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Abstract

The visual system efficiently processes complex and redundant information in a scene despite its limited capacity. One

strategy for coping with the complexity and redundancy of a scene is to summarize it by using average information.

However, despite its importance, the mechanism of averaging is not well understood. Here, a distributed attention model

of averaging is proposed. Human percept for an object can be disturbed by various sources of internal noise, which can

occur either before (early noise) or after (late noise) forming an ensemble perception. The model assumes these noises

and reflects noise cancellation by averaging multiple items. The model predicts increased precision for more items with

decelerated increments for large set-sizes resulting from late noise. Importantly, the model incorporates mechanisms of

attention, which modulate each item’s contribution to the averaging process. The attention in the model also results in

saturation of performance increments for small set-sizes because the amount of attention allocated to each item is greater

for small set-sizes than for large set-sizes. To evaluate the proposed model, a psychophysical experiment was conducted

in which observers’ ability to discriminate average sizes of two displays was measured. The observers’ averaging

performance increased at a decreasing rate with small set-sizes and it approached an asymptote for large set-sizes.

The model accurately predicted the observed pattern of data. It provides a theoretical framework for interpreting

behavioral data and leads to an understanding of the characteristics of ensemble perception.
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Introduction

Visual environments are typically complex. Considering the

limited capacity of the visual system (Broadbent, 1958; Luck

& Vogel, 1997; Palmer, Fencsik, Flusberg, Horowitz, &

Wolfe, 2011), it is necessary to efficiently process complex

information. One strategy for efficient information processing

is to use statistical regularities, such as the central tendency, to

condense representations and, thus, promote more efficient

processing of complex scenes (Alvarez, 2011; Ariely, 2001;

Chong & Treisman, 2003). Another strategy is to filter out

irrelevant information (Carrasco, 2011; Chun, Golomb, &

Turk-Browne, 2011).

For the former strategy to be effective, the visual system

should be able to form an accurate representation of statistical

summaries. From research on a range of visual tasks, it is

known that human vision can accurately compute averages

from simple visual features, such as color (Maule, Witzel, &

Franklin, 2014), direction (Williams & Sekuler, 1984), orien-

tation (Dakin &Watt, 1997), size (Chong & Treisman, 2003),

andmotion speed (Watamaniuk&Duchon, 1992), to complex
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visual properties, such as animacy (Yamanashi Leib,

Kosovicheva, & Whitney, 2016), gender (Haberman &

Whitney, 2007), facial identity (de Fockert & Wolfenstein,

2009; Neumann, Schweinberger, & Burton, 2013), gaze di-

rection (Sweeny & Whitney, 2014), and facial expression

(Haberman & Whitney, 2007, 2009).

Despite the growing interest in the statistical summarization

of visual information, the mechanism of averaging remains

unclear (Alvarez, 2011; Whitney & Yamanashi Leib, 2018).

To the authors’ knowledge, there presently exist two observer

models for averaging: the noise-and-selection model for aver-

aging size (Allik, Toom, Raidvee, Averin, & Kreegipuu, 2013)

and the orientation averaging model (Parkes, Lund, Angelucci,

Solomon, & Morgan, 2001). These models were developed

using several components, including early noise, late noise,

averaging, selective attention, and decision structure. The early

noise refers to the variability of internal responses for individual

representations before the averaging process, whereas the late

noise is the variability of responses during or after the averag-

ing. The two models share components, i.e., early noise, aver-

aging, and decision processes, but have different assumptions

concerning selective attention and late noise. The noise-and-

selection model assumes that coding the individual size of an

item is noisy and that the visual system only samples a few

items from the display, owing to its limited capacity (Allik

et al., 2013). The model thus predicts the observers’ perfor-

mance in computing mean sizes by randomly selecting a few

individual sizes with some noise and averaging them. In this

model, internal noise arises before, but not after, the averaging

process. Therefore, late noise is not taken into account. In ad-

dition, the selection process occurs before the averaging pro-

cess, so that some of the inputs into the averaging process are

filtered out. The orientation averaging model (Parkes et al.,

2001) includes late noise in addition to the early noise, and it

accurately predicts the orientation averaging performance in the

periphery. Solomon and his colleagues further developed an

observer model to incorporate the selection process and validat-

ed the model with a mean orientation discrimination task

(Solomon, 2010) and a mean size discrimination task

(Solomon, Morgan, & Chubb, 2011).

How does this averaging process interact with attention?

Does attention select a few items to average and discard the

rest (Myczek & Simons, 2008), as in the noise-and-selection

model (Allik et al., 2013), or are the attended items’ contribu-

tions to averaging greater than those of the unattended items

(de Fockert &Marchant, 2008)? Alternatively, attention could

enhance attended items’ signals more or less equally, which is

consistent with the suggestion that averages are computed

more precisely under a distributed attention mode than under

a focused attention mode (Chong & Evans, 2011; Chong &

Treisman, 2005; Robitaille & Harris, 2011; Treisman, 2006).

Thus, it is important to investigate how attention is involved in

the process of averaging.

In this study, a distributed attention model of averaging is

proposed. The model incorporates the components of early

noise and late noise to reflect a noisy percept (Allik et al.,

2013; Lu & Dosher, 1998, 1999, 2008; Parkes et al., 2001),

averaging process to reflect the degree of noise cancellation,

and signal detection theory to quantify the observers’ discrim-

inability and behavioral performance (Green & Swets, 1966;

Macmillan & Creelman, 1991). Finally, the component of

attention is added (Dosher & Lu, 2000b, 2000a; Lu &

Dosher, 1998) to incorporate attentional effects on averaging.

In a psychophysical validation of the model, two displays with

circles of various sizes were sequentially presented, and ob-

servers were asked to compare the average size of the circles

in the two displays. It was crucial that the number of items to

be averaged, referred to as set-size, was varied in each display.

Then, the predictions of the model were tested to determine

whether they matched with the observed data for average size.

The model was also tested using existing datasets in the liter-

ature (Allik et al., 2013) and comparing the fit of the noise-

and-selection model to our dataset.

