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Distributed attitude control for multiple spacecraft
with communication delays

Shihua Li, Senior Member, IEEE, Haibo Du, Member, IEEE, Peng Shi, Senior Member, IEEE

Abstract—This paper considers the attitude synchronization
problem for a group of spacecraft in the presence of communi-
cation delays. Based on the backstepping control and finite-time
control techniques, a novel non-smooth distributed cooperative
attitude control algorithm is proposed for multiple spacecraft
with attitude described by quaternion. Rigorous proof shows that
attitude synchronization can be achieved asymptotically under
the proposed control law if the communication topology graph
among the spacecraft is strongly connected. Finally, a simulation
example is given to demonstrate the efficiency of the proposed
method.

Index Terms—Attitude synchronization, Multiple spacecraft,
Communication delays, Finite-time control.

I. INTRODUCTION

In recent years, the consensus problem of multi-agents
systems has attracted a great deal of interest, see for example
[8], [9], [10]. As an important application of consensus, the
attitude coordination control of multiple spacecraft has been
a hot topic in this area. The interest is motivated by its many
different types of applications, such as formation flying [6],
[7], space-based interferometry, etc. However, it is well known
that the attitude dynamics of the spacecraft are coupled and
highly non-linear, which is the main obstruction to design a
high precision attitude control law.

Usually, the attitude coordination control is cataloged as
centralized coordination control and decentralized coordi-
nation control. Compared with the centralized coordination
control, the decentralized coordination control often achieves
more benefits, such as greater efficiency, higher robustness,
and less communication requirement [9], [10]. Considering
these benefits, many distributed cooperative control algorithms
have been developed for linear multi-agent systems [8], [11],
[12] and multiple spacecraft attitude systems. In [13], two dis-
tributed control strategies were proposed to guarantee attitude
synchronization under a ring communication graph. In [14],
[15], the results of [13] were extended to a more general
communication graph. In [16], the attitude synchronization
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algorithm by using only relative attitude and relative angular
velocity information was developed. In the case that the
angular velocity is unmeasurable, the attitude synchronization
problem was also considered in [13], [17], [18]. When there
exist a single leader or multiple leaders, the cooperative
attitude tracking control problem was discussed in [18], [19],
respectively. Recently, in order to enhance the convergence
speed and robustness to uncertainties and disturbances, the
finite-time control technique [20], [21] has been employed
to solve the attitude control problem for spacecraft and the
consensus problem for multi-agent systems. For example, in
[22], [23], the finite-time consensus problem for linear multi-
agent systems were discussed. In [24], [3], [4], [5] the finite-
time attitude stabilization problem for a single spacecraft
was investigated. In [3], [25], [2], the finite-time cooperative
attitude tracking control problem for a group of spacecraft with
a single leader or multiple leaders was solved, respectively.

Note that all the preceding listed literature on attitude
coordination control does not consider the effect of com-
munication delays. Usually, for the multi-agent network, the
communication delays between agents are unavoidable. These
delays may deteriorate the system performance and may
even cause instability. For multi-agent systems with linear
dynamics, this issue has been extensively studied and a number
of interesting results have been reported in [8], [26], [27],
[28], [29], [30], [1], to name just a few. However, it is not
straightforward to extend these consensus algorithms from
linear model to spacecraft model. The difficulty lies in the
nonlinear characteristics of rigid spacecraft. In literature, there
are very few results on attitude synchronization problem in the
presence of communication delays. In [31], using a variable
structure control method, a robust cooperative attitude tracking
control law with communication delays was presented. Later,
in [32], a continuous robust attitude tracking control algorithm
was proposed. Recently, the authors of [33] also considered
the attitude cooperative tracking control problems for multiple
spacecraft in the presence of communication delays. It should
be pointed out that all the aforementioned results [31], [32],
[33] only discussed the cooperative attitude tracking control
problem. A common assumption in [31], [32], [33] is that each
follower needs to keep communication with the leader. When
there is no external reference state or leader, i.e., leaderless
multiple spacecraft systems, these attitude tracking algorithms
can not be applied again. To this end, in [34], a delayed
attitude synchronization was proposed for leaderless multiple
spacecraft. However, in [34], only kinematic model of attitude
system is considered and the control law is local rather than
global.
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In this paper, we concentrate on the design of global attitude
synchronization algorithm for a group spacecraft with dynamic
models when there exist communication delays. Based on the
backstepping control and finite-time control techniques, the
global controller design is divided into two steps. Specifically,
for the kinematic subsystem, a virtual angular velocity is
first designed such that the attitude synchronization can be
achieved in the presence of communication delays. Then, for
the dynamic subsystem, a finite-time control law is designed
for the control torque such that the virtual angular velocity
can be tracked in a finite time.

