interchange expectation and dif-
ferentiation in (VC) to obtain (V f(z),x — 2*) > 0, for all
x ¢ X*, a* € X*. As aresult, mean variational coherence
can be interpreted as an averaged coherence condition for
the deterministic optimization problem with objective f(x).
A simple case of this, where X = R? and a unique mini-
mizer x* exists, is discussed in (Bottou, 1998), where many
examples are given. Among others, this class of functions
properly contains all star- and pseudo-convex functions;
see Zhou et al. (2017a) for a detailed presentation of (VC).
Remark 2.1. It should be noted that (VC) is a signifi-
cantly weaker requirement than the monotonicity condition
(Vi) = Vf(x),2’ —x)y > 0 forallz,2’ € X, that
characterizes convex functions. (VC) only concerns the
minimum set of f and gives no information on generic point
pairs (thus allowing for highly non-convex profiles).

3. Deterministic analysis

To streamline our presentation and build intuition along the
way, we will begin with the deterministic case, where there
is no randomness in the calculation of a gradient update. In
this case, DASGD boils down to a distributed asynchronous
gradient descent (DAGD), as illustrated in Algorithm 3:

Algorithm 3 Master’s DAGD Update

Require: Initial state yo € RY, step-size sequence a,
I: n<0
2: repeat
30 @, = Pprojy(yn);
4 Ynt1 = Yn — an+1vf($s(n));
5 n<+<n+1;
6: until end
7: return solution candidate x,,

SOur focus in this paper is on global convergence. Other types
of non-convex functions exist for which variants of SGD would
converge to local optima (Zhang et al., 2017). Further, there can
exist specific structured class of non-convex problems, that neither
contain nor belong to VC, for which SGD converges to global
optima (Chen et al., 2018).

3.1. Energy Function

A key role in the analysis of Algorithm 3 is played by the
energy function

E(y) = |lpl3—lprojx (1) lI5+2(y, proj (y)—p), (3.1)

where p is a fixed base point in X" (typically a global mini-
mizer * € arg min f) and y is a gradient variable (typically
a gradient iterate of Algorithm 2 or Algorithm 3, depending
on the context).®

Lemma 3.1. Forallp € X, y € R?, we have:
1. E(y) > 0 with equality if and only if proj . (y) = .

2. The sequence {y, 152 has lim, oo Projx(yn) = p
if and only if lim,, o E(y,) = p

The proof of Lemma 3.1 is given in the appendix, but it is
helpful to make a few quick remarks. The first statement
justifies the terminology of “energy", as E(y) is always
non-negative. This energy function will also be the tool
we use to establish an important component of the global
convergence result. Further, it should also be clear that if
projy(y) = z, then E(y) = 0; it is the “only if” part that
is less obvious. For the second part of the lemma, it is again
clear that if projy(y.) — «, then E(y,) — 0; the “only
if” part is less obvious, but it is also what provides us with
a way to establish convergence to optimal solutions. If we
can show that E/(y,,) — 0, Lemma 3.1 would guarantee that

ZTp = Projy (yn) — x*.

3.2. Main Convergence Result

Going back to Algorithm 3, and with a fair bit of hindsight,
we will make the following assumption relating the delays
and the algorithm’s step-size sequence:

Assumption 3. The gradient delay process d,, and the step-
size sequence «, of Algorithms 2 and 3 satisfy one of the
following conditions:

1. Bounded delays: sup,, d, < coand > - a2 < oo,
ooy = 00.

2. Linearly growing delays: d, = O(n) and «,,
1/(nlogn) for large n.

3. Polynomially growing delays: d,, = O(n9) for some
g > 1land o, x 1/(nlognloglogn) for large n.

The heavy lifting for our converence analysis is then pro-
vided by the following technical result:

Proposition 3.2. Under Assumptions 1-3, DAGD admits a

subsequence x,, that convergesto X* as k — oo.

%1n the above, we drop the dependence of E on p to stress the
fact that the dynamic variable is y.