Observer models1

Noisy percept for individual items: Early noise

Human performance in information processing can be limited

by various sources of internal noise (e.g., receptor sampling

errors, randomness of neural responses, and loss of informa-

tion during neural transmission). The model presented here

assumes that individual sizes are encoded independently,

which results in noisy internal representations for individual

sizes. Because noises embedded in the system (whether early

or late in the processing) are random variables, the magnitude

of the internal response varies, even when the same stimulus is

given to the system. Each stimulus passes through a feature

detector, and the detector translates it into an internal response

of a certain magnitude through a non-linear transducer func-

tion. The output of the detector is proportional to the exponent

of the signal strength (Foley & Legge, 1981; Nachmias, 1981;

Nachmias & Sansbury, 1974). Regarding size perception, it is

known that the perceived size of a circle is related to its phys-

ical size by a power function with an exponent of 0.76

(Teghtsoonian, 1965). By combining the output of the detector

with the early noise, a noisy internal response is generated for

each stimulus (Fig. 1).

Averaging multiple items

When the formation of a summary representation is required,

the visual system attempts to integrate all internal responses

1
Refer to analytic models in Appendix 1.
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generated from multiple inputs (Fig. 1). Because random

noises for individual inputs can cancel each other out, increas-

ing the number of inputs yields better estimates of the average

size.

Noisy percept for the averaged representation: Late
noise

Internal noise can occur across all information processing

stages, including the stage representing average size after the

integration process as well as the early perceptual stage before

the integration process. Late internal noise is often thought to

be associated with limited precision in internal representations

(Heeley & Buchanan-Smith, 1996; Morgan, Ward, & Hole,

1990; Parkes et al., 2001). Because late noise is added to the

representation of the averaged size, it does not vary with the

number of items. Thus, when late noise is much greater than

the averaged early noise (e.g., larger set-sizes, where the av-

eraged early noise is relatively small due to noise cancella-

tion), perceptual sensitivity does not change significantly with

set-size.

Comparing average sizes: Signal detection theory

For a two-alternative forced-choice (2AFC) task, in which an

observer compares the average sizes of two stimuli sets, i.e., a

test and a standard, signal detection theory posits that the two

stimulus sets generate two unique internal response distribu-

tions. For each trial, the observer compares the magnitudes of

the two internal responses and decides which stimulus set

generates the greatest internal response. The perceptual sensi-

tivity d’, which can be defined as a signal-to-noise ratio, is a

function of the difference in average sizes and the variability

of the internal response for summary representations. A larger

difference between two average sizes leads to a larger differ-

ence of internal responses on average, and, consequently,

greater discriminability. Further, more precise internal re-

sponses (with less variability) for average sizes result in great-

er discriminability in the 2AFC average size comparison task.

Effect of attention

Attention is thought to enhance the representational precision

for attended items (Dosher & Lu, 2000a, 2000b; Lee, Itti,

Attention

(Zoom Lens)

Attention

(Spotlight)

Fig. 1 Internal processes for averaging sizes. The internal representation

is disturbed by both early and late noise (expressed by variability of the

Gaussian probability distributions). In the zoom lens model (depicted in

blue), attention reduces early noise by a large amount for small set-sizes

and a small amount for large set-sizes. In the spotlight model (depicted in

red), attention reduces the early noise for some items, but not for the

others
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Koch, & Braun, 1999; Lu & Dosher, 1998; but see also

Schneider & Komlos, 2008). To model the attentional effects

reported in ensemble perception literature (Chong &

Treisman, 2005; de Fockert & Marchant, 2008), mechanisms

of attention were included in the computational model. Here,

the zoom lens model (Eriksen & St. James, 1986) and the

spotlight model (Posner, 1980) were used to study attentional

deployment over the space.

Zoom lens model: Distributed attention with equal effects

on all items

The zoom lens model (Fig. 1 blue lines) assumes that atten-

tional deployment can vary from a sharp focus to a broad

window, and its processing capacity is in inverse proportion

to the area of focus, similar to the zoom lens of a camera

(Eriksen & St. James, 1986). This model assumes that the

visual system has a limited processing capacity. Thus, an in-

crease in the size of the attentional window (or set-size) leads

to a decreased attentional allocation for each item. When at-

tention is distributed over a broad area, relatively little atten-

tion is allocated to an individual item. By contrast, each item

receives more attention when attention is focused on a small

subset of a display. In a series of studies, Lu and Dosher

reported that attention operates mainly by reducing internal

noise (Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998).

Attention makes internal responses more precise for attended

items, resulting in an improvement of an observer’s

discriminability.

Spotlight model: Distributed attention with unequal effects

on all items

The spotlight model (Fig. 1 red lines) posits that attention

selects a fixed number of items, and that the visual system

processes the selected items with high precision, with unse-

lected items consigned to low precision representations

(Posner, 1980).

Behavioral signatures of proposed models

Suppose an observer compares the average sizes of the

circles in two ensemble sets, the standard and test, that

contain equal numbers of circles.2 Figure 2 shows the

threshold of average size difference as a function of set-

size that is predicted by four different models: (1) the no-

late-noise model, (2) the no-attention model (with late

noise), (3) the zoom lens model, and (4) the spotlight

model. The threshold is the Weber fraction of mean sizes

corresponding to the probability of choice (pc; the proba-

bility of reporting that the average size of circles was

larger in the test display than in the standard display) =

0.76. Each row of Fig. 2 shows the predictions of observ-

er models with different parameter values: The four

panels in the first row (a–d) show the predictions of four

different models for three different values of early noise

(σ1 = 0.08, 0.16, and 0.32; different colors in each panel),

while the other parameters were set as constants. The

panels in the second row (e–g) show the predictions of

three models that have late noise in their components, for

different late noise parameters (σ2 = 0, 0.04, and 0.08).

The panels in the third rows (h–i) show the predictions of

two attention models for different attention factors (Az or

As = 0.1, 0.4, and 1; Az for the zoom lens model and As

for the spotlight model). Here, the Az = 1 or As = 1 means

that attention has no effect on the early noise (or percep-

tual quality on individual items), but Az = 0.1 or As = 0.1

means that attention reduces the early noise down to 10%

of its original value. The panel (j) in forth row shows the

predictions of the spotlight, which have the attentional

limit, k, in their components, for three k parameters (1,

3, and 256). All model predictions were analytically ob-

tained (Eq. 20 with 4–7 in Appendix 1).