The main contribution of this paper is that the proposed atti-
tude synchronization algorithm can be applied to the leaderless
multiple spacecraft systems in the presence of communication
delays. Rigorous global stability analysis shows that the atti-
tude synchronization can be achieved asymptotically. So far, to
the best of authors’ knowledge, there is no global attitude syn-
chronization result for leaderless multiple spacecraft systems
with communication delays.

Moreover, note that we employ finite-time control tech-
niques to get a faster convergence rate for the tracking of
angular velocity to virtual angular velocity. The reason of
using finite-time control is of interest because the systems
with finite-time convergence demonstrate some nice features
such as faster convergence as well as better robustness and
disturbance rejection properties [20], [24], [35]. By regulating
the additional parameter, i.e., the fractional power, the dis-
turbance rejection performance of closed-loop system can be
enhanced. It is known that conventional disturbance analysis
results usually shows that to reduce the bounds of steady
output errors, one needs to increase the control gains to be
sufficient larger. However, high gain feedback control system
often exhibits instability in the actual operation. The proposed
method of this paper can reduce the bounds of steady output
errors without increasing the control gains.

II. Preliminaries and problem formulation
In this paper, let P > 0 denote a symmetric positive definite

matrix P . Let λmax(P ) and λmin(P ) denote the maximum
and minimum eigenvalues of matrix P , respectively. Define
sigα(x) = sign(x)|x|α, where α > 0, x ∈ R and sign(·) is
the standard signum function. If x = [x1, x2, · · · , xn]T is a
vector, then sigα(x) = [sigα(x1), sigα(x2), · · · , sigα(xn)]T .

Next, let us review some concepts about graph theory.

A. Graph theory

Assume that the information exchange of n spacecraft is
modelled by a directed graph G(A) = {V, E, A}. V =
{vi, i = 1, · · · , n} is the set of nodes, E ⊆ V ×V is the set of
edges and A = [aij ] ∈ Rn×n is the weighted adjacency matrix
of the graph G(A) with non-negative adjacency elements aij .
The node indexes belong to a finite index set Γ = {1, · · · , n}.
Assume that the adjacency elements associated with the edges
of the digraph are positive, i.e., aij > 0 ⇔ (vj , vi) ∈ E.
Moreover, we assume that aii = 0 for all i ∈ Γ. The set of
neighbors of agent i is denoted by Ni = {j : (vj , vi) ∈ E}.

If there is an edge from agent i to agent j, i.e., (vi, vj) ∈
E, then there exists an available information channel from
agent i to agent j. A path in directed graph G(A) from vi1 to
vik

is a sequence of vi1 , vi2 , · · · , vik
of finite nodes starting

with vi1 and ending with vik
such that (vil

, vil+1) ∈ E for
l = 1, 2, · · · , k − 1. If (vi, vj) ∈ E, then vi is called the
parent node of vj and vj is called the child node of vi. The
directed graph G is strongly connected if there exists a path
between any two distinct vertices. The out-degree of node vi is
defined as degout(vi) = di =

∑n
j=1 aij =

∑
j∈Ni

aij . Then
the degree matrix of digraph G is D =diag{d1, · · · , dn} and
the Laplacian matrix of digraph G is L = D −A.

