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Distributed Attack Detection and Secure Estimation

of Networked Cyber-Physical Systems against False

Data Injection Attacks and Jamming Attacks
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Abstract—This paper is concerned with the problem of joint
distributed attack detection and distributed secure estimation
for a networked cyber-physical system under physical and cyber
attacks. The system is monitored by a wireless sensor network
in which a group of sensors is spatially distributed and the
sensors’ measurements are broadcast to remote estimators via a
wireless network medium. A malicious adversary simultaneously
launches a false data injection attack at the physical system layer
to intentionally modify the system’s state and jamming attacks
at the cyber layer to block the wireless transmission channels be-
tween sensors and remote estimators. The sensors’ measurements
can be randomly dropped with mathematical probability if the
corresponding transmission channels are deliberately jammed by
the adversary. Resilient attack detection estimators are delicately
constructed to provide locally reliable state estimations and detect
the false data injection attack. Then, criteria for analyzing the
estimation performance and designing the desired estimators are
derived to guarantee the solvability of the problem. Finally, the
effectiveness of the proposed approach is shown through an
illustrative example.

Index Terms—Distributed attack detection, distributed secure
estimation, jamming attack, false data injection attack, wireless
sensor network.

I. INTRODUCTION

C
YBER-physical systems (CPSs) represent a new gener-

ation of systems that integrate computation resources,

communication medium and physical processes [1], [2]. CPSs

have been intensively applied in a large number of practical

areas, such as aerospace, civil infrastructures, power grids,

water and gas distribution networks, and transportation net-

works. Different from classical control systems, the operation

and communication of CPSs often occur through some shared

wired or wireless network medium, such as the specialized

real-time control networks CAN, BACnet and Fieldbus or

the general-purpose wireless data communication networks

Ethernet and Internet [3], [4]. This makes CPSs more open

to the cyber-world [5]. In addition to being prone to failures

or attacks on the physical processes as in classical control

systems, CPSs are vulnerable to malicious cyber security

threats on the data transmission or communication layer. There

is no doubt that any severe attack on CPSs, launched in either
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the physical-process-domain or the cyber-domain, can have

a significant impact on the economy, environment or even

human life, such as attacks on the national power grids [6].

Therefore, it is of fundamental significance to consider security

issues when designing safe and reliable CPSs.

The distributed secure estimation problem under considera-

tion is motivated by security concerns of CPSs operated over

wireless sensor networks (WSNs). Generally, a WSN consists

of a large number of observation nodes that are spatially

deployed in a monitoring region of the physical process

or target plant. These nodes, which possess data sensing,

processing and communication capabilities, collaborate among

themselves to build a cooperative information processing

paradigm. However, the broadcast nature of the nodes makes

WSNs vulnerable to various malicious threats [7], because

WSNs require the nodes to cooperatively perform an overall

monitoring or estimation task by broadcasting their obser-

vations (e.g., measurements) among the neighboring nodes.

In other words, the nodes’ observations can be potentially

manipulated by cyber attacks. A key concern of distributed

secure estimation is how to assess the trustworthiness of nodes’

measurements and compute locally reliable estimations of the

physical system’s state with the caveat that some of the nodes’

measurements can be corrupted by a malicious adversary.

A. Relevant Work on Secure Estimation against Specific At-

tacks

Note that it is generally challenging to describe attacks by

accurate mathematical models as malicious attacks usually

occur in intelligent and erratic ways. The existing literature

on the analysis of vulnerabilities of CPSs to malicious attacks

has been confined to exploring some specific attacks against

particular CPSs. For example, in [2], [8], integrity attacks

(or deception attacks) on state estimation systems were de-

fined, where integrity attacks intentionally compromised the

integrity of sensor measurements or control packets. In [5],

the problem of state estimation and control for linear systems

was considered when some of the sensors or actuators were

hijacked by deception attacks. Resilient estimators and output

feedback controllers were designed such that the state of the

system was accurately reconstructed and the resilience of the

closed-loop system was improved. In [9], the effect of sparse

sensor attacks was considered to achieve a state reconstruction

of discrete-time linear CPSs where an adversary arbitrarily

falsified measurements of a subset of sensors. In [10], [11],



2373-776X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2017.2749959, IEEE

Transactions on Signal and Information Processing over Networks

2 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, AUGUST 25, 2017

false data injection (FDI) attacks were considered in state

estimation frameworks for electric power grids. Generally, FDI

attacks are known as specific deception attacks or integrity

attacks, where an adversary could access and modify the

physical system’s state, sensor data, or control commands by

introducing arbitrary errors, fake information, or faults. In [12],

the effect of FDI attacks on state estimation was studied over

a sensor network. The attacker therein hijacked a subset of

sensors and sent fake sensor measurements to compromise the

integrity of the state estimator. Then, a steady-state Kalman

filter and a failure detector were designed to provide a quanti-

tative measure of the resilience of the system to such attacks.

Very recently, [13] considered a specific FDI attack called a

fake-acknowledge attack against remote state estimation for

CPSs. The attacker was able to modify the acknowledgement-

based online power schedule signal from the remote estimator

and send fake information to the sensor. A game-theoretic

framework was built to investigate the equilibrium for both

the sensor and the attacker. In [6], denial-of-service (DoS)

attacks (or jamming attacks) were studied for the remote state

estimation of CPSs where the wireless channel from a sensor

to a remote estimator was jammed by an external attacker.

DoS attacks aim at deteriorating the communication channels

to prevent information exchange, usually either sensor data

or control commands, between components of CPSs. Note

that a frequently used DoS technique is to launch jamming

attacks on communication channels by interfering with their

radio frequencies [14], [15]. By formulating a game-theoretic

framework, the interactive decision-making process between

a manipulated sensor and an energy-constrained attacker was

investigated in [6]. To maximize the impact of DoS attacks on

CPSs, [15], [16] presented optimal attack scheduling strategies

for energy-constrained attackers. Hence, the attacker was able

to decide when and where to jam the communication channel

at each sampling time so as to degrade the remote estimation

performance. Another particular form of attacks can be found

in [17] where the effect of replay attacks (through which the

sensor data or control commands were maliciously repeated)

on control performance for CPSs was analyzed.