In all models, the thresholds decrease as the set-size

increases. In the no-late-noise model, the threshold de-

creases linearly as the number of items increases, with a

slope of –0.5 in the log–log axis that reflects a
ffiffiffi

n
p

rela-

tionship between the variability of the internal response

and the set-size. In the no-attention model, the slope is

smaller than −0.5 on the log-log axis and decelerates as

set-size increases. The thresholds for large set-sizes (e.g.,

32 or 64) exhibit only a minimal difference, as reported in

the literature (Chong & Treisman, 2003; Lee, Baek, &

Chong, 2016). Both the zoom lens and spotlight models

can be distinguished from the no-attention models by the

signatures in the small to middle range of set-sizes. The

two attention models predict a deceleration for the slope,

but their difference lies in the location of moderate slopes:

the zoom lens model exhibits gradual effects of attention

for small set-sizes, whereas the spotlight model predicts a

sharp decrease in the threshold for small set-sizes (n < k)

and a refraction around the set-size k.

The first row of Fig. 2 shows the expected thresholds with

three different early noise levels in the fourmodels. In all models,

thresholds increase as early noise increases. This pattern is more

clearly observable using small set-sizes in all models, including

late noise. The second row shows expected thresholds with three

different late noise levels. Threshold decrements tend to saturate

at higher threshold levels when late noise increases. Indeed,

when σ2 = 0, all models predict a linear threshold decrement,

2
Please note that the average size of the circles was defined using the arith-

metic mean of apparent sizes (the diameters with an exponent of 1.52; Chong

& Treisman, 2003; Teghtsoonian, 1965).
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particularly in larger set-sizes. The effects of late noise are exhib-

ited by the asymptotic level in the threshold/set-size function.

Attentional effects can be observed by the non-monotonicity of

curves in smaller set-sizes (the third row in Fig. 2). In attention

models (both the zoom lens and the spotlight models), thresholds

for smaller set-sizes decrease with the attentional factor. For

example, when Az = 0.1 or As = 0.1, which implies that attention

attenuates early noise down to 10%, perceptual precision is better

(i.e., lower threshold) for set-size 1 than for set-sizes 4 or 8 in

these figures.When Az = 1 or As = 1, which implies that attention

does not affect perceptual precision, models predict a monotonic

and gradual threshold decrement. The fourth row in Fig. 2 shows
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Fig. 2 Predictions of observer models with different parameter values.

Each column represents predictions of different models. For all models,

thresholds (Weber fractions) are predicted as a function of set-size at three

levels (different colors in each panel) of early noise (σ1), late noise (σ2),

attention factor (Az or As), and attentional limit (k) in the first to fourth

rows, respectively
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model predictions for a different attentional limit, k. In the spot-

light model, there is a dip and bump around set-size k in the

threshold/set-size function. The threshold linearly decreases as

set-size increases, reflecting the
ffiffiffi

n
p

relationship, and attentional

effects for set-sizes smaller than k. However, when the set-size n

is larger than k, a greater noise for the unselected n−k items yields

higher thresholds. Although noises are greater for the unselected

n−k items than for the selected k items, they could still cancel

each other out, so thresholds decrease if the set-sizes are suffi-

ciently large. Consequently, threshold decreases up to set-size k,

increases after k, and gradually decreases again in larger set-sizes

far after k. When k is close to 1, the predicted threshold function

of the spotlight model (yellow curve in the panel j) is similar to

the prediction of the zoom lens model (red curves in the panels c,

f, and h).When k is sufficiently large (i.e., infinity), the prediction

of the spotlight model (blue curve in the panel j) becomes the

same as the prediction of the no-attention model (red curves in

the panels b and e).

Empirical tests of the observer models: A new
experiment

The goal of this experiment was to identify the nature of the

averaging process for multiple inputs and the attentional ef-

fects occurring in the process. The proposed models were

evaluated through a psychophysical experiment with a

2AFC average size comparison task, which has been com-

monly featured in previous studies on ensemble perception

(Allik et al., 2013; Chong & Treisman, 2003; Gorea,

Belkoura, & Solomon, 2014; Lee et al., 2016; Solomon

et al., 2011). MATLAB codes for experimental program and

data files are available on the Open Science Framework

(https://osf.io/ad85r/).

Methods

Participants

Four observers, including the authors J.B. and S.C., partici-

pated in the experiment. We followed Smith and Little

(2018)’s small-sample-size design and analyzed the data on

the individual level. All observers had normal or corrected-to-

normal vision, and the two non-authors were unaware of the

purpose of the experiment. The study was approved by the

Institutional Review Board of Yonsei University. All partici-

pants provided written informed consent.

Apparatus

The experiment was conducted on an IBM PC compatible com-

puter, running MATLAB and Psychtoolbox extensions

(Brainard, 1997; Pelli & Zhang, 1991). Stimuli were presented

on a 21-in. CRT monitor (HP P1230) with 1,600 × 1,200 reso-

lution at a refresh rate of 85 Hz. The viewing distance was ap-

proximately 175 cm.

Stimuli

Circles were randomly presented on an invisible 8 × 8 grid

(8.94° × 8.94°), excluding the central 2 × 2 grid (2.24° ×

2.24°). In each cell of the grid, the position of the circle was

randomly jittered within a range of ±0.28° along the vertical

and horizontal axes, independently on each trial. The display

contained a set of black outlined circles (0.01 cd/m2) with a

stroke width of 0.03° on a gray background (14.43 cd/m2).

The mean size of the circles was defined using the arith-

metic mean of apparent sizes (the diameters with an exponent

of 1.52; Chong & Treisman, 2003; Teghtsoonian, 1965). The

mean size for the standard display was 556.41 pixel1.52 (cor-

responding to 64 pixels or 0.56° of diameter) with a random

jitter from a log-uniform distribution between −16 and +19%.

To achieve a targeted mean size, a set of random circles was

repeatedly generated, between −30 and +42 % of the targeted

mean size, until the mean size of the set matched the targeted

mean size.3 In the set-size 1 trials, the targeted mean was the

same as the individual circle size.