Title Suppressed Due to Excessive Size

We highlight the main steps below and refer the reader to
the appendix for the details:

1. Letting b, = V f(25(n)) — V f(2n), we can rewrite
the gradient update in DAGD as:

Ynt+l =Yn — Qnt1 V f(xs(n))
=Yn — any1 V f(zn)
- an-ﬁ-l{vf(xS(n)) - vf(xn)}
=Yn — An1(V f(20) + bn). (3.2)

Recall here that s(n) denotes the previous iteration
count whose gradient becomes available only at the
current iteration n. By bounding the magnitude of b,,
using the delay sequence through a careful analysis,
we establish that under any of the three conditions
in Assumption 3, lim,,_, [|bn||l2 = 0. The analysis
here, particularly the one for the last two conditions,
reveals the following pattern: as the magnitude of the
delays gets larger and larger in the order of growth, one
needs to use a more conservative step-size sequence in
order to mitigate the damage done by the stale gradient
information. Intuitively, smaller step-sizes are more
helpful in larger delays because they carry a better
“amortization" effect that makes DAGD more tolerant
to delays.

2. With the defintion of b,,, DAGD can be written as:

Ty = Projy(yn),

(3.3)
Yn4+1 = Yn — a7l+1(v f(mn) + bn)

We then use the energy function to study the behav-
ior of y,, and x,,. More specifically, we look at the
quantity F(y,+1) — E(y,) and bound this one-step
change using the step size «,,, the b,, sequence and
the defining quantity (V f(x,),z, — z*) of a vari-
ationally coherent function (as well as another term
that will prove inconsequential). We then telescope
on E(yn+1) — E(yy,) to obtain an upper bound for
E(yn+1) — E(yo)- Since the energy function is always
non-negative (by Lemma 3.1), E(y,+1) — E(yo) is at
least —FE(yo) for every n. However, utilizing the fact
that b,, converges to 0 and that (V f(x,),z, — 2*)
is always positive (unless the iterate is exactly an op-
timal solution), we show that the upper bound will
approach —oo if X, only enters N'(X*, €), an open
e-neighborhood of X'*, a finite number of times (for
an arbitrary € > 0). This generates an immediate con-
tradiction, and thereby establishes that X,, will get
arbitrarily close to X'* for an infinite number of times.
This then implies that there exists a subsequence of
DAGD iterates that converges to the solution set of
(Opt), i.e, z,,, — X* as k — oo.

Theorem 3.3. Under Assumptions 1-3, the global state
variable x.,, of DAGD (Algorithm 3) converges to the solu-
tion set X* of (Opt).

We give an outline of the proof below, referring to the ap-
pendix for the details. Also, for notational simplicity, we
assume below that X'* is a singleton; the general case is no
more difficult to prove.

Sketch of proof. Fix ad > 0. Since z,, — x*, as k — oo,
it must be E(y,,) — 0 as k — oo per Lemma 3.1. So we
can pick an n that is sufficiently large and E(y,) < . Now,
there are two cases:

1. Case 1: E(y,) < §/2.
2. Case2:0/2 < E(y,) < 0.

For Case 1, we show in the appendix that

E(yn+1) — E(yn) < 2BCaay i1 + 207 4 (C2 + B?),
3.4
for suitable constants B and C. Now for n sufficiently
large, we can make the right-hand arbitrarily small, and in
particular, smaller than §/2. This means E(y,11) < 0.

For Case 2, we show in the appendix that

E(yat1) = E(yn) < —2an11 |5 — ansa(Co + B
(3.5)
where a is a positive constant that depends only on §. Again,
since n is sufficiently large, we can make § — ant1(C2 +
B?) positive, thereby making the right-hand side negative.
Consequently, E(yn+1) < E(yn) < 9.

The key conclusion from the above is that, for large enough
n, once F(y,,) is less than 0, E(y,,41) is less than § as well
and so are all the iterates afterwards. Convergence of z,, to
x* is then immediate by the second part of Lemma 3.1. [

4. Stochastic analysis

The main ideas behind our deterministic analysis are rela-
tively simple and intuitive. On the other hand, the stochastic
case is much more involved because randomness can lead to
very volatile behavior in the presence of delays. To stream-
line our presentation, we break the theoretical development
into several sections, each comprising an important compo-
nent of the overall analysis.