B. Relevant Work on Detection and/or Identification against

False Data Injection Attacks

Despite the rich body of research about secure estimation

in CPSs, there appear to be only a few studies on detecting

and identifying FDI attacks in CPSs, see, e.g., [1], [11],

[18]–[20]. Depending on different detection techniques, these

results can arguably be classified into three categories. The

first category is based on statistical tests. For example, in

[18], the authors proposed a distributed average consensus

algorithm in which each networked node locally computed the

detection test statistic. The statistical distribution of the nodes’

data was then exploited to devise techniques for mitigating

the influence of data falsifying on the detection system. In

[19], the problem of detecting and mitigating data injec-

tion attacks was studied in randomized gossip-based sensor

networks. By analyzing the statistics of the sensors’ states,

decentralized consensus strategies were designed to detect

and localize insider attackers. The second category is based

on data time-stamps. For example, in [20], data time-stamps

were used to detect the anomalies caused by the malicious

node by evaluating the (average) temporal difference of the

values held by normal nodes. The third category is based

on estimation residuals and is inspired by the existing fault

diagnosis/tolerance literature [21]–[24]. For example, in [11],

a distributed estimation and false data detection algorithm

was proposed to monitor the operation condition of a power

network subject to FDI attacks. By analyzing the properties

of an estimation residual between the measurement and its

estimation, the presented algorithm detected the false data

among the network measurements. Following similar analysis

and design procedures, both centralized and distributed attack

detection and identification monitors were proposed in [1] for

a class of descriptor CPSs subject to attacks that affect the

state and the measurements.

C. Motivations

A crucial feature of CPSs over WSNs is that system compo-

nents such as observation nodes or sensor nodes are geographi-

cally distributed. This poses a significant difficulty in acquiring

data from these spatially distributed nodes, especially in the

presence of malicious attacks. Whereas, the majority of the

existing results regarding secure estimation of CPSs are limited

to the case of a single observation or sensor node (see, e.g.,

[5], [6], [8]–[10] and references therein), which renders the

secure estimation algorithms therein inapplicable in WSN-

based CPSs. On the other hand, the existing literature focuses

mainly on one specific type of attack, and few results consider

the simultaneous presence of various attacks on practical

CPSs. In fact, it is quite common for a cunning attacker to

launch different attacks on practical CPSs at the same time.

Take automotive vehicles as an example, an attacker might

be able to simultaneously compromise a car’s external vehicle

interfaces and internal network buses to pose threats to the

vehicle control sub-systems [25]. To the best of the authors’

knowledge, there are relatively few studies that have tackled

the conjunct problem of attack detection and secure estimation

for CPSs carried over WSNs when an adversary launches

malicious attacks in both the physical-process-domain and

cyber-domain, which motivates the present study.

D. Contributions

In this paper, we will address a distributed attack de-

tection and secure estimation problem for a CPS over a

WSN subject to both an FDI attack and jamming attacks.

More specifically, the FDI attack will be launched by an

attacker at the physical system layer so as to modify the

system’s state. Jamming attacks, however, will be considered

during the wireless communication from sensors to remote

estimators at the cyber layer. Unlike the information theoretic

studies on secure communication, which primarily involve the

protection of data and/or IT services, we will concentrate on

investigating the distributed estimation performance under the

attacks from a system theoretic perspective. We summarize the

main contributions of this paper as follows.
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• A refined compensation-based measurement output model

will be presented for each sensor. A direct impact of

jamming attacks on wireless transmission channels is that

sensors’ measurements will be randomly dropped with

mathematical probability if the corresponding channels

are deliberately jammed. Based on this measurement

model, each remote estimator will pro-actively admit and

utilize the corrupted sensor measurements from itself and

its neighboring estimators to compute a local estimation.

• Resilient attack detection estimators will be delicately

constructed to deal with the simultaneous effects of the

FDI attack, jamming attacks and process and measure-

ment noises. In particular, to deal with the FDI attack,

each estimator will run a two-step attack detection mech-

anism to discern when the occurrence of the FDI attack

can be detected and alarmed; and to handle the jam-

ming attacks, each estimator will adopt the compensated

measurements to increase the resilience of the estimation

system. Based on the proposed estimators, the WSN-

based secure estimation problem under attacks and noises

will be mapped into an H∞ estimation problem of an

augmented estimation error system.

• Criteria for analyzing secure estimation performance and

designing desired estimators will be derived to guarantee

the feasibility of the proposed distributed attack detection

and secure estimation problem. We will analytically and

numerically investigate the impact of the FDI attack, jam-

ming attacks and noises on the estimation performance,

and show that under what conditions the resultant estima-

tion error system will converge even in the presence of

such attacks as well as process and measurement noises.

The reminder of this paper is organized as follows. In Sec-

tion II, a compensation-based measurement model is presented

and resilient attack detection estimators are constructed. The

problem of distributed attack detection and secure estimation

we propose to solve in this paper is also formulated at the

end of this section. Section III presents the main results on

secure estimation performance analysis and estimator design.

Furthermore, an extension of the proposed results to the case of

uncertain measurement-transmission probability is provided.

In Section IV, an industrial continuous-stirred tank reactor

model is employed to illustrate the effectiveness of the pro-

posed method. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A. Notations

Throughout the paper, Rn stands for the n-dimensional

Euclidean space and Rn×m represents the set of all the real

n×m matrices. For symmetric matrices X and Y , the notation

X < Y means that X−Y is negative definite. Prob{·} repre-

sents the occurrence probability of an event. E{·} represents

the mathematical expectation of a stochastic variable. sup
denotes the supremum of a set. ‖·‖ denotes the induced matrix

2-norm or the Euclidean vector norm as appropriate. ⊗ stands

for the Kronecker product for matrices. diag{·} represents a

diagonal matrix. N denotes the set of nonnegative integers.

I is an identity matrix with an appropriate dimension. Let

asterisk ‘*’ denote a term that is induced by symmetry in

symmetric block matrices. The superscript ‘T ’ denotes the

transpose of a matrix with vectors as a special case. If a

matrix is invertible, the superscript ‘−1’ represents the matrix

inverse. The symbol
∑

denotes the summation of a sequence.

The space of square-summable vector functions over [0,∞)
is denoted as l2[0,∞) and for any w(k) ∈ l2[0,∞), its norm

is given by ‖w(k)‖ =
√∑∞

k=0 wT (k)w(k). Matrices, if not

explicitly stated, are assumed to have appropriate dimensions.

B. System Dynamics under False Data Injection Attacks

Consider that the physical system is a discrete-time linear-

invariant system of the following form

s(k + 1) = As(k) + Bw(k) + Ep(k), s(0) = s0 (1)

for all k ∈ N, where s(k) ∈ Rns is the state vector of

the system at the k-th time step; w(k) ∈ Rnw belonging

to l2[0,∞) is the process noise vector at the k-th time step;

p(k) ∈ Rnp is the false data injection (FDI) attack vector

to be detected at the k-th time step. Here, the vector p(k)
is injected by the malicious attacker at the physical system

layer to intentionally manipulate the system’s state; s0 is the

initial state of the system; and A,B and E are known constant

matrices with appropriate dimensions.