Design

The probability of choice (pc) was measured for each mean size

difference × set-size conditions. The differences in mean sizes of

the two displays were defined as Weber fraction, S
^
t−S
^
s

� �

=S
^
s,

where S
^
t and S

^
s denote apparent mean size of the test and stan-

dard sets. The Weber fraction varied over nine levels (−0.244,

−0.131, −0.068, −0.034, 0, 0.036, 0.073, 0.150, and 0.323).

There were six set-size conditions (1, 2, 4, 8, 16, and 32 items)

and the set-size in the test stimulus was always the same as in the

standard stimulus. For example, there were four items in both test

and standard stimuli in a set-size 4 trial. All experimental condi-

tions, with ten trials in each, were randomly interleaved in each

session. Observers partook in ten sessions, each of which lasted

approximately 40min. Thus, the total number of trials was 5,400

(6 set-sizes × 9 mean size differences × 10 trials × 10 sessions)

for each observer.

3
For example, in a standard display of which targeted mean size is 560 pix-

el1.52 in a set-size 4 trial, three circle sizes were generated first (i.e., 664, 414,

and 442 pixel1.52), then the size of the remaining one (i.e., 720 pixel1.52) was

determined to match the targeted mean size. Note all these circle sizes were

between 395 and 795 pixel1.52 (−30 and +42% of the targeted mean size 560

pixel1.52).
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Procedure

An example of a trial sequence is shown in Fig. 3. Each trial

began with a small crosshair at the center of the screen. After

494 ms, two stimulus displays were briefly presented (for

494 ms each) one after the other, with an inter-stimulus inter-

val of 494 ms. The standard display was randomly presented

in either the first or the second interval, and the test display in

the other interval. Observers were asked to identify in which

interval the mean size of circles was larger, i.e., a 2AFC par-

adigm. No feedback was provided after the response, to pre-

vent the formation of bias (Bauer, 2009).

Results

Evaluation of model with late noise

The presence of late noise in the averaging process was evaluated

by comparing the goodness of fit of the models with and without

late noise: the reduced model with only early noise (σ1), and the

fullmodelwith late noise in addition to the early noise (σ1 andσ2).

To estimate parameters ofmodels, the analyticmodels (Eq. 18

with 4 and 5) were fitted to pc as a function of mean size differ-

ence for the different set-sizes using the maximum likelihood

method. The best fitting results are shown in Table 1 and Fig.

4. For all observers, the no-attention model achieved a better

goodness of fit than the no-late-noise model (r2 ranged from

.91 to .95 for the no-late-noise model, and from .97 to .99 for

the no-attention model).

To test the statistical significance of the improvement in

goodness of fit with the additional parameter, the full model,

with the late noise component, was compared with the re-

duced model, without the late noise component, by using the

likelihood-ratio test with χ2 statistics (Cox & Hinkley, 1974):

χ2 dfð Þ ¼ 2ln
L
^
full

L
^
reduced

0

@

1

A ð1Þ

where L
^
is the maximum likelihood, df=Kfull-Kreduced and K is

the number of parameters in each model. The results showed

that including late noise in the model significantly improved

the goodness of fit for all observers (all p’s < .001), which

indicated that late noise is a significant limiting factor for the

averaging process and should be included in the model.

Evaluation of models with attention

Two attention models (Eq. 18 with 6 and 7) were also

fitted to the data. These included the attention parameters

As and k for the spotlight model, and only Az for the zoom

lens model, in addition to σ1 and σ2. Both models with

attention parameters provided a good explanation for the

data. To quantitatively evaluate the observer model and

the attentional effects involved, the goodness of fit for

the two models were compared: The reduced model with

only two parameters (σ1 and σ2) and the full model with

additional attention parameters (Az, As, and k). The χ2

statistic for nested models (Eq. 1) was used for the com-

parison. The results showed that, after taking the in-

creased number of parameters into account, the zoom lens

model was superior to the no-attention model (p = .010

for observer JB and p < .001 for the others). The spotlight

model also showed significantly better goodness of fit

than the no-attention model (p = .035 for observer JB

and p < .001 for the others). These results indicate that

attention had effects on computing mean size when mul-

tiple items were presented in a display, and that reduced

noise, attributed to attention for smaller set-sizes, is a

major component that accounts for the behavioral perfor-

mance in mean size perception.

To better distinguish attention models that were not nested

to each other, the Akaike information criterion (AIC; Akaike,

1974; Burnham & Anderson, 2004) was computed. Both the

likelihood ratio test (with the χ2 statistic) and the AIC are

frequently used for model selection. However, there are dis-

tinctions between the two; the likelihood ratio test can com-

pare only nested models (e.g., the no-attention model vs. the

zoom lens model, the no-attention model vs. the spotlight

model, but not the zoom lens vs. the spotlight model), but

the AIC allows the comparison of model quality, regardless

of whether the models are nested; however, it does not provide

a null hypothesis test. AIC can be computed by

AIC ¼ 2k−2ln L
^

� �

ð2Þ

Fig. 3 Illustration of the experimental procedure (example of set-size 8 trial). Following a central fixation, two intervals (each display contains the same

number of circles) and an inter-stimulus interval were presented. The observers’ task was to determine the interval with the larger mean size

Atten Percept Psychophys (2020) 82:63–79 69



and the results are interpreted such that a model with a

smaller AIC is more probable than the model with a great-

er AIC. The zoom lens model had a smaller AIC value

than the spotlight model for all observers except GS. For

the observer GS, the AIC was smaller for the spotlight

model than for other models. The relative likelihoods of

the zoom lens model to the spotlight model,

e AICspotlight−AICzoomlensð Þ=2ð Þ , were 1.63, 2.59, 1.49, and 0.79
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Fig. 4 Psychophysical data and the best fittingmodels (set-sizes 1–32). In

each panel of columns 1–6, the probability of choice, pc (dots) was plot-

ted as a function of test-standard mean size difference along with the best-

fits of different models (curves). In the rightmost column, thresholds

(dots), corresponding to pc = 0.76, were plotted as a function of set-size

along with the best-fitting models for thresholds (curves)