B. Spacecraft attitude kinematics and dynamics

The spacecraft attitude can be described by two sets of
equations, namely, the kinematic equation which relates the
time derivatives of the angular coordinates to the angular
velocity vector, and the dynamic equation which describes
the evolution of the velocity vector. Note that quaternion uses
the least possible number of parameters (four parameters) to
represent orientation globally. Therefore, we use quaternion
to describe spacecraft attitude in this paper. Without loss of
generality, assume that there exist n spacecraft in this paper.
The communication topology among these n spacecraft is
described by the directed graph G(A). Let Γ = {1, · · · , n}.

As in [36], [37], the dynamic equation of i-th spacecraft
can be described by

Jiω̇i = s(ωi)Jiωi + τi, i ∈ Γ, (1)

where Ji = JT
i is the positive definite inertia matrix,

ωi = [ωi,1, ωi,2, ωi,3]T is the angular velocity vector, τi =
[τi,1, τi,2, τi,3]T is the control torque vector, and s(ωi) is the

following matrix s(ωi) =




0 ωi,3 −ωi,2

−ωi,3 0 ωi,1

ωi,2 −ωi,1 0


 .

The kinematic equation of i-th spacecraft can be described
as follows

q̇i =
1
2
E(qi)ωi, i ∈ Γ, (2)

where qi = [qi,0, qi,1, qi,2, qi,3]T = [qi,0, q
T
i,v]T is unit quater-

nion, and

E(qi) =
( −qT

i,v

−s(qi,v) + qi,0I3

)
,

where I3 denotes the 3× 3 identity matrix.
Actually, for i ∈ Γ, let Φi denote the principal angle and

ei = [ei,1, ei,2, ei,3]T denote the principal axis associated with
Euler’s Theorem with eT

i ei = 1. Then the quaternion can be
defined as

qi,0 = cos
Φi

2
, qi,v = eisin

Φi

2
. (3)

From (3), we obtain

q2
i,0 + qT

i,vqi,v = 1. (4)

Furthermore, we have ET (qi)E(qi) = I3.
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C. Control objectives

The goal of this paper is to deign a distributed attitude
control law for a group of spacecraft in the presence of
communication delays. The communication topology among
spacecraft is modelled by a directed graph. The distributed
law is based on the local state information from itself and
its neighbors. Rigorous stability proof will show that under
the proposed distributed attitude control law, the attitude
synchronization can be achieved.

D. Some lemmas

Lemma 1. [20] Consider the following system

ẋ = f(x), f(0) = 0, x ∈ Rn, (5)

where f(·) : Rn → Rn is a continuous function. Suppose there
exist a positive definite continuous function V (x) : U → R,
real numbers c > 0 and α ∈ (0, 1), and an open neighborhood
U0 ⊂ U of the origin such that V̇ (x) + c(V (x))α ≤ 0, x ∈
U0\{0}. Then V (x) approaches 0 in finite time. In addition,
the finite settling time T satisfies that T ≤ V (x(0))1−α

c(1−α) .
Lemma 2. [38] For xi ∈ R, i = 1, · · · , n, 0 < p ≤ 1, then

(|x1|+ · · ·+ |xn|)p ≤ |x1|p + · · ·+ |xn|p.
Lemma 3. [39] Let c, d > 0. For any γ > 0, the following

inequality holds for ∀x, y ∈ R: |x|c|y|d ≤ c
c+dγ|x|c+d +

d
c+dγ−c/d|y|c+d.

Lemma 4. [22] If a directed graph G is strongly connected,
then there exists a positive column vector γ = [γ1, · · · , γn]T ∈
Rn such that γT L = 0, where L the corresponding Laplacian
matrix L of graph G.

III. MAIN RESULTS

In this section, the attitude synchronization problem in the
presence of communication delays is investigated. Let Tij > 0
represent the communication delay from agent j to agent i.
The controller design method can be regarded as a integration
with the backstepping control and finite-time control methods.
Specifically speaking, the design procedure is divided into two
steps:
• For kinematic subsystem (2), using the backstepping

control idea and considering ωi as the virtual input, a
virtual angular velocity ω∗i is designed such that the
attitudes of kinematic subsystem achieve consensus.