C. Communication Topology

In the following, a group of N spatially distributed sensor

nodes will be deployed to monitor the system described in (1)

and N cooperative estimator nodes which form an estimator

network will be designed to compute local estimations of

the system’s state s(k), as illustrated in Fig. 1. Moreover,

sensors will be responsible for measuring the system’s state

and broadcasting their measurements to remote estimators.

However, the estimators will coordinate their local estimations

and received measurements with only their neighboring esti-

mators in their communication ranges in order to achieve a

satisfactory cooperative estimation task. We first recall some

basic concepts of graph theory.

Denote a weighted directed graph by G = (V, E ,A), where

V = {1, 2, · · · , N} is the index set of N nodes, E ⊆ V ×
V represents the edge set of paired nodes and A = [aij ] ∈
RN×N stands for the weighted adjacency matrix with positive

adjacency elements aij . Then, the communication topology

among the N estimator nodes can be modeled by the digraph

G. Moreover, aij > 0 ⇔ (i, j) ∈ E which means that node i
can receive information from node j or node j can send its

information to node i. It is assumed that self-loops exist in the

graph, i.e., aii > 0, i ∈ V . The set of neighbors of node i ∈ V
plus the node itself are denoted by Ni = {j ∈ V : (i, j) ∈ E}.

D. Ideal Measurement Output Model

At time step k, the ideal measurement output model of

system (1) on sensor i is given by

yi(k) = Cis(k), ∀ i ∈ V, (2)

where yi(k) ∈ Rny is the measurement output on sensor i and

will be broadcast through a wireless transmission channel to a
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Fig. 1. A schematic diagram of distributed attack detection and secure
estimation subject to a false data injection attack on physical system and
jamming attacks on wireless measurement transmission channels

remote estimator i and estimator i’s all underlying neighbors,

thus being vulnerable to cyber attacks; and Ci, ∀ i ∈ V is a

known constant matrix with an appropriate dimension.

In the conventional distributed estimation framework [26]–

[29], the measurement transmission channels from sensors j,

j ∈ Ni, to the remote estimator i are explicitly assumed to be

ideal. In other words, the ideal measurements yj(k), j ∈ Ni,

are successfully and completely transmitted to estimator i at

every instant of time, which leads to

Fi(k) =
∑

j∈Ni

aijyj(k), ∀ i ∈ V, (3)

where Fi(k) ∈ Rny is the combinational measurement which

acts as an input of estimator i. However, this ideal assumption

is not always true in practice when malicious cyber attacks

occur in wireless transmission channels. For example, a DoS

attacker aims at blocking the measurement transmission from

sensor j to the remote estimator i, since typical DoS attacks

can jam and interrupt the wireless channels. In this sense, the

corresponding measurements yj(k) may be incomplete and

lossy when they arrive at the side of estimator i.

E. Compensation-Based Measurement Output Model against

Jamming Attacks

Consider a scenario where the attacker also launches multi-

ple jamming attacks on the wireless measurement transmission

channels between distributed sensors and remote estimators,

as shown in Fig. 1, to deteriorate the overall estimation

performance of the system (1). The attacker is an active

adversary in the sense that sensor i’s measurement will be

dropped once the attacker successfully jams the corresponding

wireless channel. Generally, there are three possible cases

after the attacker launches a jamming attack on a wireless

measurement transmission channel from sensor i to estimator

j (i.e., i → j):

• Sensor i’s measurement will successfully arrive at estima-

tor j if the attacker fails to jam the transmission channel

i → j. For example, in some circumstances, the attacker

has to give up jamming certain channels due to a limited

energy budget [16].

• Sensor i’s measurement will be partially lost if the

jamming of the transmission channel i → j is not heavy.

• Sensor i’s measurement will be completely lost if the

transmission channel i → j is severely jammed.

On the other hand, most malicious attackers have the energy

constraint issue [16], which means that attackers may need to

consider the energy budget when implementing various attack

strategies. Understanding that a deterministic attack strategy

not only leads to excess energy consumption but can also

be readily handled by a robust estimator, a cunning attacker

should randomly decide to jam the wireless transmission

channels or to sleep in order to deceive designers or simply

save energy. In this sense, in the presence of a smart attacker,

random attack strategies may pose major difficulties for remote

estimators.

Motivated by these facts, we adopt the following measure-

ment output which is delivered through the wireless channel

i → j subject to random jamming attacks and adopted by the

relevant estimators j, ∀ i ∈ Nj ; j ∈ V , as illustrated in Fig. 2,

ŷi(k) = yattk
i (k) + ycomp

i (k) + ynoise
i (k), ∀ i ∈ V, (4)

where the corrupted measurement ŷi(k) on estimator j consists

of three parts






yattk
i (k) = θi(k)yi(k)

ycomp
i (k) = (1 − θi(k))ŷi(k − 1)

ynoise
i (k) = Divi(k)

(5)

and specifically,

• yattk
i (k) stands for the attacked and manipulated mea-

surement term. The stochastic variable θi(k) ∈ R is a

Bernoulli distributed white sequence taking values of 1
and 0 with the mathematical probability satisfying
{

Prob{θi(k) = 1} = E{θi(k)} = βi

Prob{θi(k) = 0} = 1 − E{θi(k)} = 1 − βi,
(6)

where βi ∈ [0, 1] is a known constant. All stochastic

variables θi(k), ∀ i ∈ V and k ∈ N are assumed to be

independent in i and k. Here, the stochastic variable θi(k)
is employed to characterize the possibility of the measure-

ment yi(k) being successfully transmitted to the remote

estimator i (hereafter, βi is known as the measurement-

transmission probability). When the attacker launches a

jamming attack and blocks the wireless channel i →
j, sensor i’s measurement yi(k) will be dropped with

probability 1 − βi (hereafter, 1 − βi is known as the

measurement-loss probability) 1. Apparently, the larger

1Without causing confusion, we use the terms “measurement-transmission
probability” and “measurement-loss probability” interchangeably throughout
the paper, while the term “measurement-loss probability” emphasizes the lossy
measurement caused by jamming attacks
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the value of βi, the higher the chance of successful

transmission of the measurement yi(k).
Note that if βi ∈ (0, 1), only part of the measurement

yi(k) is received by the estimators j, ∀ j ∈ Ni, and

the channel i → j is partially jammed. In particular,

βi ≡ 1 corresponds to the ideal transmission case, which

means that the measurement yi(k) is successfully and

completely transmitted to estimators j and there is no

jamming attack during the transmission, while βi ≡ 0
reduces to the worse transmission case, where the mea-

surement yi(k) is lost completely during the transmission.