Table 1 Best fitting parameters of proposed models (set-sizes 1–32)

Observer Model σ1 σ2 A k r2 χ2 p AIC

SC No late noise 0.17 - - - 0.95 228.44 <.001 427.99

No attention 0.06 0.05 - - 0.99 - - 201.55

Attention (zoom lens) 0.12 0.04 0.45 - 0.99 12.70 <.001 190.85

Attention (spotlight) 0.14 0.04 0.42 1.52 0.99 13.73 <.001 191.82

JB No late noise 0.29 - - - 0.91 212.47 <.001 440.25

No attention 0.10 0.08 - - 0.97 - - 229.79

Attention (zoom lens) 0.17 0.07 0.54 - 0.98 6.58 .010 225.20

Attention (spotlight) 0.18 0.07 0.53 1.28 0.98 6.68 .035 227.10

JL No late noise 0.38 - - - 0.92 123.43 <.001 367.76

No attention 0.15 0.11 - - 0.97 - - 246.33

Attention (zoom lens) 0.30 0.08 0.43 - 0.98 16.27 <.001 232.06

Attention (spotlight) 0.33 0.07 0.41 1.53 0.98 17.47 <.001 232.87

GS No late noise 0.31 - - - 0.94 181.35 <.001 442.61

No attention 0.11 0.09 - - 0.98 - - 263.26

Attention (zoom lens) 0.22 0.07 0.45 - 0.99 14.89 <.001 250.37

Attention (spotlight) 0.26 0.07 0.41 1.64 0.99 17.35 <.001 249.91

χ2 and its corresponding p value are used for comparing each model to the no-attention model
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for observers SC, JB, JL, and GS, respectively. That is,

the zoom lens model was 1.63, 2.59, 1.49, and 0.79 times

more probable than the spotlight model for observers.

Empirical tests of the observer models:
Existing evidence

In the previous section, the theoretical predictions of the

models were evaluated against the empirical data of our ex-

periment. Often, observer models are developed for a dataset

with a certain experimental setting and procedure, but are not

suitable for analyzing another dataset. Thus, it would be a

good practice to validate observer models with an existing

dataset that can be obtained from experiments in literature.

Here, the models were evaluated using an existing dataset,

Allik et al. (2013),4 in which the observers’ performance in

a mean size discrimination task was measured across four set-

sizes.

Because most of the experimental settings in Experiment 1

byAllik et al. (2013) were the same as in the present study, our

analytic models could be applied to fit their data. The only

difference in the experimental procedures was that the stan-

dard display contained a single item in their experiment,

whereas multiple items were to be averaged in the present

experiment. Thus, a slight modification was made in the pres-

ent analytical models. The analytical models for the 1-to-n

comparison are described in Appendix 1 (Eq. 17 with 13–16).

As clearly shown in Fig. 5 and Table 2, all models well

accounted for the data, but there were individual differ-

ences between models. For observers KA and MT, the no-

attention model explained the dataset better than the no-

late-noise model (χ2 = 27.79, p <.001 for KA; χ2 = 50.01,

p <.001 for MT), but worse than the zoom lens model (χ2

= 5.18, p =.023 for KA; χ2 = 52.79, p <.001 for MT) and

the spotlight model (χ2 = 5.51, p =.064 for KA; χ2 =

53.73, p <.001 for MT). Therefore, it could be concluded

that late noise and attention are important components for

mean size perception in these observers, as in all ob-

servers in our experiments.

However, for observer JA, the goodness of fit showed a

significant difference between the no-late-noise model

and the no-attention model (χ2 = 4.00, p = .045), but no

significant difference between the no-attention model and

the attention models (χ2 = 0.00, p = 1.000 for the zoom

lens model; χ2 = 0.10, p = .951 for the spotlight model).

All observers' AIC showed a preference for the zoom lens

model over the spotlight model, and the relative likelihood of

the zoom lens model to the spotlight model was 2.58, 2.30,

and 1.86 for observers JA, KA, and MT, respectively.

Empirical tests of an existing observer model

It would also be important to quantitatively compare the pres-

ent models to existing models in order to gain insights into the

advantages of the present models. Thus, we fitted the noise-

and-selection model to our dataset.

Since the noise-and-selection model suggested by Allik

et al. (2013) is stochastic and does not have an analytic form

of the model, we were not able to fit the model to our data

directly. Instead, we approximated the model parameters by

the grid search algorithm: we simulated observers’ responses

100,000 times for each data point with different k values

(ranging from 1 to n, with a sampling grain of 0.01 for each

set-size n), then selected the k value producing the minimum

sum of squared error between the simulated psychometric

function and the data as the parameter value for each set size.

In the noise-and-selection model, k represented the number of

items selected and processed in the averaging process, and ς

the standard deviation of internal representation. The param-

eter ςwas estimated by fitting a cumulative Gaussian function

to set-size 1 data using a maximum likelihood estimation, as in

the study by Allik et al. (2013).

As shown in Table 3 and Fig. 6, the noise-and-selection

model provides an excellent account for our dataset (r2 >

.97). However, the AIC values were greater for the noise-

and-selection model than for our attention models. The rela-

tive likelihood of the zoom lens model to the noise-and-

selectionmodel was 17.13, 6.60, 9.51, and 56.73 for observers

SC, JB, JL, and GS, respectively. These results suggested that

the zoom lens model was superior to the noise-and-selection

model, considering the trade-off between the goodness of fit

and the simplicity (six parameters, five k and one ς, for the

noise-and-selection model vs. three parameters, σ1, σ2, and

Az, for the zoom lens model) of the models.

Discussion

A distributed attention model was proposed for size averag-

ing. This model assumed the involvement of noise in the early

stages of processing for individual size coding, the integration

of information from individual items, and the involvement of

noise in a later stage for internal representation of the average

size. In addition, the components of attention were added to

reflect the previous findings regarding the attentional effects

in averaging size perception. In the psychophysical validation

of the proposed model, the number of items to be averaged in

a display was varied, and observers were asked to discern the

average size of the display. The distributed attention model

accounted well for the observers’ averaging performance.

Furthermore, it accounted well for the existing mean size dis-

crimination dataset (Allik et al., 2013) and was superior to the

noise-and-selection model for explaining our results.