4.1. Recurrence of DASGD

We begin with the stochastic equivalent of Proposition 3.2:

Proposition 4.1. Under Assumptions 1-3, DAGD admits
a subsequence X, that converges to X* almost surely;
concretely, X, — X* with probability 1 as k — oc.

Title Suppressed Due to Excessive Size

Sketch of proof. We outline the two main steps of the proof
below, referring the reader to the appendix for the details.

1. We begin by rewriting the gradient update step in
DASGD as:

Yn+1 - Yn

- 7VF(Xs(n)a C'L)s(n)+1)
(7708]

- [VF(Xs(n)7ws(n)+1) - vf(Xs(n))]
@.1)

Letting B,, = V (X)) — V f(Xn) and Up 41 =
VF(Xsm),wWstmy+1) — V [(Xsn)), we may then
rewrite the DASGD update as

Y1 =Y, — an—i—l{v f(Xn) + B+ Un+1}- 4.2)

We then establish the following two facts in this
step. First, we verify that "' (U, 1 is a martin-
gale adapted to Y;,Y5...,Y,,+1. Second, we show
that lim,, o || Bn|l2 = 0, a.s..

The second claim is done by first giving an upper bound
on || By|2 by writing V f(X(,,)) =V f(X,) as a sum
of one-step changes (V f(X,(n)) — V f(Xsm)41) +
\% f(Xs(n)—H) -tV f(anl) - vf(Xn)) and
analyzing each such successive change. We then break
that upper bound into two parts, one deterministic and
one stochastic. For the deterministic part, the same
analysis in the proof of Proposition 3.2 yields conver-
gence to 0.

The stochastic part turns out to be the tail of a martin-
gale. By leveraging the property of the step-size and
a crucial property of martingale differences (two mar-
tingale differences at different time steps are uncorre-
lated), we establish that said martingale is Lo-bounded.
Then, by applying a version of Doob’s martingale con-
vergence theorem, it follows that said martingale con-
verges almost surely to a limit random variable with
finite second moment (and hence almost surely finite).
Consequently, writing the tail as a difference between
two terms (each of which converges to the same limit
variablewith probability 1), we conclude that the tail
converges to 0 (a.s.).

2. The full DASGD update may then be written as

Xy = projy(Yn)

Yn+1 = Yn — an+1[V f(Xn) + Bn —+ Un_t,.ﬂ.
(4.3)

As in Step 2 of the proof of Proposition 3.2, we again
bound the one-step change of the energy function

E(Y,+1) — E(Y},) and then telescope the differences.
The two distinctions from the determinstic case are: 1)
Everything is now a random variable. 2) We have three
terms: in addition to B,,, we also have a martingale
term U, 4. Since B,, converges to 0 almost surely
(as shown in the previous step), its effect is the same
as b, in the deterministic case. Futher, the analysis
utilizes law of large numbers for martingale as well as
Doob’s martingale convergence theorem to bound the
effect of the various martingale terms and to establish
that the final dominating term is still the same term
as in the deterministic case: a term that converges to
—oo (which generates a contradiction since the energy
function is always positive) unless a subsequence X,
converges almost surely to X'*. O

4.2. Mean-Field Approximation of DASGD

With all this at hand, we can rewrite the DASGD update as:

X’n = prOjX(Yn)

Yn+1 = Yn - an+1{v f(Xn) + Bn + UnJrl}- (44)

Written in this way, DASGD can be viewed as a discretiza-
tion of the “mean-field” ODE

§=-Vf(z)

The intuition is that this ODE provides a “mean" approxi-
mation of the DASGD update, because in (4.4), the noise
term U, 41 has 0 mean, and the term B,, converges to 0 (and
therefore has negilible effect in the long run). Thes leaves
only the term Y, 11 = Y, — ant1 V f(X,,), which can be
seen as a Euler discretization of the ODE.