• ycomp
i (k) represents the compensated measurement term

corresponding to the lossy measurement yattk
i (k) caused

by the attacker. It is assumed that the sensor measurement

yi(k) and its time-stamp k are encapsulated into a mea-

surement packet (k, yi(k)). As a result, whether or not

this measurement packet is manipulated by the attacker

can be checked by remote estimators according to the

time-stamp of the arrived measurement packet. In this

sense, it is reasonable to introduce the term (1 − θi(k))
in the compensated measurement. On the other hand, it is

shown in Fig. 2 that a buffer is equipped to store all the

previous compensation-based measurements at instants

k = 0, 1, · · · , k−1, i.e., (ŷi(k−1), ŷi(k−2), · · · , ŷi(0)).
The buffer is accessed in a first-in-last-out mode, which

means that remote estimator j, ∀ j ∈ V , can always use

the compensated measurement (1 − θi(k))ŷi(k − 1) on

sensor i to reduce the effect of an attacked measurement

yattk
i (k), ∀ i ∈ Nj . If at time step k, the measurement

yi(k) is totally lost, the last transmitted measurement

ŷi(k−1) will be adopted to actuate estimators j. It is ex-

pected that such a compensation strategy will be helpful

for estimators to generate accurate local estimations.

• ynoise
i (k) denotes the perturbed measurement term with

vi(k) ∈ Rnv being regarded as the measurement noise

experienced through the wireless channel i → j. Here,

vi(k) is assumed to belong to l2[0,∞) and Di, ∀ i ∈ V is

a known constant matrix with an appropriate dimension.
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Fig. 2. A compensation-based measurement output model against jamming
attacks on wireless channels

F. Resilient Attack Detection Estimators

We are interested in constructing the following resilient

attack detection estimators of the form

xi(k + 1) =
∑

j∈Ni

Uijaijxj(k) + F̃i(k) (7)

F̃i(k) =
∑

j∈Ni

Vijaij(ŷj(k) − βjCjxj(k)) (8)

ri(k) = Wixi(k), (9)

where xi(k) ∈ Rns is the local state estimation computed

by estimator i;
∑

j∈Ni
Uijaijxj(k) is the estimation exchange

term which represents how estimator i collects the estimations

xj(k) from its neighboring estimators j, ∀ j ∈ Ni; F̃i(k) is the

combinational measurement under the jamming attacks during

the transmission with ŷj(k) being defined in (4); ri(k) ∈ Rnr

is the residual signal, which is assumed to be compatible

with the FDI attack vector p(k); and the initial condition of

estimator i is xi(0) = x0
i . For all i, j ∈ V , Uij , Vij and Wi

are the estimator gain matrices to be determined.

As outlined in the preceding section, two types of malicious

attacks are considered in the proposed distributed attack detec-

tion and secure estimation framework. By launching the FDI

attack, the adversary injects false information to modify the

system’s state, whereas with jamming attacks, the attacker tries

to block or interrupt the wireless measurement transmission

channels between distributed sensors and remote estimators.

Hence, we aim at designing resilient attack detection estima-

tors that can work properly under both types of attacks. More

specifically,

• To deal with the FDI attack, a two-step FDI attack

detection mechanism will be established, as demonstrated

in Fig. 3. The first step is to generate a residual signal

ri(k) on each estimator. To achieve a desirable detection

of the FDI attack, the second step is to evaluate the

generated residual signal by analyzing the information

about the FDI attack signal from the residual by means

of post-processing of the residual. To this end, we define

an evaluation function in terms of the norm of the residual

signal on each estimator of the following form

fi(T0, Te) =

{
k=T0+Te∑

k=T0

rT
i (k)ri(k)

} 1

2

, (10)

where T0 ≥ 0 denotes the initial evaluation time instant

and Te > T0 denotes the evaluation time steps. Moreover,

to discern when the occurrence of the FDI attack can be

detected, a specific threshold should be pre-defined such

that when the FDI attack occurs, a warning or an alarm

message can be sent to remind the designer or operating

engineer. Generally, the threshold should be the maximal

value of the evaluated residual in the FDI attack-free

case. For this purpose, we choose the residual evaluation

threshold as

Thi = sup
w(k), vi(k) ∈ l2[0,∞)

p(k) ≡ 0

E {‖ri(k)‖} . (11)

Based on (10) and (11), the following evaluation logic is

designed by comparing the evaluation function fi(T0, Te)
with the threshold Thi:

{
fi(T0, Te) > Thi ⇒ Alarm of FDI attack

fi(T0, Te) ≤ Thi ⇒ No FDI attack.
(12)
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By virtue of the FDI attack alarm, further measures,

such as attack isolation and false data correction, can be

taken to guarantee the reliability and safety of the system,

which serves as a possible direction of our future work.

This paper mainly focuses on detecting the occurrence of

the FDI attack.

• To handle the random jamming attacks, estimator i in (7)

adopts the compensated measurements ŷj(k), ∀ j ∈ Ni.

This is critical because the jamming attacks are randomly

launched to wireless channels. Some sensors’ measure-

ments can be lost completely during the transmission

at some instants of time. Thus, by employing the com-

pensated measurements, the resilience of the estimation

system is expected to increase. It should be also noted

that the proposed estimator i in (7) is based on its local

estimation and received measurement as well as its all

of its neighbors’ estimations and measurements. This

distributed cooperative estimation paradigm also aims to

improve the resilience and reliability of the estimation

system.
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Fig. 3. Resilient attack detection estimators using a false data injection (FDI)
attack detection mechanism

Remark 1: Note that the basic idea of the proposed FDI

attack detection mechanism is to construct a residual signal

and based on this, to determine a residual evaluation func-

tion to compare with a predefined threshold. If the residual

evaluation function has a value larger than the threshold,

then an FDI attack alarm is sent. However, it should be

noted that the co-existence of some uncertain factors, such

as process and measurement noises, and randomly dropped

measurements caused by jamming attacks in this paper, may

affect the residual and, furthermore, the evaluation function

and threshold. Thus, it is possible that the jamming attack

actions may falsely result in an FDI attack alarm at a specific

instant of time. To accurately address the “false alarm” issue

caused by jamming attacks, an intuition is to extract the

information about the FDI attack from the residuals. However,

this extraction/separation is generally difficult because 1) the

jamming attacks are launched randomly; 2) the FDI attack

and the jamming attacks are launched concurrently; and 3)

the corrupted sensor measurements are disseminated in an

epidemic manner over the WSN. In the proposed FDI attack

detection mechanism, we consider the worst case scenario of

all the possible effects of the process noise, the measurement

noise and the randomly dropped measurements by using the

“supremum” to select a proper threshold. To our knowledge, it

remains open to establish a rigorous theoretical framework to

investigate the “false alarm” issue of FDI attack in the simul-

taneous presence of jamming attacks on wireless measurement

transmission channels.