4
The dataset was extracted from a figure in the original article (Allik et al.,

2013).
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The strength of the proposed model lies in the component

of attention. Although attentional effects in computing aver-

age sizes are well known (Chong & Treisman, 2005; de

Fockert & Marchant, 2008; McNair, Goodbourn, Shone, &

Harris, 2017), some existing models of averaging (Parkes

et al., 2001; Setic, Svegar, & Domijan, 2007) do not account

for them. In the proposed model, all items contributed to the

averaging process, but their contribution varied depending on

set-size. Items can contribute to the process equally (zoom

lens model) or unequally (spotlight model). Items seem to

contribute to the averaging process equally, as the zoom lens

model outperformed the spotlight and noise-and-selection

models. These results are consistent with the notion that en-

sembles are better computed under the mode of distributed

attention than under focused attention (Chong & Evans,

2011; Treisman, 2006).
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Fig. 5 Psychophysical data from Experiment 1 by Allik et al. (2013) and

the best fitting models. In each panel of columns 1–4, probability of

choice (dots) was plotted as a function of test-standard mean size differ-

ence along with the best-fits of different models (curves). In the rightmost

column, thresholds (dots), corresponding to pc = 0.76, were plotted as a

function of set-size along with the best-fitting models for thresholds

(curves)

Table 2 Best fitting parameters of proposed models: data from Experiment 1 by Allik et al. (2013)

Observer Model σ1 σ2 A k r2 χ2 p AIC

JA No late noise 0.09 - - - 0.99 4.00 .045 244.69

No attention 0.06 0.06 - - 0.99 - - 242.69

Attention (zoom lens) 0.06 0.06 1.00 - 0.99 0.00 1.000 244.69

Attention (spotlight) 0.11 0.05 0.67 1.99 0.99 0.10 .951 246.58

KA No late noise 0.07 - - - 0.99 27.79 <.001 245.94

No attention 0.00 0.05 - - 0.99 - - 220.15

Attention (zoom lens) 0.11 0.05 0.17 - 0.99 5.18 .023 216.98

Attention (spotlight) 0.14 0.03 0.26 1.52 0.99 5.51 .064 218.64

MT No late noise 0.06 - - - 0.97 50.01 <.001 320.54

No attention 0.00 0.05 - - 0.98 - - 272.54

Attention (zoom lens) 0.17 0.03 0.10 - 0.99 52.97 <.001 221.56

Attention (spotlight) 0.19 0.00 0.18 1.47 0.99 53.73 <.001 222.80
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The proposed model also confirmed the existence of a

late noise component in the averaging process (Parkes

et al., 2001; Solomon, 2010; Solomon et al., 2011). Even

if sufficient items are presented, observers will still make

some errors in perceiving the average size. That is, for a

set-size close to infinity, the threshold will not drop to zero,

but rather become saturated at a certain level. The limit of

the threshold is often explained by late noise. Several ob-

server models have been constructed with a late noise com-

ponent to characterize internal responses in tasks that re-

quire feature precision (Heeley & Buchanan-Smith, 1996;

Morgan et al., 1990; Parkes et al., 2001) and contrast sen-

sitivity (Burgess, Wagner, Jennings, & Barlow, 1981;

Eckstein, Ahumada, & Watson, 1997; Lu & Dosher,

1999; Pelli, 1985).

Similar to other visual tasks, the average computation has

limitations. It could be inaccurate because (1) noise is in-

volved in the averaging process (the current paper; Allik

et al., 2013; Solomon et al., 2011), (2) only selected items

contribute to it (Allik et al., 2013; Myczek & Simons, 2008;

Solomon et al., 2011), or (3) both the noisy percept and the

selection process reduce the precision of mean computation

(Allik et al., 2013; Solomon et al., 2011). The proposed atten-

tion models focused on the noisy percept and its interaction

with attention because attention is believed to reduce noise in

the perceptual processes (Dosher & Lu, 2000b, 2000a; Lu &

Dosher, 1998). Furthermore, it is unlikely that the visual sys-

tem uses only selected items for averaging because unattended

information contributes to visual processing, even up to a

semantic level (Treisman, 1969; Wolford & Morrison,

1980). There are also empirical data that all items contribute

to the averaging process. Chong et al. (Chong, Joo,
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Fig. 6 Psychophysical data and the best fit of the noise-and-selection

model. Probability of choice (dots) was plotted as a function of test-

standard mean size difference along with the best-fits of the noise-and-

selection model (red squares). Observers’ theoretical responses were sim-

ulated with 100,000 trials for each data point. The best-fitting cumulative

Gaussian distribution was presented with a red dotted curve in each panel

Table 3 Best fitting parameters of the noise-and-selection model: data

from our experiment

Observer ς k2 k4 k8 k16 k32 r2 AIC

SC 0.07 1.00 1.32 1.73 2.26 2.59 .99 196.53

JB 0.12 1.00 1.05 1.70 2.27 2.51 .98 228.98

JL 0.15 1.00 1.17 1.15 1.75 2.19 .98 236.57

GS 0.12 1.00 1.08 1.14 1.85 2.87 .99 258.45
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Emmanouil, & Treisman, 2008) found that the performance

was inferior when only a portion of the entire display was

presented compared to when the entire display was presented.

The averaging performance decreased as the number of items

to be included in the averaging decreased because they be-

came invisible (Choo & Franconeri, 2010; Joo, Shin, Chong,

& Blake, 2009). Our findings supported the idea that the vi-

sual system integrates information from unselected items, at

least to some extent. However, we must acknowledge that

other observer models with a filtering-out mechanism could

also explain the existing averaging performance (Allik et al.,

2013; Solomon et al., 2011). The noise-and-selection model

also explained the results of the current study, although infe-

rior to the zoom lens model. Further studies are necessary to

differentiate between the two potential mechanisms of atten-

tion in the averaging process: enhancing the representational

precision for attended items or filtering out unattended items.

The attention models adopt different assumptions from the

noise-and-selection model regarding the size of the attentional

window, which represents the limited capacity of an observer.