4.5)

Next, writing Equation (4.5) solely in terms of y yields
¥y = —V f(projy(y)). Since V f and proj, are both
Lipschitz continuous and & is a compact set, the composi-
tion V foprojy is itself Lipschitz continuous and bounded.
Standard results from the theory of dynamical systems then
show that(4.5) admits a unique global solution y(¢) for any
initial condition y(0). On the other hand, since projy is
not a one-to-one map, it is not invertible; consequently, there
need not exist a unique solution trajectory for z(t¢). By this
token, the rest of our analysis will focus on the trajetory of

y(t)-

With the guarantee of the existence and uniqueness of the
y trajectory, let P: R, x R? — R? be the flow of (4.5),
i.e., P(t,yo) denotes the state of (4.5) at time ¢ when the
initial condition is yy. In other words, when viewed as
a function of time, P(-,yo) is the solution trajectory to
¥ = —V f(projy(y)). Itis worth pointing out that writing
it in this double-argument form also allows us to interpret
P as a function of the initial condition: for a fixed ¢, P(t, -)

Title Suppressed Due to Excessive Size

gives different states at ¢ when the ODE starts from different
initial conditions (in particular, P(0,y) = y). Both views
will be useful later.

We end this subsection with a “sufficient decrease” property
of the mean dynamics (4.5):

Lemma 4.2. With notation as above, we have:

1. If projy(P(t,y)) ¢ X*, then E(P(t,y)) is strictly
decreasing for all y € R?.

2. Forall 6 > 0, there exists some T = T(0) > 0 such
that, for allt > T, we have

sup, {E(P(t,y))—E(y) : E(P(t,y)) > 6/2} < /2.

4.3. Relating DASGD Iterates to ODE Trajectories

Lemma 4.2 essentially says E(P(t,y)) is strictly decreasing
at a non-vanishing rate. By some additional analysis, one
can then show’ that Lemma Lemma 4.2 implies P(t,y) —
X*,Vy ast — oo. Now, if we can somehow show that the
trajectory generated by the discrete-time iterates of DASGD
is “close" to the continuous-time trajectory P(t,y), then
likely convergence of the DASGD iterates can be guaranteed
as well.

To be more specific, there are two things that need to be more
precisely defined from the preceding high-level discussion.
First, what does it mean to be a trajectory generated by the
discrete-time iterates of DASGD? Second, what does it
mean to be “close"?

The answer to the first question is rather intuitive: (per-
haps) the simplest way to generate a continuous trajec-
tory from a sequence of discrete points is the affine in-
terpolation: connect the iterates Yy, Y7,...,Y, at times
0,a1,..., Z::ll a,. We call this curve the affine inter-
polation curve of DASGD and denote it by A(t). Note
that A(t) is a random curve because the DASGD iterates
Yy, Y1, ...,Y, are random. To avoid confusion, we summa-
rize the three different objects discussed so far:

1. The DASGD iterates Yy, Y7, ..., Y,.
2. The affine interpolation curve A(t) of Y,,.
3. The flow P(t,y) of the ODE (4.5).

The answer to the second question lies in the notion of an
asymptotic pseudotrajectory (APT) , a concept introduced
by Benaim & Hirsch (1996) and Benaim & Schreiber (2000).
Specifically, the affine interpolation curve is considered
close to ODE solution P(t,y) if the following holds:

7 Although this is an interesting conclusion, we do not prove
it here because we are mainly concerned with establishing con-
vergence of the DASGD iterates, rather than the ODE solution
trajectory.

Definition 4.3. A continuous function s : R, — R%is an
APT for P if for every T > 0,

lim sup d(s(t+ h),P(h,s(t))) =0.

(4.6)
t—o0 0<h<T

Intuitively, the definition matches exactly the naming: s is
an APT for P if, for sufficiently large ¢, the flow lines of
P remain arbitrarily close to X (¢) over a time window of
any (fixed)length. More precisely, for each fixed T' > 0,
one can find a large enough #g,such that for all ¢ > ¢, the
curve s(t + h) approximates the trajectory P(h,s(t)) on
the interval h € [0, 7] with any predetermined degree of
accuracy.