• For dynamic subsystem (1), using the finite-time control
technique, a control law is designed such that the virtual
velocity ω∗i can be tracked by the real angular velocity
ωi in a finite time.

A. Virtual angular velocity design

Proposition 1. Consider the kinematic subsystem (2). If
the directed graph G(A) is strongly connected and the virtual
angular velocity is designed as

ω∗i (t) = −k2


 ∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]


 , i ∈ Γ,

(6)

where k2 > 0, then the attitude synchronization can be
achieved asymptotically.

Proof. Substituting control law (6) into subsystems (2)
yields

q̇i(t) = −k2

2
E(qi)


 ∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]


 ,

i ∈ Γ. (7)

According to Lemma 4, if the directed graph G(A) is
strongly connected, there exists a positive column vector
γ = [γ1, · · · , γn]T ∈ Rn such that γT L = 0. Consider the
following candidate Lyapunov function

V (t) =
n∑

i=1

γi[2− 2qi,0(t)]

+
k2

2

n∑

i=1

γi

∑

j∈Ni

aij

∫ t

t−Tij

qT
j,v(τ)qj,v(τ)dτ. (8)

According to (2) and the definition of E(qi), the derivative of
2− 2qi,0(t) with respect to t is

d[2− 2qi,0(t)]
dt

= qT
i,v(t)ω(t)

= −k2q
T
i,v(t)


 ∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]


 . (9)

Then, taking the derivative of V (t) along (7), yields

V̇ (t) =− k2

n∑

i=1

∑

j∈Ni

γiaij

(
qT
i,v(t)qi,v(t)− qT

i,v(t)qj,v(t− Tij)

− 1
2
qT
j,v(t)qj,v(t) +

1
2
qT
j,v(t− Tij)qj,v(t− Tij)

)

=− k2

2

n∑

i=1

γi

∑

j∈Ni

aij(qT
i,vqi,v − qT

j,vqj,v)

− k2

2

n∑

i=1

γi

∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]T

× [qi,v(t)− qj,v(t− Tij)]. (10)

Define ξ = [qT
1,vq1,v, · · · , qT

n,vqn,v]T . By the definition of L,
we obtain

∑
j∈Ni

aij(qT
i,vqi,v−qT

j,vqj,v) = (Lξ)i, where (Lξ)i

denotes the i-th element of vector Lξ. Since γT L = 0, then

n∑

i=1

γi

∑

j∈Ni

aij(qT
i,vqi,v − qT

j,vqj,v) = γT Lξ = 0. (11)

Substituting (11) into (10), we obtain

V̇ (t) =− k2

2

n∑

i=1

γi

∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]T

× [qi,v(t)− qj,v(t− Tij)] ≤ 0. (12)

Hence V (t) is monotonously non-increasing. With this in
mind, by noticing that V (t) is bounded from below since
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V (t) ≥ 0, it can be concluded that lim
t→∞

∫ t

0
V̇ (τ)dτ =

lim
t→∞

(V (t)− V (0)) exists and is finite. Meanwhile,

V̈ (t) =− k2

n∑

i=1

γi

∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]T

× [q̇i,v(t)− q̇j,v(t− Tij)]

=− k2

n∑

i=1

γi

∑

j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]T

× 1
2

([−s(qi,v(t)) + qi,0(t)I3]ω∗i (t)

−[−s(qj,v(t− Tij)) + qj,0(t− Tij)I3]ω∗j (t− Tij)
)
.

(13)

By (4), we know that qi,v, qi,0(∀i ∈ Γ) are always bounded. As
a result, V̈ (t) is bounded, which means that V̇ (t) is uniformly
continuous. By Barbalat’s Lemma, it can be concluded that
V̇ (t) → 0 as t → ∞. Since γi > 0 and aij > 0 if j ∈
Ni, then we have for all i ∈ Γ, qi,v(t) − qj,v(t − Tij) →
0,∀j ∈ Ni, as t → ∞. With this in mind and by (7), it can
be concluded that q̇j(t) → 0, ∀j ∈ Γ as t →∞, which means
that qj,v(t − Tij) − qj,v(t) → 0,∀j ∈ Ni, as t → ∞. Hence,
for all i ∈ Γ, qi,v(t) − qj,v(t) → 0,∀j ∈ Ni, as t → ∞.
Since the graph G(A) is strong connected, then there exists
a path between any two distinct agents. As a matter of fact,
qi,v(t)−qj,v(t) → 0 as t →∞ for all i, j ∈ Γ. In addition, by
noticing the constraint condition (4), qi,v = qj,v implies that
qi,0 = qj,0 or qi,0 = −qj,0. Since quaternions (qi,0, q