G. The Distributed Attack Detection and Secure Estimation

Problem

For node i, ∀ i ∈ V , define a state estimation error

vector ei(k) = s(k) − xi(k) and a residual error vector

hi(k) = ri(k) − p(k). Denote ē(k) = [eT
1 (k), eT

2 (k), · · · ,

eT
N (k)]T , s̄(k) = [sT (k), sT (k), · · · , sT (k)]T , ŷ(k) = [ŷT

1 (k),
ŷT
2 (k), · · · , ŷT

N (k)]T , v̄(k) = [vT
1 (k), vT

2 (k), · · · , vT
N (k)]T ,

h̄(k) = [hT
1 (k), hT

2 (k), · · · , hT
N (k)]T , Ā = IN ⊗A, B̄ = [BT ,

BT , · · · , BT ]T , C̄ = diag{β1C1, β2C2, · · · , βNCN},

D̄ = diag{D1, D2, · · · , DN}, Ē = [ET , ET , · · · , ET ]T ,

β̄ = diag{β1, β2, · · · , βN}, Î = [IT
np

, IT
np

, · · · , IT
np

]T ,

W̄ = diag{W1, W2, · · · , WN}, C̃i = diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, Ci,

0, · · · , 0
︸ ︷︷ ︸

N−i

} and Ĩi = diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, Iny
, 0, · · · , 0

︸ ︷︷ ︸

N−i

} for all

i ∈ V .

To simplify subsequent development, we further set
{

Ū = [ūij ]N×N with ūij = Uijaij

V̄ = [v̄ij ]N×N with v̄ij = Vijaij .
(13)

It is easy to verify that Ū and V̄ are two sparse matrices due

to the fact that aij = 0 if j 6∈ Ni. For sparse matrices, we

recall the following lemma, which is helpful in deriving our

subsequent results.

Lemma 1: [30] Let S = {S̄ = [Sij ]Nns×Nny
|Sij ∈

Rns×ny , Sij = 0 if j 6∈ Ni} be the set of sparse matrices

and P = diag{P1, P2, · · · , PN} with Pi ∈ Rns×ns , ∀ i ∈ V ,

being invertible matrices. For any matrix F ∈ RNns×Nny , if

̥ = PF , then we have

F ∈ S ⇐⇒ ̥ ∈ S.

Substituting (4) into (8) and combining (1), (7)-(9), the

estimation error system can be rewritten in a compact form

as follows

ē(k+1)=(Ā−Ū)s̄(k)+(Ū−V̄ C̄)ē(k)+(V̄ β̄−V̄ )ŷ(k−1)

+
N∑

i=1

(θi(k)−βi)
(

−V̄ C̃is̄(k)+V̄ Ĩiŷ(k−1)
)

+B̄w(k) − V̄ D̄v̄(k) + Ēp(k) (14)

h̄(k) = W̄ s̄(k) − W̄ ē(k) − Îp(k). (15)

Setting ξ(k) = [s̄T (k), ēT (k), ŷT (k − 1)]T and η(k) =
[wT (k), v̄T (k), pT (k)]T , the combination of (1), (4), (14) and

(15) yields the following augmented estimation error system

ξ(k+1)=A ξ(k)+
N∑

i=1

(θi(k)−βi) Biξ(k)+E η(k) (16)

h̄(k) = C ξ(k) + Dη(k), (17)

where A , Bi, ∀ i ∈ V , E , C and D are given in Box I.

As can be seen in (16) and (17), the estimation error system

reveals the difference between the residual signal ri(k) and

the FDI attack p(k) to be detected. Moreover, the effects
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A =





Ā 0 0
Ā − Ū Ū−V̄ C̄ V̄ β̄−V̄

C̄ 0 IN−β̄



 , Bi =





0 0 0

−V̄ C̃i 0 V̄ Ĩi

C̃i 0 −Ĩi



 , E =





B̄ 0 Ē
B̄ −V̄ D̄ Ē
0 D̄ 0



 ,C =





W̄T

−W̄T

0



 ,D =





0
0

−ÎT



 .

Box I.

Υ =





ĀT P1 ĀT P2−ŨT C̄T P3

0 Ũ−C̄T Ṽ T 0

0 (β̄−IN )Ṽ T (IN −β̄)P3



 , Υ̌ =





B̄T P1 B̄T P2 0

0 −D̄T Ṽ T D̄T P3

ĒT P1 ĒT P2 0



 , Ωi =





0 −C̃T
i Ṽ T C̃T

i P3

0 0 0

0 ĨiṼ
T −ĨiP3



 .

Box II.

of the attacks, the process noise w(k) and the measurement

noise vi(k) through wireless channels can be minimized by

making the H∞ norm of the difference small. In this sense,

the distributed attack detection and secure estimation problem

to be tackled can be cast into an auxiliary H∞ estimation

problem, while the latter can be solved by employing the

celebrated H∞ optimization technique.

To proceed with, the following definition with regard to

stochastic stability is recalled such that the main problem of

this paper can be described more precisely.

Definition 1: System (16) with w(k) ≡ 0 and vi(k) ≡ 0 is

said to be stochastically stable if the following holds

E

{
∞∑

k=0

‖ξ(k)‖2

}

< ∞

for any initial condition s0 and x0
i .

Based on the above definition, the objective of this paper

is to design desired resilient attack detection estimators of the

form (7)-(9) such that

• The augmented estimation error system (16) and (17)

with w(k) ≡ 0 and vi(k) ≡ 0 is stochastically stable

for any initial condition.

• For all nonzero w(k), vi(k) ∈ l2[0,∞), ∀ i ∈ V , the

augmented estimation error system (16) and (17) satisfies

the following performance constraint

sup
w(k) 6= 0, w(k) ∈ l2[0,∞)
vi(k) 6= 0, vi(k) ∈ l2[0,∞)

E
{
‖h̄(k)‖

}

‖η(k)‖ < γ (18)

for the zero initial condition, where the infimum of γ > 0
is made small in the feasibility of (18).

III. MAIN RESULTS

In this section, criteria for analyzing estimation performance

and designing resilient attack detection estimators (7)-(9) will

be derived such that the augmented estimation error system

(16) and (17) is stochastically stable under an optimized H∞

performance level.