In the proposed attention models, it was assumed that there

was a fixed number for all set-sizes, rather than a varying

number depending on the set-size, because an observer’s in-

trinsic capacity limit should not change for different inputs

(e.g., set-size; but see also Solomon, 2010; Solomon et al.,

2011). This is unlimited in the zoom lens model and repre-

sented by a constant, k, in the spotlight model. By contrast, the

noise-and-selection model (Allik et al., 2013) does not assume

a fixed size of the attentional window for different set sizes.

Another important difference between the two models lies in

the existence of late noise. The present data clearly demon-

strated the saturation of the threshold decrement in large set-

sizes, and this decrement could be well accounted for by the

late noise component.

Although the proposed attention model explains the ob-

servers’ perception of mean size, it has limitations in account-

ing for some phenomena. For example, Solomon et al. (2011)

found that the size discrimination obeys Weber’s law, which

the proposed models did not incorporate. In addition, we did

not control the precision of individual sizes and assumed that

they are encoded with equal precision. The precision of indi-

vidual sizes might have decreased with increasing set-size

because smaller separations between items in larger set-sizes

could have produced crowding (van den Berg, Roerdink, &

Cornelissen, 2007). Note that Solomon et al. (2011) did not

find crowding in discriminating individual sizes among eight

items.

In summary, a distributed attention model of averaging was

developed and tested by varying the number of items to be

averaged. It predicted the observed data almost perfectly. The

components of attention and late noise played an important

role not only in predicting the observed data but also in

explaining existing data on averaging. The computational

components in the proposed model (early noise, late noise,

and attentional modulation) are sufficiently general that they

can be applied to other feature averaging applications.
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Appendix 1. Analytic model of mean size
perception

Noisy percept for individual items: Early noise

Each stimulus passes through a feature detector, which trans-

lates it into an internal response of a certain magnitude. The

output of the detector is proportional to the exponent of the

signal strength (Foley & Legge, 1981; Nachmias, 1981;

Nachmias & Sansbury, 1974). Regarding size perception, it

is known that the perceived size of a circle is related to its

physical size by a power function with an exponent of 0.76

(Teghtsoonian, 1965). By combining the output of the detector

with the early noise, a noisy internal response is produced for

each stimulus. An internal response for a circle size with di-

ameter d is described as a random variable from a Gaussian

probability density function, N μ; ζ2
� �

, where μ is the appar-

ent size of the circleS = (d2).76 = d1.52, and ζ is the standard

deviation of the Gaussian early noise for each input, σ1.
5

Averaging multiple items

Then, the visual system attempts to integrate all internal re-

sponses generated from multiple inputs. The percept of the

average size is a random variable with a Gaussian probability

distribution, N μ; ζ2
� �

, whose center is at the mean of the

circle sizes and whose standard deviation decreases with the

square root of set-size,
ffiffiffi

n
p

. Therefore, the expected value of

the internal response for the average size is proportional to the

arithmetic mean of apparent sizes (Chong & Treisman, 2003):

5
It should be noted that the apparent size, S, has a physical unit (e.g., pixel1.52)

whereas μ is an internal quantity with an arbitrary unit.
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μ ¼ S
^¼ ∑d1:52i

n
ð3Þ

where di is the diameter of i-th item. The standard deviation of

the internal response distribution for the average size is in-

versely proportional to the square root of the set-size:

ζ ¼ σ1
ffiffiffi

n
p ð4Þ

Noisy percept for the averaged representation: Late
noise

Late noise is added to the internal response for the average size

of multiple items. Because late noise and the internal response

for average size are both random variables with certain vari-

abilities, the variance of the noisy internal response distribu-

tion after late noise can be calculated as follows:

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1
2

n
þ σ2

2

r

ð5Þ

where σ2 is the standard deviation of the zero-mean Gaussian

late noise.

Zoom lens model: Distributed attention with equal
effects on all items

In the zoom lens model, attention parameter, Az, is a noise-

reduction factor multiplied to early noise, σ1. That is, a small

Az value signifies that attention greatly reduces early noise.

The model posits that attentional benefits, 1 - Az, are inversely

related to set-size. For example, if the attention parameter Az is

0.7, which implies that attention reduces a random noise by a

factor of 0.3 (= 1 − 0.7), 0.15, 0.075, 0.0375, 0.0188, and

0.0094 for set-sizes 1, 2, 4, 8, 16, and 32, respectively. Thus,

the multiplication factors are 0.7, 0.85, 0.925, 0.9625, 0.9812,

and 0.9906 for set-sizes 1, 2, 4, 8, 16, and 32, respectively.

Therefore, by replacing σ1 with σ1
n−1þAz

n

� �

in Eq. 5, the var-

iability of the internal response for the average size should be

ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1þ Azð Þ2
n3

σ1
2 þ σ2

2

s

ð6Þ

Spotlight model: Distributed attention with unequal
effects on all items

The spotlight model posits that attention selects a fixed num-

ber of items and that the visual system processes the selected

items with high precision, with the unselected items consigned

to low precision representations (Posner, 1980). Therefore, in

the proposed analytic model, the early noise for k attended

items is As × σ1, but is only σ1 for the other n−k items. By

replacing σ1with σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2kþn−k
n

q

(when n > k) or Asσ1 (when n ≤

k) in Eq. 4, the variability of the internal response for the

average size should be

ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2k þ n−k

� �

n2
σ1

2 þ σ2
2

s

; if n > k

ζ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2

n
σ1

2 þ σ2
2

s

; if n≤k

8

>

>

>

>

<

>

>

>

>

:

ð7Þ

Comparing average sizes: Signal detection theory

For a two-alternative forced-choice (2AFC) task, the visual

system compares two random samples, one from each internal

response distribution: N μt; ζ t
2

� �

for the test and N μs; ζs
2

� �

for the standard. Since μt and μt are the expected responses for

the standard and test ensemble sets, the expected value of

difference of the internal responses for the test and standard

sets is proportional to the Weber fraction between apparent

mean sizes: w ¼ Ŝt−Ŝs
� �

=Ŝs. In comparison, the perceptual

sensitivity d’ can be defined as a signal-to-noise ratio, namely,

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2t þ ζ2s
2

r ð8Þ

Comparing N-to-N

When an observer compares the average sizes of two displays

with the same set-size, that is, ζt = ζs = ζ, Eq. 8 can be simpli-

fied as:

d0 ¼ w

ζ
ð9Þ

By substituting Eqs. 4–7 into Eq. 9, d’ can be calculated by

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1
2

n
þ σ2

2

r ð10Þ

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1þ Azð Þ2
n3

σ1
2 þ σ2

2

s ð11Þ

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2k þ n−k

� �

n2
σ1

2 þ σ2
2

r ; if n > k

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2

n
σ1

2 þ σ2
2

r ; if n≤k

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð12Þ
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for the no-late-noise model, the no-attention model, the zoom

lens model, and the spotlight model, respectively.