T
i,v)T and

(−qi,0, q
T
i,v)T represent the same rotation in the physical space

[37], the attitude synchronization is achieved asymptotically.
2

Remark 1. Using the idea of backstepping method, the
angular velocity is taken as a virtual input to design an attitude
synchronization algorithm for the kinematic subsystem. Next,
we should design a control law for the dynamic subsystem
such that the virtual angular velocity can be tracked by the real
angular velocity. Different from the conventional backstepping
control method, here, the finite-time control technique is used
to design the tracking control law. The reason for using this
technique is that it can increase the convergence rate and
improve the disturbance rejection performance by regulating
the additional parameter, i.e., the fractional power.

B. Finite-time control law design

In this section, we first design a finite-time control law
such that the angular velocity ωi can track the virtual angular
velocity ω∗i in a finite time. Then we give a rigorous global
stability analysis.

Define

εi(t) = (εi,1(t), εi,2(t), εi,3(t))T = ωi − ω∗i , i ∈ Γ. (14)

Combining (14) with (1) and (2), we have the following error
model:

q̇i =
1
2
E(qi)ωi =

1
2
E(qi)ω∗i +

1
2
E(qi)εi, (15)

Jiε̇i = s(ωi)Jiωi − Jiω̇
∗
i + τi, i ∈ Γ. (16)

Obviously, systems (15) and (16) can be regarded as a cas-
caded system. The interconnection term is 1

2E(qi)εi. Now, we
present the main result.

Theorem 1. Consider the multiple spacecraft system (1)-
(2). If the directed graph G(A) is strongly connected and the
control torque τi is chosen as

τi(t) = −s(ωi(t))Jiωi(t)

− k1sigα


ωi(t) + k2

∑

j∈Ni

aij(qi,v(t)− qj,v(t− Tij))




− k2Ji

∑

j∈Ni

aij(q̇i,v(t)− q̇j,v(t− Tij)), i ∈ Γ, (17)

where k1 > 0, k2 > 0, 0 < α < 1, then the attitude
synchronization can be achieved asymptotically.

Proof. The proof procedure can be divided into two steps.
Firstly, we prove that the virtual angular velocity can be
tracked by the real angular velocity in a finite time under con-
trol law (17). Then, we show that the attitude synchronization
can be achieved under control law (17).

Step 1. In this step, we will show that the virtual angular
velocity ω∗i can be tracked by the real angular velocity ωi, i ∈
Γ in a finite time under control law (17). In other words, we
should prove that the error states εi will converge to zero in
a finite time under control law (17).

Substituting control law (17) into system (16) yields

Jiε̇i = −k1sigα(εi), i ∈ Γ. (18)

Without loss of generality, let us first consider the i-th (i ∈ Γ)
agent. Consider the Lyapunov function

Vi(εi) =
1
2
εT
i Jiεi.

Taking the derivative of Vi(ε) along (18) yields

V̇i(εi) = εT
i Jiε̇i = −k1ε

T
i sigα(εi)

= −k1(|εi,1|1+α + |εi,2|1+α + |εi,3|1+α). (19)

By Lemma 2, |εi,1|1+α + |εi,2|1+α + |εi,3|1+α ≥ (ε2
i,1 +ε2

i,2 +
ε2

i,3)
(1+α)/2. Note that Vi(εi) = 1

2εT
i Jiεi ≤ 1

2Ji,maxεT
i εi,

where Ji,max = λmax(Ji). Hence, we have

V̇i(εi) ≤ −k1(εT
i εi)