Thanks to (Benaim, 1999), we can easily verify that in our
case A(t) is in fact an APT for P:

Theorem 4.4 (Benaim, 1999). The affine interpolation
curve of the iterates generated by the difference equation
Y1 =Y, — ant1{G(X,) + Bn 4+ Upy1} is an APT for
the solution to the ODE y = —G(y) if the following three
conditions all hold:

1. G is Lipschitz continuous and bounded.

2. lim, o B, =0 (a.s.).

3. Upq1 is a martingale difference sequence with
sup,, E[|Un 1[5 < o0 and Y00 g anti < oo for
some p > 2.

Remark 4.1. The above theorem is a combination of Proposi-
tion 4.1, Proposition 4.2 and Remark 4.5 in Benaim (1999).
We emphasize that A(t) is an APT for P almost surely
means that almost all realizations of the random paths A(t)
are asymptotic pseudotrajectories for P (recall that A(¢) is
a random trajectory).

Corollary 4.5. A(t) is an APT of P.

Proof. 1t suffices to verify the conditions of Theorem 4.4.
The first condition is immediate: as argued before
V f(projy(+)) is Lipschitz continuous. It is also bounded
because projy(-)’s domain is X', which is compact. The
second condition follows from part 1 in Proposition 4.1.
The third condition is immediate by setting p = 2. O

4.4. Main Convergence Result

We are now in a position to combine all of the previous
pieces to obtain our main convergence result:

Theorem 4.6. Under Assumptions 1-3, the global state
variable X, of DASGD (Algorithm 2) converges (a.s.) to
the solution set X* of (Opt).

Again, we only give an outline of the proof below, referring
to the appendix for the more technical details.

Title Suppressed Due to Excessive Size

Value convergence (averaged over S=100 samples)
T T T

15 T

00101

Function value

0.001}

Test Sample

—o— Sample average

-~ Ergodic average

1041 Sample min/max | | | | |
1 5 10 50 100 500 1000

Tteration

(a) Convergence with no delays between gradient updates

Value convergence (averaged over S=100 samples, asynchronous)
T T T

0.10

Test Sample

—=— Sample average

--4-- Ergodic average

Sample min/max
L Il Il |
1 10 100 1000 10*

Tteration

(b) Convergence with linearly growing delays

Figure 1: Value convergence in a non-convex stochastic optimization problem with d = 101 degrees of freedom.

Proof. By Proposition 4.1, Y,, gets arbitrarily close to X'*
infinitely often. Thus, it suffices to show that, if Y,, ever
gets e-close to X'*, all the ensuing iterates are e-close to X'

(a.s.).

The way we show this “trapping" property is to use the
energy function. Specifically, we consider E(A(¢)) and
show that no matter how small € is, for all sufficiently large
t, if E(A(to)) is less than € for some ¢, then E(A(t)) <
€,Vt > ty. This would then complete the proof because
A(t) actually contains all the DASGD iterates, and hence if
E(A(t)) < €,Vt > tg, then E(Y,,) < € for all sufficiently
large n. Furthermore, since A(t) contains all the iterates,
the hypothesis that “ if F(A(tg)) is less than € for some ¢y"
will be satisfied due to Proposition 4.1.

We expand on one more layer of detail and defer the rest
into appendix. Controlling E(A(t)), requires control of
the energy on the ODE path E(P(t,y)) and the discrep-
ancy between E(P(t,y)) and E(A(t)). The former can
be made arbitrarily small as a result of Lemma 4.2; the
latter can also be made arbitrarily small as a result of Corol-
lary 4.5: since A(t) is an APT for P, the two paths are
close. Therefore, the discrepancy between E(P) and F(A)
should also be vanishingly small. Consequently, since
B(A(t)) = E(P(t,y)) + {E(A®t)) — E(P(t,y))}. and
both terms on the right can be made arbitrarily small, so can
E(A(t)) be made arbitrarily small. O

5. Numerical results

To validate our analysis, we test the convergence of Algo-
rithm 2 against a standard Rosenbrock test function with
d = 101 degrees of freedom, i.e.,

100

fros(x) =Y _[100(zs41 — 2)* + (1 - 2,)7),

=1

5.1

with z; € [0,2],4 = 1,...,101. The global minimum of
fRros is located at (1,...,1), at the end of a very thin and
very flat parabolic valley which is notoriously difficult for
first-order methods to traverse (Rosenbrock, 1960). Since
the minimum of the Rosenbrock function is known, (VC) is
easily checked over the problem’s feasible region.