Comparing 1-to-N

When an observer is required to compare a standard dis-

play containing only a single item to a test display contain-

ing multiple items, the internal response distributions are

different. For the test display, in which there are n items,

the variability of internal response distributions σt can be

computed by Eqs. 4–7. For the standard display, the vari-

ability σs can be computed by setting n to 1 in Eqs. 4–7. By

substituting σs and σt into Eq. 8, d’ function can be sim-

plified as:

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1

2n
σ2
1

r ð13Þ

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1

2n
σ2
1 þ σ2

2

r ð14Þ

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Az
2n3 þ n−1þ Azð Þ2

2n3
σ2
1 þ σ2

2

s ð15Þ

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

As
2 n2 þ kð Þ þ n−k

2n2
σ2
1 þ σ2

2

r ; if n > k

d0 ¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1ð ÞAs
2

2n
σ2
1 þ σ2

2

r ; if n≤k

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð16Þ

Behavioral signatures of proposed models

An observer’s probability of choice, pc, can be determined by

the sensitivity and response bias (toward the first or second

intervals, or toward the test or standard displays). By the sig-

nal detection theory, this can be calculated as:

pc ¼ Φ
d0
ffiffiffi

2
p

� �

ð17Þ

in a 2AFC task, in which the response bias is known to be

minimal. For the comparison of n-to-n items, it can be calcu-

lated by plugging in Eq. 9 into 17,

pc ¼ Φ
d0
ffiffiffi

2
p

� �

¼ Φ
w

ζ
ffiffiffi

2
p

� �

ð18Þ

where Φ(x) is the standard normal cumulative density func-

tion. The threshold for a targeted probability choice, t is:

θpc¼t ¼ Φ
−1 tð Þ � ζ

ffiffiffi

2
p

ð19Þ

where Φ−1 is the inversed standard normal cumulative density

function. For example,

θpc¼0:76 ¼ ζ ð20Þ

The threshold can be also defined as the reciprocal of the

sensitivity d’. Thus, when there is no response bias, the thresh-

old for a certain level of sensitivity, t, can be described as

θd0¼t ¼ t � ζ ð21Þ

For example,

θd0¼1 ¼ ζ ð22Þ

In a special case comparing 1-to-n, the pc can be computed by

plugging 13–16 into 17.

Appendix 2. Evaluation of models
with set-sizes 2–32

One might argue that no averaging process is necessary when

an observer is asked to report the average size of a single item.

Clearly, the average size of a single item is the actual size.

Therefore, it would be reasonable that the averaging process

for the display with set-size 1 should be distinguished from the

process for larger set-size displays. To evaluate the observer

model and the attentional effects while excluding the special

property of the averaging process for a display with set-size 1,

we fitted models to pc of set-sizes 2–32.

The same data analysis as for set-sizes 1–32 (see the main

text) was performed for this analysis. The best fitting results

are shown in Table 4 and Fig. 7. For all observers, the com-

parison of models with and without late noise showed that the

goodness of fit of the observer models was significantly im-

proved by including a late noise component (for all observers,

p < .001). In the comparison between the no-attention model

and the attentionmodels, the results showed that the additional

attention parameters significantly improved the goodness of

fit for all observers except JB (for JB, χ2 = 1.00, p = .316 for

the zoom lens model, and χ2 = 1.06, p = .588 for the spotlight

model). The AIC value was also smaller for the zoom lens

model than for the spotlight model, indicating that the former

was more probable than the latter. The relative likelihood of

the spotlight model to the zoom lens model was 2.54, 2.64,

2.38, and 2.07 for observers SC, JB, JL, and GS, respectively.
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Fig. 7 Psychophysical data and the best fittingmodels (set-sizes 2–32). In

each panel of columns 1–6, probability of choice, pc (dots) was plotted as

a function of test-standard mean size difference along with the best-fits of

different models (curves). In the right-most column, thresholds (dots),

corresponding to pc = 0.76, were plotted as a function of set-size along

with the best-fitting models for thresholds (curves)

Table 4 Best fitting parameters of proposed models (set-sizes 2–32)

Observer Model σ1 σ2 A k r2 χ2 p AIC

SC No late noise 0.19 - - - 0.97 115.20 <.001 276.91

No attention 0.09 0.05 - - 0.99 - - 163.71

Attention (zoom lens) 0.15 0.04 0.18 - 0.99 4.61 .032 161.11

Attention (spotlight) 0.16 0.04 0.56 2.68 0.99 4.74 .093 162.97

JB No late noise 0.31 - - - 0.94 124.21 <.001 296.17

No attention 0.14 0.08 - - 0.98 - - 173.95

Attention (zoom lens) 0.18 0.07 0.46 - 0.98 1.00 .316 174.95

Attention (spotlight) 0.18 0.07 0.28 1.00 0.98 1.06 .588 176.89

JL No late noise 0.40 - - - 0.95 62.00 <.001 265.34

No attention 0.22 0.09 - - 0.98 - - 205.34

Attention (zoom lens) 0.35 0.07 0.15 - 0.98 5.81 .016 201.53

Attention (spotlight) 0.38 0.07 0.54 2.81 0.98 6.07 .048 203.26

GS No late noise 0.33 - - - 0.96 99.08 <.001 311.27

No attention 0.16 0.08 - - 0.98 - - 214.19

Attention (zoom lens) 0.26 0.07 0.12 - 0.99 6.65 .010 209.53

Attention (spotlight) 0.26 0.07 0.16 1.39 0.99 7.19 .027 210.99
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