1+α
2 ≤ −k1(2/Ji,max)

1+α
2 (Vi(εi))

1+α
2

= −k1c(Vi(εi))
1+α

2 , (20)

where c = (2/Ji,max)
1+α

2 . By Lemma 1, Vi(εi) reaches zero
in finite time, which implies that there exists a time Ti =
Vi(εi(0))

(1−α)/2

k1c(1−α)/2 , such that Vi(εi)(t) = 0, i.e., εi(t) = 0, ∀t ≥
Ti. Define T ∗ = max{T1, · · ·, Tn}. Then, we have εi(t) = 0,
when t ≥ T ∗, ∀i ∈ Γ. In other words, after the time T ∗,
ωi = ω∗i , for all i ∈ Γ.

Step 2. In this step, we will prove that the attitude
synchronization can be achieved asymptotically under control
law (17).

By Step 1, we know that under control law (17), when
t ≥ T ∗, ωi = ω∗i , ∀i ∈ Γ. Combining the results of
Proposition 1, once ωi ≡ ω∗i , then attitude synchronization can
be achieved asymptotically. Note that we do not discuss the
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state trajectories in the time interval [0, T ∗]. In what follows,
we will prove that the states (qi(t), ωi(t))(∀i ∈ Γ) are bounded
in the interval [0, T ∗].

First, the state qi(∀i ∈ Γ) is always bounded due
to the constraint condition (4), which implies that ω∗i =
−k2

(∑
j∈Ni

aij [qi,v(t)− qj,v(t− Tij)]
)

(∀i ∈ Γ) is always
bounded.

Second, from (20), we have V̇i(εi(t)) ≤ 0 for any t, ∀i ∈ Γ.
It implies that

1
2
Jmin,iε

T
i (t)εi(t) ≤ 1

2
εT

i (t)Jiεi(t) = Vi(εi(t)) ≤ Vi(εi(0))

=
1
2
εT

i (0)Jiεi(0),∀t ≥ 0,∀i ∈ Γ, (21)

where Jmin,i = λmin(Ji). That is to say that the error state
εi(∀i ∈ Γ) is always bounded. By noticing that ωi = εi + ω∗i
and ω∗i is bounded, then ωi(∀i ∈ Γ) is always bounded. Hence,
the states (qi(t), ωi(t))(∀i ∈ Γ) are always bounded.

Therefore, by the results of Steps 1-2, we can conclude that
under control law (17), qi → qj as t →∞. Moreover, by the
definition of ω∗i , qi = qj ,∀i, j ∈ Γ, implies that ω∗i = 0. Thus,
ωi = ω∗i → 0 as t →∞. 2

Remark 2. Note that here the finite-time control technique
is employed to design the tracking control law such that the
virtual angular velocity can be tracked in a finite time. From
the proof procedure, we know that the explicit expression for
the finite settling time is bounded by Ti = Vi(εi(0))

(1−α)/2

k1c(1−α)/2 .
Clearly, increasing gain k1(k1 > 0) will enhance the conver-
gence speed. Moreover, decreasing fractional power α(0 <
α < 1) will enhance the convergence speed of closed-loop
system as well. Besides faster convergence rate, the closed-
loop systems under finite-time control usually demonstrate
better disturbance rejection properties. Since the finite-time
control technique is only employed for designing tracking
control law for the dynamic subsystems, a rigorous theoretical
analysis of disturbance rejection performance will be given
for this subsystems. Assume there exist bounded external
disturbances di(t) ∈ R3(‖di‖ ≤ l < +∞) in the same channel
as the control torque. Then it follows from (16) and (19)
that V̇i(εi) = −k1

∑3
j=1 |εi,j |1+α + εT

i di. By Lemma 3, we
obtain εT

i di ≤
∑3

j=1 |εi,j |(l1/α)α ≤ k1
1+α

∑3
j=1 |εi,j |1+α +

3α

(1+α)k
1/α
1

l(1+α)/α, which leads to

V̇i(εi) = − k1α

1 + α

( 3∑

j=1

|εi,j |1+α − 3(l/k)
1+α

α

)
. (22)