For our numerical experiments, we considered a) a syn-
chronous update schedule as a baseline; and b) an asyn-
chronous master-slave framework with random delays that
scale as d,, = ©(n). In both cases, Algorithm 2 was run
with a decreasing step-size of the form «,, x 1/(nlogn)
and stochastic gradients drawn from a standard multivariate
Gaussian distribution (i.e., zero mean and identity covari-
ance matrix).

Our results are shown in Fig. 1. Starting from a random (but
otherwise fixed) initial condition, we ran S = 100 realiza-
tions of DASGD (with and without delays). We then plotted
a randomly chosen trajectory (“test sample” in Fig. 1), the
sample average, and the min/max over all samples at every
update epoch. For comparison purposes, we also plotted the
value of the so-called “ergodic average”

¢ _ k1 %Xk

Xn 7) (5.2)
Dkt Ok

which is often used in the analysis of DASGD in the convex
case (see e.g., Agarwal & Duchi, 2011). Even though this
averaging leads to very robust convergence rate estimates
in the convex case, we see here that it performs worse than
the worst realization of DASGD. The reason for this is
the lack of convexity: due to the ridges and talwegs of the
Rosenbrock function, Jensen’s inequality fails dramatically
to produce an improvement over X, (and, in fact, causes
delays as it causes X, to deviate from its gradient path).

Title Suppressed Due to Excessive Size

References

Agarwal, Alekh and Duchi, John C. Distributed delayed stochastic
optimization. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,
Pereira, F., and Weinberger, K. Q. (eds.), Advances in Neu-
ral Information Processing Systems 24, pp. 873—-881. Curran
Associates, Inc., 2011.

Anand, Ankit, Grover, Aditya, Mausam, Mausam, and Singla,
Parag. Contextual symmetries in probabilistic graphical models.
In Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI’ 16, pp. 3560-3568. AAAI
Press, 2016. ISBN 978-1-57735-770-4.

Avron, Haim, Druinsky, Alex, and Gupta, Anshul. Revisiting
asynchronous linear solvers: Provable convergence rate through
randomization. Journal of the ACM (JACM), 62(6):51, 2015.

Benaim, Michel. Dynamics of stochastic approximation algo-
rithms. In Azéma, Jacques, Emery, Michel, Ledoux, Michel,
and Yor, Marc (eds.), Séminaire de Probabilités XXXIII, vol-
ume 1709 of Lecture Notes in Mathematics, pp. 1-68. Springer
Berlin Heidelberg, 1999.

Benaim, Michel and Hirsch, Morris W. Asymptotic pseudotrajec-
tories and chain recurrent flows, with applications. Journal of
Dynamics and Differential Equations, 8(1):141-176, 1996.

Benaim, Michel and Schreiber, Sebastian J. Ergodic properties of
weak asymptotic pseudotrajectories for semiflows. Journal of
Dynamics and Differential Equations, 12(3):579-598, 2000.

Bertsekas, Dimitri P. and Tsitsiklis, John N. Parallel and Dis-
tributed Computation: Numerical Methods. Athena Scientific,
1997. ISBN 1886529019.

Bottou, Léon. Online learning and stochastic approximations.
On-line learning in neural networks, 17(9):142, 1998.

Bubeck, Sébastien et al. Convex optimization: Algorithms and
complexity. Foundations and Trends®) in Machine Learning, 8
(3-4):231-357, 2015.

Chaturapruek, Sorathan, Duchi, John C, and Ré, Christopher.
Asynchronous stochastic convex optimization: the noise is in
the noise and sgd don’t care. In Advances in Neural Information
Processing Systems, pp. 1531-1539, 2015.

Chen, Yuxin, Chi, Yuejie, Fan, Jianqing, and Ma, Cong. Gradient
descent with random initialization: Fast global convergence for
nonconvex phase retrieval. arXiv preprint arXiv:1803.07726,
2018.