A. Performance Analysis on Distributed Attack Detection and

Secure Estimation

We first present the following theorem which states under

what conditions the augmented estimation error system (16)

and (17) is stochastically stable with a prescribed H∞ perfor-

mance index.

Theorem 1: For prescribed scalars γ > 0, βi ∈ [0, 1] for

all i ∈ V , and given estimator gain matrices Uij , Vij and

Wi, ∀ i, j ∈ V , the augmented estimation error system (16)

and (17) is stochastically stable and achieves a prescribed H∞

performance level γ if there exists a real matrix P > 0 of an

appropriate dimension such that

Φ < 0, (19)

where Φ = [Φ(mn)]5×5 is a sparse block diagonal matrix

with each nonzero entry given by Φ(11) = −P , Φ(22) =
−γ2Inw+Nnv+np

, Φ(13) = A T P , Φ(23) = E T P , Φ(33) =
−P , Φ(14) = C T , Φ(24) = DT , Φ(44) = −INnp

, Φ(15) =
[α1B

T
1 P , α2B

T
2 P , · · · , αNBT

NP ] and Φ(55) = −IN ⊗ P
with αi = βi(1 − βi), ∀ i ∈ V .

Proof: Construct the following stochastic Lyapunov func-

tional candidate V (ξ(k)) = ξT (k)Pξ(k). Recall the facts

of E{(θi(k) − βi)} = 0, E{(θi(k) − βi)
2} = αi and

E{(θi(k) − βi)(θj(k) − βj)} = 0 for any i 6= j. For all

nonzero w(k), vi(k) ∈ l2[0,∞), ∀ i ∈ V , calculating the

forward difference of V (ξ(k)) along the system (16) yields

E{E{V (ξ(k + 1))} − V (ξ(k))

+h̄T (k)h̄(k) − γ2ηT (k)η(k)}
= E

{
E{ξT (k + 1)Pξ(k + 1)} − ξT (k)Pξ(k) (20)

+h̄T (k)h̄(k) − γ2ηT (k)η(k)
}

= φT (k)Φ̃φ(k), (21)

where

φ(k) =

[
ξ(k)
η(k)

]

, Φ̃ =

[
Φ̃(11) Φ̃(12)

∗ Φ̃(22)

]

with Φ̃(11) = A T PA − P + C T C +
∑N

i=1 αiB
T
i PBi,

Φ̃(12) = A T PE + C T D and Φ̃(22) = E T PE + DT D − γ2I .

Applying the Schur complement [31] to (19), it is straight-

forward to derive Φ̃ < 0. Thus, one has

E{h̄T (k)h̄(k) − γ2ηT (k)η(k)}
< E{V (ξ(k)) − E{V (ξ(k + 1))}}. (22)

Summing up (22) from k = 0 to k = kT ,

where kT → ∞, under the zero initial condition that

E{V (ξ(0))} = 0 and E{V (ξ(k))} ≥ 0, we finally obtain



2373-776X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2017.2749959, IEEE

Transactions on Signal and Information Processing over Networks

8 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, AUGUST 25, 2017

∑∞

k=0 E
{
‖h̄(k)‖2 − γ2‖η(k)‖2

}
< 0, which means that the

performance index (18) holds.

Next, we consider zero noise signals, i.e., w(k) ≡ 0 and

vi(k) ≡ 0, ∀ i ∈ V . Calculating the forward difference of

V (ξ(k)) along the system (16) yields

E{E{V (ξ(k + 1))} − V (ξ(k))}

= ξT (k)

(

A
T PA−P+

N∑

i=1

αiB
T
i PBi

)

ξ(k), (23)

Similarly, applying the Schur complement to (19), it is

straightforward to have A T PA −P +
∑N

i=1 αiB
T
i PBi < 0.

Hence, one has E{E{V (ξ(k + 1))} − V (ξ(k))} < 0. Then,

following a similar pattern of the proof of Theorem 1 in [32],

it can be shown that E

{
∞∑

k=0

‖ξ(k)‖2

}

< ∞. By Definition

1, it can be concluded that the augmented estimation error

system (16) is stochastically stable. This completes the proof.

¥

B. Design of Resilient Attack Detection Estimators

Next, let us focus our attention on designing the desired

resilient attack detection estimators (7)-(9) and solving out the

estimator gain matrices Uij , Vij and Wi, ∀ i, j ∈ V .

The main result is stated in the following theorem which

provides a design criterion for solving the proposed distributed

attack detection and secure estimation problem.

Theorem 2: Given scalars γ > 0 and βi ∈ [0, 1] for all

i ∈ V , the proposed distributed attack detection and secure

estimation problem for the augmented estimation error system

(16) and (17) is solvable if there exist real matrices P1 > 0,

P2 = diag{P2,1, P2,2, · · · , P2,N} > 0, P3 > 0, Ǔ , V̌ , W̄ of

an appropriate dimension such that

Φ̌ < 0, (24)

where Φ̌ = [Φ̌(mn)]5×5 is a sparse block diagonal matrix with

each nonzero entry given by Φ̌(11) = −P = diag{P1, P2, P3},

Φ̌(22) = −γ2Inw+Nnv+np
, Φ̌(13) = Υ, Φ̌(23) = Υ̌, Φ̌(33) =

−P , Φ̌(14) = C T , Φ̌(24) = DT , Φ̌(44) = −INnp
, Φ̌(15) =

[α1Ω1, α2Ω2, · · · , αNΩN ] and Φ̌(55) = −IN ⊗ P with Υ, Υ̌
and Ωi, ∀ i ∈ V being given in Box II. Moreover, the estimator

gain matrices Ū and V̄ can be computed by

Ū = P−1
2 Ũ , V̄ = P−1

2 Ṽ (25)

and W̄ can be directly solved out from (24).

Proof: Choose the following diagonal structure of the matrix

P = diag{P1, P2, P3}, and define two new matrices Ũ =
P2Ū and Ṽ = P2V̄ . By Lemma 1, it can be shown that Ũ
and Ṽ are sparse matrices. Then, (19) implies that (24). This

completes the proof. ¥

With Theorem 2, the proposed distributed attack detection

and secure estimation problem can be transformed into the

following optimization problem

minimize
̥

(λ) subject to (24),

where λ = γ2 and ̥ is the set of all feasible solutions from the

linear matrix inequality in Theorem 2. By using the available

interior-point algorithms in many available commercial and

noncommercial software products such as the Matlab LMI

toolbox, one can solve the above minimization problem to

obtain the desired resilient attack detection estimators (7)-

(9) such that the stochastic stability and the optimal H∞

performance level γ =
√

λ of the augmented estimation error

system (16) and (17) under the FDI attack and jamming attacks

can be guaranteed.