According to the proof of (20), we have

V̇i(εi) ≤ − k1α

1 + α

(
cVi(εi)(1+α)/2 − 3(l/k)

1+α
α

)
. (23)

Following a similar analysis as that in [35], Vi(εi) will enter

the region Vi(εi) ≤ 3
c

(
l+4
k1

)2/α

and stay there for ever, where
4 is an arbitrarily small positive constant. Since Vi(εi) ≥
1
2Ji,minεT

i εi, where Ji,min = λmin(Ji), then

|εi,j | ≤ (εT
i εi)1/2 ≤ 6

cJi,min

(
l +4

k1

)1/α

. (24)

Usually, conventional disturbance analysis results shows that
to reduce the bounds of steady output errors, one needs to
increase the control gains to be sufficiently large. However,
high gain feedback control system often exhibits instability in
the actual operation. So under the considerations of stability
as well as control saturation constraint, the proposed non-
smooth control method can reduce the bounds of steady output
errors only by adjusting the fractional power α. For example,
according to (24) and selecting k1 such that k1 > l + 4,
then we can select α to approximate to 0 such that the steady
tracking error |εi,j | can be made as small as desired. Based
on this analysis and noticing ‖E(qi)‖ = 1, it follows from
(15) that the steady output errors for attitude can be rendered
as small as possible as well. The numerical simulations in
Section 4 will illustrate this statement.

IV. NUMERICAL EXAMPLES AND SIMULATIONS

Consider a team with four spacecraft described by (1)-
(2). The information exchange topology among spacecraft
is shown in Fig. 1. The weights of the directed edges are:
a13 = a21 = a31 = a34 = a42 = 0.5, a41 = 1. The commu-
nication delays are T13 = 0.2s, T21 = T31 = T34 = T42 =
0.4s, T41 = 0.8s. The inertia matrices of the spacecraft are
given as in [19]: J1 =diag(18, 12, 10), J2 =diag(22, 16, 12),
J3 =diag(17, 14, 12), J4 =diag(15, 13, 8).

Fig. 1. The information exchange among four spacecraft.
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Fig. 2. Attitudes of all spacecraft.
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Fig. 3. Angular velocities of all spacecraft.
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Fig. 4. Control torques of all spacecraft.

Let the control gains of attitude control law (17) be k1 =
2, k2 = 2, α = 2/3. The initial conditions are randomly
selected. Moreover, the control torques are limited not to
exceed 10 N.m.

In the absence of of external disturbances, under attitude
control law (17), the response curves of the closed-loop system
(1)-(2) with (17) are shown in Figs. 2-4. It can be found that
the attitudes of each spacecraft converge to the same attitudes
and the angular velocities of each spacecraft converge to zero.

Next, in the presence of external disturbances, the dis-
turbance rejection property for the attitude control law (17)
is also investigated. As in [31], the following external dis-
turbances are added to each spacecraft system in the same
channel as the control torque: d1(t) = 0.6 sin(t), d2(t) =
0.3 cos(2t), d3(t) = 0.5 sin(1.7t). Table 1 shows the steady-

state errors for the closed-loop system under the different frac-
tional power α. We can see that by regulating the additional
parameter, i.e., the fractional power α, the bounds of steady
output errors can be reduced without increasing the control
gains k1, k2. That is to say that under the considerations of
control saturation constraint (the control torques are limited
not to exceed 10 N.m), the disturbance rejection performance
still can be enhanced.

Table 1. The steady-state errors under the different fractional
power α

α 1 3/4 1/2 1/4
Steady-state errors: qi 0.045 0.03 0.022 0.004
Steady-state errors: ωi 0.06 0.06 0.045 0.011

V. Conclusion

In this paper, we have discussed the attitude synchronization
problems for leaderless multiple spacecraft in the presence
of communication delays. By using the backstepping control
and finite-time control methods, a global continuous attitude
synchronization algorithm has been presented. Future work
includes extending the results in this paper to the cases when
the communication delay is time-varying.
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