Dean, Jeffrey, Corrado, Greg, Monga, Rajat, Chen, Kai, Devin,
Matthieu, Mao, Mark, Senior, Andrew, Tucker, Paul, Yang, Ke,
Le, Quoc V, et al. Large scale distributed deep networks. In

Advances in neural information processing systems, pp. 1223—
1231, 2012a.

Dean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai, Devin,
Matthieu, Le, Quoc V., Mao, Mark Z., Ranzato, Marc’ Aurelio,
Senior, Andrew, Tucker, Paul, Yang, Ke, and Ng, Andrew Y.
Large scale distributed deep networks. In Proceedings of the
25th International Conference on Neural Information Process-
ing Systems - Volume 1, NIPS’12, pp. 1223-1231, USA, 2012b.
Curran Associates Inc.

Fercoq, Olivier and Richtdrik, Peter. Accelerated, parallel, and
proximal coordinate descent. SIAM Journal on Optimization,
25(4):1997-2023, 2015.

Feyzmahdavian, Hamid Reza, Aytekin, Arda, and Johansson,
Mikael. An asynchronous mini-batch algorithm for regular-
ized stochastic optimization. IEEE Transactions on Automatic
Control, 61(12):3740-3754, 2016.

Grover, Aditya and Ermon, Stefano. Variational bayes on monte
carlo steroids. In Advances in Neural Information Processing
Systems, pp. 3018-3026, 2016.

Grover, Aditya and Leskovec, Jure. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp. 855-864. ACM, 2016.

Grover, Aditya, Kapoor, Ashish, and Horvitz, Eric. A deep hybrid
model for weather forecasting. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 379-386. ACM, 2015.

Grover, Aditya, Al-Shedivat, Maruan, Gupta, Jayesh K., Burda,
Yura, and Edwards, Harrison. Learning policy representations
in multiagent systems. In International Conference on Machine
Learning, 2018a.

Grover, Aditya, Zweig, Aaron, and Ermon, Stefano. Graphite:
Iterative generative modeling of graphs. arXiv preprint
arXiv:1803.10459, 2018b.

Hong, Mingyi. A distributed, asynchronous and incremental algo-
rithm for nonconvex optimization: An admm approach. /EEE
Transactions on Control of Network Systems, 2017.

Jiang, Lu, Zhou, Zhengyuan, Leung, Thomas, Li, Li-Jia, and Fei-
Fei, Li. Mentornet: Regularizing very deep neural networks on
corrupted labels. arXiv preprint arXiv:1712.05055, 2017.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Ima-
genet classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing Systems 25,
pp. 1097-1105. Curran Associates, Inc., 2012.

Lian, Xiangru, Huang, Yijun, Li, Yuncheng, and Liu, Ji. Asyn-
chronous parallel stochastic gradient for nonconvex optimiza-
tion. In Advances in Neural Information Processing Systems,
pp. 2737-2745, 2015.

Liu, Ji and Wright, Stephen J. Asynchronous stochastic coordinate
descent: Parallelism and convergence properties. SIAM Journal
on Optimization, 25(1):351-376, 2015.

Liu, Ji, Wright, Steve, Re, Christopher, Bittorf, Victor, and Sridhar,
Srikrishna. An asynchronous parallel stochastic coordinate
descent algorithm. In International Conference on Machine
Learning, pp. 469—4717, 2014.

Mania, Horia, Pan, Xinghao, Papailiopoulos, Dimitris, Recht, Ben-
jamin, Ramchandran, Kannan, and Jordan, Michael I. Perturbed
iterate analysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202-2229, 2017.

Marecek, Jakub, Richtarik, Peter, and Takac, Martin. Distributed
block coordinate descent for minimizing partially separable
functions. In Numerical Analysis and Optimization, pp. 261—
288. Springer, 2015.

Mertikopoulos, Panayotis and Staudigl, Mathias. On the conver-
gence of gradient-like flows with noisy gradient input. SIAM
Journal on Optimization, 28(1):163—-197, January 2018a.

Mertikopoulos, Panayotis and Staudigl, Mathias. Stochastic mirror
descent dynamics and their convergence in monotone variational
inequalities. Journal of Optimization Theory and Applications,
2018b.