C. Extension to the Case of Uncertain Measurement-

Transmission Probability

Consider the case that the measurement-transmission prob-

ability βi is uncertain. More specifically, it is assumed that

the measurement-transmission probability βi is subject to

uncertainties of the polytopic type.

Assumption 1: The measurement-transmission probability

βi in (6) is uncertain and belongs to a given convex ployhedral

domain described by S vertices:

βσ
i ∈

{

βσ
i |βσ

i =
S∑

s=1

σsβ
(s)
i ;

S∑

s=1

σs = 1; σs ≥ 0

}

, (26)

where β
(s)
i denotes the s-th vertex of the polotope for all i ∈

V .

Remark 2: Note that the uncertain but bounded

measurement-transmission probability βσ
i satisfying

0 ≤ β
(1)
i ≤ βσ

i ≤ β
(2)
i ≤ 1,

where β
(1)
i and β

(2)
i are known real constants, is a special case

of the polytopic-type uncertainty with only two vertices, i.e.,

βσ
i =

∑2
s=1 σsβ

(s)
i .

Remark 3: From the perspective of the attacker, it is promis-

ing to account for the uncertain measurement-transmission

probability βσ
i (or uncertain measurement-loss probability

1−βσ
i ) because the probability of when and where the attacker

decides to launch the jamming attacks is indeterminate to

remote estimators or detectors. This will make the wireless

channels highly vulnerable and will pose significant challenges

for designing estimators or detectors.

First, we present a parameter-dependent design criterion that

guarantees the feasibility of the proposed distributed attack

detection and secure estimation problem.

Theorem 3: Given a positive scalar γ, the proposed dis-

tributed attack detection and secure estimation problem for the

augmented estimation error system (16) and (17) is solvable if

there exist real matrices Pσ
1 > 0, P2 = diag{P2,1, P2,2, · · · ,

P2,N} > 0, Pσ
3 > 0, Ǔ , V̌ , W̄ of an appropriate dimension

such that

Ψσ < 0, (27)

where Ψσ = [Ψ
(mn)
σ ]5×5 is a sparse block diagonal ma-

trix with each nonzero entry given by Ψ
(11)
σ = −Pσ =

diag{Pσ
1 , P2, P

σ
3 }, Ψ

(22)
σ = −γ2Inw+Nnv+np

, Ψ
(13)
σ = Ῡ,

Ψ
(23)
σ = Υ̃, Ψ

(33)
σ = −Pσ , Ψ

(14)
σ = C T , Ψ

(24)
σ = DT ,

Ψ
(44)
σ = −INnp

, Ψ
(15)
σ = [Ω̄1, Ω̄2, · · · , Ω̄N ] and Ψ

(55)
σ =

−IN ⊗ 4P with Ῡ, Υ̃ and Ω̄i being derived from Υ, Υ̌
and Ωi in Box II by replacing P1, P3, βi with Pσ

1 , P σ
3 , βσ

i ,
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respectively. The estimator gain matrices Ū and V̄ can be

computed by (25), and W̄ can be directly solved out from

(27).

Proof: Consider the following parameter-dependent stochas-

tic Lyapunov functional candidate V̄ (ξ(k)) = ξT (k)Pσξ(k).
Calculating the forward difference of V (ξ(k)) along the sys-

tem (16) yields

E{E{V̄ (ξ(k + 1))} − V̄ (ξ(k))

+h̄T (k)h̄(k) − γ2ηT (k)η(k)}

≤ φT (k)

[

Ψ̃
(11)
σ Ψ̃

(12)
σ

∗ Ψ̃
(22)
σ

]

φ(k), (28)

where Ψ̃
(11)
σ = A T

σ PσAσ −Pσ +C T C +
∑N

i=1
1
4BT

i PσBi,

Ψ̃
(12)
σ = A T

σ PσE +C T D and Ψ̃
(22)
σ = E T PσE +DT D−γ2I .

It should be noted that the inequality αi = βi(1 − βi) ≤ 1
4

is used to obtain (28). The rest of the proof is similar to the

counterpart in the proof for Theorem 1. ¥

A closer inspection of (27) reveals that the feasibility of

Theorem 3 is dependent on the uncertain parameter σ, which

means that Theorem 3 cannot be applied directly to solve out

the estimator gain matrices. Therefore, one needs to convert

the condition in Theorem 3 into a finite set of linear matrix

inequality constraints. To achieve this goal, an alternative

method is to set parameter-dependent matrices such as Pσ
1

and Pσ
3 to be linearly dependent on the uncertain parameter

σ. For example, since βσ
i takes on a polytopic form, one may

set Pσ
1 =

∑S

s=1 σsP
(s)
1 and Pσ

3 =
∑S

s=1 σsP
(s)
3 , where P

(s)
1

and P
(s)
3 , s = 1, 2, · · · , S are constant real matrices to be

determined.

Next, we present the following result which provides a

numerically tractable design criterion for solving the proposed

distributed attack detection and secure estimation problem in

the case of uncertain measurement-transmission probability.

Recalling (28), the proof follows the similar pattern of Theo-

rem 3, is thus omitted.

Theorem 4: Given scalars γ > 0 and β
(s)
i ∈ [0, 1] for

all i ∈ V; s = 1, 2, · · · , S, the proposed distributed attack

detection and secure estimation problem for the augmented

estimation error system (16) and (17) is solvable if there exist

real matrices P
(s)
1 > 0, P2 = diag{P2,1, P2,2, · · · , P2,N} > 0,

P
(s)
3 > 0, Ǔ , V̌ , W̄ of an appropriate dimension such that

Ψ̌s < 0, s = 1, 2, · · · , S (29)

where Ψ̌s = [Ψ̌
(mn)
s ]5×5 is a sparse block diagonal matrix

derived from Φ̌ in (24) by replacing P1, P3, βi, C̄ in Φ̌ with

P
(s)
1 , P

(s)
3 , β

(s)
i , C̄(s), respectively. Moreover, the estimator

gain matrices Ū and V̄ can be computed by (25), and W̄
can be directly solved out from (29).