Mertikopoulos, Panayotis and Zhou, Zhengyuan. Learning in
games with continuous action sets and unknown payoft func-
tions. Mathematical Programming, 2018.

Meshi, Ofer and Schwing, Alexander. Asynchronous parallel coor-
dinate minimization for map inference. In Guyon, I., Luxburg,

Title Suppressed Due to Excessive Size

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 30, pp. 5738-5748. Curran Associates, Inc.,
2017.

Paine, Thomas, Jin, Hailin, Yang, Jianchao, Lin, Zhe, and Huang,
Thomas. Gpu asynchronous stochastic gradient descent to speed
up neural network training. arXiv preprint arXiv:1312.6186,
2013.

Petroni, Fabio and Querzoni, Leonardo. Gasgd: stochastic gradient
descent for distributed asynchronous matrix completion via
graph partitioning. In Proceedings of the 8th ACM Conference
on Recommender systems, pp. 241-248. ACM, 2014.

Recht, Benjamin, Re, Christopher, Wright, Stephen, and Niu,
Feng. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in neural information processing
systems, pp. 693-701, 2011.

Rosenbrock, Howard Harry. An automatic method for finding the
greatest or least value of a function. Computer Journal, 3(3):
175-184, 1960.

Smyth, Padhraic, Welling, Max, and Asuncion, Arthur U. Asyn-
chronous distributed learning of topic models. In Advances in
Neural Information Processing Systems, pp. 81-88, 2009.

Tappenden, Rachael, Takac, Martin, and Richtarik, Peter. On
the complexity of parallel coordinate descent. Optimization
Methods and Software, pp. 1-24, 2017.

Tran, Kenneth, Hosseini, Saghar, Xiao, Lin, Finley, Thomas, and
Bilenko, Mikhail. Scaling up stochastic dual coordinate ascent.
In Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’15, pp.
1185-1194, New York, NY, USA, 2015. ACM.

Wang, Yu-Xiang, Sadhanala, Veeranjaneyulu, Dai, Wei,
Neiswanger, Willie, Sra, Suvrit, and Xing, Eric. Parallel and
distributed block-coordinate frank-wolfe algorithms. In Interna-
tional Conference on Machine Learning, pp. 1548-1557, 2016.

Wright, Stephen J. Coordinate descent algorithms. Mathematical
Programming, 151(1):3-34, 2015.

Yun, Hyokun, Yu, Hsiang-Fu, Hsieh, Cho-Jui, Vishwanathan,
SVN, and Dhillon, Inderjit. Nomad: Non-locking, stochastic
multi-machine algorithm for asynchronous and decentralized
matrix completion. Proceedings of the VLDB Endowment, T
(11), 2014.

Zhang, Ruiliang and Kwok, James. Asynchronous distributed
admm for consensus optimization. In International Conference
on Machine Learning, pp. 1701-1709, 2014.

Zhang, Shanshan, Zhang, Ce, You, Zhao, Zheng, Rong, and Xu,
Bo. Asynchronous stochastic gradient descent for dnn training.
In 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2013.

Zhang, Sixin, Choromanska, Anna E, and LeCun, Yann. Deep
learning with elastic averaging sgd. In Advances in Neural
Information Processing Systems, pp. 685-693, 2015.

Zhang, Yuchen, Liang, Percy, and Charikar, Moses. A hitting
time analysis of stochastic gradient langevin dynamics. arXiv
preprint arXiv:1702.05575, 2017.

Zhou, Zhengyuan, Mertikopoulos, Panayotis, Bambos, Nicholas,
Boyd, Stephen, and Glynn, Peter W. Stochastic mirror descent
for variationally coherent optimization problems. In NIPS ’17:
Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017a.

Zhou, Zhengyuan, Mertikopoulos, Panayotis, Bambos, Nicholas,
Glynn, Peter W., and Tomlin, Claire. Countering feedback de-
lays in multi-agent learning. In NIPS ’17: Proceedings of the
31st International Conference on Neural Information Process-
ing Systems, 2017b.