IV. AN ILLUSTRATIVE EXAMPLE

To demonstrate the effectiveness and applicability of the

proposed attack detection and secure estimation method, con-

sider the system model as an industrial continuous-stirred

tank reactor (CSTR), in which chemical species A reacts to

form species B [33], as shown in Fig. 4. CA0 is the low

concentration; CA is the output concentration of the educt A;
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Fig. 4. A physical structure of a networked continuous stirred tank reactor
(CSTR)

CB is the output concentration of the desired product B within

the reactor; T denotes the reactor temperature; and Tc is the

cooling medium temperature. The discretized and linearized

state-space model of the CSTR near the operating point is

borrowed from [23], [24] and is given by
[

s(1)(k + 1)
s(2)(k + 1)

]

=

[
0.9719 −0.0013

−0.0340 0.8628

] [
s(1)(k)
s(2)(k)

]

+

[
0.3
0.1

]

w(k)+

[
−0.0839

0.0761

]

p(k), (30)

where s(1)(k) denotes the output concentration of the educt

A; s(2)(k) represents the reactor temperature; w(k) stands for

the process noise, which may stem from poisoning of the

reaction and/or from fouling of the cooling coils; and p(k)
is regarded as a potential false data injection attack launched

by an adversary at the physical process side.

In this example, we apply the developed distributed attack

detection and secure estimation method to estimate the state

of the CSTR by using only the measurement of the reactor

temperature. Four distributed sensors, i.e., V = {1, 2, 3, 4},

are deployed to monitor and measure the reactor temper-

ature. Each sensor’s measurement is then sent through a

wireless channel to a remote information processing center

for computing local estimations. The interaction topology of

four cooperative estimators is depicted in Fig. 4, where the

adjacency matrix of the topology is selected as a binary matrix,

whose element is either 1 or 0. The measurement model is

subject to measurement noise vi(k) and has the form of (3)

with parameter matrices given by Ci = [0 0.1 + 1/i] and

Di = 0.1/i for any i ∈ V .

The objective of this case study is twofold: 1) each estimator

detects when the FDI attack occurs and generates an alarm

signal after its occurrence; and 2) each estimator computes

local estimations of the output concentration of the educt A
and the reactor temperature so as to attenuate the effects of

random packet losses caused by the jamming attacks through

measurement transmission channels and the process noise and

measurement noise.

The uncertain measurement transmission probability of each

sensor is assumed to be 0.3 ≤ β
(σ)
1 ≤ 0.7, 0.2 ≤ β

(σ)
2 ≤ 0.6,

0.4 ≤ β
(σ)
3 ≤ 0.8 and 0.5 ≤ β

(σ)
4 ≤ 0.8. The random variables

θi(k), i ∈ V are shown in Fig. 5. By applying Theorem 3, it is
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Fig. 5. The random variables θi(k), i ∈ V

found that the proposed distributed secure estimation problem

is solvable. Moreover, the optimal H∞ noise attenuation level

is obtained as γ = 2. To further illustrate the effectiveness

of the designed resilient estimators, the process noise and

measurement noise are taken as

w(k) =

{
rand − 0.6, 30s ≤ k ≤ 80s

0, otherwise

vi(k) =

{
1.2rand − rand, 30s ≤ k ≤ 80s

0, otherwise
,∀ i ∈ V,

where rand denotes a random scalar evenly distributively

generated within [0, 1]. The false data injection attack signal

p(k) is simulated with unit amplitude at time steps k =
50s, 51s, · · · , 100s, i.e.,

p(k) =

{
1, 50s ≤ k ≤ 100s
0, otherwise.

Connecting the designed estimators to the CSTR system and

letting the simulation run for 300s, Fig. 6 demonstrates the

evolutions of the state estimation errors ei(k) = s(k)− xi(k)
for all i ∈ V . It can be seen that the estimation errors

eventually approach zero as time goes on. Thus, the designed

estimators well estimate the CSTR’s states. For each node, the

residual response ri(k) with or without process noise w(k)
and measurement noise vi(k) to the above FDI attack signal

p(k) is depicted in Fig. 7. The residual evaluation functions

fi(0, Te) and thresholds Thi for all i ∈ V are illustrated in

Fig. 8. By a simple calculation, the threshold on each node can

be obtained as Th1 = 5.9391×10−11, Th2 = 5.9889×10−11,

Th3 = 1.4327 × 10−10 and Th4 = 3.7877 × 10−10, respec-

tively. From Fig. 8, it is found that f1(0, 58) = 5.3951×10−11

and f1(0, 59) = 6.0383× 10−11; f2(0, 59) = 5.4950× 10−11

and f2(0, 60) = 6.0751× 10−11; f3(0, 62) = 1.2906× 10−10

and f3(0, 63) = 1.4774× 10−10; f4(0, 73) = 3.5666× 10−10

and f4(0, 74) = 3.8976×10−10, which means that f1(0, 58) <
Th1 < f1(0, 59), f2(0, 59) < Th2 < f2(0, 60), f3(0, 62) <
Th3 < f3(0, 63) and f4(0, 73) < Th4 < f4(0, 74). Thus,

the FDI attack signal p(k) can be detected in 9 time steps

after its occurrence by the proposed resilient attack detector

estimator 1, 10 time steps after its occurrence by estimator

2, 13 time steps after its occurrence by estimator 3 and 24
time steps after its occurrence by estimator 4, respectively.

When the occurrence of the FDI attack is detected by the

designed estimators, an alarm or a warning signal of FDI

attack occurrence can be generated to remind the operating

engineers or designer to take further measures such as attack

signal isolation and false data correction. Furthermore, it can

be seen that the residual signals can not only reflect the FDI

attack signal in time, but can also detect the FDI attack signal

without confusing it with the process noise w(k) and the

measurement noise vi(k), which verifies the effectiveness of

the derived results.
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Fig. 6. The estimation errors ei(k) = s(k) − xi(k), i ∈ V
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Fig. 7. The residual signals ri(k) with or without process noise w(k) and
measurement noise vi(k), i ∈ V

V. CONCLUSION

The distributed attack detection and secure estimation prob-

lem for a CPS over a WSN in the presence of two types

of malicious attacks have been studied. More specifically, an

FDI attack has been considered at the physical system layer,

where the adversary has injected false information to modify
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Fig. 8. The evaluation functions fi(·) and thresholds Thi, i ∈ V

the system’s state. Then, a class of random jamming attacks

on wireless measurement transmission channels have been

investigated. The effects of the physical and cyber attacks on

the estimation performance of the resultant estimation error

system have been analyzed. To handle the false data injection

attack, a two-step attack detection mechanism has been estab-

lished, through which the occurrence of the FDI attack can be

detected and alarmed. To tackle the random jamming attacks,

a refined measurement output model based on compensated

measurements has been proposed and resilient estimators have

been delicately constructed. Criteria for estimation perfor-

mance analysis and estimator design have been derived to

guarantee the feasibility of the problem. An extension of

the proposed results to the case of uncertain measurement

loss probability has also been studied. The effectiveness and

applicability of the derived results have been verified via a

networked continuous-stirred tank reactor system.
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